
PHYSICAL REVIEW A 68, 023809 ~2003!
Collective spontaneous emission from a line of atoms
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We study collective spontaneous emission from a linear array ofN two-state atoms using quantum trajectory
theory and without ana priori single-mode assumption. Assuming a fully excited initial state, we calculate the
angular distribution of thekth emitted photon,k51, . . . ,N. We investigate the evolution of the distribution
from a dipole radiation pattern for the first photon emission to a distribution characteristic of directional
superradiance. The formalism is developed around an unravelling of the master equation in terms of source-
mode quantum jumps. Exact calculations for 11 and fewer atoms do not show directional superradiance, but are
characterized by delayed~subradiant! photon emissions directed along the axis of the linear array. A modified
boson approximation is made to treat the many-atom case, where it is found that strong directional superradi-
ance occurs for a few hundred atoms; the decay of subradiant excitations is preserved in the tail of the
superradiant pulse.
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I. INTRODUCTION

Collective spontaneous emission is a problem of fun
mental interest in quantum optics. It has attracted a great
of attention since the seminal work of Dicke@1#, especially
in connection with the phenomenon of super-radiance@2,3#.
Despite the attention, certain aspects of the problem are
not well understood. Among these is the angular depende
of the emission from a spatially extended sample of ato
In this paper we investigate this, and related features of
lective spontaneous emission, by developing the quan
trajectory theory of spontaneous emission from a linear a
of two-state atoms. Our model reverts to the Dicke mode
super-radiance when the line is much shorter than the r
nant wavelengthl0, and to a line of independently emittin
atoms when the atom spacing is large compared withl0. In
both these limits the distribution of emitted photons follow
the dipole radiation pattern. A more complicated pattern
expected away from these limits. The principal aim of t
paper is to demonstrate how, in this intermediate regim
directional superradiant pulse can grow spontaneously f
quantum noise, recognizing that the first photon is neces
ily emitted with the dipole distribution.

The model studied is of broad theoretical interest as
simplest example of an extended medium; it requires that
develop the full multimode theory of collective spontaneo
emission, yet may be realized with numbers of atoms that
not prohibitively large. Considering the current interest
quantum information and quantum computation, it also p
sents a fascinating example of a quantum dynamical pro
set within the Hilbert space ofN@1 ‘‘qubits’’ @4#. The Hil-
bert space is enormous, even forN5100 atoms and thus
exact quantum trajectories are uncomputable. A major pa
our paper is therefore devoted to the formulation of use
physically motivated approximations. An interesting dire
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tion for future work is the exploration of the physics th
calls for the enormous Hilbert space in the first place.

We quote from Dicke’s original paper@1#: ‘‘A classical
system of simple harmonic oscillators distributed over
large region of space can be so phased relative to each o
that coherent radiation is obtained in a particular direction
might be expected also that the radiating gas under con
eration would have energy levels such that spontaneous
diation occurs in one particular direction.’’ Dicke continue
to discuss the emission from such a phased initial st
Emission of this sort was also discussed later by others,
tably Rehler and Eberly@5#, who provide a semiclassica
treatment of both the directional and temporal characteris
of the emission. Our concern is with the fully excited initi
state of a collection of two-state atoms. For this, there is
initial phasing of the atomic dipoles to dictate the directi
of the emission, which is to be determined from the geo
etry of the atomic sample and orientation of the dipol
Previous work on the topic developed the idea that the em
ted photons tend to form a ‘‘ray’’@6#. Alternatively, it has
been argued, on the basis of the sample geometry, th
single-mode treatment of the emission process is justi
@7–10#; such a treatment is attractive, since it is forma
equivalent to the Dicke model ofN atoms within a cubic
wavelength@1# for which the equations can be solved in
number of ways@11–17#. Work along these lines envisage
an extended medium made up of a macroscopic numbe
atoms. In a somewhat different vein, other authors have s
ied the case of two@6,18,19#, four @19#, and up to six@20#
atoms, each claiming a little insight into the problem of d
rectional emission in an extended medium.

The message from these previous works is unclear
confusing. There appears to be much that is valid in the
idea of Ernst and Stehle@6#, assuming we may interpret th
ray as emission from some sort of collective mode of
medium. It is not clear, however, that only one ‘‘ray’’ shou
be dominant, at least through the initial stages of the em
sion. The first photon is certainly emitted in the dipole rad
©2003 The American Physical Society09-1
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tion pattern, and is hardly the sole determinant of the dir
tion of an eventual ray. With regard to the single-mo
theories, Ressayre and Tallet@21,22# attempted a justifica-
tion, but concluded that it is ‘‘not obvious that such a mod
is valid.’’ Work on a few atoms only adds to the confusio
For two atoms, Lehmberg@18# obtained results which he
finds in contradiction with Dicke’s photon-correlation arg
ment for the enhancement of emission in certain directio
Duncan and Stehle@19#, on the other hand, building upon th
‘‘ray’’ idea, claim ‘‘an unambiguous tendency for the emitte
photons to go in a common direction.’’ The claim is based
numerical calculations for a line of four atoms. Blanket al.,
considering six atoms, obtain results more in line with Le
mberg’s comment. The claim of Duncan and Stehle is du
ous, as their calculations exclude all but near-axial mode
restriction demanded by the memory limitations of th
computer; their justification for this disconcertingly pr
sumes their conclusion: ‘‘linear arrangements . . . are
pected to radiate primarily along their axis’’@19#.

The present work clears up the confusion. It is based u
a quantum trajectory unravelling@23# of a previously derived
master equation@24–27# for collective spontaneous emissio
from an arbitrary spatial distribution of two-state atoms. C
michael and Kim@28# formulated an unravelling in which
the jump operators are associated with the detection o
photon emitted in directionk. Here, we formulate an unrav
elling in terms of jump operators that refer to sour
modes—collective modes of the atomic sample—wh
emission patterns suggest an identification with the rays
Ernst and Stehle. Our source modes extend the analys
Ressayre and Tallet@21,22# and will be reported on more
fully in another publication@29#. We formulate the problem
in the manner of Dicke@30#, by calculating the angular dis
tribution of thekth emitted photon and investigating its ev
lution with increasingk; we do not assume, however, a
Dicke does, that the atoms are far apart. We concern
selves in this paper with the development of directionality
the average over an ensemble of many superradiant pu
Correlations and shot-to-shot fluctuations are also acces
in our approach, but will be studied elsewhere.

The organization of the paper is as follows. We summ
rize the physical model and quantum trajectory formalism
Sec. II. In Sec. III we treat the emission from a few atoms
a line without further approximation. Two- and three-ato
cases are solved analytically, and up to 11 atoms thro
numerical simulation. We find that 11 atoms is too few
satisfy the joint requirement on density and line length
produce a directional superradiant pulse. In Sec. IV we m
a formal connection between directed emission and
source modes used to unravel the master equation. We
outline the boson approximation that provides the basis
our treatment for many atoms. We apply and develop
approximation in Sec. V, to show how a directional sup
radiant pulse emerges from the competition between m
superradiant source modes. We discuss some limitations
extensions of our treatment in Sec. VI and present con
sions in Sec. VII.
02380
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II. QUANTUM TRAJECTORY FORMALISM FOR
ANGULAR DISTRIBUTIONS

A. Model

The physical system considered consists ofN identical
two-state atoms located at positionsr i , i 51, . . . ,N. For the
present we leave the locations of the atoms unspecified, o
than to assume that the distances between them are less
or of the order of the resonance wavelength; the atoms t
radiate collectively due to their interaction with the comm
electromagnetic field. We assume that the atomic dipole m
ments are all aligned in directiond̂. The master equation
describing the evolution of the atomic density operator in
electric-dipole, rotating-wave, and Born-Markov approxim
tions has been previously derived@18,24–27#. In the interac-
tion picture, it is given by

ṙ52 i (
iÞ j 51

N

D i j @ŝ i 1ŝ j 2 ,r#

1
1

2 (
i , j 51

N

g i j ~2ŝ j 2rŝ i 12ŝ i 1ŝ j 2r2rŝ i 1ŝ j 2!,

~1!

with

D i j 5g
3

4 H 2@12~ d̂• r̂ i j !
2#

cosj i j

j i j

1@123~ d̂• r̂ i j !
2#S sinj i j

j i j
2

1
cosj i j

j i j
3 D J ~2!

and

g i j 5g
3

2 H @12~ d̂• r̂ i j !
2#

sinj i j

j i j

1@123~ d̂• r̂ i j !
2#S cosj i j

j i j
2

2
sinj i j

j i j
3 D J , ~3!

where

j i j [k0r i j 52pr i j /l0 , r i j 5r i j r̂ i j [r i2r j ; ~4!

g is the EinsteinA coefficient,l0 is the resonant wavelength
and atomj has pseudospin operatorsŝ j 2 , ŝ j 1 , and ŝ jz ,
which obey the commutation relations

@ŝ i 1 ,ŝ j 2#5d i j ŝ iz @ŝ i 6 ,ŝ jz#572d i j ŝ i 6 . ~5!

The terms proportional toD i j in the master equation accoun
for dipole-dipole interactions and those proportional tog i j
account for the collective spontaneous emission. Due to
Markov approximation, the master equation does not acco
fully for propagation effects. For it to be valid, the samp
9-2
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COLLECTIVE SPONTANEOUS EMISSION FROM A LINE . . . PHYSICAL REVIEW A 68, 023809 ~2003!
must not be too large; a photon must traverse it in a ti
much shorter than the characteristic time scale of the col
tive radiative decay.

