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Optical interferometry at the Heisenberg limit with twin Fock states and parity measurements
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Holland and BurnetfPhys. Rev. Lett71, 1355(1993] have argued that twin Fock states of equal photon
numberN injected at both input ports of a Mach-Zehnder interferometer lead to phase measurements with
accuracies approaching the Heisenberg litnit,, = 1/(2N). However, the method of phase detection sug-
gested by those authors, obtaining the difference of the photocurrents at the output ports of the interferometer,
is not sensitive to the phase difference between the two interferometer paths; in fact, the photocurrent vanishes.
In this paper we show that the use of parity measurements on just one of the output modes not only is sensitive
to the phase difference but that the sensitivity approaches the Heisenberg limit foNlarge
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Coherent radiation fields with Poisson-distributed num-alone. Schemes for generating such states using nonlinear
bers of photons, as commonly found in the output of phasedevices and linear devices in conjunction with conditional
stabilized lasers, provide interferometric phase sensitivitiesneasurements are now known and under developif#gnt
bound by the familiar standard quantum limdr shot noise  On the other hand, referring to Fig. 1, with the input twin
limit) of AgsoL= 1N, whereN is the average number of Fock stategN),|N)y, the state inside the interferometer just
photons counted in a chosen time interval. Quantum-statafter BS1 is given by the expansi§]
synthesis, which holds the promise for advantageous techno- N N
logical progress in areas of information science, such as | >=E (— 1Nk (Zk (ZN_Zk)(E)
computing and cryptography, also offers the opportunity to N k /I N=k /{2
surpass the standard quantum limit of interferometric phase
sensitivity and to reach the so-called Heisenberg limit X|2k)a|2N—2K)y, (2
Ay =1, the ultimate level of sensitivity allowed by \yhich we refer to as the arcsiiiaS) state. We assumed that
quantum mechanicpl]. This 903_' requires joint consider- the 50:50 beam splitter BS1 of Fig. 1 is described by the
atlpn of quantum-_s_tate generation and detect_lon methOd?ransformation[5,6] UBS]_:eXF[’JT(aTB_E)Ta)/A‘-]. The two-
This paper exemplifies such an assessment for mten‘eromet%otOn (N=1) version of this state
with twin Fock states, together with a parity detection '
method on one of the output beams. 1

Some years ago, Holland and Burngif studied the un- [s) = —(]2)a|0)p—[0)al2)p) =]2::0)7 ,, (3)
certainties in optical phase measurements obtained in a V2 ’
Mach-Zehnder interferometéZl) under the assumption of
twin Fock stategN),|N), at the inputs of the first beam as
shown in Fig. 1. The goal is to measupethe phase differ-

a MES, has long been available in the laboratpf}; The
four-photon version l=2) given by

ence between the two paths of the MZI. By studying the 3 1
phase-difference distribution for the stateside the MZI | h4)= \ﬁ(|4>a|o>b+|0>a|4>b)— =12)al2)p

just prior to the second beam splitter BS2, these authors con- 8 2

cluded that the uncertainty in the measurement of the phase 3 1

difference approaches the Heisenberg lithip,, = 1/(2N) = \/;|4:: 0>g,b_ §|2>a|2>b (4)

relevant for a total of Rl photons passing through the inter-
ferometer. The input stat&l),|N), itself does not realize the N>
Heisenberg limit exactly, but, according to Holland and Bur-
nett[2], approaches the limit asymptotically &sbecomes

large. On the one hand, it was shown by Bollingéal. [3]

that if the field state just after BS1 is somehow a maximally
entangled statéMES), i.e., if it is of the form

1 )
|2N110)2’;55(|2N>a|0>b+eI¢N|O>a|2N>b)v (l)

where®, is a phase that may depend N then the phase IN>

uncertainty is exactly at the Heisenberg limitAey, FIG. 1. Schematic of the Mach-Zehnder interferometer for the
=1/(2N). Obtaining such a state inside the MZI is not easydetection of the phase differenee when the twin Fock states
and, in fact, cannot be done with an ordinary beam splittefN).|N), are injected into the first beam splitter.

