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Collective spontaneous emission from a line of atoms
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We study collective spontaneous emission from a linear arr&y/tefo-state atoms using quantum trajectory
theory and without am priori single-mode assumption. Assuming a fully excited initial state, we calculate the
angular distribution of théth emitted photonk=1, ... N. We investigate the evolution of the distribution
from a dipole radiation pattern for the first photon emission to a distribution characteristic of directional
superradiance. The formalism is developed around an unravelling of the master equation in terms of source-
mode quantum jumps. Exact calculations for 11 and fewer atoms do not show directional superradiance, but are
characterized by delaygdubradiant photon emissions directed along the axis of the linear array. A modified
boson approximation is made to treat the many-atom case, where it is found that strong directional superradi-
ance occurs for a few hundred atoms; the decay of subradiant excitations is preserved in the tail of the
superradiant pulse.

DOI: 10.1103/PhysRevA.68.023809 PACS nuntber42.50.Fx, 42.50.Lc

[. INTRODUCTION tion for future work is the exploration of the physics that
calls for the enormous Hilbert space in the first place.
Collective spontaneous emission is a problem of funda- We quote from Dicke’s original papdd]: “A classical
mental interest in quantum optics. It has attracted a great dealstem of simple harmonic oscillators distributed over a
of attention since the seminal work of Dick&], especially large region of space can be so phased relative to each other
in connection with the phenomenon of super-radidf&8].  that coherent radiation is obtained in a particular direction. It
Despite the attention, certain aspects of the problem are stithight be expected also that the radiating gas under consid-
not well understood. Among these is the angular dependencgation would have energy levels such that spontaneous ra-
of the emission from a spatially extended sample of atomsdiation occurs in one particular direction.” Dicke continues
In this paper we investigate this, and related features of coko discuss the emission from such a phased initial state.
lective spontaneous emission, by developing the quanturBmission of this sort was also discussed later by others, no-
trajectory theory of spontaneous emission from a linear arrayably Rehler and Eberly5], who provide a semiclassical
of two-state atoms. Our model reverts to the Dicke model otreatment of both the directional and temporal characteristics
super-radiance when the line is much shorter than the resef the emission. Our concern is with the fully excited initial
nant wavelengtho, and to a line of independently emitting state of a collection of two-state atoms. For this, there is no
atoms when the atom spacing is large compared Within  initial phasing of the atomic dipoles to dictate the direction
both these limits the distribution of emitted photons follows of the emission, which is to be determined from the geom-
the dipole radiation pattern. A more complicated pattern isetry of the atomic sample and orientation of the dipoles.
expected away from these limits. The principal aim of thePrevious work on the topic developed the idea that the emit-
paper is to demonstrate how, in this intermediate regime, g&d photons tend to form a “ray[6]. Alternatively, it has
directional superradiant pulse can grow spontaneously fromdeen argued, on the basis of the sample geometry, that a
guantum noise, recognizing that the first photon is necessagingle-mode treatment of the emission process is justified
ily emitted with the dipole distribution. [7-10; such a treatment is attractive, since it is formally
The model studied is of broad theoretical interest as thequivalent to the Dicke model dfl atoms within a cubic
simplest example of an extended medium; it requires that wevavelength[1] for which the equations can be solved in a
develop the full multimode theory of collective spontaneousnumber of wayg11—-17. Work along these lines envisages
emission, yet may be realized with numbers of atoms that argn extended medium made up of a macroscopic number of
not prohibitively large. Considering the current interest inatoms. In a somewhat different vein, other authors have stud-
quantum information and quantum computation, it also preied the case of tw$6,18,19, four [19], and up to six20]
sents a fascinating example of a quantum dynamical procesgoms, each claiming a little insight into the problem of di-
set within the Hilbert space dfi>1 “qubits” [4]. The Hil-  rectional emission in an extended medium.
bert space is enormous, even fd=100 atoms and thus, The message from these previous works is unclear and
exact quantum trajectories are uncomputable. A major part afonfusing. There appears to be much that is valid in the ray
our paper is therefore devoted to the formulation of usefuljdea of Ernst and Stehl&], assuming we may interpret the
physically motivated approximations. An interesting direc-ray as emission from some sort of collective mode of the
medium. It is not clear, however, that only one “ray” should
be dominant, at least through the initial stages of the emis-
*Electronic address: h.carmichael@auckland.ac.nz sion. The first photon is certainly emitted in the dipole radia-
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tion pattern, and is hardly the sole determinant of the direc-  Il. QUANTUM TRAJECTORY FORMALISM FOR
tion of an eventual ray. With regard to the single-mode ANGULAR DISTRIBUTIONS
theories, Ressayre and Tallgt1,22 attempted a justifica- A. Model

tion, but concluded that it is “not obvious that such a model ) ) ) )
is valid.” Work on a few atoms only adds to the confusion. ~ 1ne physical system considered consistsNofdentical

For two atoms, Lehmber§18] obtained results which he {Wo-state atoms located at positians i=1, ... N. For the
finds in contradiction with Dicke’s photon-correlation argu- present we leave the locations of the atoms unspecified, other

ment for the enhancement of emission in certain directionst.han to assume that the distances between them are less than

Duncan and Stehlg9], on the other hand, building upon the or of the order of the resonance wavelength; the atoms then

g Cw . . radiate collectively due to their interaction with the common
ray” idea, claim “an unambiguous tendency for the emitted

. A o lectromagnetic field. Wi me that th mic dipole mo-
photons to go in a common direction.” The claim is based Oneecto agnetic field. We assume that the atomic dipole mo

numerical calculations for a line of four atoms. Blagkal, ~ Ments are all aligned in directiod. The master equation

considering six atoms, obtain results more in line with I_eh_descrlbmg the evolution of the atomic density operator in the

mberg’s comment. The claim of Duncan and Stehle is dubi—eIeCtr'C'd'pOIe’ rotating-wave, and Born-Markov approxima-

ous, as their calculations exclude all but near-axial modes, tions has been previously derivgtB,24-27. In the interac-

- "’ fion picture, it is given
restriction demanded by the memory limitations of thelr{;‘O picture, itis given by

computer; their justification for this disconcertingly pre- ) N o

sumes their conclusion: “linear arrangements ... are ex- p=—i 2 Ajjloiyoj-,p]

pected to radiate primarily along their axigl9]. 1#i=1

The present work clears up the confusion. It is based upon 1 N . A o o

a quantum tra}Jectory unravelln[@:{l of a previously der!ve_d + > E_ Yij(20j_poiy —0i 0j_p—poi o),

master equatiofR4—27 for collective spontaneous emission hi=1

from an arbitrary spatial distribution of two-state atoms. Car- (2)

michael and Kim[28] formulated an unravelling in which

the jump operators are associated with the detection of with

photon emitted in directiok. Here, we formulate an unrav-

elling in terms of jump operators that refer to source .~ ,.COSEj;

modes—collective modes of the atomic sample—whose A= Yz —[1—(d-ry) ]T

emission patterns suggest an identification with the rays of B

Ernst and Stehle. Our source modes extend the analysis of L sing:  cosé;

Ressayre and Talld21,22 and will be reported on more +[1—3(d-rij)2]< > L 3 J)} 2

fully in another publicatiof29]. We formulate the problem &ij §ij

in the manner of Dick¢30], by calculating the angular dis-

tribution of thekth emitted photon and investigating its evo- and

lution with increasingk; we do not assume, however, as

Dicke does, that the atoms are far apart. \We concern our- B ~ o~ 5 SINE)

selves in this paper with the development of directionality in Yii = 75[ [1=(d-r;))"] &j

the average over an ensemble of many superradiant pulses.

Correlations and shot-to-shot fluctuations are also accessible R cosj sing;

in our approach, but will be studied elsewhere. +[1_3(d‘rii)z] 2 .3 ' ©)

The organization of the paper is as follows. We summa- &l &l

rize the physical model and quantum trajectory formalism in
. . Where

Sec. Il. In Sec. Il we treat the emission from a few atoms in

a line without further approximation. Two- and three-atom

cases are solved analytically, and up to 11 atoms through

numerical simulation. We find that 11 atoms is too few to ) ) o )

satisfy the joint requirement on density and line length to? IS the EinsteirA coefficient,\q is theAresorlant waveIAength,

produce a directional superradiant pulse. In Sec. IV we makand atomj has pseudospin operatoss- , o, and oy,

a formal connection between directed emission and th&hich obey the commutation relations

source modes used to unravel the master equation. We also o . o .

outline the boson approximation that provides the basis of (04,0 ]=6j0i, [0ix,05,]=F26j0-. (5)

our treatment for many atoms. We apply and develop the

approximation in Sec. V, to show how a directional super-The terms proportional td; in the master equation account

radiant pulse emerges from the competition between manfor dipole-dipole interactions and those proportionalyp

superradiant source modes. We discuss some limitations arstcount for the collective spontaneous emission. Due to the

extensions of our treatment in Sec. VI and present concluMarkov approximation, the master equation does not account

sions in Sec. VII. fully for propagation effects. For it to be valid, the sample

&ij=Kkorij=2m7r;j /N, rii:rijFijEri_rj; 4
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must not be too large; a photon must traverse it in a timeNote that the jump operators for this unravelling have a clear
much shorter than the characteristic time scale of the collegghysical interpretation in terms of the detection of outgoing

tive radiative decay. photons in direction €, ¢).
B. Directed-detection quantum trajectory unravelling C. Source-mode guantum trajectory unravelling
Following the proposal of Carmichael and Kii28], we Alternatively, we may identify jump operators by diago-

unravel the master equation into quantum trajectories basethlizing the matrix of the coefficientsy(;) [21,22. This
on direct photon counting. Thus, the density operator is deyields what Carmichael and Ki28] call formal jump op-

composed as a sum over pure states: erators. As we will see, these jump operators draw their
physical meaning from an expansion of the collective atomic

t) = =) t 1, 6 poIanzapon in source modefs. They are not, thgrefore, o)

Pt éc Red Ye(D)( YD) © clearly identified with a particular photon detection event

(however, see Sec. IV)A
where REC is the record denoting a particular sequence of Matrix (7)) is a real symmetric matrix which can be
photon detections(emission up to timet and Prec  diagonalized by an orthogonal transformation of the form
={ie(t)| (1)) is the probability for that record to occur.