B. Directed-detection quantum trajectory unravelling

Following the proposal of Carmichael and Kim@28#, we
unravel the master equation into quantum trajectories ba
on direct photon counting. Thus, the density operator is
composed as a sum over pure states:

r~ t !5(
REC

PRECucc~ t !&^cc~ t !u, ~6!

where REC is the record denoting a particular sequenc
photon detections~emissions!, up to time t and PREC

5^c̄c(t)uc̄c(t)& is the probability for that record to occu
States ucc(t)& and uc̄c(t)& are the normalized and un
normalized states, respectively, of the atoms conditioned
the occurrence of the sequence REC.

The time evolution ofuc̄c(t)& is generated by a non
Hermitian Hamiltonian and punctuated by jumps genera
by a set of jump operators at the times of photon emissio
For a general master equation in Lindblad form,

ṙ52
i

\
@Ĥ,r#1(

i
~2ÔirÔi

†2Ôi
†Ôir2rÔi

†Ôi !, ~7!

the non-Hermitian Hamiltonian is

ĤB5Ĥ2 i\(
i

Ôi
†Ôi , ~8!

and the jumps are generated by the set of operatorsÔi @23#.
We use two approaches to cast the master equation in ex
Lindblad form, identifying two distinct sets of jump opera
tors. The first, developed in detail by Carmichael and K
@28#, yields the directed-detection jump operators

Ŝ~u,f!5AgD~u,f!dV(
j 51

N

e2 ik0R̂(u,f)•r jŝ j 2 , ~9!

which apply when a photon is detected in the far field with
the element of solid angledV in directionR̂(u,f). Quantity

D~u,f!5
3

8p
$12@ d̂•R̂~u,f!#2% ~10!

is the dipole radiation pattern for emission from an isola
atom. For theN atoms, an additional angular dependen
enters through the propagation phase factors in Eq.~9!.
When diagonalized in terms of these jump operators, ma
equation~1! reads as

ṙ52 i (
iÞ j 51

N

D i j @ŝ i 1ŝ j 2 ,r#1
1

2E @2Ŝ~u,f!rŜ†~u,f!

2Ŝ†~u,f!Ŝ~u,f!r2rŜ†~u,f!Ŝ~u,f!#. ~11!
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Note that the jump operators for this unravelling have a cl
physical interpretation in terms of the detection of outgoi
photons in direction (u,f).

C. Source-mode quantum trajectory unravelling

Alternatively, we may identify jump operators by diago
nalizing the matrix of the coefficients (g i j ) @21,22#. This
yields what Carmichael and Kim@28# call formal jump op-
erators. As we will see, these jump operators draw th
physical meaning from an expansion of the collective atom
polarization in source modes. They are not, therefore,
clearly identified with a particular photon detection eve
~however, see Sec. IV A!.

Matrix (g i j ) is a real symmetric matrix which can b
diagonalized by an orthogonal transformation of the form

~g i j !5BTLB, ~12!

where

L[diag~l1 , . . . ,lN! ~13!

is a diagonal matrix of the eigenvalues of (g i j ) and the col-
umns ofBT5(bi j )

T,

bl[S bl1

A

blN

D , ~14!

are the corresponding normalized eigenvectors. The ma
equation is written in this unravelling as

ṙ52 i (
iÞ j 51

N

D i j @ŝ i 1ŝ j 2 ,r#

1
1

2 (
l 51

N

~2Ĵlr Ĵl
†2 Ĵl

†Ĵlr2r Ĵl
†Ĵl !, ~15!

where the source-mode jump operators are

Ĵl5Al lbl
TŜ, Ĵl

†5Al lŜ
†bl , ~16!

where we define

Ŝ[S ŝ12

A

ŝN2

D , Ŝ†[~ŝ11 , . . . ,ŝN1!. ~17!

Like the directed-detection jump operators, the source-m
jump operators are collective atomic operators.

D. Angular distribution for the kth emitted photon

Our aim is to follow the evolution of the angular distribu
tion for photon emission from the dipole radiation patte
which holds for the first emitted photon, to a directed dist
bution of the sort suggested by earlier theories of sup
9-3
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radiance. Our chosen path to this goal is a calculation of
angular distribution for thekth emitted photon; thus, we aim
to calculate the probability for thekth photon to be emitted
within the solid angledV in direction (u,f).

One possible expression for this probability is obtain
using jump operator~9! for all k emissions@30# and then
integrating over the directions of the first to the (k21)th
emissions. This approach is not found to be very use
though, because even for a few atoms the integration o
f

ed

m
o

rs

n
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emission directions is cumbersome to perform analytica
and difficult to evaluate accurately in numerical simulation
We use an alternative expression, adopting source-m
jump operators for the firstk21 emissions and jump opera
tor ~9! for the kth emission only. We then sum over a fini
numberN of alternate entries in the record, on each pho
emission. From a straightforward elaboration of the sum
Eq. ~6! and the explicit expression for the time evolution
uc̄c(t)&, we write
Pk~u,f!dV5 (
l 151

N

. . . (
l k2151

N E
0

`

dt1 . . . E
tk21

`

dtk^c̄ l 1 ,t1 ; . . . l k21 ,tk21 ;u,f,tk
uc̄ l 1 ,t1 ; . . . l k21 ,tk21 ;u,f,tk

&, ~18!

where

uc̄ l 1 ,t1 ; . . . l k21 ,tk21 ;u,f,tk
&5Ŝ~u,f!B̂~ tk2tk21!Ĵl k21

B̂~ tk212tk22! . . . Ĵl 1
B̂~ t1!u$1%&, ~19!
-
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with

B̂~t![exp~2 iĤ Bt/\!, ~20!

and u$1%& denotes the initial state with allN atoms excited.
The non-Hermitian Hamiltonian is given by

ĤB5\ (
iÞ j 51

N

D i j ŝ i 1ŝ j 22 i\
1

2 (
l 51

N

Ĵl
†Ĵl . ~21!

The sum over records in Eq.~18! covers all permutations o
source modes and emission times for the firstk21 emis-
sions.

We specialize, in what follows, to a line of atoms locat
at r j5( j 21)(sl0) ẑ, j 51, . . . ,N, where s is the atomic
separation in units of the resonant wavelength. The ato
dipole moments are all aligned perpendicular to the axis
line ẑ. In view of the cylindrical symmetry, the phase facto
in Eq. ~9! are functions of polar angleu only; thef depen-
dence is all contained in the dipole radiation pattern~10!. It
is therefore convenient to integratePk(u,f) over azimuthal
angle, which is effected by replacingS(u,f) with

Ŝ~u!5AgD~u!sinudu(
j 51

N

e2 i2p( j 21)scosuŝ j 2 , ~22!

where

D~u!5~3/4!~12sin2u/2!. ~23!

From Eq. ~18!, the angular distribution of the first photo
emission is

P1~u!sinudu5E
0

`

dt1^c̄u,t1
uc̄u,t1

&, ~24!

where
ic
f

uc̄u,t1
&5Ŝ~u!B̂~ t1!u$1%&5e2(Ng/2)t1Ŝ~u!u$1%&. ~25!

We substitute forŜ(u) from Eq. ~22! and note that the inter
ference terms have zero expectation in the excited state
spective of the number of atoms. Hence,

P1~u!5D~u!; ~26!

the first photon is always emitted according to the dip
radiation pattern. We are interested in the developmen
Pk(u) for k.1.

III. EMISSION FROM A FEW ATOMS IN A LINE

As a first step, we briefly review the case of two atom
treated by Lehmberg@18# and others@6,19#. Lehmberg
solved the master equation in a standard way to calculate
average photon emission rate as a function of direction.
obtained the dipole radiation pattern, in seeming contrad
tion with the directional correlations noted by Dicke@1#; in
Lehmberg’s words@18#: ‘‘These results, especially~20!,
seem to contradict the prediction of photon-correlation ar
ments7 that the radiative coupling betweenA1 and A2 en-
hances emission in certain directions.’’ In Sec. III A we r
produce Lehmberg’s result; we show that the second pho
like the first, is emitted with the dipole radiation pattern.
Sec. III B we show, however, that the two-atom case is s
cial and an additional angular dependence appears as so
three atoms are considered. We derive the angular distr
tion for three atoms analytically, omitting dipole-dipole in
teractions. In Sec. III C we numerically verify the resu
with dipole-dipole interactions included. We then extend o
numerical investigation to consider the caseN511.
9-4
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A. Two atoms: Lehmberg observation

There is only the second photon emission to consid
From Eq.~18!, the angular distribution of the second emitt
photon is given, forN atoms, by

P2~u!sinudu5 (
l 151

N E
0

`

dt1E
t1

`

dt2^c̄ l 1 ,t1 ;u,t2
uc̄ l 1 ,t1 ;u,t2

&,

~27!

where

uc̄ l 1 ,t1 ;u,t2
&5Ŝ~u!B̂~ t22t1!Ĵl 1

B̂~ t1!u$1%&

5e2gt1Ŝ~u!B̂~ t22t1!Ĵl 1
u$1%&, ~28!

and the sum in Eq.~27! is over theN possible first-emission
jumps. It is helpful to note that the state reached after the
jump,

u l 1&[ Ĵl 1
u$1%&5Al l 1

bl 1
T Ŝu$1%&, ~29!

is an eigenstate of operator( l 51
N Ĵl

†Ĵl ; we have~Appendix
A!

S (
l 51

N

Ĵl
†Ĵl D u l 1&5@~N22!g1l l 1

#u l 1&. ~30!

Then, specializing to a pair of atoms, we write

~g i j !5S g G

G g D , ~31!

with eigenvalues and eigenvectors given by

l1,25g6G ~32!

and

b15
1

A2
S 1

1D , b25
1

A2
S 1

21D , ~33!

respectively. The jump operators for a pair of atoms, E
~16!, are then

Ĵ15Ag1G
ŝ121ŝ22

A2
, ~34a!

Ĵ25Ag2G
ŝ122ŝ22

A2
. ~34b!

