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Nonperturbative quantum solutions to resonant four-wave mixing
of two single-photon wave packets
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We analyze both analytically and numerically the resonant four-wave mixing of two co-propagating single-
photon wave packets. We present analytic expressions for the two-photon wave function, and show that
guantum solutions exist which display a shape-preserving oscillatory exchange of excitations between the
modes. Potential applications including quantum-information processing are discussed.
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[. INTRODUCTION The treatment was fully quantum, but being restricted to a
single-mode analysis propagation effects of wave packets
The cancellation of resonant linear absorption and refracwere not considered. In the present paper, we extend this
tion via electromagnetically induced transparefig§T) [1,2] ~ study by undertaking a multimode analysis in one spatial
has led to a range of new possibilities in nonlinear opticsdimension and for copropagating fields. In order to keep the
One important application is optical frequency mixing closeProblem tractable, we restrict ourselves to the special case of
to atomic resonances which allows the use of the enhancé¥© Single-photon wave packets as inputs. For this case, we
nonlinear interaction without suffering from linear absorp-©btain simple analytic solutions and compare them with nu-
tion and refraction. It has been predicted that EIT could lead€rical simulations. We show that quantum solutions exist,
to a new regime of nonlinear optics on the level of few light which d|§play an oscillatory exchange .Of eXC|t<_':1t|on betwe_en
quanta[3—7]. Several schemes for resonant nonlinear pro—the two input and the two generated fields. Finally, we dis-

cesses have been proposed and analyzed, both theoretically>> bru_afl_y the possible a|_opI|cat|0|js of smgle—.photon four-
: . . . HcaVave mixing to quantum-information processing and en-
and experimentally6]. A particularly interesting system is

the resonant four-wave mixing using atoms with a double- tanglement generation.

configuration[8-11]. Efficient frequency conversion, gen-

eration of squeezin§l2], as well as the possibility of mir- Il. SYSTEM AND EFFECTIVE FIELD EQUATIONS
rorless oscillationg13] with extremely low thresholds and
narrow linewidth have been predict¢ti4] and, in part, ex-
perimentally observefil5].

The situation we consider is resonantly enhanced four-
wave mixing in the modified doubla- system shown in Fig.

Most theoretical and experimental studies of resonang.._Note that a five-level atomic system is used instead of the

nonlinear processes have been carried out for classical fielt?nginal four-level system put forward in Ref8,13]. This is
P tue to the fact that in the four-level system, the finite detun-

g.r as;umung tsmall h quantum fluctuathns.f For Om.a'ing A is associated with an ac Stark effect, which leads to
Imensional SEtups whereé common comoving frames e?('antensity-dependent dynamical phase shifts of the fields.
Mhese phase shifts are of minor consequence in the case

of classical pulses in Fhe adiabatic linfit6]. Quantum as- where the fields are counterpropagatifgp], but for co-
pects of resonant nonlinear processes, such as the generation

of squeezing, have been discussed almost exclusively within
linearization approximationgl7]. In view of the potential
for an efficient nonlinear interaction on the level of few pho-
tons, however, a full quantum-theoretical analysis of these
systems is necessary. In addition, in order to take into ac-
count finite-size effects which become increasingly impor-
tant in the few-photon regime, and to analyze the potential
for quantum-information processing, such a quantum analy-
sis has to go beyond linearization approaches. Here, very
little work has been done, the few exceptions being the inte-
grable models of resonantly enhanced Kerr interachic8]
and photon blockadE3,19].