States | .(t)) and |#.(t)) are the normalized and un-
normalized states, respectively, of the atoms conditioned OQhere
the occurrence of the sequence REC.

The time evolution of|#.(t)) is generated by a non- A=diagAq, ... \N) (13
Hermitian Hamiltonian and punctuated by jumps generated
by a set of jump operators at the times of photon emissiongs a diagonal matrix of the eigenvalues of;{) and the col-
For a general master equation in Lindblad form, umns ofBTz(bij)T,

(7ij)=BTAB, (12

bz—;i—[l:hp]*”E (26,p0{ - 0{0ip—p00)), (7)
: b=| ¢ |, (14

the non-Hermitian Hamiltonian is bin

are the corresponding normalized eigenvectors. The master

Hg=A-i%Y, O/0;, (8)  equation is written in this unravelling as
I
N
and the jumps are generated by the set of oper&pf£3]. p=—i X Ayloi.0-,p]
We use two approaches to cast the master equation in explicit #j=1
Lindblad form, identifying two distinct sets of jump opera- 1 N
tors. The first, developed in detail by Carmichael and Kim += > (23,p31-3]3,p—p313)), (15)
[28], yields the directed-detection jump operators 231

R N . . where the source-mode jump operators are
S(6,4)=\yD(6,¢)dQ D, e *ROA TG (9)

~ X . .

J J=WbE, 3=\Eb, (16)
which apply when a photon is detected in the far field within

the element of solid angle() in directionR(6, ¢). Quantity where we define

(o

3 A
D(6,¢)=g_{1-[d-R(6,¢)]} (10 S (o o). an

M>
Il

is the dipole radiation pattern for emission from an isolated ON-
atom. For theN atoms, an additional angular dependence, . . L
enters through the propagation phase ?actors i[r)1 . !_lke the dlrected—detectlon_jump operators, the source-mode
When diagonalized in terms of these jump operators, mastdyMP operators are collective atomic operators.

equation(1l) reads as
D. Angular distribution for the kth emitted photon
N

: -~ A 1 A N
p:_i ElAij[Ui+0-j7!p]+§J [28(9’¢)PST(9,¢)

i£]=

Our aim is to follow the evolution of the angular distribu-
tion for photon emission from the dipole radiation pattern,
. . . . which holds for the first emitted photon, to a directed distri-
—S'6,$)S(6,%)p— pST(6,$)S(6,d)]. (11 bution of the sort suggested by earlier theories of super-
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radiance. Our chosen path to this goal is a calculation of themission directions is cumbersome to perform analytically
angular distribution for thé&th emitted photon; thus, we aim and difficult to evaluate accurately in numerical simulations.
to calculate the probability for thkth photon to be emitted We use an alternative expression, adopting source-mode
within the solid angled() in direction (6, ¢). jump operators for the fird¢—1 emissions and jump opera-

One possible expression for this probability is obtainedtor (9) for the kth emission only. We then sum over a finite
using jump operator9) for all k emissions[30] and then numberN of alternate entries in the record, on each photon
integrating over the directions of the first to thke—(1)th emission. From a straightforward elaboration of the sum in
emissions. This approach is not found to be very usefulEd. (6) and the explicit expression for the time evolution of
though, because even for a few atoms the integration ove}n,//c(t)> we write

N
Pk(0,¢>)dﬂ=|lE:l A lf dt; .. f A et sttt e (18)
where
1,y et = S(O.0)B—t )T, Bt 1—ti ) ... 3 B(tyl{+}), (19
[
with [V01) =S(OB(tI{+}) =6 NAUF(o)[{+]}). (29
B(r)=exp(—iHgr/h), (20)

and|{+}) denotes the initial state with all atoms excited. ~We substitute fo§(¢) from Eq.(22) and note that the inter-
The non-Hermitian Hamiltonian is given by ference terms have zero expectation in the excited state irre-

N spective of the number of atoms. Hence,

N
Hg=1 ; Ajjoi o) — Z (21)
e ) P1(6)=D(0); (26)
The sum over records in E¢L8) covers all permutations of
source modes and emission times for the fikstl emis-

I\)II—‘

the first photon is always emitted according to the dipole

sions. o ) ,
We specialize, in what follows, to a line of atoms locateg@diation pattern. We are interested in the development of
. - . . >1.
at r;=(j—1)(sho)z j=1,... N, wheres is the atomic Pi(0) for k>1

separation in units of the resonant wavelength. The atomic
dipole moments are all aligned perpendicular to the axis of

line z. In view of the cylindrical symmetry, the phase factors
in Eq. (9) are functions of polar anglé only; the ¢ depen- As a first step, we briefly review the case of two atoms
dence is all contained in the dipole radiation pattgr@). It  treated by Lehmberd18] and others[6,19]. Lehmberg
is therefore convenient to integralg (6, ¢) over azimuthal solved the master equation in a standard way to calculate the
angle, which is effected by replacir®( 6, ¢) with average photon emission rate as a function of direction. He
obtained the dipole radiation pattern, in seeming contradic-
N . N _— R tion with the directional correlations noted by Dickg]; in
S(6)=yD(6)sin ﬁdGZl e 12mUT 00y (22)  Lehmberg's words[18]: “These results, especially20),
= seem to contradict the prediction of photon-correlation argu-
where ments’ that the radiative coupling betweely and A, en-
hances emission in certain directions.” In Sec. Il A we re-
D(6)=(3/4)(1—sirt6/2). (23 produce Lehmberg’s result; we show that the second photon,
like the first, is emitted with the dipole radiation pattern. In
From Eq.(18), the angular distribution of the first photon Sec. Ill B we show, however, that the two-atom case is spe-
emission is cial and an additional angular dependence appears as soon as
three atoms are considered. We derive the angular distribu-
tion for three atoms analytically, omitting dipole-dipole in-
teractions. In Sec. Il C we numerically verify the result,
with dipole-dipole interactions included. We then extend our
where numerical investigation to consider the ca$e 11.

Ill. EMISSION FROM A FEW ATOMS IN A LINE

P1(6)sinod o= J:dn@,tl%,tg. (24)
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A. Two atoms: Lehmberg observation 0.8 -

There is only the second photon emission to consider.
From Eq.(18), the angular distribution of the second emitted
photon is given, folN atoms, by

0.6 -

P, 04

N L
Po(6)singdo= >, dtlf At 100l Y1 1000 02

1Ii=1 Jo ty L

27 0.0 L— '
0.0 1.0 2.0 3.0
where ]
|%1xt1?9xtz>:é( G)B(tz—t1)3|lé(t1)|{+}> FIG. 1. Angular distribution of the second emitted photon fol-

lowing a first emission of typd, (i) andJ, (ii); the two atoms are
separated byy/4. The dashed line shows the distributi@ipole

= 7’yt [S B —_ 3
e "1S(0)B(t, tl)‘]'1|{+}>’ (28) pattern) summed over first emission type.

and the sum in Eq.27) is over theN possible first-emission 12
jamgs It is helpful to note that the state reached after the first P,(6)=D(6) 5 |21 )\|—11<| (01001 0, 0p
L 17

)=, [{+H= N b 2{+)), (29 +e o oy +elop 0 )|l). (35)

where{=2wSs cosé.

