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Einstein-Podolsky-Rosen correlations in second-harmonic generation

P. Lodahl
Department of Applied Physics and MESAesearch institute, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
(Received 12 February 2003; published 18 August 2003

A quantum model for singly resonant second-harmonic generation in a cavity with transverse degrees of
freedom is analyzed. An instability threshold for pattern formation exists in this system. Below threshold, a
strong modulation of the noise is demonstrated in the transverse structure of the far field. The performed
analysis encompasses both one- and two-point correlation functions. The noise in a single far-field point is
generally above the classical vacuum noise level. In contrast, strong nonclassical two-point correlations are
encountered between opposite emission directions in the far field. For the fundamental field the correlations are
shown to be of the Einstein-Podolsky-Rosen type, thus establishing a remarkable analog to the quantum
correlations found in a nondegenerate optical parametric oscillator.
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[. INTRODUCTION level in the sum or difference of the signal and idler quadra-
tures. In contrast, a single beam of the EPR pair exhibits
The famous EPR paradox was put forward by Einsteingxcess fluctuations above the vacuum level. The presence of
Podolsky, and Rosen in 1935 with the purpose of demonEPR correlations in the nondegenerate OPO can be attributed
strating the incompleteness of quantum mechafilgsBy to the two-photon character of the parametric down-
considering entangled states of two spatially separated quanenversion process that ensures strong correlations between
tum systems, EPR showed that a measurement on one sufignal and idler.
system would predict the outcome of a similar measurement Spatiotemporal instabilities in cavity enhancgd pro-
on the other subsystem. This established qguantum mechanicesses have attracted considerable attention. A large number
as a nonlocal theory, although this interpretation led EPR tmf theoretical predictiongl4—25 have recently been supple-
reject the reality of the quantum description. Later developimented by experimental verifications of both a nonlinear
ments of hidden variable theories were aiming at a restoraself-pulsing instability{26] and first evidence for spatial in-
tion of the local realistic description of EPR correlations. Thestabilities[27,28. Most work has concentrated on the OPO
controversy was settled in the experiments by Asgal.  where off-axis emission of the parametric beams was pre-
[2], where a violation of the Bell inequality was realized, dicted from a spatial instabilitf14,15. This mechanism
following a criteria by Bell for distinguishing local hidden leads to the formation of modulated intensity patterns in the
variable theories from the quantum the$8}. These experi- transverse plane perpendicular to the cavity §%&. Quan-
ments were utilizing discrete variables as, e.g., the polarizaum spatial properties of the OPO have been studied inten-
tion of single photons. In contrast, the original EPR proposakively [17,18 and spatial correlations and squeezing have
was for continuous variables, and the first experimentabeen identified[19] as well as EPR correlation§20].
achievement of this type of correlations was by Kimble andSecond-harmonic generatid8HG) is the opposite process
co-workers based on the optical parametric oscill&@®O  of the OPO. Here two fundamental photons are combined
[4]. Recently, the nonlocality of continuous variable en-into a second-harmonic photon at twice the frequensy:
tanglement was also established experimenféllyBoth of +w—2w. The existence of an off-axis instability has also
these experiments are based on continuous variables of lighteen established in SH@1-23, enabling similar studies of
Continuous variable quantum states of light have recentlgpatial structures in SHG as in the OPO. Investigation of the
found applications as the quantum resource for fundamentajuantum properties of this SHG instability was only initiated
guantum information processes, such as quantum teleporteecently[24,25, and the current work provides an extension
tion [6,7] and dense codinfB], and have been proposed for of these studies.
use in continuous variable quantum cryptograp®y It was recognized early that squeezed light correlations
The OPO has proven to be an efficient source for generean be obtained not only in the OPO but also in SFS].
ating light with quantum correlationglQ]. In the OPO, a This is not surprising since the same nonlinear interaction
nonlineary(? process converts the pump field at frequency(x'?) is responsible for the two processes. In contrast, it
2w into signal and idler fieldss and ;. In the degenerate does not seem immediately obvious that also EPR correla-
case (ws=w;), squeezed light can be generated with noiseions can exist in SHG. The interacting fields in SHG are
reduction in one quadrature amplitude below the vacuundegenerate in frequency and polarization, which makes it not
noise level[11,12. In the nondegenerate optical parametricpossible to separate two correlated beams. The SHG off-axis
oscillator the signal and idler fields differ in polarization instability provides such a separation mechanism, allowing
and/or frequency, which allows spatial separation of the twdor the generation of spatially separated fields at both the
beams and the formation of continuous variable correlationfundamental and second harmonic frequencies. The main
of the type originally envisioned by EPR3]. These corre- finding of the present paper is that these spatially separated
lations are observed as noise reduction below the vacuuifiields can be EPR correlated. To the best of our knowledge,