1050-2947/2003/68)/02381@5)/$20.00 68 023810-1 ©2003 The American Physical Society



CAMPOS, GERRY, AND BENMOUSSA PHYSICAL REVIEW A8, 023810 (2003

was detected in recent experiments by @ual.[8]. With the (a) (C)
phase shift operator in the mode(the clockwise path as in 02
Fig. 1) represented bl (¢) =exp(¢ b'b), the state just prior 2 .
to the second beam splitter BS2 is g ' é'
N 2k [ 2N— 2k Y § 0.1
[ (@)= >, (—1)N kele2N=29 ) _ ) 9‘70 o
Qs o
2N71/2 0.0 00
X > |2K) 2| 2N —2K)p, . (5 0 2 4 6 8 10 " 0 2 4 6 8 10

p—

Evidently, there are strong correlations between the pho-

b) INDEX K (d) INDEX K

ton number states of the two modes. Because of this, the onh 1 i

nonzero elements of the joint photon number probability dis- =3 .

tribution are the joint probabilities for findingk2photons in % g

modea and 2N— 2k in modeb given by OE BT .
E o

Pas(2k,2N—2k) = | 2K| n( 2N — 2K| o) |* «
_ 2N 0 L 0 1 At VN VAY 1
:(Zkk)(ZN ik) (1)  Ke[ON], 0 90 180 0 90 180
N—k J\2 ANGLE 6 ANGLE 6

©) FIG. 2. (a) Photon number distribution ari) phase-difference

forming a distribution known in probability theory as the distribution for the maximally.entangled states fdd 2 20; (c) and
fixed-multiplicative discrete arcsine law of ordét [9];  (d) the same but for the arcsine state.
hence the name for our states. This should be contrasted with o
the distribution for the MES of Ed1), which takes the form difference C_j'Str'bUt'(_)mMES(‘9|o) for 2N=20. The latter of
Pues(2k,2N—2K) = (S ot S n)/ 2. course oscn!ates with “frequencyN and thus the_ peak-to-

We now illustrate the phase properties of these states. [fough spacings are on the order of W/2the Heisenberg
the most general case, i{¢) is the density operator of the limit). For the arcsine states we similarly obtain
field inside the MZI just prior to BS2, then the phase distri-

oo ) 1
bution is defined by10] Dad 0+ 7/2| )= ﬂg* (60— o+ m/2)g(0— @+ m/2),
P(0a, 00| ¢)=(0al( 0u|p(@) | 02)| Op)/ (277)%,  (7)

- iN(u+ ) - N-+2n)|(N-2n|/[1)2N2 i2nu
where the 6,)==,€"%|n); (i=a,b) are the phase states. In 9(u)=¢ n:lez N2+n/\N2=nll3 el
terms of the number basis we have (10)

B = , i The fixed phase translation by/2 results from the specific
P04, 00| @) = 22 2 , N’ [{m’|p[n)al M)y choice of beam splitter type for BS1; the distribution
n,n",mm’'=0 . .
Dag(6|¢) therefore represents generic compensation to the
X gl fa(n=n") gl fp(m-m") (8) phase origin. In Fig. 2 we also pl¢t) the elements of the

joint photon number distributioP ,(2k,2N —2k) and (d)
which amounts to a discrete Fourier transform of the densityhe phase-difference distributioP,o(6|¢), again for N
operator’s elements. For the sake of comparison, suppose tBe20 and foro=0. ForP,<(2k,2N— 2k) we see the charac-
state just before the second beam splitter is the MESeristic “bathtub” shape of an arcsine distribution. Although
|2N::0>§f\é,‘P, where the phase shifp has been taken into it would seem, from the pictured joint distributions, that the
account. The phase-difference distribution is obtained by inarcsine states represent a poor candidate for precision inter-
tegration over the sum of phases, ferometry, they in fact provide an excellent approximation to
the Heisenberg limit in selected ranges of the phase differ-
0s— 0 6s+0 ence. This is evident from the corresponding phase-
2 ' 2 “P) dos difference distributions of Figs.(B) and Zd). The MES pro-
duces a simple harmonic dependence @) for a total of
2N photons, while the arcsine states approximate to
sir?(N6+ )/sir? 0 for large N, equivalent to a uniform dis-
tribution of photon pairs. A familiar analogy is two-slit ver-
where 6, 0s= 0, 6, are the phase difference and sum, re-sus (N+1)-slit classical interference from classical optics
spectively. In Fig. 2 we plofa) the elements of the joint [11]. For the MES, the peak-to-trough distance along the
number distributionPy,e5(2k,2N—2k) and (b) the phase- horizontal axis is~1/2N, approximately the Heisenberg