. . "T" . .
is an eigenstate of operaté}{\‘z i di; we have(Appendix The two terms in the sum cover the cases of a first emis-

A) sion of typeJ; and a first emission of typ&,. Their separate
N angular dependences are plotted in Fig. 1, where they are
(2 jl‘rjl) HD=[(N=2)y+X; ]|l4). (30)  compared with the sum. The sum agrees with Lehmberg’s
=1 1 result; it is again the dipole radiation pattern. Although the
o ) ) interference terms play a role in the individual trajectories,
Then, specializing to a pair of atoms, we write which allows for the correlation noted by DicKd], their
y T contribution cancels in the sum over records.
(7ij)2<r ) (31) _
Y B. Three atoms: Analytical results
with eigenva|ues and eigenvectors given by We now show that a directional dependence beyond that
of the dipole pattern arises for three atoms in a line. Dipole-
No=vyxl (320  dipole interactions are omitted for simplicity.
In the case of three atoms, the record acquires three
and branches following the first emission. Considering the first
1/1 1/ 1 line of Eq. (28), the evolution generated Hy(t,) is trivial,
b1=—( ) , 2:_( ) (33) producing an overall _exponentlal _decay at the ra)t/_é23 Fur-
J2\1 J2i-1 thermore, with the dipole-dipole interactions omitted, states

) ) ) (29) are eigenstates dfig/iz with eigenvalueEgs. (21)
respectively. The jump operators for a pair of atoms, Eqgnqg (30)]

(16), are then

1 1
5 5 N==—5(y+N), Npg=—5(y+N29). (36)
~ _+ _ 1 1 2,3 2,
i, = ‘/),4_1“%, (343 2 2
From Eq.(28), we therefore have
Jy=\7-T r% (34D |, 1,00,y =€ GPMe M TWEG)|I).  (37)

Then, the time integrals in Eq27) are convolutions of ex-
In addition to satisfying Eq(30), in the two-atom case ponentials and yield

only, state|l,) is an eigenstate of the dipole-dipole interac-

tion Hamiltonian(eigenvalue+# A ;,) and hence, also of the _ 3 <|1|ST(0)Q( 0)|14)
non-Hermitian Hamiltonian Hg  (eigenvalue —ifiN 2 Paf 0)sm0d0=ll§=:l 3y(y+\1) (38)
+%A4,). The computation of the between-jump evolution is

therefore trivial, and from Eq927) and (28), the angular For the explicit construction of the source-mode jump op-
distribution of the second emitted photon is erators, we write
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y I' 6
(=T » T'[, (39
s I' vy

with eigenvalues

1) 1) )
)\1:'}/_ (S, )\2’3: ’)"‘I‘Ei Z"’ZI‘ y (40)

and corresponding eigenvectors
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1.2 1.2

FIG. 2. Angular distributions of the firstsolid line), second
(dashed ling and third(dotted ling emitted photons for a line of

E\/)\——y three atoms separated hy/4. Results excludinga) and including
1 1 \/E 2V"2 (b) dipole-dipole interactions are presented.
bi=—=| O |, by=———| I'l\\2=7 |,
V2 1 VA= A3 1 Hence, using Eqg38) and (9), and substituting fofl) us-
— /)\2_ y ing Egs.(29) and(429—(420), the angular distribution of the
2 second emitted photon is
1
PARGI 1[ & or
2 P,(0)=D(6) = L, + ——(L,—Ls)cos
bgzL T/ y=ns | . (a1) 2(0)=D( 3['12;1 I )\2_)\3( 2—L3s)cos{
Pamhal 1 1
- _)\ — — —
SVYT A3 +3 L+ )\2_)\3(()\2 YL,
The jump operators are then given by
+(y—Ng)Lg)|cosZ ¢, (43
R 1 . R
Ji=W—=(0y_—03), (423
1 1\/5( 1 3
with {=27mrscosf andL =\ /(y+N\)).
i J2 1 R r . The angular distribution of the third photon is obtained
Jo=\VAy——=| =Ny~ v0o;_ . +——05_ from a straightforward extension of these results. There is a
WWo—Agl 2 VA= y

further splitting of the record into three branches after the

1 second emission. The distribution of the third emitted photon
+5 No— 7(}3_) ' (42p) s therefore expressed as a sum of nine terms:
2 (1 r :
~ ~ ~ I1,1
Ja=Wg—| S\Vy— 30, — ——0,_ Ps(0)= 2 Pl 6), (44)
1 -
+§ y—)\30'3_). (4209  where
|
P'2( g)sin edazf dtlj dty | dtge™ e (M) W({—}|S(0)B(ts—t,)J) [11)]%; (45)
0 tq ty

[{}) denotes the ground state with all atoms unexcited. Theéhe analytical expression@3) and (44) are plotted in Fig.
evaluation ofP'31"2(6) is sketched in Appendix B; the ex- 2(a) and compared, in Fig.(B) with Monte Carlo simula-
plicit results appear as Eqé33a—(B3i). In the three-atom tions, including dipole-dipole interactions. The most promi-
case, the angular dependencies of the nine individual trajeaent feature is the enhanced directionality of the third emit-
tories do not cancel in the sum and there is a distortion of théed photon, with an increased probability for emission near
dipole radiation pattern for both the second and the thirdhe axis of the line of atoms. The dipole-dipole interactions
emitted photons. The result for the sum is shown in Fig. 2make only small alterations to the picture.
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15 15 40 40
(@ L (b) - - (b)
3.0 30 -
1.0 1.0 - I
p P B, 20 B 205
0.5 0.5 10 10
0.0 ooL— 1 v .ol ool—»u 1 . | 0.0
00 10 20 30 00 10 20 30 00 10 20 30 0.0
o o o

FIG. 3. Angular distribution of the total emission from a line of ~ FIG. 5. Time-resolved angular distribution of the last emitted
11 atoms separated by/4. The dashed line shows the dipole pat- Photon for a line of 11 atoms separated Xy4; emission occurs

tern for comparison. Results excludit@ and including(b) dipole- ~ Pefore yt=1.0 (bold solid ling, 10.0 (dashed ling 100.0(dotted

ing (b) dipole-dipole interactions are presented.

C. A few atoms: Numerical simulations

The expectation drawn from previous work on super-At the time of thekth photon emissior(before executing
radiance is that directed emission is well developed midwayump J| ) norm <¢C(tk)|ST(6)S(6))|zpc(tk)> is computed;
through a super-radiant pulse. It is therefore somewhat sughe angular distribution of théth emitted photon is the
prising that the third, not the second emitted photon, shows/onte Carlo average of this norm. From these averages, an-
greater directionality in Fig. 2. Possibly, three atoms is toogular distributions are calculated for each of the 11 photons

few, and the behavior is different for a larger number ofemitted in sequence. The angular distribution of the total
atoms. We have therefore extended our calculations by peemission is the sum of the 11 distributions.

forming Monte Carlo simulations for up tBi=11 atoms. In Fig. 3 we plot the angular distribution of the total emis-
Simulations for larger numbers are not feasible due to ousion. It deviates significantly from the dipole radiation pat-
limited computational resources. tern. As for the last photon emitted by three atoms, there is

The results of Monte Carlo simulations for 11 atoms arean increased probability for emission along the line of atoms,
displayed in Figs. 3-5. Each curve is an average over 20 008nd the dipole-dipole interactions reduce, but do not elimi-
trajectories, where the evolution of the conditional statenate the directionality.
along each trajectory is calculated from a sequence of jumps The important question, though, is whether the direction-
and between-jump evolutions, as in E9). The jumps are ality is associated with the superradiant enhancement of the

executed by the source-mode operatdrs |=1,...,11, Spontaneous emission rate, which peaks halfway through the
with I-type jumps occurring at the rate emission sequence. We address this question in Fig. 4, where
L we plot the angular distributions for the ninth, tenth, and
At (D33 () eleventh emitted photons. Once again, the directionality is
(PO I (1)) = —= N (46)  most pronounced for the last photon emission; even the ninth
(el e(t) emission hardly shows any change from the dipole radiation

pattern. It seems, then, that the directionality of Fig. 3 is not
The between-jump evolution is generated EYT) After  associated with the superradiant phase of the emission. Our
k—1 photon emissions, the un-normalized conditional statéesults are consistent with those of Blaek al. [20] and
is disagree with Duncan and Steh[&9]. Further evidence
against a superradiant interpretation is provided by Fig. 5.
_ . . .. Here we correlate the angular distribution of the last emis-
le(0)=B(t—t,-1)Jy,_, ... J,BUDI{+}). (47 sjon, the 11th emission, with the waiting time after the tenth
emission. The figure shows a correlation between increased

75 75 directionality and longer waiting times, the exact opposite of
| (@) | (b) a superradiant effect. Waiting times as long as 1000 sponta-
50 v ’ 5ol neous lifetimes contribute to the directional effect of Fig. 3.
» p Similar features are observed whether or not the dipole-

N R dipole interactions are included.
' f In summary, from our consideration of a few atoms, we
can draw the following conclusiongi) spontaneous emis-
‘ ‘ ‘ ) : ‘ ‘ sion from a line ofN=3 atoms shows departures from the
00 10 20 30 00 10 20 30 dipole radiation pattern exhibited by emission from one and
o ¢ two atoms;(ii) the most prominent change is an increased
FIG. 4. Angular distributions of the nintisolid line), tenth  tendency for photons late in the emission sequeirc@ar-
(dashed ling and eleventtidotted line emitted photons for a line ticular the last photonto be directed close to the axis of the
of 11 atoms separated by/4. Results excludinga) and including  line of atomsi(iii ) late emissions close to the axis tend to be
(b) dipole-dipole interactions are presented. delayed—are subradiant rather than superradiant; (and
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dipole-dipole interactions change the results quantitativelyEquation(49) is not invertible, but Eqs(50a and(50b) are.
but do not alter the qualitative behavior. The overall conclu-Thus, noting thaB is an orthogonal matrix, we have
sion is that 11 atoms in a line are too few to generate a

directed superradiant pulse. Although superradiant enhance- S— BTVA 1j
ment of the emission rate is observed when the atoms are '
sufficiently close together, aside from small corrections, the

superradiant phase of the emission is associated with a dipole st=3t JA~1B, (51b
radiation pattern. There is a directed subradiant phase, how-

ever, at the end of the photon emission sequence.