1050-2947/2003/6@)/0238068)/$20.00 68 023806-1 ©2003 The American Physical Society



P. LODAHL PHYSICAL REVIEW A 68, 023806 (2003

A A, vacuum ¢ and the transverse LaplaciaV? = 3%/ x>
2l I A + 3%/9y? that contains the spatial degrees of freedom. The
> - <4+— 2,0ut . . . .
—— H %; strength of the nonlinear terms is determined by the effective
A o nonlinear coefficienf and the phase mismatch parameter

The phase mismatch turns out to be a convenient tuning
FIG. 1. (Color onling Sketch of the singly resonant SHG con- parameter that contributes through the complex functions
figuration.A, denotes the amplitude of the intracavity fundamental f (£)=2i/&+ (e~ 2'¢—1)/¢2 andg(&) = (e?¢—1)/£ [22]. We
field while Ay 0, @re the input and output fundamental fields con- emphasize in Eq.la the nonlinear coupling of fluctuations

nected through the input coupling mirr@¥, o is the amplitude of  fom the second harmonic fie[dhroughéz ) into the intra-
the generated second harmonic field that freely escapes the CaVit}f"avity fundamental field. This term only’ appears in a quan-

L . . . . tum model where vacuum fluctuations of the second har-
this is the first demonstration of nonlocal correlations iNmonic input field are taken into account.

SHG. This ties a bond between spatially extended SHG and 5 proper description of the spatially extended system ne-

the nondegenerate OPO, where EPR correlations are algQgsitates the use of a continuum of operators. The input

present. In addition, unique SHG correlations will be showny,gise gperators obey the standard boson commutation rela-
to exist that have no analogies in the OPO. tions

In the present paper we will study the spatial quantum
properties of singly resonant SHG using the model first 3. . (r t),af (r',t')]=8: X 8(r—r")xs(t—t'), (2
treated in Ref[24]. After introducing the scaled quantized ' b .
equations in Sec. Il, the equations are solved in Sec. Il in avherer =(x,y) is the transverse coordinate ani$ time. In
linearized approximation valid below threshold for the spa-general, these arguments will be omitted in the following for
tial instability. In Secs. IV and V analytical expressions for previty. The photon number operator is defined rag,
one-point and two-point correlation functions are given, and:fdtfdré-*- (102 (r1) '
the presence of both squeezing and EPR correlations simul- LNk 2 s N

taneously in the spatial structures is demonstrated. The output fundamental field, exiting through the same

mirror that couples light into the cavity, is described by a

standard input-output relatidi32]
Il. QUANTUM EQUATIONS FOR SINGLY

RESONANT SHG a1 ou= V27181 — 81 jn- )

In_ the most simple cavity enhancgd frequency OIOUblmgl\lote that the intracavity operatérl has been scaled such
configuration only the fundamental fieldo] is resonated,

while the second harmonic () escapes freely from the that the phgton ”Embef operator inside the cavitynis
cavity. This is referred to as singly resonant SHG, cf. Fig. 1.= 1/detfdra1(.r,t.)a1(r,t), wherer is the propagation time
A quantum model for this configuration was introduced byof one round trip in the cavity. . _

Collett and Levier{30] and extended by Paschotaal. to Equations(1a) and (1b) can be written in scaled form
squeezed light calculatiorf$1]. The Collett-Levien model after the transformationg2wy, /c?r—r, y,t—t, and defin-
can be generalized to th_e spatia_lly extended case, re_Ievan_t fiorg AAl:Xal/\/y_’ A= \/§X611,m/71, A, injout
transverse quantum noise studu?s, by including a Q|ﬁract|org \/E)(az,in/out/n, A,=6,/y,. All scaled parameters are
term.[19]. As a result, the following operator equations are itless. We arrive at the equations

obtained:

