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Nonlinear tight-binding approximation for Bose-Einstein condensates in a lattice
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The dynamics of Bose-Einstein condensates trapped in a deep optical lattice is governed by a discrete
nonlinear equatior{DNL). Its degree of nonlinearity and the intersite hopping rates are retrieved from a
nonlinear tight-binding approximation taking into account the effective dimensionality of each condensate. We
derive analytically the Bloch and the Bogoliubov excitation spectra and the velocity of sound waves emitted by
a traveling condensate. Within a Lagrangian formalism, we obtain Newtonian-like equations of motion of
localized wave packets. We calculate the ground-state atomic distribution in the presence of a harmonic
confining potential, the frequencies of small amplitude dipole, and quadrupole oscillations. We finally quantize
the DNL, recovering an extended Bose-Hubbard model.
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. INTRODUCTION as a dynamical pa;(t)=N;(t)e'¢i") and a spatial, real

wave functiond>j(F) centered in the minimurﬁj of the well.

Bose-Einstein condensatéBECS trapped in periodic po- A crucial assumption, which will be discussed in detail, is

tentials are a new bedtest to investigate different and funda}hat the shape oﬁ)-(F) does not depend on the number of
mental issues of quantum mechanics, ranging from quantu y

o ) . rBarticlesN-(t) in the same well. Under such conditions, the

phase transitionsl] and atom optic$2,3] to the dynamics of ) - .
Bloch and Josephson oscillatiofs—6]. condensate order parametE(r,t) can be written as

The key feature of these systems is the competition/
interplay between th_discretetranslational ir_lvariz_incéntro- qr(F't) = E ¢j(t)¢j(F)_ (1)
duced by the periodic potentjednd thenonlinearity (due to i
the interatomic interactionFor instance, it has been pointed ) ) _
out that the excitation spectrum exhibits a band structurd he DNLS is recovered by replacing E@) in the GPE(4)
which has analogies with the electron Bloch bands in metal@nd integrating out the spatial degrees of freedom. Neglect-
[7—9]. However, the coexistence of Bloch bands and nonlining higher-order terms, we ggt0]
earity allows for solitonic structurg<.0] and dynamical in- »
stabilities[11,12], which do not have an analog neither in s . _ N2 4
metals nor in Galilean invariant nonlinear systems. o =KWt Ve TVl . )

The BEC in a periodic potential is described in the mean-
field (or classica) approximation by the Gross-Pitaevskii with K,U,,¢; depending on the geometry of the trapping
equation(GPE [Eg. (4)]. When the interwell barriers of the potentials and on the average number of atoms in each well
periodic structure are high enougbee below, the relevant [cf. with Egs.(8)—(11)].
observables of the system are the number of partidigs)
and the relative phases ; 1(t) — ¢;(t) of the condensates in || A GENERALIZED TIGHT-BINDING APPROXIMATION
the lattice(the subscrip§ denotes the different wells of the ) ) )
array. In Ref.[10], it has been shown that the amplitudes In this paper, we stress the importan@ad exploit the
= \/N—jewj satisfy a discrete nonlinear Sckinger equa- consequengésaf gengrahzmg the “gtandard" tight-binding
tion (DNLS), recovered from the GPE4) in the tight- appr_oxmgtlon(l). This generalization is imposed by the
binding approximation. Such a mapping has allowed the inonlinearity of the GPE4), and largely extends the range of
vestigation of localized and extended excitatipne,13,14  Validity of the DNLS (2) in the study of the dynamics of
in the framework of the nonlinear lattice thedas], and has  Weakly coupled BECs. The central argument is that the den-
clarified the connection between such systems and an arr&ty Profile of each condensate can strongly depend on the
of superconducting Josephson junctions. The relative phadimber of atoms present at a given instant in the same well.
dynamics of different condensates has been experimentalif1iS introduces site- and time-dependent parameters in the
investigated looking at the interference patterns created bpNLS (2), modifying, in particular, its effective degree of
the atoms tunneling in the continuum from a vertical latticeNonlinearity. Therefore, the tight-binding approximation of
[4] or by the overlapping condensates once the confiningionlinear systems has to be generalized as
traps are removefs,6,14.