In addition to satisfying Eq.~30!, in the two-atom case
only, stateu l 1& is an eigenstate of the dipole-dipole intera
tion Hamiltonian~eigenvalue6\D12) and hence, also of the
non-Hermitian Hamiltonian ĤB ~eigenvalue 2 i\l l 1

/2

6\D12). The computation of the between-jump evolution
therefore trivial, and from Eqs.~27! and ~28!, the angular
distribution of the second emitted photon is
02380
r.

st

.

P2~u!5D~u!
1

2 (
l 151

2

l l 1
21^ l 1u~ ŝ11ŝ121ŝ21ŝ22

1e2 i zŝ11ŝ221ei zŝ21ŝ12!u l 1&. ~35!

wherez[2ps cosu.
The two terms in the sum cover the cases of a first em

sion of typeJ1 and a first emission of typeJ2. Their separate
angular dependences are plotted in Fig. 1, where they
compared with the sum. The sum agrees with Lehmbe
result; it is again the dipole radiation pattern. Although t
interference terms play a role in the individual trajectorie
which allows for the correlation noted by Dicke@1#, their
contribution cancels in the sum over records.

B. Three atoms: Analytical results

We now show that a directional dependence beyond
of the dipole pattern arises for three atoms in a line. Dipo
dipole interactions are omitted for simplicity.

In the case of three atoms, the record acquires th
branches following the first emission. Considering the fi
line of Eq. ~28!, the evolution generated byB̂(t1) is trivial,
producing an overall exponential decay at the rate 3g/2. Fur-
thermore, with the dipole-dipole interactions omitted, sta
~29! are eigenstates ofĤB / i\ with eigenvalues@Eqs. ~21!
and ~30!#

l1852
1

2
~g1l1!, l2,38 52

1

2
~g1l2,3!. ~36!

From Eq.~28!, we therefore have

uc̄ l 1 ,t1 ;u,t2
&5e2(3/2)gt1e2l l 1

8 (t22t1)Ŝ~u!u l 1&. ~37!

Then, the time integrals in Eq.~27! are convolutions of ex-
ponentials and yield

P2~u!sinudu5 (
l 151

3
^ l 1uŜ†~u!Ŝ~u!u l 1&

3g~g1l l 1
!

. ~38!

For the explicit construction of the source-mode jump o
erators, we write

FIG. 1. Angular distribution of the second emitted photon fo
lowing a first emission of typeJ1 ~i! andJ2 ~ii !; the two atoms are
separated byl0/4. The dashed line shows the distribution~dipole
pattern! summed over first emission type.
9-5
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~g i j !5S g G d

G g G

d G g
D , ~39!

with eigenvalues

l15g2d, l2,35g1
d

2
6Ad2

4
12G2, ~40!

and corresponding eigenvectors

b15
1

A2 S 1

0

21
D , b25

A2

Al22l3 S 1

2
Al22g

G/Al22g

1

2
Al22g

D ,

b35
A2

Al22l3 S 1

2
Ag2l3

2G/Ag2l3

1

2
Ag2l3

D . ~41!

The jump operators are then given by

Ĵ15Al1

1

A2
~ ŝ122ŝ32!, ~42a!

Ĵ25Al2

A2

Al22l3
S 1

2
Al22gŝ121

G

Al22g
ŝ22

1
1

2
Al22gŝ32D , ~42b!

Ĵ35Al3

A2

Al22l3
S 1

2
Ag2l3ŝ122

G

Ag2l3

ŝ22

1
1
Ag2l3ŝ32D . ~42c!
2

h
-

je
th
ir
2

02380
Hence, using Eqs.~38! and ~9!, and substituting foru l 1& us-
ing Eqs.~29! and~42a!–~42c!, the angular distribution of the
second emitted photon is

P2~u!5D~u!
1

3 H (
l 151

3

Ll 1
1

2G

l22l3
~L22L3!cosz

1
1

2 F2L11
1

l22l3
~~l22g!L2

1~g2l3!L3!Gcos 2zJ , ~43!

with z[2ps cosu andLl[l l /(g1l l).
The angular distribution of the third photon is obtain

from a straightforward extension of these results. There
further splitting of the record into three branches after
second emission. The distribution of the third emitted pho
is therefore expressed as a sum of nine terms:

P3~u!5 (
l 1 ,l 251

3

P3
l 1 ,l 2~u!, ~44!

where

FIG. 2. Angular distributions of the first~solid line!, second
~dashed line!, and third~dotted line! emitted photons for a line of
three atoms separated byl0/4. Results excluding~a! and including
~b! dipole-dipole interactions are presented.
P3
l 1 ,l 2~u!sinudu5E

0

`

dt1E
t1

`

dt2E
t2

`

dt3 e23gt1e2(g1l l 1
)(t22t1)u^$2%uŜ~u!B̂~ t32t2!Ĵl 2

u l 1&u2; ~45!
i-
it-

ear
ns
u$ %& denotes the ground state with all atoms unexcited. T
evaluation ofP3

l 1 ,l 2(u) is sketched in Appendix B; the ex
plicit results appear as Eqs.~B3a!–~B3i!. In the three-atom
case, the angular dependencies of the nine individual tra
tories do not cancel in the sum and there is a distortion of
dipole radiation pattern for both the second and the th
emitted photons. The result for the sum is shown in Fig.
e

c-
e
d
;

the analytical expressions~43! and ~44! are plotted in Fig.
2~a! and compared, in Fig. 2~b! with Monte Carlo simula-
tions, including dipole-dipole interactions. The most prom
nent feature is the enhanced directionality of the third em
ted photon, with an increased probability for emission n
the axis of the line of atoms. The dipole-dipole interactio
make only small alterations to the picture.
9-6



er
a

su
w

to
o
pe

ou

r
0
at
m

a

an-
ons
tal

s-
t-
is
s,
i-

n-
the
the

here
nd

is
inth
tion
not
Our

. 5.
is-
th
sed
of

nta-
3.
le-

e
-
e
nd
ed

e
be

of
t-

ed

COLLECTIVE SPONTANEOUS EMISSION FROM A LINE . . . PHYSICAL REVIEW A 68, 023809 ~2003!
C. A few atoms: Numerical simulations

The expectation drawn from previous work on sup
radiance is that directed emission is well developed midw
through a super-radiant pulse. It is therefore somewhat
prising that the third, not the second emitted photon, sho
greater directionality in Fig. 2. Possibly, three atoms is
few, and the behavior is different for a larger number
atoms. We have therefore extended our calculations by
forming Monte Carlo simulations for up toN511 atoms.
Simulations for larger numbers are not feasible due to
limited computational resources.

The results of Monte Carlo simulations for 11 atoms a
displayed in Figs. 3–5. Each curve is an average over 20
trajectories, where the evolution of the conditional st
along each trajectory is calculated from a sequence of ju
and between-jump evolutions, as in Eq.~19!. The jumps are
executed by the source-mode operatorsĴl , l 51, . . .,11,
with l-type jumps occurring at the rate

^cc~ t !uĴl
†Ĵl ucc~ t !&5

^c̄c~ t !uĴl
†Ĵl uc̄c~ t !&

^c̄c~ t !uc̄c~ t !&
. ~46!

The between-jump evolution is generated byB̂(t). After
k21 photon emissions, the un-normalized conditional st
is

uc̄c~ t !&5B̂~ t2tk21!Ĵl k21
. . . Ĵl 1

B̂~ t1!u$1%&. ~47!

FIG. 3. Angular distribution of the total emission from a line
11 atoms separated byl0/4. The dashed line shows the dipole pa
tern for comparison. Results excluding~a! and including~b! dipole-
dipole interactions are presented.

FIG. 4. Angular distributions of the ninth~solid line!, tenth
~dashed line!, and eleventh~dotted line! emitted photons for a line
of 11 atoms separated byl0/4. Results excluding~a! and including
~b! dipole-dipole interactions are presented.
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At the time of thekth photon emission~before executing

jump Ĵl k
), norm ^c̄c(tk)uŜ†(u)Ŝ(u)uc̄c(tk)& is computed;

the angular distribution of thekth emitted photon is the
Monte Carlo average of this norm. From these averages,
gular distributions are calculated for each of the 11 phot
emitted in sequence. The angular distribution of the to
emission is the sum of the 11 distributions.

In Fig. 3 we plot the angular distribution of the total emi
sion. It deviates significantly from the dipole radiation pa
tern. As for the last photon emitted by three atoms, there
an increased probability for emission along the line of atom
and the dipole-dipole interactions reduce, but do not elim
nate the directionality.

The important question, though, is whether the directio
ality is associated with the superradiant enhancement of
spontaneous emission rate, which peaks halfway through
emission sequence. We address this question in Fig. 4, w
we plot the angular distributions for the ninth, tenth, a
eleventh emitted photons. Once again, the directionality
most pronounced for the last photon emission; even the n
emission hardly shows any change from the dipole radia
pattern. It seems, then, that the directionality of Fig. 3 is
associated with the superradiant phase of the emission.
results are consistent with those of Blanket al. @20# and
disagree with Duncan and Stehle@19#. Further evidence
against a superradiant interpretation is provided by Fig
Here we correlate the angular distribution of the last em
sion, the 11th emission, with the waiting time after the ten
emission. The figure shows a correlation between increa
directionality and longer waiting times, the exact opposite
a superradiant effect. Waiting times as long as 1000 spo
neous lifetimes contribute to the directional effect of Fig.
Similar features are observed whether or not the dipo
dipole interactions are included.

In summary, from our consideration of a few atoms, w
can draw the following conclusions:~i! spontaneous emis
sion from a line ofN>3 atoms shows departures from th
dipole radiation pattern exhibited by emission from one a
two atoms;~ii ! the most prominent change is an increas
tendency for photons late in the emission sequence~in par-
ticular the last photon! to be directed close to the axis of th
line of atoms;~iii ! late emissions close to the axis tend to
delayed—are subradiant rather than superradiant; and~iv!