1 (2=
Dyes(6l@)= > fo Pumes

— 1 S2
=5 cog[N(0+¢)], ©
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limit of resolution. For the arcsine states, interference cancel
out all the oscillations except for a set of two spikes sepa-
rated by a phase difference af Their widths, however, are
still ~1/2N for large N. Evidently the distribution of pho-
tons for certain specific non-MES states, such as the arcsine
can still attain Heisenberg-limited sensitivity, e.g., MES per-
formance, over specific ranges of phase difference. This re
striction is similar to the situation that occurs, for example,
in optical squeezing, where field quadrature fluctuations car®
be reduced within certain useful measurement windows. 0.1
Holland and Burnetfl] assumed that the measurement of
the phase difference in the two arms of the MZI could be -
carried out in the usual way by subtracting the currents ofthe [ '\ =~ = "Trmrme—mimi_._.
photodetectors placed at the output ports of the second beal

splitter BS2, essentially measuring the operdt—b'b at
the output. But for states of the type of E®) or Eq. (2)
inside a MZlI, this difference will vanish, thus yielding no
information on the relative path lengths. This is a result of
the symmetry between the two modes of the state inside th
MZI. Alternatively, as Hillery, Zou, and BuzeKL2] pointed
out, the phase-difference distribution just prior to BS2 con-
sists of two narrow peaks, as shown in Fi¢d)2and it is this
double peaked structure that accounts for the vanishing o
the difference in the output fields at BS2. In any case, the
photon number difference operator is not a useful measure ¢
the phase difference for input twin Fock states.

How then can we measuke and at the same time attain A®
sensitivity at the Heisenberg limit? Kimt al. [13] and Han
[14] considered the square of the difference of the outputs

(a'a—b'b)? but this measure, although sensitive to the

phase shiftp, does not have the desired accuracy. Bollinger

et al. [3], in connection with spectroscopy using MES of a

system ofN trapped ions whose optical analog has similar

phase distribution properties, showed that a measurement ¢ T . T

the parity of just one of the output field modes is not only 75 100 125 150 175 200

sensitive to the phase shift but does, in fact, yield accuracieu N

n phase me_asurements at the He_lsenberg limit. Inde_ed, W€ kG, 3. A versusN (solid ling) along withA ¢gq, (dot-dashed

previously discussed the use of this measure for optical Nine) andA gy, (dashed lingfor (a) ¢=0, (b) @=/90.

terferometry with MES4(a),(b),(c),(g)]. As the expectation '

of the number difference operator vanishes in both the MES ~

of Eq. (1) and the arcsine states of H®), it is reasonable to (O)n=Pn[cog2¢)]. (12

consider the use of parity measurements in the case of the

Input twin F.OCk statesN)| Ny . . The phase uncertainty determined from the error propaga-
We consider a detector that is placed at one of the OUtPYon calculus is given by

beams, for instance, tiiemode. We write the parity operator

for this mode a§5=(—1)bTE’=eprw6TB). With the opera-

0.3

0.21(.