In a previous papel7], we have shown numerically that 12)
if single-mode fields are considered, it is possible to use an I
atomic vapor in a four-wave mixing double-configuration
to obtain full conversion from two input fields into two gen- FIG. 1. Four-wave mixing in a modified double-system with
erated fields within a few centimeters of interaction length,sgn(d,,/d,;)] = —sgn@s,/ds;), with d;; being the dipole moment
even if the input fields only consist of single-light quanta. of the|i)—|j) transition.

|5)

|4)

13)
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propagating fields these have a detrimental influence, leadingpatial coarse graining over distances larger than the wave-

to impaired phase matching and inefficient frequency contength is implied. The four fields are assumed to have either

version. As shown in Ref21], these phase shifts are elimi- sufficiently different carrier frequencies or different polariza-

nated in the five-level scheme when the relative sign of theions. Thus, operators corresponding to different fields com-

dipole moments of thet)—|2),|1) transitions is opposite to mute. The commutator between positive- and negative-

that of the|3)—|2),|1) transitions. frequency components can be approximated by a spétial
The two fields with carrier frequencies,; andvg, and  function

slowly varying amplitudeq); and Q, are initially excited 5

and form the pump fields. The other fields of carrier frequen- o 2t 1 9 ik(z—2") )

cies vg; and vg, and slowly varying amplitudeg,; and E, [Ei(2). B[ (D)1= Ek e =5y 8(z-2).  (4)

are generated during the interaction process and are assumed

to be initially zero.Q; and E; are taken to be exactly on We furthermore assume in E(.) that all the four transitions

resonance, i.e.yqg1= wsz, VE, = W51, while the other two give rise to the same coupIingg=Ndi2wi/(2ﬁCeo)

fields are detuned by an amoud, i.e., vg,=ws—A =3N\?y/8m, whereN is the atomic number density, the

=wz+ A and ve,= ws— A= wz+ A. A finite detuningA, typical wavelength of the fields, ang the typical radiative

large compared to the Rabi frequencies, the Doppler broadlecay rate.

ening’ and the decay rates from the excited states, is neces- The structure of the denominator results from the satura-

sary to maximize the ratio of nonlinear gain to linear absorpiion of the two-photon transitiofl)-|2), whose coherence

tion. Decay from the two lower levels is considered to belifetime is taken to be infinite. If a finite decay rajg of the

negligible and all fields have the same propagation directionl1)-|2) coherence is taken into account, a term proportional
Because of energy conservation, there is an overall fouto yyo has to be added in the denominator.

photon resonance, i.eyq;+ vg,=ve,+ vgp. It can be The nonpolynomial character of the interaction Hamil-

shown that the contributions of the resonant transitions to théonian causes the nonlinear coupling to behave unusually. As

linear refractive index vanish if the fields are pairwise in theshown in Ref[7], the interaction increases with decreasing

two-photon resonance. Phase matching will thus favor twopump field strength, making effective nonlinear frequency

photon resonance, and we assume that this condition is fuponversion possible even for single photons. In the deriva-

filled for the carrier frequencies of the four pulses, i,  tion of the effective Hamiltonian in Ref7], adiabatic con-

— V1= V2 — VEr= w1 ditions were assumed. This limits the applicability of Eb).
Extending the analysis of Rdf7] to a multimode descrip- in the multimode case to sufficiently long pulses. A discus-

tion, the interaction can be described by the effective adiasion of nonadiabatic corrections and their effect on the

batic Hamiltonian22] propagation of the pulses is, however, outside of the scope of
the present paper and will be discussed elsewhere.
fgc O10IEE,+EIEL0,Q, As shown in the Appendix, the slowly varying amplitudes
Hiszf — . (1)  of the electric field obey
Qlo,+EE,;
“ “ i~
The denominator commutes with the numerator and should diEj(z,t)=—cd,Ej(z,t) + %[Him,Ej(z,t)] 5)

of course be read as premultiplication or postmultiplication
by (010, +E!E,) 1. Writing the Hamiltonian in the form

above, however, highlights the resonant nature of the inte
action. fll(z),ff{(z), etc., denote dimensionless, slowly A o
varying (both in time and spagepositive- and negative-  (,+c a,)E;=ixcA(QIQIEE E,— QTEFQ,0,0,)A,

and similarly forﬁj. Thus, from Eq.(1) we arrive at the
following equations of motion:

frequency components of the corresponding electric fields (6)
E(2)= * > ay, ekl vEit=20) 2) (0+¢ )0y =i kcA(EJE]0;0,0,~ EJQJE B, A,
i Nt '
(&t+ Cc &Z)é2= =i KCAéIﬁlﬁz,
~ 1 A
O.(2)= — b elkzelvm(t—z/c)_ 3 ~ R
i(2 JC ; K ® (d+C ;) Q= —ikCAQIELE,,
L is the quantization length arid=— v/c is the wave-vector wherex=g/A and A = (ﬁmﬁ EIEl)—ll
component in the-direction relative tov/c. In the deriva- These equations admit four independent constants of mo-

tion of Eq. (1), the rotating wave approximation was used in ;..