FIG. 5. Time-resolved angular distribution of the last emitt
photon for a line of 11 atoms separated byl0/4; emission occurs
beforegt51.0 ~bold solid line!, 10.0 ~dashed line!, 100.0 ~dotted
line!, and 1000.0~light solid line!. Results excluding~a! and includ-
ing ~b! dipole-dipole interactions are presented.
9-7
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CLEMENS et al. PHYSICAL REVIEW A 68, 023809 ~2003!
dipole-dipole interactions change the results quantitativ
but do not alter the qualitative behavior. The overall conc
sion is that 11 atoms in a line are too few to generat
directed superradiant pulse. Although superradiant enha
ment of the emission rate is observed when the atoms
sufficiently close together, aside from small corrections,
superradiant phase of the emission is associated with a d
radiation pattern. There is a directed subradiant phase, h
ever, at the end of the photon emission sequence.

IV. PROPERTIES OF THE SOURCE MODES

Some approximation is called for if we are to take o
calculations significantly beyondN511. To this end we turn
in this section, to a more detailed development of the form
ism of Sec. II. For the remainder of the paper we neglect
dipole-dipole interactions.

A. Relationship between directed and source-mode jump
operators

Jump operator Ŝ(u) gains a physical interpretatio
through its association with the detection of a photon wit
a conical solid angle of thicknessdu and opening angleu.
So far we have offered no physical interpretation for t
source-mode jump operators. A straightforward interpre
tion would follow from an expansion ofĴl in terms ofŜ(u),
but such an expansion does not exist; it is possible to exp
Ŝ(u) in terms ofĴl , l 51, . . . ,N, but not the reverse. In thi
section we develop the relationship betweenŜ(u) and Ĵl .
Results derived here are used in Sec. V B to provide an
terpretation for the source-mode jump operators.

The relationship betweenŜ(u) and Ĵl follows from
Eqs.~16! and~22!, both of which define collective operator
as expansions over the single-atom operatorsŝ j 2 ,
j 51, . . . ,N. Let use rewrite the two expansions. We defi
the vector of phase factors

P~u![S p1~u!

A

pN~u!
D [S 1

e2 i2ps cosu

A

e2 i2p(N21)s cosu

D , ~48!

such that

Ŝ~u!5AgD~u!du PT~u!Ŝ, ~49!

and collect the source-mode annihilation and creation op
tors together in column and row vectors, defining

Ĵ[S Ĵ1

A

ĴN

D 5ALBŜ, ~50a!

Ĵ†[~ Ĵ1
† , . . . ,ĴN

† !5Ŝ†BTAL. ~50b!
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Equation~49! is not invertible, but Eqs.~50a! and~50b! are.
Thus, noting thatB is an orthogonal matrix, we have

Ŝ5BTAL21Ĵ, ~51a!

Ŝ†5 Ĵ†AL21B, ~51b!

and then substituting forŜ in Eq. ~49! we arrive at the ex-
pansion

Ŝ~u!5AgD~u!sinudu JT~u!AL21Ĵ, ~52!

where

J~u![S j1~u!

A

jN~u!
D 5BP~u!. ~53!

From the orthogonality ofB and Eq.~48!, we note that

J†~u!J~u!5P†~u!BTBP~u!5N. ~54!

Expansion~52! is a fundamental relationship. It allows u
to associate an angular dependence with the source-m
jump operators in the following way. Note first that coef
cients j l(u) in expansion~52! may be expressed as of
diagonal matrix elements ofŜ(u) taken with respect to the
vacuum state and the one-quantum collective excitati
u l &[( Ĵl

†/Al l)u$2%&; we have

^$2%uŜ~u!Ĵ†AL21u$2%&

AgD~u!sinudu
5JT~u!B^$2%uŜŜ†u$2%&BT

5JT~u!, ~55!

where we usê$2%uŜŜ†u$2%&5IN and the orthogonality of
B. The expansion coefficients are then given by

j l~u!5
^$2%uŜ~u!u l &

AgD~u!sinudu
. ~56!

Using this expression, the angular distribution of emiss
from the one-quantum excitationu l & may be expressed in
terms ofj l(u). When the dipole-dipole interactions are n
glected,u l & is an eigenstate ofĤB ~Appendix A!, with

ĤBu l &52 i\
1

2
Ĵ†Ĵu l &52 i\

1

2
l l u l &. ~57!

It follows that B̂(t1)u l &5exp(2llt1/2)u l &, and the angular
distribution of emission with initial stateu l & is
9-8
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COLLECTIVE SPONTANEOUS EMISSION FROM A LINE . . . PHYSICAL REVIEW A 68, 023809 ~2003!
Ql~u!sinudu5E
0

`

dt1^ l uB̂†~ t1!@Ŝ†~u!Ŝ~u!#B̂~ t1!u l &

5~g/l l !D~u!uj l~u!u2sinudu. ~58!

From Eq.~54!, a weighted sum of these distributions retur
the dipole radiation pattern:

(
l 51

N

l lQl~u!5gD~u!(
l 51

N

uj l~u!2u5NgD~u!. ~59!

We see thatuj(u)u2 characterizes the difference between t
radiation from the collective excitationu l & and the dipole
radiation pattern. Moreover, an incoherent sum over exc
tions u l &, l 51, . . . ,N, recovers the dipole radiation patter
Examples of distributionQl(u) are presented in Sec. V B.

More relevant to our interests are the properties of coll
tive excitations near the fully excited state. The first pho
is emitted according to the dipole distribution Eq.~26!. Con-
sidered in terms of source modes, this result is an expres
of sum rules~54! and ~59!; we have

^$1%uŜ†~u!Ŝ~u!u$1%&
sinudu

5gD~u!^$1%uĴ†AL21J* ~u!JT~u!AL21Ĵu$1%&

5gD~u!(
l 51

N

uj l~u!u25(
l 51

N

l lQl~u!, ~60!

where we have used̂$1%uĴ†Ĵu$1%&5L. Assume that the
first photon is emitted from source model 1. What, then, is
the angular distribution of the second emitted photon? Le
define u l 1&5 Ĵl 1

u$1%&, as in Eq.~29!. The angular distribu-
tion of the second emitted photon, given the first emissio
from source model 1, is then

P2
l 1~u!sinudu

l l 1
/Ng

5l l 1
21E

0

`

dt2^ l 1uB̂†~t2!

3@Ŝ†~u!Ŝ~u!#B̂~t2!u l 1&, ~61!

wheret25t22t1 ; P2
l (u)sinudu is the joint probability for

the first photon to be emitted by model 1 and the second to
be emitted in directionu, while l l /Ng is the probability that
the first photon is emitted by model 1. Equation~61! is simi-
lar to Eq. ~58!, but the integral is not as straightforward
evaluate becauseu l 1& is not an eigenstate ofĤB , even with
the dipole-dipole interactions neglected. We can calculate
emission rate for smallt2, though. Denoting the conditiona
emission rate per unit solid angle byR2

l 1(u), this is given by
02380
-

-
n

on

s

is

e

R2
l 1~u![

^$1%uĴl 1
† @Ŝ†~u!Ŝ~u!# Ĵl 1

u$1%&

l l 1
sinudu

5gD~u! (
i , j 51

N

bl 1ibl 1 j (
n,m51

N

pn* ~u!pm~u!

3^$1%uŝ i 1ŝn1ŝm2ŝ j 2u$1%&

5gD~u!F S (
i ,n51

N

bl 1i
2 upn~u!u22(

i 51

N

bl 1i
2 up i~u!u2D

1S (
i ,n51

N

bl 1ip i~u!bl 1npn* ~u!2(
i 51

N

bl 1i
2 up i~u!u2D G .

~62!

Since up i(u)u251, each sum, except the third, is triviall
constant. The third sum is evaluated, using Eq.~53!, to be
uj l 1

(u)u2. We arrive at the result

R2
l 1~u!5gD~u!~N221uj l 1

~u!u2!. ~63!

Equation~63! is a generalization of the correlation, th
stimulated emission enhancement factor, noted by Dicke@1#.
Dicke observed that after the first emission in directionk̂1,
the rate for a second emission in the same direction is
hanced by a factor of two over that for spontaneous emiss
from independent atoms. The interpretation of Eq.~63! is not
quite so straightforward, but a convincing demonstration
an enhancement of source model 1 can be given. RateR2

l 1(u)
may be divided into a factor (N21)gD(u) which accounts
for emission fromN21 independent atoms, plus an ‘‘en
hancement’’ factorgD(u)(uj l 1

(u)u221) whose angular dis-
tribution is that of the source mode from which the fir
photon was emitted. The enhancement may, in fact, be ei
positive or negative. Noting that the integral of eitherD(u)
or Ql 1

(u) is unity, and using Eq.~58!, we have

E
0

p

sinudu gD~u!~ uj l 1
~u!u221!5l l 1

2g. ~64!

The eigenvalue spectrum is discussed in Sec. V A. For su
radiant source modes (l l 1

.g), Eq. ~64! indicates a positive

enhancement; for subradiant modes (l l 1
,g) the enhance-

ment is negative—an inhibition.