In the standard- tlght-blndlng. apprOX|ma_t|on, thg con- \If(r,t)=z (DD (13N (1)), 3)
densate wave function localized in thin well is factorized ]
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with <1>J-(F;Nj(t)) depending implicitly on time through s |
N;(t)=[¢;(t)|>. We stress here, and discuss again later, that 'ﬁﬁz &= xL (Y1 T - y) Fecldy+ u ™y
the spatial wave functiong; (which are considered suffi-

ciently localized in each welican also depenéxplicitly on —[Kt+x (24041191
time due to the excitation of internal modes. In the present _ N2l 12\
approach, however, we consider the adiabatic limit in which LK+ x5+ [ - 1|11 (7)

the interwell number/phase dynamics is much slower thareW
the typical time associated with the excitations of such inter-
nal modes(and, of course, the cases where such modes a
not already present in the initial configuration of the system

e use the normalizatiofd F<I>j2= 1, while the total number
f atoms isNt=3|j|?==N;). In Eq. (7), the “local”
chemical potential is the sum of three contributions,

In this limit, which is well satisfied in typical experiments, loc_  kin,  pot, int
the spatial wave functions in E) will adiabatically follow Ky R TR TR
the tunneling dynamics and can be approximated with the Tnz ) ) -
real wave functiond; (r;N;(t)). :f dr| 5o (V) T+ VI P+ gol 4| ", (8)
[ll. THE DISCRETE NONLINEAR EQUATION where ,u}"‘: depends on the atom numbsk through the
The BEC dynamics af =0 satisfies the GPEL7] condensed wave functio®;(r;N;(t)). The tunneling rates
K; j=1 between the adjacent siteandj =1 also depend, in
v h2 ) ) principle, on the respective populations; ;.;(N;j;N;+)
= om VY F Vexct Qo V1Y, @ = — [dr[(R22m)V ;- VD 1+ DV, @;-1]. In this case,

however, we can expand the wave functions around an aver-
whereV,,. is the external potential argh=4w#%a/m, with  age number of atoms per sitd,, and keep only the zero-
m the atomic mass and the sswave scattering lengtha  grder term<I>j(Nj)z<T>j(No):
>0 (a<0) corresponds to an effective interatomic repulsion
(attraction. For the sake of clarity, we will focus on the case
a>0 (as for Rb atomg, and V,,, will be given by the = f
optical periodic potentiaVp superimposed on a harmonic

magnetic fieldvy, . The periodic potential is We have checked numerically that higher-order terms are
negligible: for instance, with the experimental setup of Ref.

df[—mvaj.v@jm@jvextajﬂ. ©

Vp=Vosirf(kx), ) [6], Vo=10Ex and Ny=1000, we haveK,=(aK/aNg) SN
_4 . . . . . .
wherek=2m/\ and\ is the wavelength of the lasetthe 10 ~ K. Similarly, the coefficienty is given by
lattice spacing is\/2). Theenergy barrier between adjacent
sites,Vo=SsEg, is expressed in the units of the recoil energy X= _QOJ dF<"13j3<"13].i1_ (10)
Er=%2k?/2m. From Eq,(5), we see that the minima of the

laser pot_entlal are Iocitgd at thf poisgs=j(r/2). Around The on-site energies arising from any external potential su-
these pointsyp~(M/2)w;(x—X;)*, where perimposed on the optical lattice are

- 2Vok? .
0x="\/ n‘; : (6) ej:J drVpd?; (12

The magnetic potential is Viy=(M/2)[w3x*+wiy® ]2 (¢]) when the driving field is harmonidinean. We

+w57%], with o> wy. Itis convenient to write the external note that in the limitw,> w, considered heres; does not

potential asVe,=V, +Vp, with the confining lattice poten- depend on the on-site atomic populations.

tial V| = Vosinf(kx)+(m/2)[ wZy?+ wz?] and the “driving” In the derivation of Eq(7), we have exploited theguas)

field VD=(m/2)w>2(X2. Vp has a simple physical meaning: orthogonality —of the condensate wave functions

F=—(dVp/ax) is the effective force acting on the center of deCDjCI)J-ﬂ:O. Moreover, we have verified numerically

mass of a condensate wave packet moving in the periodithat spatial integrals involving condensates distant more than

potential, see Sec. VII. . . . . one site, as well as terms proportional fldr®?®?, , , can