(513

and then substituting fo¥, in Eq. (49 we arrive at the ex-

IV. PROPERTIES OF THE SOURCE MODES pansion

Some approximation is called for if we are to take our S(6)=\yD(6)sinodo ET(6) yA~1], (52
calculations significantly beyorld=11. To this end we turn,
in this section, to a more detailed development of the formalwhere
ism of Sec. Il. For the remainder of the paper we neglect the
dipole-dipole interactions. £.(0)

il

A. Relationship between directed and source-mode jump (0)= ) =BII(0). (53
operators En(0)

Jump operatorS(6) gains a physical interpretation
through its association with the detection of a photon within
a conical solid angle of thicknest¥ and opening angl®.

From the orthogonality oB and Eq.(48), we note that

. . . =T = —_7f T _
So far we have offered no physical interpretation for the E'(0)E(0)=11'(6)B BII(6)=N. (54)
source-mode jump operators. A straightforward interpreta- _ _ _ _
tion would follow from an expansion af; in terms ofS(#6), Expansion(52) is a fundamental relationship. It allows us

but such an expansion does not exist; it is possible to exparl@ associate an angular dependence with the source-mode
3(6) in terms ofJ;, 1=1, . . . N, but not the reverse. In this jump operators in the following way. Note first that coeffi-

. ) . A - cients &(6) in expansion(52) may be expressed as off-
section we develop the relationship betwe®{®) and J,. dia onil(rrzatr' eIZments(cﬁ)e ta}ll<en 'thpres ect to the
Results derived here are used in Sec. V B to provide an inc'ag tat X d th (6) i Wi I t'p itati
terpretation for the source-mode jump operators. vacuum state and the one-quantum coflective excitations

- A — (3t -
The relationship betweers(6#) and J, follows from ||>_(‘J'/‘K')|{ }); we have
Egs.(16) and(22), both of which define collective operators

as expansions over the single-atom operatars., {=}IS(0)IVAT{-}) —ET(0)B({~}[$S1{- )BT
j=1,... N. Let use rewrite the two expansions. We define / i =
vD(0)sinode
the vector of phase factors
1 =E"(0), (55)
() @ i2mscosd “ o~
I(6)= : — , (48)  Where we usé{—}|22T{—1)=1y and the orthogonality of
: B. The expansion coefficients are then given by
mN(6) g~ i2m(N-1)s cosd
(RIEQID
h that )= ———. 56
such tha &(0) D (8)5in6d0 (56)
3(6)=\yD(0)do ()3, (49)

Using this expression, the angular distribution of emission
drom the one-quantum excitatioh) may be expressed in
terms of &,(#). When the dipole-dipole interactions are ne-

glected,|l) is an eigenstate dfly (Appendix A), with

and collect the source-mode annihilation and creation oper
tors together in column and row vectors, defining

J1
~ | . . 1., 1
j=| : | =JABS, (509 HB|I):—iﬁ§J*J|I>=—iﬁi)\||l>. (57)
Iy
. . - It follows that B(t;)|I)=exp(-\t/2)|1), and the angular
=@, ... 3)=2"BTVA. (50b  distribution of emission with initial stat) is
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o ~ n n . Jtrate gy 3
Q,(#)sinedo= fo dt1<||BT(tl)[ST(e)S(G)]B(tJ_HD R|21(0)E <{+}|‘]|1[S (Q)S(de)]Jll|{+}>
)\,lsinf) 0

=(yIN)D(0)|£(6)|*sinod 6. (58) N

N
:?’D(e)izl blliblljn;:l T (0) Tin(0)
From Eq.(54), a weighted sum of these distributions returns ! ’

the dipole radiation pattern: X{+Hoisoneomoj_|{+})

N N
:’D(")[(izl bof | ma((0)|7= 2, b.ii|m<a>|2)

N N
I§1x|Q.<e>=yD<a>|§1|§.<0>2|=NyD(e>. (59)

N N
+| 2 b m(0)b amr(0)— 2 b|21i|77i(9)|2> :
We see thaté(6)|? characterizes the difference between the et =
radiation from the collective excitatiofl) and the dipole (62
radiation pattern. Moreover, an incoherent sum over excita- 5 o
tions|l), I=1, ... N, recovers the dipole radiation pattern. Since|mi(6)|"=1, each sum, except the third, is trivially

Examples of distributiorQ,(6) are presented in Sec. VB. ~ constant. The third sum is evaluated, using Exf), to be
More relevant to our interests are the properties of collecti,(6)|*. We arrive at the result
tive excitations near the fully excited state. The first photon

is emitted according to the dipole distribution Eg6). Con- R'zl( 0)=7yD(6)(N—2+ |§|l( 9)|?). (63
sidered in terms of source modes, this result is an expression
of sum rules(54) and (59); we have Equation(63) is a generalization of the correlation, the
stimulated emission enhancement factor, noted by Ditke
PSP Dicke observed that after the first emission in directign
{+}S'(OSOK+}) the rate for a second emission in the same direction is en-
sinfdé hanced by a factor of two over that for spontaneous emission

. . from independent atoms. The interpretation of &) is not

=yD(O{+HIVATTE*(OET (VA I{+})  quite so srfcraightforward, but a conpvincing derﬁstration of

N N an enhancement of source mddean be given. RatR'zl(ﬁ)
=yD(60) Y, |&(6)]2=> \Qi(6), (60) may be divided into a factoiN—1)yD(#) which accounts

=1 =1 for emission fromN—1 independent atoms, plus an “en-
hancement” factoryD(ﬁ)(|§,1( 6)|2—1) whose angular dis-
tribution is that of the source mode from which the first
photon was emitted. The enhancement may, in fact, be either
gositive or negative. Noting that the integral of eittizf6)
or Q; () is unity, and using Eq(58), we have

where we have used +}|J"J|{+})=A. Assume that the
first photon is emitted from source motleg What, then, is
the angular distribution of the second emitted photon? Let u

define|l1>=3|l|{+}>, as in Eq.(29). The angular distribu-

tion of the second emitted photon, given the first emission is w
from source mode,, is then fo singdd yD(O)(& (0)°—1)=\,—y. (64

. The eigenvalue spectrum is discussed in Sec. V A. For super-
dry(14|BY(7,) radiant source modes\( > ), Eq.(64) indicates a positive

0 enhancement; for subradiant mode\sl(< v) the enhance-
x[&1( 6)@(0)]@(72)|I1>, 61) ment is negative—an inhibition.

PL(6)sin6de
_)\—1J
)\|1/N’y !

B. Boson approximation for many atoms
where r,=t,—t;; Ph(6#)sinéde is the joint probability for

The angular properties of the source modes described in
the first photon to be emitted by mo#ieand the second to g prop

X R ) ) it the preceding section are helpful, but limited in what they
be emitted in directiom, while A, /Ny is the probability that o) s about the development of directional superradiant

the first photon is emitted by mode. Equation(61) is simi- g mission. We identified the directionality of certain collec-
lar to Eq.(58), but the integral is not as straightforward 10 yjye excitations of the atoms, but nothing was said about the
evaluate because,) is not an eigenstate dfg, even with  dynamical process, about the between-jump evolution and
the dipole-dipole interactions neglected. We can calculate thghe sequence of states visited as the spontaneous emission
emission rate for smalt,, though. Denoting the conditional proceeds. In this section we formulate an approximation
emission rate per unit solid angle 5@;';(0), this is given by  which allows us to address these limitations.
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100 ¢ @ 3f—Nb] with [B,b)]1=5,; (69)
75 .
- the boson operatofy create delocalized excitations within a
W, 50 - population of many unexcited atoms.
- We have tested the scaling of approximati@?) with n
2 - 4 andN for a line of atoms separated hy/4. We numerically
. [ L/jl\\RL | cal(;:ull?te th(;:'j d;aviaticl)ln of the Icom_njutator frcﬁm;jfolr aIII |
02 01 00 01 02 anA v, and for all states|l)=J; [{+}) and |I3,l5)
A =J;,3;,[{+}) reached fronj{+}) after one and two photon
100 emissions. The distribution of computed deviations is pre-
. () sented in Fig. 6. Figure(8) plots probability densityV, (A),
75 |- A=A, with
W, 50 - At
- |(1-)| = (103,31 101) . 69)
%r P NN (L)
0 ' : o - (2)
-0.2 0.2 Figure Gb) plots probability densityW,(A), AEA|1,|2;|,I’
with
FIG. 6. Distribution of the commutator deviation E@9) (a)
and Eq.(70) (b) for N=50 (solid line), 100 (dashed ling and 200 (1, |[j‘r 3 ]|| )
. (2) _ NRLR2IEY 1 Tt 2
(dotted ling atoms. The atoms are separated\gy4. A Oy - (70