B. Boson approximation for many atoms

The angular properties of the source modes describe
the preceding section are helpful, but limited in what th
tell us about the development of directional superradi
emission. We identified the directionality of certain colle
tive excitations of the atoms, but nothing was said about
dynamical process, about the between-jump evolution
the sequence of states visited as the spontaneous emi
proceeds. In this section we formulate an approximat
which allows us to address these limitations.
9-9
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CLEMENS et al. PHYSICAL REVIEW A 68, 023809 ~2003!
The approximation is based on the observation that
source-mode operators act like boson operators near the
excited stateu$1%& or near the ground stateu$2%&, a result
which follows from the fact that the sets of operatorsAL21Ĵ
and Ĵ†AL21 are formed from orthonormal eigenvectors
matrix (g i j ). Consider the commutator

~l ll l 8!
21/2@ Ĵl

† ,Ĵl 8#5(
i 51

N

bi
lbi

l 8ŝ iz , ~65!

where we use definition~16! and @ŝ i 2 ,ŝ j 1#5d i j ŝ iz . Act-
ing with this commutator on statesu$1%& and u$2%&, we
have

~l ll l 8!
21/2@ Ĵl

† ,Ĵl 8#u$6%&56bl
Tbl 8u$6%&56d l l 8u$6%&,

~66!

which shows thatĴl
† and Ĵl 8 act like the annihilation~cre-

ation! and creation~annihilation! operators of independen
boson modes in stateu$1%& (u$2%&). More generally, if the
commutator acts on a state that isn!N excitations below
u$1%&, or n!N above u$2%&, the conclusion will hold to
within a correction of ordern/N. Armed with this observa-
tion, for largeN and excitations close to the fully excite
state, we propose the following boson approximation:

Ĵl→Al l âl
† with @ âl ,âl 8

†
#5d l ,l 8 . ~67!

The boson creation operatorsâl
† create delocalized hole

within a population of many excited atoms. Close to t
ground state, we propose

FIG. 6. Distribution of the commutator deviation Eq.~69! ~a!
and Eq.~70! ~b! for N550 ~solid line!, 100 ~dashed line!, and 200
~dotted line! atoms. The atoms are separated byl0/4.
02380
e
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Ĵl
†→Al l b̂l

† with @ b̂l ,b̂l 8
†

#5d l ,l 8 ; ~68!

the boson operatorsb̂l
† create delocalized excitations within

population of many unexcited atoms.
We have tested the scaling of approximation~67! with n

andN for a line of atoms separated byl0/4. We numerically
calculate the deviation of the commutator fromd l l 8 for all l

and l 8, and for all statesu l 1&[ Ĵl 1
u$1%& and u l 1 ,l 2&

[ Ĵl 2
Ĵl 1

u$1%& reached fromu$1%& after one and two photon
emissions. The distribution of computed deviations is p
sented in Fig. 6. Figure 6~a! plots probability densityW1(D),
D[D l 1 ; l ,l 8

(1) with

D l 1 ; l ,l 8
(1) [

^ l 1u@ Ĵl
† ,Ĵl 8#u l 1&

Al ll l 8^ l 1u l 1&
2d l l 8 . ~69!

Figure 6~b! plots probability densityW2(D), D[D l 1 ,l 2 ; l ,l 8
(2)

with

D l 1 ,l 2 ; l ,l 8
(2) [

^ l 1l 2u@ Ĵl
† ,Ĵl 8#u l 1l 2&

Al ll l 8^ l 1l 2u l 1l 2&
2d l l 8 . ~70!

As anticipated, the figures show the deviations decreas
and increasing with increasingN andn, respectively.

The boson approximation brings an immense simplifi
tion. Without it, the source-mode operators only define
simplifying algebra in the Dicke, or single-mode limit. In th
Dicke limit (s→0) there is one superradiant eigenvaluelN

5Ng and the rest of the eigenvalues are zero~Sec. V A!. ĴN

and ĴN
† are angular-momentum operators and the emiss

follows a straightforward sequence of jumps between
angular-momentum statesuJ,M &, J5N/2, M5N/2, . . . ,
2N/2: the conditional state following thekth jump is
ucc(tk

1)&5uN/2,N/22k& and the between-jump evolutio
generates a trivial rescaling of state norm.

In the general multimode case, Eq.~65! offers no such
simplification. There appears to be no alternative but to m
the exact quantum trajectory evolution in the enormous H
bert space ofN two-state atoms. The boson approximati
~67! returns us to a situation where the operator algebr
simple and the bookkeeping of the conditional state evo
tion is straightforward. After thekth emission, the condi-
tional state is

uc l i ,t1 ; . . . ;l k ,tk
&5)

l 51

N

unl&[u$nl%k&, ~71!

with ( l 51
N nl5k; u$nl%k& is a multimode Fock state and oc

cupation numbersnl , l 51, . . . ,N, count the holes created i
the population ofN initially excited atoms. Then, the cond
tional emission rate per unit solid angle for the (k11)th
emitted photon is
9-10
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Rk11
l 1 , . . . ,l k~u!5gD~u!^$nl%kuÂ†AL21J* ~u!

3JT~u!AL21Âu$nl%k&

5gD~u!(
l 51

N

uj l~u!u2~nl11!, ~72!

where we define

Â[S Al1â1
†

A

AlNâN
†
D , Â†[~l1â1 , . . . ,lNâN!. ~73!

Note that after a first emission from source model 1, the
angular distribution for the second emission is given by

R2
l 1~u!5gD~u!~N1uj l 1

~u!u2!. ~74!

The rate differs from the exact result, Eq.~63!, by something
of order 1/N; in place of Eq.~64!, it yields the ‘‘enhance-
ment’’ factor

E
0

p

sinudugD~u!~ uj l 1
~u!u211!5l l 1

1g. ~75!

Approximation ~68! produces the exact result, Eq.~58!,
for the distribution of the one-quantum excitation. In the b
son approximation, distributionsQl(u), l 51, . . . ,N, char-
acterize the angular emission properties of the source m
quite generally. From Eqs.~58! and ~72!, we may write

FIG. 7. Eigenvalues of the source modes forN511 ~a! and
1000 ~b! atoms separated byl0/4.
02380
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Rk11
l 1 , . . . ,l k~u!5(

l 51

N

l lQl~u!~nl11!, ~76!

which is a straightforward generalization of result~60! for
emission from the fully excited state. The important ad
tional factor is the bosonic stimulation by the hole occup
tion numbersnl .

V. EMISSION FROM MANY ATOMS IN A LINE

The bosonic stimulation will prove to be the fundamen
driving mechanism of directional super-radiance. It transla
into a differential amplification of the emission from diffe
ent source modes at ratesl l , l 51, . . . ,N. Eigenvaluesl l
and angular distributionsQl(u) are therefore the basic ingre
dients around which the directed emission is formed. Bef
considering further Monte Carlo simulations, we briefly d
cuss some of the properties of these quantities. A more
tensive discussion is given in a separate publication@29#.

A. Source-mode eigenvalues

In Fig. 7~a! we plot the eigenvalues for the line of 1
atoms that produced Figs. 3–5. They are compared with
eigenvalues forN51000 atoms in Fig. 7~b!. The eigenvalues
are ordered according to their magnitude, from the smal
to the largest; there is no other significance to indexl of a
particular eigenvalue.

In both examples, there is a clear distinction between
genvalues that are smaller and larger than the independ
atom decay rateg; the former are subradiant and the latt
superradiant. The subradiant eigenvalues for 11 atoms
associated with long-delayed directional emission shown
Fig. 5. ForN51000 atoms, the majority of the subradia
eigenvalues are essentially zero. There are a few, howe
that are nonzero and might be associated with similarly
layed directional emission.

In Fig. 7~b!, the super-radiant eigenvalues appear to lie
a well-defined curve. There are, in fact, exactly 2Ns5500
such eigenvalues, a number given~to the nearest integer! by
twice the length of the line in units of the resonant wav
length. To a good approximation, these eigenvalues are
termined by the dipole radiation distribution and spacings of
the atoms, according to the formula~Sec. V B! @31#

l l /g5s21D~u l !, ~77!

with

cosu l5H ~q21!/2Ns, q51,3, . . . ,

~q22!/2Ns, q52,4, . . . ,
~78!

l 5N22Ns1q, q51, . . . ,2Ns ~for 2Ns an integer!. Adding
atoms without changing the line length leaves the numbe
superradiant eigenvalues unchanged but increases their v
by decreasings; only the number of subradiant eigenvalu
grows. Adding atoms to increase the line length increases
number of superradiant eigenvalues and gives a more clo
spaced set of anglesu l .
9-11
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CLEMENS et al. PHYSICAL REVIEW A 68, 023809 ~2003!
We note from Eq.~59! ~integrated overu) that the eigen-
values satisfy the sum rule

(
l 51

N

l l5Ng. ~79!

In the Dicke, or single-mode limit, the length of the lin
shrinks to a point and matrix (g i j ) has all entries equal tog.

FIG. 8. Directionality of the source modes forN51000 atoms
separated byl0/4. The angular distribution of emission from th

one-quantum excitationĴl
†u$2%& is plotted for modesl 5501 ~a!,

750 ~b!, 1000~c!, and 500~d!.

FIG. 9. Directionality of the source modes forN511 atoms
separated byl0/4. The angular distribution of emission from th

one-quantum excitationĴl
†u$2%& is plotted for modesl 57 ~a!, 9

~b!, 11 ~c!, and 5 ~d!.
02380
There is then one superradiant eigenvaluelN5Ng and
N21 subradiant eigenvalues all equal zero.

These properties of the eigenvalues are explained by c
sidering the corresponding eigenfunctions and their ass
ated emission patternsQl(u).

B. Source-mode eigenvectors and directionality

The source-mode emission patterns are determined f
the eigenvectors using Eqs.~53! and ~58!. Representative
examples are plotted in Figs. 8 and 9, where we plotl lQl(u)
for four values ofl to show the general pattern of behavio
The case ofN51000 atoms illustrates the behavior mo
clearly. There are 2Ns5500 super-radiant eigenvalues wi
indices running froml 5501 to l 51000. Forl 5501 ~small-
est superradiant eigenvalue!, the source mode emits within
narrow disk perpendicular to the line of atoms@Fig. 8~a!#.
Increasing the value ofl, the emission is into a narrow con
cal solid angle opening at someu l,p/2 relative to the line
axis. Figure 8~b! shows the distribution forl 5750. Angleu l
decreases with increasingl. For l 51000 ~largest super-
radiant eigenvalue!, u l is small but nonzero, leaving a con
around the line axis that is excluded from the emission du
superradiant source modes@Fig. 8~c!#.