the atom-field interaction. This is only justified if all the

fields change neither over times of the order of the oscilla- AR L BTE

; ; : . + + =

tion period nor over distances of the order of the carrier (0t € d2) (10 + BBy =0, )
wavelength. Thus, when discussing the local form of the ap- Ainais

proximate interaction operator, one should remember that a (9 3)(QQ0+EZE;) =0,
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)

(o + C‘?z)(ﬁiﬁl_ ﬁEflz) =0,

[RPNPASN
+[H.0104]

(&t+C&z)<¢|ﬁI§lll¢>=<¢
(0+ca)(QIQIE E,+ Q. 0,EIED) =0,

—ikc((Q10,0100E,E,
which represent the quantum analogs of the Manley-Rowe AAainiaa s
relations and additionally the conservation of the relative —Q10,E1E;0,Q5)A)
phase between the fields. mpmpa A s o

If we assume that the input fields consist of two single- =ikC(E1ExQ1 Q05— QOB Ey),
photon wave packets i€, and(),, then it is clear, due to (12
the constants of motiofi), that the state of the system can
be represented at all times by where we have dropped the common spatial coordinated

usedA|p)=|¢), as well as the fact that three annihilation
|¢(t)>:2 §kkr(t)|1k1kr00>+2 T (D004, L), operators acting ofy) give zero. Similarly, we find
k,k' k' o
(8) (9t Ca)(ETESN1Q,— OJOTE Ey)

vyhere|nkmk,pk,,qk,,,) denotesn photons in theékth mode of :ZiKC<ﬁIﬁ£ﬁlﬁz—EIégélég>, (13)

Q4, mphotons in thek’th mode ofﬁz, and so on.

IIl. FIELD INTENSITIES (9401050, EIEJELEy)

Since for the case of a single-photon input, the expecta- =2i kc(EJEN0,Q,— O]OJEE)). (14
tion values of all fields vanish at all times, all relevant infor-
mation about the state of the system is given by the meafonsequently, the differential equation we must solve is
intensities of the fields o o

o o (9+¢a,) Q10 = —4k2c?(9,+¢a,)(Q1Q,). (15
(eI @02 e(1)), (e(DIE[(DEj(D)e(D)),
(99  We take the input to be two independent single-photon wave

packets inQ); and(}, with the same spatial envelogg(z)

and vacuum in the other two fields, which corresponds to a
separable initial state of the form

and in expressions which we term as two-photon wave func
tions

Pa(2.2',0=(0102(2) Do) (1)
- [@)n=[2 &l100,][2 &l1da,]€]0)e:®|0)ez.

:kkz_: g2mikallg2mik'z/iLe (1) (10) (16)

SN The &) are Fourier transforms dfy(2),
Ye(2,2',1)=(0|E1(2)Ex(2')] @(1))

- _ . £ (7)= 0g2mika/L 1
— E ekaZ/LeZﬂ'lk Z/Lnkk/(t)- (11) O( ) Zk gk ( 7)

. . Thus,
Yao(z,2',t) and ¥e(z,2',t) represent the amplitude of find- us

ipg thAeQl (E1) photon at positiorz and simultaneously the <ﬁ{(z,t)ﬁ1(z,t)>in=(ﬁ;(z,t)flz(z,t»m: Yo(z—ct),