. Here we consider a one.—(j|me_nS|onaI optical Iatupe SUP€The neglected. For example, witty=10Eg and Ny=1000,

|r_npose_d on a harmonlt_: driving fu_eld, but the_ following con- goNode<I>2<I>2+1/K~10‘4. while yNo/K~10"2. For V,

siderations can be easily generalized to arbitNgyand, in —o0E an]d NJ_= 10000 vN-/K~10"L. In a double well

particular, extended to the case of twd8] and three- di- SEER A0 » XINo '

mensional[1] arrays created by several counterpropagatingVith, €.9., @,=2m(100 Hz) and No=10000, xNo~K,

laser beams. while K; and goNofdrd?®?,; can still be ignored. For
Replacing the nonlinear tight-binding approximati8  these reasons, we do not neglect fhéerms in Eq.(7). A

in the GPE(4) and integrating out the spatial degrees ofdetailed account of the related numerical study will be pre-

freedom, we find the following DNL: sented elsewhere.
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TABLE I. Effective dimensionality of the condensates trapped
in each well of the lattice.

Case Condition

3D M (N2> 0, 0p, 0 (spherical
2D 0> 1" (~ N>y, 0, (pancake
1D wa,wb>,u}m(~Nj2/%>wc (cigan
0D w,,0p, 03 " (~N;) (spherical

The atom number dependence in Ef) introduces an
effective time-dependent, reallocal chemical potential
M}"C[Nj(t)]. This reflects an important approximation con-
tained in the DNL: terms proportional @d;/dt have been

PHYSICAL REVIEW A68, 023613 (2003

tion. To summarize the above refer to Table |, witlb,c
arbitrarily corresponding to the,y,z spatial directions, and
among square brackets are specified the geometric shapes of
the condensates in each well.

The crucial point is that the effective dimensionality of
the condensates gives a different scaling of the local interac-
tion chemical potentia(8) with the number of atoms:
Ua| lﬂ] | “,

loc_

M (12

D=0,1,2,3, (13

a

~ 7D’

whereU , is a constant which depends neither on the number
of atoms nor on the site index. In the following, we will

neglected. In other words, we have neglected the phases 6&f_ten consider, for the sake of clarity, the limit cases when

sociated with the spatial dynamics @ﬁ(F;Nj(t)) in Eq. (3).
This adiabatic approximation is well satisfied when the tun

neling time (~N; /Nj) is much longer than time scales asso-
ciated with the change in shape of the wave functions

(~w; 1, o). In this limit, well satisfied in realistic experi-

the local chemical potential is given by Ed.2) (generaliza-
tion to more complicated functional dependences,un;)“fc
from N; is straightforwargl The DNLS(2) is recovered from
the DNL (7) in the caseD=0 (i.e., «=2) and neglecting
terms proportional toy.

The derivation of the Hamiltonian of the system requires

ments, the Spatial prOf”e of the wave functions adaptS adiasome care. The dynamica] Variab|¢$ !Iﬁlr/fj are canoni-

batically to the instantaneous number of atoms present in thg

respective well§19].

ally conjugate (//jzaHeff/&(iﬁz/f}*)) with respect to the
effective Hamiltonian

The dependence of the local chemical potential on the
number of atoms depends on the effective dimensionality of
the condensates trapped in each well of the lattice. This can  Herr= 2 | €; P =K g+ c.c)— xl | g?

be determined by comparing the interaction chemical poten-

tial ™=

|;|2gof dr®{ and the three frequencies,, wy,

w, obtained by expanding the lattice potential around the

minima of each well V =(m/2)[ wZ(x—x;)?+ wly?

+w?z%]. A sufficiently accurate calculation of!™ as a

J

J

2
X lﬂj(lﬁﬁﬁlﬂj*—1)+C-C-]+mUa|'ﬁj|a+2

(14

function ofN; can be obtained by approximating the conden{with the nonlinear term (2/2 a)U | ;|**? obtained from
sate order parameters with Gaussians or Thomas-Fermi funq,-jfd 1//]* M}"C],
tions[20]. Here we first consider some limit cases which are ~ The effective Hamiltoniar{.¢ is an exact integral of

particularly instructive.