According to Eq.~59!, the sum over alll lQl(u) yields the
dipole radiation pattern. The excluded cone must theref
be filled by emission from the subradiant modes@and modes
with eigenvalues in the transition region of Fig. 7~b!#. In-
deed, we find that the emission patterns for the subrad
modes are all peaked along the axis; Fig. 8~d! shows the
pattern forl 5500. The result is as we might expect. Phy
cally, subradiant decay rates arise from repeated emis
and reabsorption~radiative trapping!, which is more likely to
occur for photons directed along the line of atoms.

The story for 11 atoms is qualitatively the same~Fig. 9!
except that the distributions are significantly broader, as
line is a lot shorter.

Figure 9 makes it clear that the source-mode unravel
of Sec. II C has a different physical interpretation to t
directed-emission unravelling of Sec. II B; the source mod
do not emit in a single direction. For the parameters
Fig. 8, there is an approximate correspondence between
two unravellings, though, since the radiation from model is
confined to a narrow range of angles in the vicinity of som
u l and p2u l . In Fig. 9 also, the distributions are clear
peaked. This approximate directionality can be underst
by considering a line that is many wavelengths long with
density of many atoms per wavelength, i.e.,N@1, s!1,
with Ns@1. In this case, the super-radiant modes appro
mately make a Fourier decomposition of the atomic polari
tion on interval 0<z<(N21)sl0 @29#. The eigenvectors are
of the form

bl j 5H Al j sin@ j ~q21!p/N1f l j #, q51,3, . . .

Al j cos@ j ~q22!p/N1f l j #, q52,4, . . . ,
~80!

where Al j and f l j vary slowly for changes in index,D j
;1/s, corresponding to displacements along the line of
order of a wavelength. If we overlook the slowly varyin
9-12
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COLLECTIVE SPONTANEOUS EMISSION FROM A LINE . . . PHYSICAL REVIEW A 68, 023809 ~2003!
amplitude and phase, then radiation from model interferes
constructively in the far field at anglesu l and p2u l for
which the propagation phase difference, 2p s cosul , for ad-
jacent atoms~atoms j 21 and j ) is exactly canceled by the
phase difference between their mode amplitudes (bl j 21 and
bl j ). This criterion yields Eq.~78! and an angleu l that
closely tracks the positions of the peaks in Figs. 8~a!–8~c!.

From Eq.~59!, given the narrow distributions of Fig. 8
the corresponding eigenvalues are proportional toD(u l), and
we can evaluate the proportionality constant from the eig
value sum rule~79! ~setting all subradiant eigenvalues
zero!. This calculation produces Eq.~77!.

C. Angular distribution of emission within the boson
approximation

We are now in a position to consider the dynamical p
cess that produces directed emission. Within the boson
proximation ~67!, the dynamics is extremely simple. Th
conditional emission rate per unit solid angle, summed o
source modes, is given by Eq.~76!. It describes a stochasti
evolution similar to the mode competition in a laser a
gives rise to an average number of emissions~holes! per
source mode, which grows exponentially in time; the h
occupation number for source model amplifies at the rate
l l . From Eq.~72!, at timet the mean directed-emission ra
per unit solid angle is given by

^Ŝ†~u!Ŝ~u!&~ t !

sinudu

5gD~u!^$nl% tuÂ†AL21J* ~u!JT~u!AL21Âu$nl% t&

5gD~u!(
l 51

N

uj l~u!u2el l t, ~81!

where$nl% t is the set of hole occupation numbers at timt
and the overbar takes the stochastic average over$nl% t .

The intensity distribution~81! begins, fort50, propor-
tional to the dipole distributionD(u) @Eq. ~54!#, and for long
times approaches distributionQN(u) of the source mode
with largest eigenvalue. This evolution is illustrated
Fig. 10, forN511 atoms withs50.25 andN51000 atoms

FIG. 10. Time-resolved angular distribution of the total em
sion, calculated within the boson approximation for a line of
atoms separated byl0/4 ~a! and a line of 1000 atoms separated
l0/40 ~b!. Distributions are plotted forgt50 ~bold solid line!, 1.0
~dashed line!, 2.0 ~dotted line!, and 3.0~light solid line!.
02380
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with s50.025; the curves are obtained as a Monte Ca
average over 20 000 trajectories. It is clear that as long as
amplification continues for sufficient time, the different am
plification rates for different source modes eventually co
centrates the emission into a cone near the line axis. The
a hole right on the axis, though, where the emission is do
nated by the subradiant modes. We might associate the e
sion from individual source modes with the rays of Ernst a
Stehle@6#, but this process of mode competition is missi
from their work.

In reality, the amplification may not continue for sufficie
time; it terminates due to the depletion of the excitation e
ergy. Energy depletion is an important feature neglected
the boson approximation. Without it, the approximation
clearly incapable of describing a superradiantpulse; more-
over, if theN initial quanta are emitted before sufficient am
plification takes place, no significant directionality will de
velop at all.

We can estimate whether or not this is the case for
parameters of Fig. 10. We accept the boson approximation
until time tN/2 when, on average, half the photons are em
ted. We estimatetN/2 by assuming all superradiant mode
amplify at their mean rate,l̄5g/2s, calculated from Eqs.
~77! and ~78!. Thus, we write

2Ns$exp@~g/2s!tN/2#21%5N/2, ~82!

from which

gtN/252s ln~111/4s!. ~83!

The differential amplification of the axial relative to the sid
emission attN/2 is then given by

exp$s21g@D~0!2D~p/2!#tN/2%5~111/4s!3/4. ~84!

For s50.25 (0.025), these results givegtN/250.35 (0.12)
and a differential amplification of 1.7 (6.0). We conclud
that the directionality shown in Fig. 10 is for times we
beyond those for which the initial energy is depleted. Ne
ertheless, the estimated differential amplification sugge
that a spacings50.025 will generate directionality within
the duration of a superradiant pulse. On the other hand,
larger spacings50.25, seems to be marginal at best.

D. An approximate treatment of atomic energy depletion

It is necessary to go beyond the simple boson approxi
tion to make a reliable description of the development
directionality. We may do this by modifying the boson a
proximation to enforce energy depletion. We make tw
modifications. The first, and simpler, yields directional sup
radiant pulses, but misses the directed subradiant emissio
long times@Figs. 4 and 5#. The second modification repro
duces the subradiant emission also. It is difficult to assess
accuracy of the approximations since exact simulations
only possible when the number of atoms is small. Both
proximations are exact, however, in the Dicke, or sing
mode limit. The principle features in the development

-
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CLEMENS et al. PHYSICAL REVIEW A 68, 023809 ~2003!
directional superradiance appear to be accounted for, at
qualitatively, in the multimode case.

The modified boson approximations are introduced by
tering the source-mode jump rates. In the boson approxi
tion, the jump rates after thekth photon emission are give
by the substitution

^ Ĵl
†Ĵl&→l l^$nl 8%kuâl âl

†u$nl 8%k&5l l~nl11!, ~85!

l 51, . . . ,N. The sum over these rates produces the net
~76!, integrated over angleu. The jumps in the boson ap
proximation are executed by the hole creation operatorsâl

† ,
l 51, . . . ,N. Consider now the single-mode limit, whe
there is one nonzero eigenvaluelN with jump operator

ĴN5AlN /NĴ2 , ~86!

whereĴ25( j 51
N ŝ j 2 is the Dicke collective operator. Adopt

ing the Schwinger representation@32#, the angular momen
tum algebra satisfied byĴ2 , Ĵ1 , and Ĵz , is represented
exactly by Ĵ25â†b̂, Ĵ15âb̂†, Ĵz5b̂†b̂2â†â, with â†â

1b̂†b̂5N, where a and b are independent boson mode
Hereâ† creates a ground-state atom~equivalently an excited-
state hole! and b̂ annihilates an excited-state atom~equiva-
lently a ground-state excitation!. The conditional state afterk
emissions is then represented as the two-boson-mode nu
stateuk&auN2k&b and the exact jump rate is

^ ĴN
† ĴN&5lNN21^~ ââ†!~ b̂†b̂!&5lN~12k/N!~nN11!.

~87!

The boson approximation~67! replacesuN2k&b by uN&b ;
hence, it overlooks the depletion factor in the jump rate
2k/N).

In order to approximately take the energy depletion in
multimode situation into account, we replace jump opera
âl

† by âl
†b̂, where the boson modeb counts the number o

atoms remaining in the excited state:b̂†b̂5N2( l 51
N âl

†âl .
The conditional state afterk emissions is then written as

uc l 1 ,t1 ; . . . ;l k ,tk
&5u$nl%k&auN2k&b , ~88!

FIG. 11. Intensity~a! and time-resolved angular distribution o
the total emission~b! calculated within the first modified boso
approximation@Eq. ~89!# for a line of 1000 atoms separated b
l0/40. The distribution in~b! is calculated forgt50 ~bold solid
line!, 0.15~dashed line!, 0.3~dotted line!, and 0.45~light solid line!.
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and Eq.~85! is replaced by

^Ĵl
†Ĵl&→l l~12k/N!~nl11!. ~89!

Note that any photon emission reduces the future emis
rate of every source mode and therefore the modes are
independent in this approximation. The approximation is
act in the single-mode limit.