. ey dAL=(=1+iA)A+F(HOAIAT+IgH (HAJA
day=(—yi+idpas+ x*f(¢)ajai+2ixg* (Hajan o
+HIVIA+ A, (43

2
c - -

+i—Via;+2ya., 18 A = A2+ A
20 11 Y19in ( Azou=19(8) i 2,in- (4b)

i The commutation relations of the scaled amplitudes are
az,outzﬁxg(f)ai+ag,in. (1b)  given by

) X [An(r, ), Al (1 1) ]=kd(r—r" )X s(t-t"), (5

Herea; and a{ are annihilation and creation operators for > 1o _ .

. . . . with j=1,2 andk=4x“w/c”. The input-output relation of
the intracavity fundamental field;;,, j=1,2, account for E .
. . , . (3) transforms into
input vacuum noise seeded to the fundamental and seconaq
harmonfc f!elds_, and th_e outpyt guantum statg of the se_cond Al,out: ZAl_Al,ina (6)
harmonic field is described b, . The equations contain . A
linear and nonlinear terms. The former describe cavity lossvith A ,,= \/EXal,out/ V1.
and detuning with ratey; and ;. It is assumed that the Equations(4) are the scaled quantized equations for sin-
input coupler transmission is the dominating loss for the fungly resonant SHG that will be examined in the current work.
damental. The diffraction term contains the speed of light inThe classical versions of these equations were studied in de-

023806-2



EINSTEIN-PODOLSKY-ROSEN CORRELATIONS IN . .. PHYSICAL REVIEW 88, 023806 (2003

tail in Refs.[22,23. Here it was shown that a spatial insta- applied, i.e., the input is vacuum noise. At optical frequen-
bility exists for certain values of cavity detuniny; and cies thermal photons can be safely neglected, and the follow-
phase mismatcly. Above the instability threshold, spatially ing correlation relations for the input operators hpss|:
modulated patterns can be excited as, e.g., squares or hexa-

gons. The mechanism for pattern formation was found to be (EJj,in(r,t)):(6;fin(r,t)>=0, (9a)
off-axis emission characterized by a critical transverse wave
vector, (bfn(r, by n(r' ")) =0, (9b)
_ NL ~ ~
ko= VAL TAL @ (Byin(r, OB/ (r 1)) = kBT —1") X S(t—t"),  (99)

with the nonlinear detuning\'-=2f;(£)|A;|2, and subscript

i denotes the imaginary part. This establishes the mechanism ; ; ; : : :

for pattern formation in SHG as being similar to the OPO The linear g|ﬁerentlal equatlg(ﬁa) 's most ea_slly solved

case, i.e., compensation of cavity detuning by off-axis emis@ftér @ spatiotemporal Fourier transformatig8y(£2,k)

sion[14]. = [dr[dtby(r,t)e'® 2 j=12 The operatorg;(k,Q)
Here we concentrate on the quantum properties. It will beaccount for quantum noise at a frequeri¢yat a transverse

shown that below threshold for the spatial instability, thewave vectok in the far field. The Fourier transformed equa-

fluctuations are spatially modulated and possess correlatiorfi®n is

beyond the classical limit. Such structures have coined the . . .

name quantum imagd83]. In contrast, the corresponding C1(9,k?) B1(9,K) = CoB1(— O, —K) +CaB2n(2,K)

averaged amplitude&,; o andA, ,are homogeneous solu- -

tions with no spatial modulation. + B1in(2,K), (10

in accordance with the commutation relations in E5).

where the following coefficients have been introduced:
Il. ANALYTICAL SOLUTIONS OF LINEARIZED

EQUATIONS c1(Q,k)=1-2f(&)|A[*~1(Q+A,—K"), (113
The nonlinear quantum model of singly resonant SHG in