When w,,0,,0,>u", the spatial widths of each
trapped condensate do not depéindfirst approximationon
the number of particlell; in the same well, and the conden-

sates’ wave functions are well approximated by Gaussians.

We consider this as a 0[xero-dimensionalcase(nD, with
n=0,1,2,3, should not be confused with thpatial dimen-
sionality of the latticg and ansat#3) reduces to the ordinary

TBA (1). The 1D case arises when two frequencies are
greater than the interaction chemical potential. For instance,

if Wy, w,> ,u}”‘> wy, the system realizes an array of weakly
coupled cigar-shaped condensates oriented along thés:
the wave functiond; will be factorized as a product of two
Gaussiangin the x and z directions and a Thomas-Fermi
function in they variable. In the 2D case only one frequency

is smaller than the local interaction chemical potential. If

P ,u}”‘> wy,w,, We have an array of pancakelike conden-
sates, with®; factorized as a Gaussiamlong x) and a
Thomas-Fermi function in thg and z variables[see Egs.
(31)—(33)]. The 3D case is given by the c:onditiqaz\'jnt

>y, 0wy, w0, and the wave function in thith well, ®;, is

motion, but differs from the “adiabatic” Hamiltonian re-
trieved simply replacing Eq3) in the Gross-Pitaevskii en-
ergy functional:

Had=$ €47 ¥ — K4} ¢1+c.C)

1
_X[|¢j|2¢j(lﬂj*+1+ ¢f—1)+C-C-]+§U|¢j|4 '
(15

with U=gofdr®;. Hes and H,q are identical only in the
0D case. In generalt{,4 is not exactly, but only “adiabati-
cally,” conserved during the dynamics.

IV. EXCITATION SPECTRA

We now derive the Bloch excitation spectra and the Bo-
goliubov dispersion relation of the systdwmith €;=0), cal-
culate the sound velocity, and investigate the dynamical sta-
bility of condensate traveling waves. Eigenfunctions of the
DNL are the plane waveg,= i, €' (P"~ /%) with chemical

simply given by a three-dimensional Thomas-Fermi func-potential and energy:
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w=u'°°—2(K+4yxNg)cosp, in this paper, as will be reported elsewh¢gd]. Here we
will write down our results only in terms of the DNL param-
E=E'°°—2(K+2yNg)Nycosp, (16)  eters.

In order to derive the Bogoliubov dispersion relation of
where No=|q|?, 'OC—MJ°°|¢ yo=Ualthol® and E°  the system, we perturb the large amplitude waveygs

_ o = lan4 % (t)e~'ane! (PP~ #UH)  Retaining  only
= Yol il - o= 2U [l A (a+2) [see Eq12). Lot u(e .

From Eq.(16), we can recover the group velocity of Bloch first-order terms proportional to/yo andv/yo, we get
waves with quasimomenturp: v,=(1/No)(JE/dp)=2(K o dfu at+b c u u
+2xNo)sinp. 'hﬁ v | =c* a-b/lv) o) a7

We remark that the Bloch enerdyand the chemical po-
tential u have the same c@sdependence on the quasimo- with a=2(K+4xNg)sinpsing, b=2K cosp 2(K
mentump, but with different coefficients. This introduces +4yxNg)cosp cosq+Ng(du'°4oNy), and c——4X¢Ocosp(1
different effective masses for the systé¢see also Ref.22]), +cosq) + z//z(ﬂ,u'oclaNo) Up to the ordep(zNle2 we get the
which will enter in peculiar ways in the equations discusseckigenvalues

w=2(K+4)(NO)sinpsinqi2\/4K(K+8)(N )co§psm4 +2(K+2XN0) NocospS|r12— (18)

V. SOUND WAVES AND INSTABILITIES (whena>0). This instability is associated with the appear-
ance of an imaginary component in the Bogoliubov frequen-
cies: from Eq.(18), this component appears if cps:0. This
reflects on an exponential increase of the amplitude of the
perturbation modes, with the consequent strong dephasing
and energy dissipation of the condensate traveling wave. The