Figure 11 presents an example of a directional sup
radiant pulse obtained from the Monte Carlo simulation
2000 trajectories using the first modified boson approxim
tion. The parameters are the same as those of Fig. 10~b!. The
peak of the pulse occurs atgt'0.16, close to the predicte
gtN/250.12. There is also an evolution of the angular dis
bution as predicted, towards the cone emission of Fig. 10~b!,
but with the degree of directionality limited by the duratio
of the pulse. There is no directed subradiant emission in
tail of the pulse, however. This is not unexpected, since
though energy depletion causes the source-mode ampli
tion rates to decrease over time, the decrease applies
formly to all eigenvalues. Thus, the amplification st
continues throughout the entire pulse; the source modes
largest eigenvalues continue to dominate more and m
over time. The second modified boson approximation c
rects this deficiency.

The first modification is inadequate because according
Eq. ~68!, in the tail of the pulse we would expect to annih
late ground-state excitations with individual source-mo
operatorsb̂l , while in fact we continue to create holes wit
operatorsâl

† , annihilating excited-state atoms with the sing

operatorb̂. Stated in another way, Eqs.~67! and~68! suggest
that the emission process should develop thoughtwo phases:
~I! an initial amplification phase where stimulated hole c
ation dominates and~II ! at the end of the pulse, a decay
the coherence produced through hole creation during the
plification phase. In an exact treatment, phase I would ca
over into phase II in a gradual and continuous way. T
second modified boson approximation implements it disc
tinuously, by using the jump operatorsal

†b̂, and rates~89!,
until half the photons are emitted, and then changing to ju
operatorsal

†b̂l and adopting the conditional state (k>N/2)

uc l 1 ,t1 ; . . . ;l k ,tk
&5u$nl%k&au$ml%k&b , ~90!

with $ml%k52$nl%N/22$nl%k ; the jump rates for the secon
half of the pulse are

^Ĵl
†Ĵl&→l l

ml~nl11!

2ml
max

. ~91!

In this approximation, the source modes emit indep
dently through the second half of the pulse. To achieve
independence, we have arbitrarily replaced st
u$nl%N/2&auN/2&b reached afterN/2 emissions by state
u$nl%N/2&au$nl%N/2&b , effectively equating numbernl of
excited-state holes created in model during the growth of the
pulse with the number of ground-state excitations to be
nihilated during its decay. Of course, it is not possible
implement the independent source-mode emission star
9-14
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COLLECTIVE SPONTANEOUS EMISSION FROM A LINE . . . PHYSICAL REVIEW A 68, 023809 ~2003!
out of the initial state, because there is no way to distrib
the N initial excitations between the different source mod
thus, we let mode competition during the first half of t
pulse determine how the excitations are to be distribu
amongst the different modes. The approximation is som
what ad hoc, but is again exact in the single-mode lim
More importantly, it is also able to account for the subradi
emission displayed in Figs. 4 and 5.

We have implemented the second modified boson
proximation as a Monte Carlo simulation and displayed
amples of the results in Figs. 12–14. Figure 12 shows
result for 11 atoms and compares it with the exact quan
trajectory simulation. Although the quantitative agreemen
not very good (N is still small!, the comparison lends cred
ibility to the approximation. Note, in particular, that the d
rected subradiant emission is now reproduced in the tai
the pulse. From the approximation, we can identify a phy
cal mechanism behind this late emission. It occurs beca
for any subradiant mode that emits spontaneously during
early stages of the decay, an excited-state hole is cre
~occupation numbernl51) and preserved as a unique coh
ence in the medium. Even if no significant amplification
model takes place as the superradiance develops, the e
lished coherence remains to decay slowly at the end of
pulse.

FIG. 12. Time-resolved angular distribution of the total em
sion from a line of 11 atoms separated byl0/4. The exact calcula-
tion ~a! is compared with the second modified boson approxima
@Eqs. ~89! and ~91!# ~b!. Distributions are calculated forgt50
~bold solid line!, 1.0 ~dashed line!, 2.0 ~dotted line!, and 3.0~light
solid line!.

FIG. 13. Intensity~a! and time-resolved angular distribution o
the total emission~b! calculated within the second modified boso
approximation@Eqs. ~89! and ~91!# for a line of 100 atoms sepa
rated byl0/4. The distribution in~b! is calculated forgt50 ~bold
solid line!, 1.0 ~dashed line!, 2.0 ~dotted line!, and 3.0~light solid
line!.
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Figures 13 and 14 present results for larger numbers
atoms. Both show similar directed subradiant emission in
tail of the pulse. In Fig. 13, densitys50.25 is too small for
the development of strong directional superradiance. Fig
14, however, uses the same parameters as Fig. 11. It sh
the same superradiant cone emission around the peak o
pulse, but this is replaced by the directed subradiant emis
pattern in the pulse tail. Note that the overall pulse shap
unaltered between Figs. 11~a! and 14~a!. The second modi-
fied boson approximation changes only the angular distri
tion of emitted photons.

VI. DISCUSSION

Spontaneous emission from a line of atoms provide
rudimentary generalization of the Dicke model of sup
radiance to an extended medium. It is sufficient as a mode
show how directional superradiance develops during a sin
pulse, beginning with a dipole radiation pattern for the fi
emitted photon. The directionality shown in Figs. 11 and
is not particularly pronounced, though, and takes the form
cone emission rather than being peaked about the line a
These details are peculiar to the one-dimensional array.
applying the analysis developed in this paper to thr
dimensional arrays, we are able to obtain significantly m
pronounced directionality, and with a maximum rather th
minimum on-axis intensity@33#. We find, however, that even
in the three-dimensional case, the initiation of superradia
is a multimode phenomenon, not fundamentally differe
from the process illustrated here; the commona priori as-
sumption of emission into two ‘‘endfire’’ modes is an ove
simplification @29#. This is in fact clear without making a
detailed analysis, since the first photon is emitted accord
to the dipole radiation pattern, which is to be formed from
sum over the angular distributions of all significant sup
radiant modes@Eq. ~59!#. If those modes are highly direc
tional, many necessarily contribute to form the required
pole pattern out of the sum. Subsequently, directional su
radiance develops from a competition between the m
modes during the early stages of the emission; a subset
one, of the superradiant modes eventually dominate the

A number of interesting and important questions are

-

n

FIG. 14. Intensity~a! and time-resolved angular distribution o
the total emission~b! calculated within the second modified boso
approximation@Eqs. ~89! and ~91!# for a line of 1000 atoms sepa
rated byl0/40. The distribution in~b! is calculated forgt50 ~bold
solid line!, 0.15~dashed line!, 0.3~dotted line!, and 0.45~light solid
line!.
9-15
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CLEMENS et al. PHYSICAL REVIEW A 68, 023809 ~2003!
answered in this paper. We have not considered the de
dence of the emission pattern on the orientation of the ato
dipoles, for example. The eigenvalue spectrum of Fig. 7~b!
depends on this orientation. There is some interesting p
ics buried here as well. Specifically, for one particular orie
tation, the spectrum of superradiant eigenvalues is flat. T
leads to the prediction that on average, the emission pa
follows the dipole distribution throughout the entire pul
@29#; thus, themeanangular distribution is that of the single
mode, Dicke model; differences from the Dicke model a
pear at the level of the shot-to-shot fluctuations@33#.

The question of fluctuations has not been addressed a
in this paper. Considering Fig. 14, for example: is the sing
pulse emission biasedeither forward ofu5p/2 or backward
of u5p/2, or more symmetrically distributed? What, mo
generally, are the shot-to-shot fluctuations? The simulati
used for this paper can answer some@33#, but not all such
questions. Specifically, they impose shot-by-shot symm
about u5p/2 due to the symmetry of the source mod
~Figs. 8 and 9! on which the unravelling of the master equ
tion is based~Sec. II C!. Certainly, the symmetry holds in th
mean, but it will not hold for single pulses in practice.
simulation of the full pulse statistics realized in the labo
tory requires using the angle-resolved output modes
would illuminate a detector.

Questions also remain about the approximations we h
used. The exact quantum trajectory formalism of Sec. II d
not lead to anything so straightforward as a simple seque
of quantum jumps, not even a multimode sequence of jum
Dicke discussed the angular correlation of successive p
tons in terms of such a sequence@30#, but assuming ‘‘inter-
molecular distances large, compared with a radiation wa
length.’’ If neither this condition nor the condition that a
radiators lie within a cubic wavelength holds, the collecti
emission dynamics accounted for by Eqs.~18!–~21! is more
complex, involving a nontrivial between-jump evolution th
takes place within the enormous Hilbert space ofN entangled
two-state systems. The modified boson approximations
Sec. V D return us to a simple multimode jump sequen
but they are somewhatad hoc. Many questions remain abou
their accuracy and the details of the radiation process tha
hidden in the Hilbert space of 2N dimensions. We know from
a simpler two-mode model, for example, that significant
rors can be introduced by ignoring the between-jump evo
tion @34,35#. The dipole-dipole interactions, neglected
Secs. IV and V, should also be included to reach a m
accurate description.

Finally, considering the Hilbert space ofN entangled two-
state systems raises questions of concern to the field of q
tum information. What physics, for example, does the
tanglement account for? How is the entanglement retai
by the collective source modes different from the entang
ment betweensource modes, which our approximations n
glect? Recent proposals for entanglement generation
atomic ensembles@36,37# set aside the kinds of issues a
dressed in this paper, adopting, for example, the single-m
approximation@37#. The application of our approach to prob
lems of this sort can assess the importance of mode com
tition and its contribution to decoherence rates. Such iss
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are likely to be particularly important for ensembles of m
soscopic size. Another avenue for its application is to p
posals for quantum information processing with
decoherence-free subspaces@38,39#, or approximately
decoherence-free subspaces, e.g., those spanned by e
tions of the many subradiant modes.