_ 2
Eq. (4) is solved within the framework of the semiclassical c,=f(AT, (11b
approximation[34]. With this technique the operator equa- - «
tions are linearized, allowing for analytical solutions. We C3=1g" (§)A; . (119

substituteA—A+b, whereA is the averaged amplitude of This equation is solved by applying the input-output rela-
each field and the operatbraccounts for the quantum fluc- tions (4b) and (6). This leads to

tuations. The assumption behind this approximation is that o o

the quantum noise is a small perturbation to the classical El,ou{Q,k)I(Cl—1)Bl,in(Q,k)+Cz,éI,in(—Q,—k)
amplitudes. In that case E¢f) can be linearized i, lead-

ing to +CaBoin(Q.K) +CaBh i — 0, k), (123
by =(—1+iA1)b;+2f(£)|A 2Dy +F(£)AZD], B2.oul ©.K) =ig(£)A1€1B1n(Q,K) +ig(£)AsC,

+ig* (§)AT by int1V7D1+byjn, (8a) X BLin = Q,—K) + [1+ig(£)AsCs] B2in(Q.K)

B2,0u= 29(£)A1D1+ by, (8b) +ig(&)A1CsB3 1 — 0, —K), (12b

which can be solved analytically relating the output fields to"ith the frequency and wave vector dependent coefficients

the input fields. The semiclassical equations can be directl9'ven by

used to calculate expectation values of symmetrically or- N )
2c7 (Q,k%)

dered operator products, thus applicable to the quadrature QK2 = (133
correlations treated below. The method has proven its im- B |Cl(Q,k2)|2—|02|2’
pressive validity for quantum noise calculationsyé®) non-
linear systems, and is expected to be of high validity for - 2,
SHG where a large averaged amplitude is always present for co(Q,k?) = , (13b
all pump levels. For a thorough discussion of the semiclas- lc1(Q,k?)[>=c,|?
sical approximation, see Rdf34].

The averaged amplitude of the fundamental field inside — 5 2¢3(Q,k%)cq
the cavity, A4, is found by solving the classical equation C3(Q,k%)= QK22 (1309
[22]. Quantum noise coupled into the cavity is expressed by |ca(€2.k5) "= ]ey|
the operatord, ;, and b, ;,. The noise in the fundamental Deact
field is introduced by the pump field which is assumed to be c4(Q,k3)= 23 ) (13d
in a coherent state. For the second harmonic field no pump is [c1(Q,k?)|%2=]c,|?
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These rather extensive expressions are the solutions relating 2\ _ 42 2o 2\~ NI

the output electric field operators for the fundamental and v2({2,k%) = =g (§AICL(Q,KT)Co(Q,K7) +ig(£)A,
second harmonic to the input fieldg® quantum correla- X[1+ig(&)A.cs(Q,k?)]ca(Q,k?). (180
tions are most conveniently expressed in quadrature ampli-

tudes. Focusing only on far-field correlations, we define theDue to the Diracs functions in Eq.(17), a natural division

quadratures arises betweek=0 andk#0. The first case corresponds to
R R o , the situation where diffraction is excluded. In that limit the
P, injoul 0:Q2,K) = B injoul( QK e+ B;fin,out(—Q,k)e”’, squeezing calculations of previous works can be reproduced

(14 [31]. However, the model presented here is more general and
includes both cavity detuning and phase mismatch of the
characterized by the quadrature phase amyl®uadrature nonlinear process. In far-field points wheke:0, the ob-
amplitudes are naturally measured in balanced homodyne dgerved light has been subjected to diffraction, which implies

tection[36]. From Eq.(9) it is easy to show that a spatially modulated noise distribution. The sharp transition
. . between these two regions, as expressed by fluaction, is
(P1in(0,Q,K)P1jn(0,Q" k")) =k (k—k")5(Q+Q"), due to the assumption of an infinitely extended plane wave
(158 pump field, which corresponds to a single poik(0) in the
far field.
<|52,in( 0,Q,k) IsZ,in( 0,0" k'))=k5(k—k")5(Q+Q"). As discussed above, squeezing can occur in the part of the