The smallq (large wavelengthlimit of the Bogoliubov
dispersion relatior{18) is linear. Therefore, the system sup-
ports (low amplitudg sound wavegpropagating on top of
the large amplitude traveling wave, e'(°"~#/%)) having

velocity unstable modes, for a given quasimomentum, are given
dw by
Us= -
Jq
g=0 6xNo .0 _du
2| 1+ —¢ )|cosp|sm2§<(9—NoN0. (21)

=2(K+4xNg)sinp= \/2(K+2XN0) Nocosp,

For a=2 andy=0, we recover the standard DNLS results
[12,23. The onset of energetic and dynamical instabilities
with an arbitraryV, has also been studied in R¢L1]. Ex-
perimental evidences are reported in R&H4]. A different
edynamlcal instability is associated with the self-trapping of a
condensate wave packet at rest in an optical lafi®¢ First
experimental results are reported in Refb].

(19

with u given by Eq.(16). The +(—) sign corresponds to a
sound wave propagating in the salfopposite direction of
the large amplitude traveling wave. Note that, contrary to th
case of a Galilean invariant systed(=0), the sound ve-
locity depends on the quasimomentygmMoreover,v de-
pends on the effective dimensionality of the condensates,
since[from Egs.(12) and(13)] (du/dNg)Ng~a U, N“’Z. VI. GROUND-STATE ATOMIC DISTRIBUTION
In the limit V=0, the system is energetically unstable if
<0, namely when the group velocity is larger than the
sound velocity(Landau criteria for superfluidiy This insta-
bility is present also when the system has a discrete transl|
tional invariance Y,>0): from the Bogoliubov excitation
spectrum(18) and the conditionw<0, we have that the
system is not superfluid when

We now consider a magnetic harmonic potential superim-
posed on the optical latticg =2, with 0 =mw3\?/8. For
L large nonlinearity, the ground-state atomic distribution can
e calculated from the DNI7) in Thomas-Fermi approxi-
mation, i.e., neglecting the kinetic terms proportionalkio
and y with respect to the nonlinear term:

j2 2la
1—7) L@

Jino

V—Qj 2la v 2l
[2(K+4xN, )S|np]2>2(K+2XNO) Nocosp Nj:( 5 ) :(U_)
(20) :

a

There is a further differendynamica) instability mecha- ~ where the inversion point ig,, = »/Q). Replacing sums with
nism, which disappears in the translational invariant limitintegrals, we get
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N Q Y2y 2le) 2al(a+4) we get the group velocity and the effective force acting on
V= —Ca ' (23)  the center of mass of the wave packet:

where C,=24*"1T(2/a+1)]4T (4la+2) is a numerical
constant [" is the Gamma function For «a=2 (0D), C, h'g ZKIJ(0.5)+2XNTI (018) |sinp
1 2 1 1

=4/3; while fora=1 (2D), C,=16/15. |
VII. NEWTONIAN DYNAMICS AND SMALL AMPLITUDE
. oV
OSCILLATION FREQUENCIES ﬁp= _ agD' (26)

We now study the wave-packet dynamics of a BEC in an
optical lattice. We resort to a variational approach, previ-
ously considered in Refl10]. Here we use a general varia- The frequency of small amplitude oscillations of the wave
tional wave function packet, driven by a harmonic fieIeIJ:Qj2 (which gives

Vp(é,0)=Q[&+0X(T,/14)), is

gy = K(o)f E)eip(jaﬂ(wzxjazl (24)
o 2 _ZQ 8XN013 (27)
where &(t) and o(t) are, respectively, the center and the @aip™ h? 72 '

width of the wave packetp(t) and &(t) their associated

momenta, andC(o) a normalization factofsuch thats;N; . .
o . | ; . . J whereNy= N+/20 [26]. Equation(27) has been calculated in
=Nr). fis a generic function, even in the Y32r|atﬁ@=(1 the limit of a large widthe>1, whereZ,(o;0)=Z, and
—9lo. ZF?/L example, we can choogéx)=e " or f(X) Z,(0;0)=2T;, with Zz=[dXf4(X). The same results fol-
=(1—X%)™ (with —1<X<1) to describe, respectively, the |5, from the exact equation of motion far==,jN; andp
dynamics of a Gaussian or a 'Thomas-Ferml wave packet. ¢i+1— @j, With the latter assumed equal for egchlong
With the LagrangianC= 72 y;—Hets, We Can recover the array (and using the fact thak;N;N;,;=N; and
the equations of motions for the variational parametersy N /NijHzEJNj?)_ For y=0, Eq.(27) coincides with
qi(t)=£&(t),a(t),p(t),8(t), given by @/dt)(dL/dq;)  the result in Ref[6].