Q, (E,) photon at positionz’. The ¢'s are the two- (19

dimensional Fourier transforms from tkespace representa-

tions & and 7 into a real-space representation. where y(z) =5(z). With these initial conditions, one finds
It should be noted that although we call tiiés “wave

functions,” they do not individually strictly meet the required Q10 =(030,) = go(z— ct)co(k2), (19)

criteria as they are not normalized to unity and, as will be

seen later, can exhibit discontinuities. Because the individugle 5 sinusoidal exchange of excitation between the two
#i(z,2',1) give the amplitude of finding photons aandz’  ,ymp and the two generated fields. A complete conversion is
in field i, however, referring taj; as wave functions is con-  ychieved az= /. It is worthwhile noting that, as shown in

venient. ) ) _ N Ref.[7], and contrary to the classical a dynamics, a complete
We first discuss the dynamics of the mean intensities ofynyersion can only be achieved in the quantum case for

the fields. DueAtoAthe constants of motion it is sufficient tojnitial Fock states with one or two photons in the two pump
calculate, say(Q1Q;): modes.
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IV. DYNAMICS OF THE TWO-PHOTON RG[WQ(Z,Z,t)]
WAVE FUNCTION e RGN

We proceed by calculating the two-photon wave func-
tions. The calculation of/(z,z’,t) can be split into two
distinct cases, depending on whetlaerz’ or z#2z'. Let us
first assume=2z':

. ,/¢‘.
/» | v/ \
o ‘\;:///«"“\\‘

n i
> "‘\“ ,2, “‘““v,

(5t+05z)<0|ﬁ162|¢>:< ‘ﬁ[ﬁ ﬁlﬁz] ¢

=—j KC<O|§1§2(QIQ£E1E2

+Q1Q2EIE£);\| ®)

= —ixc(0|E1Ex|¢), (20) t/ ()™ 0 z/x1
where we have again used the results ﬂﬁﬁb)zo, /A\|(p> FIG. 2. 45-mode simulation of wave-function propagation in a

=|¢), and that three annihilation operators acting |gn comoving frame. Both initial wave packets are taken to be Gauss-
give zero. Operating o(ﬂléléz|w), we find an.

For full knowledge of the state of the system, we also
need to findy(z,z',t), wherez#z'. From Eq.(4) we see

. ) that operators at different points in the space commute, so
Thus, to determing/(z,z,t), we need to solve the differen- 54

tial equation

(d+¢,)(0|E1Eg| @)= —ixc(0] Q01 Q0l ). (21)

((9t+C(9Z)21/IQ(Z,Z,t): _ KZCZI//Q(Z,Z,t). (22) ((?t+C(?Z—’_C(?Z’)<O|Ql(z)92(zl)|¢>

i ~ ~ ,\ ~
For an input consisting of two independent single-photon = g(0|[H191(Z)]Qz(Z')+91(Z)[H,Qz(2')]|¢>- (27
wave packets with the same spatial shape, as considered
above, the initial two-photon wave function reads Expanding the Hamiltonian, normal ordering the expression
and again noting the form of E¢B), we eventually arrive at
Pa(z,2" V)in="F(z—ct)f(z' —ct). (23

We also have at the entrance of the medium (9t 0+ €0y){0121(2)02(2)]¢)=0. 28
L Thus, the wave function of the system in the case wizere
(914 €y) ha(2,2,1)| = o= — i kC(O|E1E5| 0)|,—0=0, #2' is simply given by the corresponding input expression
(24)
(2,2 t)=Ff(z—ct)f(z'—ct), z#Z'. (29
so that solution to Eg(22) is given by
Im [WE (sz,t) ]
w!l(zazat): l/lO(Z_ Ct)COi KZ)! (25)
with o(z) =12(z). Thus, the two-photon wave function at i
equal spatial points propagates through the medium modu
lated by a factor of cosf). We see that after one full con-
version cyclez=m/k, the phase of the wave function has
changed sign. This agrees with a numerical simulation of the
guantum problem, the results of which are shown in Fig. 2.
We can use a similar procedure to findg(z,z,t)