(15b  far-field image that has not been affected by diffraction. In-
) ) ) ) sertingk=0 in Eq.(17) leads to
These input correlation functions provide the proper normal-
ization for the output correlation functions discussed in the ssj(o,Q,o)zuj(Q,0)+vj(Q,0)e*2”’+ vJ-*(Q,O)ezm.
following sections. It will be shown that the output quadra- (19
ture correlations can be reduced below the input, which is a
nonclassical phenomenon. Here the noise spectrum is seen to depend on the quadrature
angled as is characteristic for phase sensitive nonlinear pro-
IV. ONE-POINT CORRELATIONS cesses, of which SHG is an example. This enables noise
. ) , reduction of one quadraturié(¢) below the vacuum noise
In this section we concentrate on one-point temporal cor; . . . A
! : o . . IFveI (squeezinyg at the cost of increased noise (0
relations by calculating the quantum noise in a single spatia .
) ) . ; : +/2). The phase mismatch paramegeturns out to be an
far-field pointk. The quadrature noise spectrum is defined as . R
important tuning parameter for the optimization of squeez-
A A ing. Figure 2 shows squeezing spectra of the fundamental
<PAJ,out( H’ka)'ijout( 0,—Q.k)) (16) and second harmonic fields at resonanag=0), and for
(P;in(0,Q2,K)Pjin(0,— Q,k)) three different values of the phase mismatch. For perfect
phase matchingg=0), best squeezing for the fundamental
which measures the output quadrature noise relative to thield is seen to be at zero frequency. Quite remarkably, sub-
vacuum noise level. Squeezed light correspondstel, stantially better squeezing performance is predicted for non-
i.e., noise reduction below the vacuum noise level. Based omero phase mismatch. Indeed, #+* = 7 noise reduction to

S(6,0,k)=

the solutions in Eqs(12), the noise spectrum is given, better than 0.4 times the vacuum noise level is obtained ex-
) ceeding the maximum squeezing level of 2/3 for phase-
S(6,9,k)=u;(Q2,k*) +[v;(Q,k*e 2’ matched singly resonant SH@1]. Furthermore, foré<0
5(2K) the strongest_noise reduction can be_ obtained at a nonzero
+uX(Q,k2)ed ) — = (170  frequency. This will be advantageous in an experiment since
! o(0) technical noise is more pronounced at low frequenci@s (
. _ _ —0). In the second harmonidig. 2(b)] best squeezing is
where the following functions have been defined: found at zero frequency and for zero phase mismatch.

o= ) _—— A i For far-field points withk#0, it follows from Eq.(17)
U1 (Q,K%)=c1(Q,k%) = 1[*+[ca(Q,k*)|*+|c3(€2,k%)| that

+[ca(Q,k3)[2, (183 S(60,0,k#0)=u(Q,k?). (20)
01(Q,k?) =[c1(Q,k?) —1]co(Q,k?) +c3(Q,k?)c,(Q,k?), In this case the noise spectrum is found to be independent of

(18p  the quadrature angl¢and is always above the vacuum noise
level, i.e.,§(6,Q),k#0)=1. In contrast to the light emitted

Uz(Q,k2)=|g(§)A1|2[|gl(Q.k2)|2+|32(Q.k2)|2] vylth k=0 (the homogeneous squgbrthe off-a_X|s emitted .
fields are not squeezed and contain substantial excess noise.
+|1+ig(§)AlE3(Q,k2)|2 For cavity and pump parameters, where a spatial instability
o exists in the system, the noise spectrum is found to be
+19(€)A1|?|ca(Q,k?)|?, (180  strongly modulated. An example is shown in Fig. 3 for a
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201 T T T T .
a) TN —=0 \,\D«
=) AN - - &S (+12)
i 1.5 ! S &:n 1 \\ ,//
ry 1 N
c 1 VNL '~ HD2\T
C||51 0Lt - = ==
& _/ FIG. 4. (Color onling Sketch illustrating the technique of mea-
0 '-,' suring spatial two-point correlation functions. Two homodyne de-
0-52, ] tectors(HD1 and HD2 record quadrature noise at spatially sepa-
rated points in the far field. Each homodyne detector will record
0 1 2 3 4 5 6 excess noise above the vacuum noise level as indicated by the inset
Frequency (@) spectrum that represents a cut through the emission ring of Fig. 3.
The quantum correlations are revealed by adding or subtracting the
b ' ' ' ' ' photocurrents from the two homodyne detectors.
20{b) -\ — =0 |]
=) N % - - - &= instability threshold. This behavior has strong analogies to
Il 45 d o | g=2 | | what is found in a nondegenerate OPO below oscillation
> I- 1 \ .
a I WNL o threshold[13]. In that case the quantum noise of both the
o ) =TI signal and idler beams is quadrature independent and above
JIx 1.0 (7 LA the vacuum noise level. In fact, the similarities between the
~ ” off-axis emitted beams in SHG and the signal and idler
20Ty _ beams of the OPO hold even further. As will be shown in the
following section, the emission in two opposite points on the