=(dL/9q;). With the variational wave functio(24), the La- To calculate the quadrupole oscillation frequency, we
grangian becomes need the equation of motion for the widthand the conju-
gate momentund (still with Vp=Q£?):
L : Do ~ N9
No =hpé—hotoo——Vp(§,0)—U,—5
T 1 g . IZ 2K (?IJ +2XNT [?IX
—ho=—=———=C0S —2cosp,
oK 2Ns I, 0Ty 96 0P 5212 35
L5 . LA .
Ilfj(a,b‘)cosp UZ%IX(U,ﬁ)cosp, (25)
T 7, aU,N¥? 2K 4l
where 2 _ g2y T 2 T
ﬁ5Il 20 7, + 22 +0'Il aacosp
1
VD(§,0)=—f dXfA(X)e(aX+0), 2xN7(al, |
1 + )g ZT(—X——X cosp. (28)
o?Ts Jo o

U,=2U, 2y /[(a+2)Z§? 1,
The equilibrium position is given by=0, ¢=0, £=0, and
_ " p=0. Linearizing around the equilibrium for the Thomas-
Iy(o;6)= | dXF(X+1/20)f(X—1/20)€'7, Fermi ground staté22), and after a lenghty calculation, we
get the frequency of the quadrupole oscillations:
and

Qa(a+4)INL

" 8XN01'4
202T,(a+2)

1.1,

zx(a;5)=J dXF(X+1/20)f (X~ 1/20) Oguadr™

) . (29

X[f2(X+ 1/20) + F2(X— 1/20) €' 7%,
whereZ,= [dXX?f4(X) [27]. Equation(29) shows that the
Furthermore,Z, = [dX f(X), Z,=[dXX?f?(X), and Z,  quadrupole frequency explicitly depends on the effective di-
=[dXf*"2(X) are real numbers which depend on the par-mensionality of the condensates in each 2. Collecting
ticular choice off. From the Lagrangian equation of motion, Eqgs.(27) and(29), we get
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xNo 74 The on-site energiegll) are given bye;= Qj?, whereQ
1+45— — = 2
wsuadr ala+4) Ty, K 7,2, I((IT/Z)m;OX()\IZ) We have neglected the kinetic terms
>~ Aat2)T N7 B0 €M =(72/2m) [dR(Vre!}), consistent with the Thomas-
@dip 2 Xo 73 Fermi approximatior(33). Using Eq.(34), we get the DNL
K 72 (7) with D=2 (a=1) and[see Eq(12)]
WhenXN0<K (wquad,/wd,p) 2(D+3)/(D+2). In par- M, go
ticular, wajadlwdlp 3 in the zero- d|menS|onaI case=D. U= . (35
The 2D, y=0 result, @quad/wmp) 2, is in agreement the N2mma

results of[29 . o .
sults of[ 29 The population distribution in the ground state, according

to Eq.(22), is given b
VIIl. NUMERICAL ESTIMATES a 22 g y

We now consider a specific example to further clarify the v\? j? 2
NJ = U (36)
1

calculation of the DNL coefficientiEgs. (8)—(11)]. Consid- 1- -
ering the experimental apparatus of RE6], we put w, Jino
=2m(9 H2), owy=0w,=w,=27(90 Hz), A=795nm,

Er/h=3.6 kHz, andV,/E, from 2 to 15. From Eq(6), we
obtain @,/27= /(7.2 kHz).