VII. CONCLUSIONS

Using a quantum trajectory unravelling of the Lehmbe
Agarwal master equation for collective spontaneous em
sion, we have calculated the angular distributionPk(u,f) of
thekth photon emitted by a linear array ofN initially excited
two-state atoms,k51, . . . ,N. The unravelling of the maste
equation is made in terms of source-mode quantum jum
which we associate with directed emission from collect
atomic modes. Closed form expressions for two and th
atoms were obtained and show that three is the minim
number of atoms to show a difference from the dipole rad
tion pattern. Monte Carlo simulations were carried out for
to 11 atoms, both with and without the dipole-dipole inte
actions included. We found delayed, or subradiant emiss
directed along the axis of the linear array, but no evidence
the emission of a directional superradiant pulse. Our res
are consistent with the previous work of Lehmeberg@18# and
Blank et al. @20#, and disagree with the calculations of Du
can and Stehle@19#.

Considering the commutation relations obeyed by
source-mode jump operators in the many-atom limit,
showed that a boson approximation may be made near
fully excited state; we introduced boson jump operators t
create delocalized holes in the excited population of ato
Within this approximation, and using the properties of t
source-mode eigenvalues and eigenvectors, we demonst
that directional superradiance develops from a differen
amplification of the source modes driven by stimulated h
creation. In this way, the emission pattern is directed i
forwards and backwards cones aligned with the axis of
atoms. On axis, a local minimum intensity develops, due
the many subradiant modes, for which there is negligi
amplification. A boson approximation for weak excitatio
was also introduced; the jump operators, in this case, a
hilate delocalized excitations.

To complete the overall picture, we considered deplet
of the initial excited-state energy and derived the condit
that directional superradiance occurs if (111/4s)3/4@1,
wheres is the atomic spacing in units of the resonant wav
length; the line of atoms must also be extended over m
wavelengths so that the rays emitted by individual sou
modes are narrow. We developed two modified boson
proximations to take energy depletion into account. Mo
Carlo simulations show marginal directionality forN5100
atoms ands50.25, while strong directional superradian
was obtained forN51000 atoms ands50.025. The simula-
tions predict that the directed subradiance observed for
atoms occurs also in the tail of a superradiant pulse.
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APPENDIX A: VERIFICATION OF EQS. „30… AND „57…

We demonstrate that stateu l 1&[ Ĵl 1
u$1%&, reached after

the first jump, is an eigenstate of operator( l 51
N Ĵl

†Ĵl5 Ĵ†Ĵ
with eigenvalue (N22)g1l l 1

. Using Eqs.~14!, ~16!, and
~17!, we write

S (
l 51

N

Ĵl
†Ĵl D u l 1&

5Al l 1(l 51

N

l l (
i , j ,m51

N

bli bl j bl 1mŝ i 1ŝ j 2ŝm2u$1%&

5Al l 1(l 51

N

l l (
j Þm51

N

~bl j bl j bl 1mŝm2

1blmbl j bl 1mŝ j 2!$1%&. ~A1!

Then, from Eqs.~12!–~14!, we note that

(
l 51

N

l lbl j bl j 5g j j 5g. ~A2!

Thus, evaluating the sum over the first term on the right-h
side of Eq.~A1!, we have

(
l 51

N

l l (
j Þm51

N

bl j bl j bl 1mŝm25~N21!gbl 1
T Ŝ, ~A3!

and evaluating the sum over the second term, we have

(
l 51

N

l l (
j Þm51

N

blmbl j bl 1mŝ j 2

5(
l 51

N

l l (
j ,m51

N

blmbl j bl 1mŝ j 22(
l 51

N

l l (
j 51

N

bl j bl j bl 1 j ŝ j 2

5(
l 51

N

l ld l ,l 1(j 51

N

bl j ŝ j 22g(
j 51

N

bl 1 j ŝ j 25~l l 1
2g!bl 1

T Ŝ,

~A4!

where we use the orthonormality of the eigenvectors of (g i j )
and Eq.~A2!. Finally, from Eqs.~A1!, ~A3!, and ~A4!, we
obtain

S (
l 51

N

Ĵl
†Ĵl D u l 1&5@~N22!g1l l 1

#u l 1&. ~A5!

We also show that stateĴl
†u$2%& reached through a one

quantum excitation is an eigenstate of operatorĴ†Ĵ with ei-
genvaluel l . Using Eqs.~14!, ~16!, and~17!, we have
02380
ly

d

Ĵ†Ĵu l &5 (
l 851

N

Ĵl 8
† (

i , j 51

N

Al l 8l lbl 8 ibl j ŝ i 2ŝ j 1u$2%&

5 (
l 851

N

Ĵl 8
† Al l 8l l (

j 51

N

bjl 8bjl u$2%&5l l u l &, ~A6!

where we again use the orthonormality of the eigenvector
(g i j ).

APPENDIX B: EVALUATION OF EQ. „45…

We summarize the intermediate steps in the calculation
the angular distribution of the third photon emitted by a li
of three atoms. In Appendix A we demonstrate that sta
u l 1&[ Ĵl 1

u$1%&, l 151,2,3, reached after the first photo

emission, are the eigenstates ofĤB in the subspace spanne
by u211&, u121&, and u112& ~omitting dipole-dipole
interactions!. Let u1&8, u2&8, andu3&8 denote the eigenstate
of ĤB in the subspace spanned byu122&, u212&, and
u221&, respectively. Again, in Appendix A, we show tha
these are statesĴl

†u$2%&, l 51,2,3, reached through a one
quantum excitation. It follows that the primed and th
unprimed eigenstates are both represented by vectorsb1 , b2,
and b3 @Eq. ~41!#. Then, using the jump operators~42a!–
~42c!, we find that the states reached after the second ph
emission may be expressed as

Ĵ1u1&52
A2

Al22l3
S G

Al22g
u2&82

G

Ag2l3

u3&8D ,

~B1a!

Ĵ1u2&52
A2

Al22l3

G

Al22g
u1&8, ~B1b!

Ĵ1u3&52
A2

Al22l3

G

Ag2l3

u1&8, ~B1c!

and

Ĵ2u1&52
A2

Al22l3

G

Al22g
u1&8, ~B1d!

Ĵ2u2&5
A2G

~l22l3!3/2
@3Al22gu2&81

3g2l222l3

Ag2l3

u3&8,

~B1e!

Ĵ2u3&5
1

~l22l3!3/2
@~3g2l222l3!Al22gu2&8

1~3g22l22l3!Ag2l3u3&8], ~B1f!

and

Ĵ3u1&5
A2

Al22l3

G

Ag2l3

u1&8, ~B1g!
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Ĵ3u2&5
1

~l22l3!3/2
@~3g2l222l3!Al22gu2&8

1~3g22l22l3!Ag2l3u3&8], ~B1h!

Ĵ3u3&5
A2G

~l22l3!3/2S 3g22l22l3

Al22g
u2&823Ag2l3u3&8D .

~B1i!

Eigenvaluesl1 ,l2, andl3 are given by Eq.~40!. Substitut-
ing these results into Eq.~45!, the form of B̂(t32t2) Ĵl 2

u l 1&

5exp@2iĤB(t32t2)/\#Ĵl2
ul1& shows all the required time inte

grals to be convolutions of exponentials@the primed eigen-
vectors ofĤB have eigenvalues2l l /2 ~Appendix A!#. Thus,
evaluating the convolutions and making use of the ma
elements

u^$2%uŜ~u!u1&8u252gD~u!sinudusin2z, ~B2a!

u^$2%uŜ~u!u2&8u252gD~u!sinudu
l22g

l22l3

3S cosz1
G

l22g D 2

, ~B2b!

u^$2%uŜ~u!u3&8u252gD~u!sinudu
g2l3

l22l3

3S cosz2
G

g2l3
D 2

, ~B2c!

with z[2ps cosu, we find that the angular distribution o
the third emitted photon is given by the sum of

P3
11~u!5D~u!

1

3

l1
2

~g1l1!

4G2

~l22l3!2 S a2
2

l2
1

a3
2

l3
2

4a2a3

l21l3
D ,

~B3a!

P3
12~u!5D~u!

1

3

l2

~g1l1!

4G2

~l22l3!~l22g!
sin2z,

~B3b!

P3
13~u!5D~u!

1

3

l3

~g1l1!

4G2

~l22l3!~g2l3!
sin2z,

~B3c!
A
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x

and

P3
21~u!5D~u!

1

3

l2

~g1l2!

4G2

~l22l3!~l22g!
sin2z,

~B3d!

P3
22~u!5D~u!

1

3

l2
2

~g1l2!

4G2

~l22l3!4 F9~l22g!2a2
2

l2

1
~l12l3!2a3

2

l3
1

12~l22g!~l12l3!a2a3

l21l3
G ,

~B3e!

P3
23~u!5D~u!

1

3

l2l3

~g1l2!

4G2

~l22l3!4 F ~l12l3!2~l22g!a2
2

l2~g2l3!

1
~l12l2!2~g2l3!a3

2

l3~l22g!

1
2~l12l3!~l12l2!a2a3

l21l3
G , ~B3f!

and

P3
31~u!5D~u!

1

3

l3

~g1l3!

4G2

~l22l3!~g2l3!
sin2z,

~B3g!

P3
32~u!5D~u!

1

3

l2l3

~g1l3!

4G2

~l22l3!4 F ~l12l3!2~l22g!a2
2

l2~g2l3!

1
~l12l2!2~g2l3!a3

2

l3~l22g!

1
2~l12l3!~l12l2!a2a3

l21l3
G , ~B3h!

P3
33~u!5D~u!

1

3

l3
2

~g1l3!

4G2

~l22l3!4 F9~g2l3!2a3
2

l3

1
~l12l2!2a2

2

l2
2

12~g2l3!~l12l2!a2a3

l21l3
G ,
~B3i!

wherean[cosz1G/(ln2g).
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