0 1 2 3 4 5 8 modulation ring turns out to be strongly correlated beyond
Frequency Q the vacuum noise limit. In fact, these correlations will be
q y shown to be of the EPR type, similar to what can be found in

FIG. 2. Fundamental and second harmonic squeezing spectra 3¢ nondegenerate OPO. This remarkable link between spa-
a function of frequency for different values of the phase mismatcHially separated SHG and the OPO can be given some intui-
parameteg. The fundamental detuning has been fixed at resonancéive backup from the fact that nonzero phase mismatch en-
A,=0, the quadrature phase angle 40, and the intracavity sures that not only the SHG conversient w— 2w occurs
scaled intensity i$A;|2=0.5. Squeezing is noise reduction below in the nonlinear process but also the opposite down-
the vacuum noise levél/NL ), which is marked with a horizontal conversion 2— w+ . The instability provides spatial
line in the plots. separation of two beams, allowing for two-point correlation

studies. The many quantitative similarities between the non-

pump level below threshold for the spatial instability. The degenerate OPO and spatially extended SHG are striking.
noise is clearly structured and forms a modulation ring thaThere also appear significant differences, the most pro-
increases in amplitude as approaching threshold. Similarlypounced being that in SHG also nonclassical two-point cor-
the radius of the ring approaches the critical instability waverelations are found in the second-harmonic field. This has no
numberk.. This excess noise is due to spontaneous emissiocounterpart in the nondegenerate OPO where the separation
of photons in the off-axis beams that are present also belowf two harmonic beams is not possible.

V. EPR CORRELATIONS

While the noise in spatial points+0 was found to be
above the vacuum noise level and hence classical, the quan-
tum behavior is revealed when considering two-point corre-
lation functions for two opposite points on the emission ring.
These two-point correlations can be measured by adding or
subtracting the photocurrents from two homodyne detectors
probing the wave vectorks and —k in the far field. This is
indicated in Fig. 4. While each homodyne detector separately
will record excess noise in accordance with Fig. 3, the noise
of the two detectors can be strongly correlated or anticorre-
FIG. 3. Fundamental noise spectrisi(6—0,0—0k) plotted :Iagﬁtd to a degree higher than possible with classical states of

in the far-field transverse pland(ky) for A,=0 and¢=5. The The natural quadratures for expressing the two-point cor-
cavity pump level is chosen such that the scaled intracavity 'menfelations are

sity is |A;|?=2.5, which is below threshold for the spatial instabil-

ity that sets in at|A;|>=3.56 with a critical wave numbek,

=1.73.

il
i
‘?\‘l\‘

b
i

i
I

P (0,0.k)=P(0,0,k)=gP(0,0,-k), (21
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j=1,2 that measure the sum and difference of a fixed 30

. . ° a A 1 [— 60
guadrature angl@ at two opposite points on the emission 2.51 ) .: A --- 2=n,4
ring. Furthermore, we have allowed for the attenuation of § 20] ! HANERRES 0=n/2
one of the beams through the parameterg3<1. This is a ! Squeezing]

well-known method of optimizing nonperfect EPR correla-

tions[4]. The corresponding spectrum is given by *;1 .
. Pioul 0.2, K) Pl 6, — Q.K)
Sf( Q,Q,k) _ < Aj,iut _ ]:,_OUt >
(Piin(6,9,K)Pjin(6,— Q,k))
+g? c
= —5(0.0.K)*g5%0.0.k). (22 5
o}
Here we have limited to the case where the same quadrature =
amplitude @) is measured in the two different spatial points. ’;)Z. 1.0