B S RIS S
The approximation is based on the observation that the
source-mode operators act like boson operators near the fullys anticipated, the figures show the deviations decreasing
excited statd{+}) or near the ground stat¢—}), a result and increasing with increasing andn, respectively.
which follows from the fact that the sets of operatqis ~1J The boson approximation brings an immense simplifica-
and J'VA T are formed from orthonormal eigenvectors of tion. Without it, the source-mode operators only define a

matrix (y;;). Consider the commutator simplifying algebra in the Dicke, or single-mode limit. In the
. Dicke limit (s—0) there is one superradiant eigenvalyg

=Ny and the rest of the eigenvalues are z&ec. V A. Jy
and 3{, are angular-momentum operators and the emission
follows a straightforward sequence of jumps between the
angular-momentum stateg),M), J=N/2, M=N/2, ...,
—N/2: the conditional state following théth jump is

N
(mw)‘l’z[jf,flw]éZl bib o (65

where we use definitioiL6) and[o;_ 0. ]= 80, . Act-
ing with this commutator on statd$+}) and [{—}), we

have |ho(te))=|N/2N/2—k) and the between-jump evolution
generates a trivial rescaling of state norm.
—12r3t 3 T _ In the general multimode case, E@5) offers no such
) I I =) = =biby [{=]) =+ & ’Hi}z’%) simplification. There appears to be no alternative but to make

the exact quantum trajectory evolution in the enormous Hil-
bert space oN two-state atoms. The boson approximation

. . o X (67) returns us to a situation where the operator algebra is
ation) and creation(annihilatior) operators of independent simple and the bookkeeping of the conditional state evolu-

boson modes in staj¢+}) (|{—})). More generally, if the  tjop js straightforward. After thékth emission, the condi-
commutator acts on a state thatnis<N excitations below  ional state is

[{+}), or n<N above|{—}), the conclusion will hold to
within a correction of orden/N. Armed with this observa-

which shows thafl| andJ,, act like the annihilatior(cre-

N
tion, for largeN and excitations close to the fully excited _ _
state, we propose the following boson approximation: |‘/’|i s ---;Ik,tk>—|1:[1 Inp=Hni}e), (71
3 At i 2 atq_
J—nal with [a.,8)]=5 . 67 with =N n=k; |{n}y) is a multimode Fock state and oc-

R cupation numberg;, =1, ... N, count the holes created in
The boson creation operatoss create delocalized holes the population oN initially excited atoms. Then, the condi-
within a population of many excited atoms. Close to thetional emission rate per unit solid angle for thie+{1)th
ground state, we propose emitted photon is
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FIG. 7. Eigenvalues of the source modes for=11 (a) and
1000 (b) atoms separated by,y/4.

R, "0)=yD(0)({n}JATVATIE* ()

X ET(0)VATTA N}
N
=yD<e>|§1|§.<a)lz<n.+1>, (72)
where we define
VY
A= : . Af=(\ja;, ... \ay). (73
VAna

Note that after a first emission from source mdde the
angular distribution for the second emission is given by

RA(0)=yD(0)(N+|£ (0)[?). (74)

The rate differs from the exact result, E§3), by something
of order 1N; in place of Eq.(64), it yields the “enhance-
ment” factor

fowsin 6doyYD(0)(|&, (B2 +1) =\ +y. (75

Approximation (68) produces the exact result, E(S),

PHYSICAL REVIEW A 68, 023809 (2003

N
RLl;i“*'kw):;l NQUO) (N +1), (76)

which is a straightforward generalization of res(60) for
emission from the fully excited state. The important addi-
tional factor is the bosonic stimulation by the hole occupa-
tion numbers, .

V. EMISSION FROM MANY ATOMS IN A LINE

The bosonic stimulation will prove to be the fundamental
driving mechanism of directional super-radiance. It translates
into a differential amplification of the emission from differ-
ent source modes at ratas, |=1, ... N. Eigenvalues\,
and angular distribution®,(#) are therefore the basic ingre-
dients around which the directed emission is formed. Before
considering further Monte Carlo simulations, we briefly dis-
cuss some of the properties of these quantities. A more ex-
tensive discussion is given in a separate publicaZs).

A. Source-mode eigenvalues

In Fig. 7(a) we plot the eigenvalues for the line of 11
atoms that produced Figs. 3—5. They are compared with the
eigenvalues foN= 1000 atoms in Fig. (b). The eigenvalues
are ordered according to their magnitude, from the smallest
to the largest; there is no other significance to intlet a
particular eigenvalue.

In both examples, there is a clear distinction between ei-
genvalues that are smaller and larger than the independent-
atom decay ratey; the former are subradiant and the latter
superradiant. The subradiant eigenvalues for 11 atoms are
associated with long-delayed directional emission shown in
Fig. 5. ForN=1000 atoms, the majority of the subradiant
eigenvalues are essentially zero. There are a few, however,
that are nonzero and might be associated with similarly de-
layed directional emission.

In Fig. 7(b), the super-radiant eigenvalues appear to lie on
a well-defined curve. There are, in fact, exactli =500
such eigenvalues, a number giv@ga the nearest integeby
twice the length of the line in units of the resonant wave-
length. To a good approximation, these eigenvalues are de-
termined by the dipole radiation distribution and spacaj
the atoms, according to the formul@ec. V B [31]

N /y=s"'D(6), (77)
with
(g—1)/2Ns, g=13,...,
COSh=1 (q-2)12Ns, q=24, ..., (78

I=N—2Ns+q, q=1,...,Ns(for 2Nsan integey. Adding
atoms without changing the line length leaves the number of
superradiant eigenvalues unchanged but increases their value

for the distribution of the one-quantum excitation. In the bo-by decreasing; only the number of subradiant eigenvalues

son approximation, distribution®,(#), I=1,... N, char-

grows. Adding atoms to increase the line length increases the

acterize the angular emission properties of the source modesimber of superradiant eigenvalues and gives a more closely

quite generally. From Eq$58) and(72), we may write

spaced set of angles .
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FIG. 8. Directionality of the source modes fiir=1000 atoms
separated by /4. The angular distribution of emission from the

one-quantum excitatiod,|{—}) is plotted for moded =501 (a),
750 (b), 1000(c), and 500(d).

We note from Eq(59) (integrated ove®) that the eigen-

values satisfy the sum rule

N
21 A=Ny. (79

In the Dicke, or single-mode limit, the length of the line

shrinks to a point and matrixy;) has all entries equal tg.

12.0 12.0

(a) (b)
A4Q, 60 - AQ, 60 -
0.0 ——/ 0.0 TN LN AT
00 10 20 30 00 1.0 20 30
% o

12.0 12.0
© ()

4Q, 6.0 AQ, 60

.0 1.0 20 30

0 00 10 20 30
(4 g

FIG. 9. Directionality of the source modes fot=11 atoms

separated bw /4. The angular distribution of emission from the

one-quantum excitatiod,|{—1) is plotted for modes=7 (a), 9
(b), 11 (c), and 5(d).
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There is then one superradiant eigenvalug=Ny and
N—1 subradiant eigenvalues all equal zero.

These properties of the eigenvalues are explained by con-
sidering the corresponding eigenfunctions and their associ-
ated emission patterr3,(6).

B. Source-mode eigenvectors and directionality

The source-mode emission patterns are determined from
the eigenvectors using Eq&53) and (58). Representative
examples are plotted in Figs. 8 and 9, where we p|Q;( )
for four values ofl to show the general pattern of behavior.
The case ofN=1000 atoms illustrates the behavior most
clearly. There are Rs=500 super-radiant eigenvalues with
indices running from =501 tol=1000. Forl =501 (small-
est superradiant eigenva)u¢he source mode emits within a
narrow disk perpendicular to the line of atorfisg. 8a@)].
Increasing the value df the emission is into a narrow coni-
cal solid angle opening at sontg<<7/2 relative to the line
axis. Figure 8b) shows the distribution for=750. Angleé,
decreases with increasinlg For |=1000 (largest super-
radiant eigenvalde 6, is small but nonzero, leaving a cone
around the line axis that is excluded from the emission due to
superradiant source modgsig. 8(c)].

According to Eq(59), the sum over al\,Q,(#) yields the
dipole radiation pattern. The excluded cone must therefore
be filled by emission from the subradiant modlasd modes
with eigenvalues in the transition region of Figiby]. In-
deed, we find that the emission patterns for the subradiant
modes are all peaked along the axis; Figd)8hows the
pattern forl =500. The result is as we might expect. Physi-
cally, subradiant decay rates arise from repeated emission
and reabsorptiofradiative trapping which is more likely to
occur for photons directed along the line of atoms.