=<O|I§1EZ| ¢), the wave function of the generated fields. We
obtain %

odeT

Ye(z,2,t) = —ipg(z—ct)sin(«z). (26)

t/(CK)_l g z / K—l
The evolution of this field is shown in Fig. 3. Note that it is
/2 out of phase with the drive field wave functions, as FIG. 3. Generated fields in the 45-mode simulation. Both initial

expected. wave packets are taken to be Gaussian.
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Re[WQ(Z,Z’,’C)] However, due to the multimode nature of this problem, it
is ¥(z,2',t) for all zandz’ which is a true reflection of the
system rather thag(z,z,t), and there is no sign change for
z#27'. To see whether we can still use the system as an
approximate phase gate, we consider the behavior of the state
vector coefficients in Eq8). Returning briefly to a picture
with 2N+ 1 discrete modes, by using E@\1) of the Appen-

dix one can show that Eq$30) and(31) imply

5
4
2
1
0

2
a0 (1) = €ue(0) = 577 2 ek Emnl0)-

(32

This gives a good picture of how the different modes have
mixed among themselves, and shows that in general a simple
sign change of all the coefficients cannot exist. Only if we
can enforce that at least temporarily only a single effective
mode of the two pump fields is excited, e.g., by using a

FIG. 4. Numerical 45-mode calculation @f,(z,z',7), shown resonator setup is it possible to use the system as a phase

after one full cycle of energy transferal from pump to generate ate.
fields and back again. The sign flip farez' is evident. We see, however, from E¢B2) that after one full conver-

sion cycle the initially factorized stat€l6) evolves into an

It is evident that the initial two-photon wave function at dif- entangled state between all modes of the fi€ldsand ().
ferent coordinates propagates undisturbed throughout ththus, the nonlinear interaction generates entanglement.
medium, and that there is a discontinuous change in the be- On the other hand, if the initial state is a two-photon wave
havior when moving away from the line=z'. This is  packet in an entangled state, such that the initial two-photon
clearly seen in Fig. 4, which shows the two-dimensionalwave function has only a contribution far=2z’,

wave functionyq(z,z’,7) at time 7= w/k. This is the time

required for one full conversion from the pump fields to the ¥a(2,2")|in=do(2) 8(z—2), (33

generated fields and back again. Essentially, we have at this . .
time only diagonal components of the two-photon wave function

will ever be nonzero. According to Eq&5) and (26) they
pa(z2.2',7)=~a(2,2)in, 2=7, (30  undergo sinusoidal oscillations

31) Ya(z,8)= do(z—ct)cog x2), (34

This behavior can easily be understood. The two-photon Ye(z,1)=~i¢o(z—CO)sin(x2). (35)

wave function represents the joint probability amplitude thatry,q superposition of pump and generated fields
a measurement of the two photons will find them at positions

zandz'. If they are separated, no nonlinear interaction can &(z,t)=cog «z) o(z,t) +i sin(kz) Ye(z,t) = po(z— Ct)

occur. Put in another way, since ttepproximate nonlinear (36)
interaction in Eq(1) is local, the part of first wave packet at

zcan only interact with the part of the second wave packet apropagates in a form-stable manner. The two-photon wave
the same pointz. Thus, only ifz=z’, there is a conversion function ®(z,t) of this quantum solution corresponds to a
from the pump fields into the generated fields due to the locafluasiparticle excitation

nonlinearity. When interpreting the discontinuity in the bea-

bo(z2,2',7)=a(2,2)in, z#7Z'.

viour of the two-photon wave-function at=z’, one should \i”(z,t)zcos KZ)QI(Z,t)ﬁ;(Z,t)
remember that in deriving the effective interaction Hamil- . .
tonian a spatial coarse graining was implied. —isin(k2)El(z,t)EX(z,1). (37)

The simple sign change in the wave function for z’

hints at the possibility of using the system as a phase gate for
guantum computation, as was mentioned in the single-mode
case considered in R€f7]. One chooses the length of the  In the present paper, we have presented a full quantum-
nonlinear medium such that exactly one full conversiontheoretical treatment of resonant forward four-wave mixing
cycle can occur. If the entire wave function changes sign, wéor single-photon pulses. For this we have used an effective
would have a system that behaves as a true phase gate:Hamiltonian derived from the interaction of the fields with
only one of the two inputs is populated the pulse exits thean ensemble of atoms in a doubleeonfiguration using an
medium unchanged, but if both are present a phase shift of adiabatic approximatiofi7]. We were particularly interested
occurs. in the few-photon regime, since here quantum effects domi-