This turns out to be sufficiently general since the case with

two independent quadrature phasgsand 6, can be ob- 05 EPR

tained after the transformatiorg2- 6, + 6,. Thus all param- 0 1 2 3

eter regions can be accessed by adjusting @niyhe spec- Wave number k

trum §(6,4),k) was introduced already in Sec. IV, while the 5 5 Tyo-point correlation functions for the fundamental

cross correlation spectrum is defined as field (a) and second harmonic fielh) with A,=0, ¢=10, |A1|2
~ N =4.0,g=1, and three values of the quadrature ar@jl& he insta-

(Pjout 0,Q2,K)Pj o 6,—Q,—k)) bility threshold is|A,|?=5.58 with a critical wave numbek,
(Pjin(6,Q2,K)Pjin(0,— Q,k))

S°460,9.k) = » (23

=1.46. Two-mode squeezing is found when the correlation func-
tion is below unity, and the EPR criterion requires reduction below
and we have made use of the symmetry under the transfoi/2-

mation k— —k. The cross correlation spectrum can be

evaluated using Eqg$12). It follows that The degeneracy also ensures that the entanglement criteria of
the two-mode quantum states, as was recently formulated by
. +g? i Duanet al.[37], coincide with the above EPR criteria.
S (0.9.k) = ——u( k) =glvj(Q.k)e The upper bound of 1/2 for the EPR criterion in ER7)
_ poses a stronger correlation requirement than squeezing,
+uj*(Q,k)e2”’], (24 where the upper bound is 1. Hence the EPR criterion de-

o _ _ mands reduction of the noise in the sum or difference of two
which is valid only fork# 0. The functionsu; andv; were  separated beams below the vacuum noise level of a single

defined in Eqs(18). It is observed immediately that beam. In contrast, squeezing in thé quadratures is merely
- - reduction below the vacuum noise level of both beams dif-
S (0+m/2,0,K)=57(6,Q,k), (25 fering a factor of 2 from the single beam vacuum noise level.
: . L . Both two-mode squeezing and EPR correlations are found
which will be shown to simplify the EPR criteria stated be- in the system for a wide range of parameters where the spa-

low. . . . ;
. . tial instability exists. In general, the strongest nonclassical
The spectraS; can be used to express the EPR criteria y 9 9

: ) correlations appear close to the critical wave veg&tochar-
for_mu_lated _by Reid am_j Drummor[(_13]. EP_R correlations acterizing the spatial instability. Representative examples are
exist in regions determined by the inequality

displayed in Figs. & and 3b) for the fundamental and
1 second harmonic fields, respectively, and plotted for several
SJ+(6,Q,k)§_(0+ W/Z'Q’k)<Z' (26) d|fferenF values of the qua@rature angle The nqnclassmal
correlations are strongest in the fundamental field where the
) ) . EPR criterion can be met. Here the noise is reduced to 0.07
The seeming paradox, as encountered by Einstein, Podolsk(,for #=0) which is far below the EPR limit of 0.5. The
and Rosen, is that this allow3(6,(,k)+P(6,{2,—k) and  noise reduction in the second harmonic field is more modest,
P(6+ m/2,0,K)—P(6+ 72,0, —k) to be measured simul- typically to a level around 0.90. This is below the vacuum
taneously with, in principle, arbitrary precision limited only noise level for two beams, and hence a signature of two-
by the strength of the correlations. Due to the degeneracgnode squeezing. However, the second harmonic correlations
expressed by Eq25), the EPR criteria in this case simply appear to be not strong enough to cross the EPR boundary.
reduce to Nonperfect correlations can be optimized by attenuating
one of the spatially separated beams. This was the reason for
introducing the attenuation parametgn Eq. (21). Since the

1
(0,Q,k)<=. 2 . A - . i
S (6,.6) 2 @7) correlation betweerP;(k) and P;(—k) is not perfect, it is
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FIG. 6. Optimization of EPR correlations of the fundamental  FIG. 7. Two-point correlation function for the fundamental field
field by varying the attenuation parameter. The dotted curve showgsolid curve and second harmonic fiel@lashed curvefor |A,|?
the correlation forg=1 while the solid curve is withg=gqp(K). =4.0, £=10, g=1, and at the critical wave humbé&e=Kk.. The
The optimum attenuation parameter depends on the wave nimberspatial instability threshold igA;|?=5.58.