The story for 11 atoms is qualitatively the saiffgg. 9)
except that the distributions are significantly broader, as the
line is a lot shorter.

Figure 9 makes it clear that the source-mode unravelling
of Sec. Il C has a different physical interpretation to the
directed-emission unravelling of Sec. Il B; the source modes
do not emit in a single direction. For the parameters of
Fig. 8, there is an approximate correspondence between the
two unravellings, though, since the radiation from maéde
confined to a narrow range of angles in the vicinity of some
6, and 7w— 6,. In Fig. 9 also, the distributions are clearly
peaked. This approximate directionality can be understood
by considering a line that is many wavelengths long with a
density of many atoms per wavelength, i.B>1, s<1,
with Ns>1. In this case, the super-radiant modes approxi-
mately make a Fourier decomposition of the atomic polariza-
tion on interval Gsz<(N—1)s\ [29]. The eigenvectors are
of the form

:{ Ajsinj(q—1)@/N+ ¢y1,
I Ajcodj(q-2)mIN+ ¢y ],

q=13,...
q=2,4 80

where A;; and ¢;; vary slowly for changes in indexjj
~1/s, corresponding to displacements along the line of the
order of a wavelength. If we overlook the slowly varying
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5.0 with s=0.025; the curves are obtained as a Monte Carlo
(=) average over 20 000 trajectories. It is clear that as long as the

amplification continues for sufficient time, the different am-

P a5 L plification rates for different source modes eventually con-

centrates the emission into a cone near the line axis. There is
a hole right on the axis, though, where the emission is domi-
= nated by the subradiant modes. We might associate the emis-
"0 10 20 30 P00 10 20 30 sion from individual source modes with the rays of Emst and
P P Stehle[6], but this process of mode competition is missing
from their work.

_ FIG. 10. Time-resolved angular distribution of the total emis- | reality, the amplification may not continue for sufficient
sion, calculated within the boson approximation for a line of 11time; it terminates due to the depletion of the excitation en-
atoms separated byy/4 (a) and a line of 1000 atoms separated by ergy. Energy depletion is an important feature neglected by
Ao/40 (b). Distributions are plotted foyt=0 (bold solid ling, 1.0 {ne"hoson approximation. Without it, the approximation is
(dashed ling 2.0 (dotted ling, and 3.0(light solid line). clearly incapable of describing a superradiantse more-

) o over, if theN initial quanta are emitted before sufficient am-
amplltudeT and_phase, the_n radiation from maddeterferes plification takes place, no significant directionality will de-
constructively in the far field at angle§ and =— 6, for velop at all.
yvhich the propagati_on phase_ d?fferencer 2cosé,, for ad- We can estimate whether or not this is the case for the
jacent atomgatomsj —1 andj) is exactly canceled by the parameters of Fig. 10. We accept the boson approximation up
phase difference between their mode amplitudgs ¢ and  ynjl time ty;, when, on average, half the photons are emit-
bj;). This criterion yields Eq.(78) and an angled, that  teq. We estimate,,, by assuming all superradiant modes

closely tracks the positions of the peaks in Fig®)88(c). . . _
From Eq.(59), given the narrow distributions of Fig. 8, ?%pgfzdagt?gt)h e-ll-rhllj]se?,\r;er\?vtﬁ& v/2s, caleulated from Eqs.

the corresponding eigenvalues are proportion& ¢é,), and
we can evaluate the proportionality constant from the eigen-

value sum rule(79) (setting all subradiant eigenvalues to 2Nstexl(7/28)t] 1} =N/2, 82
zerg. This calculation produces EG/7). from which
C. Angular distribution of emission within the boson yinp=2sIn(1+1/4s). (83

approximation

cess that produces directed emission. Within the boson agmission atyy, is then given by

proximation (67), the dynamics is extremely simple. The

conditional emission rate per unit solid angle, summed over exp(s™1y[D(0) D (m/2)Jtynb = (1+1/45)%%. (84
source modes, is given by E(}.6). It describes a stochastic

evolution similar to the mode competition in a laser andFor s=0.25 (0.025), these results givey,=0.35 (0.12)
gives rise to an average number of emissiohsles per and a differential amplification of 1.7 (6.0). We conclude
source mode, which grows exponentially in time; the holethat the directionality shown in Fig. 10 is for times well
occupation number for source motl@mplifies at the rate beyond those for which the initial energy is depleted. Nev-
\,. From Eq.(72), at timet the mean directed-emission rate ertheless, the estimated differential amplification suggests

per unit solid angle is given by that a spacings=0.025 will generate directionality within
A . the duration of a superradiant pulse. On the other hand, the
(S1(6)S(6))(1) larger spacing=0.25, seems to be marginal at best.
singd o

D. An approximate treatment of atomic energy depletion

= yD(O){({n ) ATVATIE* (0)ET(0) VA~ TA{n},)

It is necessary to go beyond the simple boson approxima-
N tion to make a reliable description of the development of
=yD(6) >, |&(6)|2eM, (81)  directionality. We may do this by modifying the boson ap-
=1 proximation to enforce energy depletion. We make two
modifications. The first, and simpler, yields directional super-
where{n,}, is the set of hole occupation numbers at time radiant pulses, but misses the directed subradiant emission at
and the overbar takes the stochastic average ovér. long times[Figs. 4 and % The second modification repro-
The intensity distribution(81) begins, fort=0, propor- duces the subradiant emission also. It is difficult to assess the
tional to the dipole distributio® (#) [Eq. (54)], and for long  accuracy of the approximations since exact simulations are
times approaches distributioQy(6#) of the source mode only possible when the number of atoms is small. Both ap-
with largest eigenvalue. This evolution is illustrated in proximations are exact, however, in the Dicke, or single-
Fig. 10, forN=11 atoms withs=0.25 andN=1000 atoms mode limit. The principle features in the development of
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8000

= and Eq.(85) is replaced by
a
(313) =N\ (1=k/N)(n+1). (89)
T 4000 Note that any photon emission reduces the future emission
rate of every source mode and therefore the modes are not
independent in this approximation. The approximation is ex-
0 - ! \ \ \ act in the single-mode limit.
0.0 03 0.5 0.0 10 2.0 3.0 Figure 11 presents an example of a directional super-
7t ¢ radiant pulse obtained from the Monte Carlo simulation of
2000 trajectories using the first modified boson approxima-
the total emissionb) calculated within the first modified boson tion. The parameters are the same as those of F(@)']Ihe
approximation[Eq. (89)] for a line of 1000 atoms separated by peak of the pulse oceurs at~0.16, .close to the predlct.ed_
No/40. The distribution in(b) is calculated foryt=0 (bold solid ~ ¥inz=0.12. There is also an evolution of the angular distri-
line), 0.15(dashed ling 0.3 (dotted ling, and 0.45light solid ling. ~ bution as predicted, towards the cone emission of Fi¢)10
but with the degree of directionality limited by the duration

directional superradiance appear to be accounted for, at lea@t the pulse. There is no directed subradiant emission in the

qualitatively, in the multimode case. tail of the pulse, however. This is not unexpected, since al-
The modified boson approximations are introduced by although energy depletion causes the source-mode amplifica-

tering the source-mode jump rates. In the boson approximdlon rates to decrease over time, the decrease applies uni-

by the substitution continues throughout the entire pulse; the source modes with

largest eigenvalues continue to dominate more and more
ARap—=ndndaall{n yd=n(n+1), (85  over time. The second modified boson approximation cor-
rects this deficiency.
I=1,... N. The sum over these rates produces the net rate The first modification is inadequate because according to
(76), integrated over angl@. The jumps in the boson ap- EQ.(68), in the tail of the pulse we would expect to annihi-

proximation are executed by the hole creation operaibrs late ground-state excitations with individual source-mode

FIG. 11. Intensity(a) and time-resolved angular distribution of

I=1,... N. Consider now the single-mode limit, where operatorsh, , while in fact we continue to create holes with

there is one nonzero eigenvalNg with jump operator operatorér, annihilating excited-state atoms with the single
. N operatorﬁ. Stated in another way, Eq®7) and(68) suggest
In=VANINI, (86)  that the emission process should develop thawghphases:

R R () an initial amplification phase where stimulated hole cre-
whereJ_=X;_ 0, is the Dicke collective operator. Adopt- ation dominates andl) at the end of the pulse, a decay of
ing the Schwinger representati¢d2], the angular momen- the coherence produced through hole creation during the am-
tum algebra satisfied by_, J,, andJ,, is represented Pplification phase. In an exact treatment, phase | would carry
exactly byJ =a'h, J,=ab’, 3,=b'h—a'a, with ata  OVver into phase Il in a gradual and continuous way. The

N r ' ' second modified boson approximation implements it discon-
tinuously, by using the jump operatoagh, and rateg89),
until half the photons are emitted, and then changing to jump
operatorsa, b, and adopting the conditional statk=tN/2)