T ——————————
L L

T
126 150 175 200

tor representation for the beam splitter BER6] taken as Ap= A_? (13)
Ugs=exd —im(a'b+ab")/4], the expectation value of the 9O)
parity operator is de

(Oyn={(#an( )| UL 50 Ugsol ron( )

2N—2k>(l

y where AO= (02 —(0)2=1—(0)? as O?=1. For N
) 2k
-3 e|2go(N2k)( )(
- k N—k
k=0

2N =1 we have(O);=cos 2p so thatA ¢=1/2, the Heisenberg
2/ - (1D limit for a total of 2N=2 photons. FoN=2 (the photomix-
ing of two photons with two photonswe have (O),
The imaginary part of this function sums identically to zero = (3 co$ 2¢—1)/2= 1/4+ 3/4 cos 4, from which we ob-
as it is the product of an even times an odd functiorkof tain, in the limit p—0, A= 1/\/12=0.2886, which is just
The real part is identically a Legendre polynonfiab: above the Heisenberg limit ok ¢ =1/4=0.25, and still
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considerably below the standard quantum limit®psq.  whereD(e) is the displacement operator, from which it fol-
=1/y4=0.5 for a total of =4 photons passing through |\s that the expectation value of the parity opera®ois,

the interferometer. apart for a numerical factor, the Wigner function evaluated at

Assuming now thatp=0, we plot in Fig. 3a) the phase A .
uncertaintyAe obtained from our states as a functiontef e 0rigin:(0) = (/2) W(0). Banaszelet al.[19] have dis-

along with Ay =1/(2N) (dashed ling and AgsqL cussed the direct measurement of the Wigner function by

—1/\2N (dash-dotted line We notice that the phase uncer- Photon counting while Banaszek and dktewicz[20] have
tainty for the parity measurement very rapidly approacheg'scussed the effects of detectgr efficiency on this procedurle.
the Heisenberg limit for increasing photon numbat and is ~ The authors showed that, while the correction for nonunit
always much less than the standard quantum limit. In Figduantum efficiency introduces significant errors for large dis-
3(b) we plot the phase uncertainty forp==/90 Placements in phase space, the Wigner function is very well
=0.0349 rad from the origin. Evidently, for certain photon reconstructed near the origin, the region of interest for parity
numbers, the phase uncertainty blows up due to the periodidetection. Of course, it is quite possible that other methods
nature of (), but then there are other photon numbers"Ot réquiring direct photon counting, such as homodyning
where the uncertainty is still below the standard quantuni2ll, might be used to reconstruct the Wigner function. Fi-
limit. Therefore the twin Fock statéhl),|N), may still be of ~ nally, other methods, insensitive to photon number, but
use for interferometry for certaitl even when the phase Where a nonlinear device coupling two modes acts like a
differencep # 0. Of course, for very weak phase shifts, as areParity dependent switcf22], have been proposed.

expected from gravity waves, and starting from a balanced T0 conclude, we note that optical parity detection is a
interferometer wherep=0, we still can expect high- Suitable method to achieve Heisenberg-limited interferom-

resolution phase measurements over a wide range of inp@{ry when twin Fock states are presented at the inputs of the
photon numbers. system. The method circumvents the lack of signal phase

Some comments are in order with respect to the measuré&ensitivity in the traditional balanced homodyne detection if
ment of parity. Operationally, one possible way to perform@pplied to this system. Finally, we remark that the phase
such measurements is to count the number of photons arfiéasurement scheme proposed here for twin Fock states of
raise — 1 to that power. This type of measurement has prephotonlc fields also has applications for phase resolution be-
viously been described by Banaszek anddkiewicz[16]in ~ tween two Bose-Einstein condensates where the number of
a proposed experimental scheme for testing nonlocality ifRt0MS in each condensate is initially identical. Indeed, Dun-
phase space. Of course, photon number detectors capablef¥figham and Burnef23] have recently adapted the scheme
measuring photon numbers at single photon resolution ar@f Ref. [2] for premsely that situation; the difficulties of thelr
required. Presently, such detectors are not available althougi¢heme, as discussed above, still apply but may be circum-
there have been recent developments toward that[dgal ~ vented by the methods described in the present article, suit-
On the other hand, it is well know18] that for some quan- ably adapted.

tum statefy) the Wigner functioW(a) can be written as This research is supported by National Science Founda-
5 = tion Grant No. PHY 403350001, The Research Corporation,
W(a)= — — D) 4D mnlDt . (14 and a grant from PSC-CUNY. We thank M. Hillery for help-
(@)= 2 (~DYYD(@m(n|D()]y), a4  21€ 3 IEL LI
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