and is also displayed in the plot. All other parameters are the same ) . . . .
as in Fig. 5. An important tuning parameter is the cavity detunihg

Figure 7 gives an example of the variation of the two-point
. . correlation function with detuning fog=10. For these pa-

favorable to inferP;(k) +gP;(—k), given the value of the rameters the spatial instability exists fag=—2 [23], and
attenuation parametey is known. An optimum exists for in this region a pronounced spatial modulation of the two-
each fixed set of parameters, allowing to maximize the corpoint correlation functions is observed. The significant varia-
relations in each separate far-field point. For the strongestons of the correlation functions with detuning allow tuning
EPR correlations in Fig. 54=0k=1.15),g=1 turns outto  to regions with either excess noise or strong nonclassical
be optimum. For other parameters this is not the case. Frororrelations.
Eqg. (22) it is straightforward to see that the optimum attenu- Interesting time dependent behavior of the two-point cor-

ation parameter for minimizin®, (6,€,k) is given by relation functions is found when varying the cavity detuning.
A representative example is given in Fig. 8. For large posi-

s°(6,0,k) tive values of the detuning 'ghe best corre_lations are observed

Jopl 0,0, k)=~ ! (28) at zero frequency. Decreasing the detuning translates the po-
S(6,9,k) sition of the optimum correlations to a nonzero frequency. As

noted previously, such a behavior would be lucrative in an
An example of this optimization is shown in Fig. 6 for the experimental situation since this would make the measure-
fundamental field. For fixed frequency and quadrature anglenents less sensitive to technical noise.
the EPR correlations are increased significantly by attenuat-
ing one beam according @y VI. CONCLUSIONS
Attempts to increase the correlations of the second har- ; .
monic field beyond the EPR limit by changing the attenua- In the current paper the spatial structure of quantum cor

. X relations in singly resonant second-harmonic generation was
tion parameter were not successful despite a substanti

. , vestigated. By quantizing the cavity mean-field equation
search in the very large parameter space present in the Syg; we fndamental field, the spatial distribution of quantum
tem. This suggests the conclusion that while strong EPR cor-
relations are readily present in the fundamental field the non- 5 : r —
classical correlations in the second harmonic field are limited l —_—A =1
to squeezing. Nonetheless, the simultaneous existence of : !
nonclassical correlations in both the fundamental and the
second harmonic fields is a surprising finding that is unique
for SHG. This has no counterpart in an ordinary OPO and
appears as a consequence of the spatial instability that cre-
ates off-axis emitted beams in both the fundamental and the
second harmonic fields. Even in the spatially extended OPO,
where a spatial instability does exist, spatial quantum corre-
lations have only been predicted in the fundamental field and

49 Lo |---a,=0

w
1 N
-

N
1 N

o _ .
4 .. \ - - ~_--. .....
14— \ Z -

‘.‘ " / \ — /

*. . Squeezing/]

S, (6=0k=k )

not in the pumg 20]. The reason for this pronounced differ- o4 4 . __EPR
ence between SHG and the OPO can be traced back to the 0 1 2 3 4
existence of an oscillation threshold in the latter. Below this Frequency Q

threshold, the equation for the pump field decouples such

that no spatial dynamics is created in this field. In SHG no FIG. 8. Plot of the fundamental two-point correlation function
oscillation threshold exists and spatial modulation is createds a function of frequency witl§=10, |A,|2=4.0, g=1, k=k,,

in both fields. and three different values of the detuning.
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noise of both the fundamental and second-harmonic outputs present in singly resonant SHG as evident here in the
fields could be computed. A surprising result was the demguantum noise that constitutes the predecessor for the
onstration of EPR correlations in second-harmonic generaequally rich pattern formation dynamics happening above
tion which are otherwise known to occur in the oppositeinstability threshold.

process of down-conversion in optical parametric oscillators.

The EPR correlations are caused by off-axis emission creat-

ing strongly correlated beams due to the requirement of mo- ACKNOWLEDGMENTS
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