+b™®=N, wherea and b are independent boson modes.
Herea' creates a ground-state at¢equivalently an excited-

state holg andb annihilates an excited-state atqequiva-
lently a ground-state excitatipnThe conditional state aftdr
emissions is then represented as the two-boson-mode number [ gt = b alimiion (90)
state|k),|N—k), and the exact jump rate is
with {m;},=2{n;}no—{n}«; the jump rates for the second
(3130 = uN~"X(aa") (b)) =\ (1 —Kk/N)(ny+1). half of the pulse are
(87 rn m(n+1
t I( | ) (91)
The boson approximatio67) replaces|N—k), by |N)y;
hence, it overlooks the depletion factor in the jump rate (1 ) o o
—k/N). In this approximation, the source modes emit indepen-
multimode situation into account, we replace jump operatofhdependence, ~we have arbitrarily replaced state
a/ by a'b, where the boson mode counts the number of [{nijni2)alN/2)y reached afterN/2 emissions by state

. ) SN ntn it al{nitney. effectively equating numbem; of
atoms remaining in the excited sta:o=N—2X_,8/&.  gycited-state holes created in mddiuring the growth of the
The conditional state aftdr emissions is then written as

pulse with the number of ground-state excitations to be an-
_ N—k 88 nihilated during its decay. Of course, it is not possible to
|l’hl1't1;"';lk'tk>_|{n|}k>a| —Ko, (88) implement the independent source-mode emission starting
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FIG. 12. Time-resolved angular distribution of the total emis- FIG. 14. Intensity(a) and time-resolved angular distribution of

§|on fro.m a line of 11 .atoms separated )b(y4 The exact calc.ula-. the total emissiorib) calculated within the second modified boson
tion (a) is compared with the second modified boson approximation

[Egs. (89) and (91)] (b). Distributions are calculated fopt=0 approximation[Egs. (89) and (91)] for a line of 1000 atoms sepa-

7 . . : rated by\ ,/40. The distribution in(b) is calculated foryt=0 (bold
S(’)‘l)i'g lf:e')'d ling, 1.0 (dashed ling 2.0 (dotted ling, and 3.0ight .+ iney ° 15 (dashed ling 0.3 (dotted ling, and 0.45(ight solid

line).

out of the initial state, because there is no way to distribute
the N initial excitations between the different source modes
thus, we let mode competition during the first half of the
pulse determine how the excitations are to be distribute
amongst the different modes. The approximation is som
what ad hog but is again exact in the single-mode limit.

- Figures 13 and 14 present results for larger numbers of
'atoms. Both show similar directed subradiant emission in the
ail of the pulse. In Fig. 13, density=0.25 is too small for

he development of strong directional superradiance. Figure
€14, however, uses the same parameters as Fig. 11. It shows
the same superradiant cone emission around the peak of the

More importantly, it is also able to account for the SUbr‘fjld"”‘mpulse, but this is replaced by the directed subradiant emission

em\i/\s/sior? displaytlad in Figds. ﬁ and 5. q dified b pattern in the pulse tail. Note that the overall pulse shape is
€ have imp emented the second modilied boson abynaitered between Figs. L and 14a). The second modi-
proximation as a Monte Carlo simulation and displayed ex

e . fied b imati h ly th lar distribu-
amples of the results in Figs. 12—14. Figure 12 shows th o0 boson approximation changes only the anguiar distribt

L fon of emitted photons.
result for 11 atoms and compares it with the exact quantum

trajectory simulation. Although the quantitative agreement is

not very good N is still small), the comparison lends cred- VI. DISCUSSION
ibility to the approximation. Note, in particular, that the di- Spont ission f i f at id
rected subradiant emission is now reproduced in the tail of >pontaneous emission from a finé or atoms provides a
the pulse. From the approximation, we can identify a physi_rud!mentary generalization qf the .chke_ model of super-
radiance to an extended medium. It is sufficient as a model to

cal mechanism behind this late emission. It occurs becaus ow how directional sunerradiance develops during a single
for any subradiant mode that emits spontaneously during the P P g 9

: . Ise, beginning with a dipole radiation pattern for the first
early stages of the decay, an excited-state hole is creat 4" N . A
(occ}:Jpati%n numben, =1) gnd preserved as a unique Coher_emltted photon. The directionality shown in Figs. 11 and 14

) X . s A is not particularly pronounced, though, and takes the form of
ence in the medium. Even if no significant amplification of e : . .
; one emission rather than being peaked about the line axis.
model takes place as the superradiance develops, the est

lished coherence remains to decay slowly at the end of thehes‘.e details are pe'cuhar o the OF‘e'd'F“e”S'O”a' array. By
oulse. applying the analysis developed in this paper to three-

dimensional arrays, we are able to obtain significantly more
pronounced directionality, and with a maximum rather than
minimum on-axis intensity33]. We find, however, that even
in the three-dimensional case, the initiation of superradiance
is a multimode phenomenon, not fundamentally different
from the process illustrated here; the commnepriori as-
sumption of emission into two “endfire” modes is an over-
simplification [29]. This is in fact clear without making a
detailed analysis, since the first photon is emitted according
to the dipole radiation pattern, which is to be formed from a
sum over the angular distributions of all significant super-
radiant modegEq. (59)]. If those modes are highly direc-
FIG. 13. Intensity(a) and time-resolved angular distribution of tional, many necessarily contribute to form the required di-
the total emissiorfb) calculated within the second modified boson POl pattern out of the sum. Subsequently, directional super-
approximation[Egs. (89) and (91)] for a line of 100 atoms sepa- radiance develops from a competition between the many
rated by\ /4. The distribution in(b) is calculated foryt=0 (bold modes during the early stages of the emission; a subset, not
solid line), 1.0 (dashed ling 2.0 (dotted ling, and 3.0(light solid  one, of the superradiant modes eventually dominate the rest.
line). A number of interesting and important questions are not

150
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answered in this paper. We have not considered the depenre likely to be particularly important for ensembles of me-
dence of the emission pattern on the orientation of the atomigoscopic size. Another avenue for its application is to pro-
dipoles, for example. The eigenvalue spectrum of Figp) 7 Posals for quantum information processing within

depends on this orientation. There is some interesting phy§lecoherence-free  subspace$8,39, or approximately

ics buried here as well. Specifically, for one particular orien-d€coherence-free subspaces, e.g., those spanned by excita-

tation, the spectrum of superradiant eigenvalues is flat. Thions of the many subradiant modes.
leads to the predicti(_)n t_hat_on average, the emiss_ion pattern VIl. CONCLUSIONS
follows the dipole distribution throughout the entire pulse
[29]; thus, themeanangular distribution is that of the single- ~ Using a quantum trajectory unravelling of the Lehmberg-
mode, Dicke model; differences from the Dicke model ap-Agarwal master equation for collective spontaneous emis-
pear at the level of the shot-to-shot fluctuati@s]. sion, we have calculated the angular distributiq, ¢) of

The question of fluctuations has not been addressed at dffekth photon emitted by a linear array Wfinitially excited
in this paper. Considering Fig. 14, for example: is the singleiwo-state atomsk=1, ... N. The unravelling of the master
pulse emission biasesltherforward of 9= /2 or backward ~ €duation is made in terms of source-mode quantum jumps
of §=m/2, or more symmetrically distributed? What, more which we associate with directed emission from collective

generally, are the shot-to-shot fluctuations? The simulation8°0M¢ modes. C_Iosed form expressions fof two anq .three
used for this paper can answer sof&], but not all such atoms were obtained and show that three is the minimum

guestions. Specifically, they impose shot-by-shot symmetrr.'umber of atoms to show a d'ﬁefence from the. dipole radia-
about 6= /2 due to the symmetry of the source modes ion pattern. Monte Carlo simulations were carried out for up

(Figs. 8 and ®on which the unravelling of the master equa- to 11 atoms, both with and without the dipole-dipole inter-

tion is basedSec. Il O. Certainly, the symmetry holds in the actions included. We found delayed, or subradiant emissions
mean. but it wiIII not .hold for s'ingle pulses in practice. A directed along the axis of the linear array, but no evidence of
simulation of the full pulse statistics realized in the Iabora—the emission of a directional superradiant pulse. Our results

tory requires using the angle-resolved output modes th rle cli)ntsslteggwnh (tjhs'prewous .\,'[\;IOIE of LFhrlnf.b[d@ ?rg
would illuminate a detector. ank et al.[20], and disagree wi e calculations of Dun-

; ; o an and Stehlg19].
Questions also remain about the approximations we hav& Considering the commutation relations obeyed by the

used. The exact quantum trajectory formalism of Sec. Il does . ; .
ource-mode jump operators in the many-atom limit, we

not lead to anything so straightforward as a simple sequenc S
ything 9 P 4 owed that a boson approximation may be made near the

of quantum jumps, not even a multimode sequence of jumps.