The inversion point ig;,, = v(»/Q) and the discrete chemi-
cal potential(23) is v=(15N;U3/Q/16)?"°. Therefore

Sincew,> w, , we find u X"+ w3 ™M~ 7w, /2. With an av- — 205
. J . ) 2hw 15 ad
erage value of atoms in each wely~1000, and withV, j2 = Ny (37)
=5E,, we obtain an interaction chemical potential|™ " me2d?\ 8yYr  @noo

~h(2 kHz), which corresponds, according to Table I, to the
2D case. The system can be seen as a horizontal pile @fhere d=\/2, a,,= VhIme, and o= (w? wx)1/3_ The D
panakes, having a smaller diameter at the border of the pilex2 ground state36) and (37) is in agreement with Ref.

dense at the center and more dilute at the surface. In thigi6), previously calculated with a different approach.
limit, we have

) _ _ IX. QUANTUM CASE: AN EXTENDED
D;(r,N;(1)=pd (x—x)) pY(y,2), (31 BOSE-HUBBARD MODEL

The quantization of the DNL requires some care. The

(i) — ~12g(x=x))*120? i i . ; : .
where ¢ —(({\/; e X ) IS a GaUSZS'an With  quantum equation for the bosonic gas in an external potential
width o [we impose [dx(¢{)?=[dydZ s{))?=1]. A g

variational calculation shows that there is a very weak de-

pendence ofr on N;; we therefore assume it as site inde- P

penden{16,30: o= ()\/27751’4) Replacing Eq(31) by Eq. i =V (r,t)=[T+Veyt+go¥ " 1¥. (38
(4) and integrating out along the direction, we obtain an at

; (i) .
equation forgre(y,2): The Gross-Pitaevskii equatiof#) can be retrieved intro-

42 ducing the classical fieldV=(¥) and with (¥ I¥)
~ om Vet VRGN (6007 | =™ al, (32 =(T)(T)().
In the tight-binding approximation,

with §O=golx/27'r(r, I52=(y,z) is the vector expressing the L A )
position in they-z radial plane, and/(R) = (m/2)w?R2. In T(r)=2 ¢;()d;(r) (39
Thomas-Fermi approximatiofi.e., neglecting the kinetic '

terms in Eq.(32)], we find L oatn . .
(with ¢ ¢; the bosonic number operajprwe obtain the

Bose-Hubbard modé¢BHM) [31,37],
|nt (R)

gOJ

(33

(ﬁ(')(R) (
" ot Uz «ingn - ot
H=20 | =K@yt He)+ (10 i) + €070
The inversion point ifR? = 2,u”"/mw Replacing Eq(33) (40)
by Eq. (8), we obtain
We now discuss the case in which the localized wave func-

M2 tion @; in the jth well adiabatically depends on the average
o= w_rgon. (34  humber of particles in the same well: the generalization to
! N the quantum case of E) is
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. . _ X. CONCLUSIONS
Ty 2 PPN (), “4D The Gross-Pitaevskii dynamics of a Bose-Einstein con-
densate trapped in a deep periodic potential can be studied in
terms of a discrete, nonlinear equation. This mapping allows
a clear and intuitive picture of the main dynamical properties
where of the system, which can be calculated analytically. We have
shown that the slopes of the energy and chemical potential
Bloch excitation spectra, with respect to the quasimomentum
PN of the condensate, are different. We have calculated the Bo-
Nj= (s ¢)- (42 goliubov dispersion relation and studied the sound-wave ve-
locity as a function ofi) the effective dimensionality of each
condensate andi) the quasimomentum of the carrier wave.
Replacing ansatz4l) in Eq. (38), it is easy to recover the Through a Lagrangian formalism, we have recovered
. . . - Newtonian-like equation of motion of localized wave pack-
quantum equation of motion for bosonic operatg(s .SUCh ets, and the frequencies of dipole and quadrupole small am-
equations are generated, with the standard bosonic COmMMYfi,qe oscillations. We have finally quantized the discrete
tation relations, from the extended Bose-Hubbard Hamily,gninear Hamiltonian recovering an extended Bose-
tonian Hubbard model.
Note added in proofAn equation similar to DNL(7)
(with  @=2, and including the term proportional to

. A A deCIDjZCI)Zil), has been derived by sfer, Johansson, and
H=2 | w;rllfjJFEU(lﬁ;rlﬂ;rlﬂj ;) — K i1+ H.c) Erikssonf33] to describe the dynamics of an electric field in

J an array of coupled waveguides embedded in a material with

. R Kerr nonlinearities.
= XU U0y (Blaat 9] +He] (43
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