V. SUMMARY
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nate the dynamics and because of potential applications in R 1 N — 2.ikl
quantum-information processing. Thus, we have restricted A= oNTL > a,exp{m
ourselves to the special case of an input consisting of two I==N
single-photon wave packets. For this case, we were able to . -
analytically solve the propagation equations for the field in-where thea, are annihilation operators for mode a, is
tensities and two-photon wave functions which contain allrelated to the field strength in céll
relevant information about the quantum state. These localized field operators have the commutation re-
We found that there is an oscillatory energy exchangdations
between the two pump and generated fields with 100% con- EE
version at periodic intervals of interaction. This result is [a;,a),]=(2N+1)5) . (A3)
characteristic for a few-photon Fock-state input; for a coher- ) o _
ent input, complete conversion can only be achieved asympt"€ multimode Hamiltonian can now be written as
totically for very large input power. . .~ " 2 s f wo ~oa
We have also shown that after even multiples of the con- H =ﬁz wkalak+2 Hind(@y ,afr)= INT1 E aT5|
version length the two-photon wave functigi(z,z’,t) re- . ! !
gains its initial form, while after odd multiples there is a sign P IS
flip for z=2". —%2, wyala,+ 2 Hig(a,a)), (Ad)
If the two input wave packets are not independent but are I '
in a highly entangled state, the tv_vo-photon wave functiotherewO is the carrier frequency and
can be made zero outside of the diagonal. It was shown that
such a pair of input wave packets form a form-stable quan- N 2mkce 2aik(1=1")
tum solution, which is a superposition of pump and gener- ‘”ll’zk;N (2N+1)2L XM oNT1
ated fields with oscillating coefficients.
The process of resonant four-wave mixing was shown to - commutation relations yield the following Heisenberg
generate large entanglement between the modes forming th@uation of motion:
two single-photon wave packets. Furthermore, the nonlinear

, (A2)

|

interaction strength is large enough to generate a controlled iﬁ s n = n '_ 52
phase shift of a single photon by the presence of another one. at &' ' “0& (2N 1); owdy+ g Hinal.
Thus, if the number of relevant modes is at least temporarily (AB)

restricted by some external means such as a resonator, the ]
system could have interesting applications as a photoniblow, as we letN—o we find

phase gate. IL/(2N+1)—z, (A7)
a—az), (A8)
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Introducing slowly time-varying amplitudes, we obtain

APPENDIX ~ i~ ~
L . . . (di+cda(zt) =z [Him(t),a(z)]. (A11)
To simplify the transition from a single-mode description

toa muIt|modEe one, we will first consider one smgle—modeThus’ the multimode equations of motion look exactly like
quantum fielda and then generalize the result to our four- the single-mode equations of motion, with the exception that
field system. Suppose that the single-mode Hamiltonian gova ¢4, term has been added and the fields now have a spatial
erning the evolution ofa is given by H=#Awja'a  dependence.

+H;(a,a". To go over to the multimode description, we 'Returning to the four-wave mixing situation described in
consider an interaction region of length divided into 2N this paper, we see that the interaction Hamiltonian given by

+1 cells, and consider a discrete set of modes around th'éq' (1) is of the. form shown abovg, with .th.e summatiqn
carrier frequency of the field, i.ek,=ko+2nm/L, —N<n replaced by an integral in the continuum limit. The multi-

<N. We now define localized field operatdidenoted by a mode annihilation and creation operatéig) and(}(z) de-

tilde) via fined in Egs.(2) and(3) are analogous to the localized field
operatorsa(z,t) defined above, except for the factor gE
inserted to ensure correct commutation relations, regardless

, (A1) of the quantization length. Thus, the equation of mot{bn
follows from Eq.(Al11) above.
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