Dicke discussed the angular correlation of successive ph ully excited state; we introduced boson jump operators that

tons in terms of such a sequeri@8], but assuming “inter- create delocalized holes in the excited population of atoms.

molecular distances large, compared with a radiation wave\—NIthln this approximation, and using the properties of the

length.” If neither this condition nor the condition that all source-mode eigenvalues and eigenvectors, we demonstrated

radiators lie within a cubic wavelength holds, the collectivethat q_|rec.t|onal superradiance devel'ops from.a differential
emission dynamics accounted for by EE8)—(21) is more amplification of the source modes driven by stimulated hole

complex, involving a nontrivial between-jump evolution that creation. In this way, the emission patter_n IS dlrec_ted into
takes place within the enormous Hilbert spac&l@ntangled forwards and _backwards cones aI_|gned_W|th the axis of the
two-state systems. The modified boson approximations oftoms. On axis, a local minimum Intensity deve]ops, d.u? to
Sec. V D return us to a simple multimode jump sequencethe many subradiant modes, for V.Vh'Ch there is ne_gI|g|bIe
but they are somewhatl hoc Many questions remain about ampllflcan_on. A boson approximation for _Wea_k excitation
their accuracy and the details of the radiation process that li as also introduced; the jump operators, in this case, anni-

hidden in the Hilbert space of*2dimensions. We know from llate delocalized excitations. . :
a simpler two-mode model, for example, that significant er- To complete the overall picture, we considered depletion

rors can be introduced by ignoring the between-jump evolyOf the initial excited-state energy and derived the condition

irecti i i 3/4s
tion [34,35. The dipole-dipole interactions, neglected in that directional superradiance occurs if 1/4s)*">1,

Secs. IV and V, should also be included to reach a mor%f\'he;ﬁ_st'ﬁ ”‘f ato]';n'(; spacing Itn llm'tstf thte r((ajs%nant wave-
accurate description. ength; the line of atoms must also be extended over many

Finally, considering the Hilbert space Nfentangled two- wavelengths so that the rays emitted by individual source

state systems raises questions of concern to the field of quaW—Od.eS are narrow. We developed wo modified boson ap-
tum information. What physics, for example, does the enpromma_mons _to take energy (lnlepletllon |_nto "?‘CCOU”t' Monte
tanglement account for? How is the entanglement retaineg’arlo simulations ShOV_V marginal Q|rec_t|onal|ty o= 190

by the collective source modes different from the entanglef"ltomS aqu= 0.25, while strong directional superradlance
ment betweensource modes, which our approximations ne-as obtamed foN= 100.0 atoms ansz.025. The simula-
glect? Recent proposals for entanglement generation iflons predict that the dlrec'ged subradlance observed for 11
atomic ensemble36,37] set aside the kinds of issues ad- atoms occurs also in the tail of a superradiant pulse.
dressed in this paper, adopting, for example, the single-mode
approximatior{37]. The application of our approach to prob-
lems of this sort can assess the importance of mode compe- This work was supported by the National Science Foun-
tition and its contribution to decoherence rates. Such issuegation under Grant No. PHY-0099576 and by an IREX grant
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APPENDIX A: VERIFICATION OF EQS. (30) AND (57)

We demonstrate that statq>53,1|{+}), reached after

the first jump, is an eigenstate of operatof. ,J3/J,=3"J
with eigenvalue N—2)y+\, . Using Eqsi14), (16), and
(17), we write

3 0

N N
=\/>\|12 N> bbby MO+ o [{+})
I=1 i,jm=1

N

N
=W 2N >
=1 j#m=1

(byj by by, mOm-
+ Bimbyj by mer ){+1). (A1)
Then, from Eqs(12)—(14), we note that
N
ES bubu YiiT™ V- (A2)

Thus, evaluating the sum over the first term on the right-hand

side of Eq.(Al), we have

N

N
21 )\qu&;ﬂ bljbljbllm‘}m—:(N_l)’)’brlzy (A3)

and evaluating the sum over the second term, we have

N N
21 9&22 blmbljbllmo'j—
N N N N
=> M_Z blmbljbllma'jf_z ME byjbyjby o
I=1 jm=1 =1 j=1
N N N
:;1 7\|5|,|1j21 b|jUj—_7’]Zl by,joj- =\, — b3,
(A4)

where we use the orthonormality of the eigenvectors)gf)(
and Eq.(A2). Finally, from Egs.(Al), (A3), and (A4), we
obtain

(A5)

N
(;1 3T3|)||1>=[(N_2)7+7\|1]||1>-

We also show that stat#|{—}) reached through a one-

guantum excitation is an eigenstate of operafar with ei-
genvalue\,. Using Eqgs.(14), (16), and(17), we have

N

=> jr/\ﬂ\l'?\E ib{=H=NID),

I'=1 i=1

(A6)

where we again use the orthonormality of the eigenvectors of
('Yij)-

APPENDIX B: EVALUATION OF EQ. (45)

We summarize the intermediate steps in the calculation of
the angular distribution of the third photon emitted by a line
of three atoms. In Appendix A we demonstrate that states

1)=3, {+}), 1,=123, reached after the first photon

emission, are the eigenstatesft§ in the subspace spanned
by |—++), |+—+), and|++ —) (omitting dipole-dipole
interactiong. Let|1)’, |2)’, and|3)’ denote the eigenstates
of Hg in the subspace spanned py ——), |—+—), and

| - —+), respectively. Again, in Appendix A, we show that
these are stated|{—}), 1=1,2,3, reached through a one-
quantum excitation. It follows that the primed and the
unprimed eigenstates are both represented by veloiois,,
and b; [Eq. (41)]. Then, using the jump operatotd2g—
(420, we find that the states reached after the second photon
emission may be expressed as

V2

Jyl1)=— - 3
ﬂ > J___X; JXE——J > J____|>
(Bla)
. V2 r
3,|2)=— 1), (B1b)
B e
. V2 r
J1|13)=— 1), Bl
ﬂ > JXZ:K;‘Jyzxgl > ( d
and
. V2 r
3,1)=— 1)/, B1d)
s e v
Var —2\3 _,
32| 2)= ~ 3,2[3V?\z Y|2)’ +ﬁ|3> '
(Ble
Jo|3)= (o= na )3,2[(3‘)’ N2—2N3) VA~ 7]2)
+(3y=2N—N3)Vy—A3|3)'], (B1f)
and
J3|1)= 2 2 1)’ (B1g)
’ Vo= NaVy—hg °
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A 1 and
33|2>_()\2_—)\3)3,2[(3)’_7\2_27\3)\/7\2_‘)’|2> o 1, AT2 o
' (0= (9)§(7+7\2) ()\2_7\3)()\2_7)°| &
+(3y— 20— N3)Vy—A3[3)], (B1h) (B3d)
~ \/EF 3’}/_2)\2—)\3 1 )\2 4F2 O(No— 2 2
J313)= 2) =3Jy—N3l3) |. 220 o\ _ L 2 (N2 y) a3
B e Ty SN PHO=POR GG (xz—xgw[ ¥

(B1i)
Eigenvalues\;,\,, and\; are given by Eq(40). Substitut-
ing these results into Eq45), the form of B(ts—t5)J, |I1)
= exr[—iHB(tg—tz)/ﬁ]3|2|ll) shows all the required time inte-
grals to be convolutions of exponentidtbe primed eigen-

- 1
vectors offdg have eigenvalues \,/2 (Appendix A]. Thus, P3X(0)=D(6) 3
evaluating the convolutions and making use of the matrix

+<x1—x3>2a§ L 2200 (N azag

(B3¢

)\2)\3 4F2 |:()\1_)\3)2()\2_7)a’§
(¥+X2) (A,—ng)? Na(y=N3)

elements (M—)\z)z(y—)\g)ag
|({—}18(0)|1)'|2>=2yD(6)sinbdosirt, (B2a) Na(Ao—7)
2()\1_)\3)()\1_)\2)6(2&3
~ )\ —
(= }8(8)[2)"*=2yD(B)sinbd oL + e : (B3
2 3
2 and
X | cosl+ , (B2b)
)\2_')’) a1 B 1 )\3 41‘*2 B
. P3(0)=D(0) 3 7+ g ()\2_)\3)(7_)\3)0m2§,
[({=H8(0)]3)'[2=2yD(B)sin oo (B39)
2 3
1 Ao\ AT2  [(A—N3)%(Ay—y)a?
r \2 320 oy 1 NAahg [ 17 A3 2 2
X | cosl— P (B2¢) P30) D(0)3 (Y X3) (Np—Ag)? No(7—N\3)

_ 20 n 2
with {=2mscos6, we find that the angular distribution of (M A2)(y—Ag)ag

the third emitted photon is given by the sum of N3(N2—7)
2 2 2 2 2(N1—N3) (M= Np)azaz
P =D(0) 5 s (2+ﬁ‘ ). ' PESY ' (B3N
3 (y+A) (Np—A3)% A2 Az AatAg 2708
(B33 IO B B [9(7—)\3)2a§
12 1 )\2 4F2 . 3 3 (7+)\3) ()\2_)\3)4 )\3
PAO=DO3 5Ny B a7 & .
(B3b) N ()\1—>\2)2a’2_12(7—)\3)0\1—)\2)&2“3
X o Not A3 '
1 A3 4T .
P¥0)=D(0) = sirP¢, (B3i)
A 2B VN Ve W Wl
(B3c)  wherea,=cos{+T/(\,— 7).
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