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Nonlinear tight-binding approximation for Bose-Einstein condensates in a lattice
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The dynamics of Bose-Einstein condensates trapped in a deep optical lattice is governed by a discrete
nonlinear equation~DNL!. Its degree of nonlinearity and the intersite hopping rates are retrieved from a
nonlinear tight-binding approximation taking into account the effective dimensionality of each condensate. We
derive analytically the Bloch and the Bogoliubov excitation spectra and the velocity of sound waves emitted by
a traveling condensate. Within a Lagrangian formalism, we obtain Newtonian-like equations of motion of
localized wave packets. We calculate the ground-state atomic distribution in the presence of a harmonic
confining potential, the frequencies of small amplitude dipole, and quadrupole oscillations. We finally quantize
the DNL, recovering an extended Bose-Hubbard model.
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I. INTRODUCTION

Bose-Einstein condensates~BECs! trapped in periodic po-
tentials are a new bedtest to investigate different and fun
mental issues of quantum mechanics, ranging from quan
phase transitions@1# and atom optics@2,3# to the dynamics of
Bloch and Josephson oscillations@4–6#.

The key feature of these systems is the competiti
interplay between thediscretetranslational invariance~intro-
duced by the periodic potential! and thenonlinearity~due to
the interatomic interaction!. For instance, it has been pointe
out that the excitation spectrum exhibits a band struct
which has analogies with the electron Bloch bands in me
@7–9#. However, the coexistence of Bloch bands and non
earity allows for solitonic structures@10# and dynamical in-
stabilities @11,12#, which do not have an analog neither
metals nor in Galilean invariant nonlinear systems.

The BEC in a periodic potential is described in the me
field ~or classical! approximation by the Gross-Pitaevsk
equation~GPE! @Eq. ~4!#. When the interwell barriers of the
periodic structure are high enough~see below!, the relevant
observables of the system are the number of particlesNj (t)
and the relative phasesw j 11(t)2w j (t) of the condensates in
the lattice~the subscriptj denotes the different wells of th
array!. In Ref. @10#, it has been shown that the amplitud
c j5ANje

iw j satisfy a discrete nonlinear Schro¨dinger equa-
tion ~DNLS!, recovered from the GPE~4! in the tight-
binding approximation. Such a mapping has allowed the
vestigation of localized and extended excitations@10,13,14#
in the framework of the nonlinear lattice theory@15#, and has
clarified the connection between such systems and an a
of superconducting Josephson junctions. The relative ph
dynamics of different condensates has been experimen
investigated looking at the interference patterns created
the atoms tunneling in the continuum from a vertical latt
@4# or by the overlapping condensates once the confin
traps are removed@3,6,16#.

In the ‘‘standard’’ tight-binding approximation, the con
densate wave function localized in thej th well is factorized
1050-2947/2003/68~2!/023613~8!/$20.00 68 0236
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as a dynamical partc j (t)5ANj (t)e
iw j (t) and a spatial, rea

wave functionF j (rW) centered in the minimumrW j of the well.
A crucial assumption, which will be discussed in detail,
that the shape ofF j (rW) does not depend on the number
particlesNj (t) in the same well. Under such conditions, th
condensate order parameterC(rW,t) can be written as

C~rW,t !5(
j

c j~ t !F j~rW !. ~1!

The DNLS is recovered by replacing Eq.~1! in the GPE~4!
and integrating out the spatial degrees of freedom. Negl
ing higher-order terms, we get@10#

i\
]c j

]t
52K~c j 211c j 11!1U2uc j u2c j1e jc j , ~2!

with K,U2 ,e j depending on the geometry of the trappin
potentials and on the average number of atoms in each
@cf. with Eqs.~8!–~11!#.

II. A GENERALIZED TIGHT-BINDING APPROXIMATION

In this paper, we stress the importance~and exploit the
consequences! of generalizing the ‘‘standard’’ tight-binding
approximation~1!. This generalization is imposed by th
nonlinearity of the GPE~4!, and largely extends the range o
validity of the DNLS ~2! in the study of the dynamics o
weakly coupled BECs. The central argument is that the d
sity profile of each condensate can strongly depend on
number of atoms present at a given instant in the same w
This introduces site- and time-dependent parameters in
DNLS ~2!, modifying, in particular, its effective degree o
nonlinearity. Therefore, the tight-binding approximation
nonlinear systems has to be generalized as

C~rW,t !5(
j

c j~ t !F j„rW;Nj~ t !…, ~3!
©2003 The American Physical Society13-1
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A. SMERZI AND A. TROMBETTONI PHYSICAL REVIEW A68, 023613 ~2003!
with F j„rW;Nj (t)… depending implicitly on time through
Nj (t)[uc j (t)u2. We stress here, and discuss again later,
the spatial wave functionsF j ~which are considered suffi
ciently localized in each well! can also dependexplicitly on
time due to the excitation of internal modes. In the pres
approach, however, we consider the adiabatic limit in wh
the interwell number/phase dynamics is much slower t
the typical time associated with the excitations of such in
nal modes~and, of course, the cases where such modes
not already present in the initial configuration of the syste!.
In this limit, which is well satisfied in typical experiment
the spatial wave functions in Eq.~3! will adiabatically follow
the tunneling dynamics and can be approximated with
real wave functionF j„rW;Nj (t)….

III. THE DISCRETE NONLINEAR EQUATION

The BEC dynamics atT50 satisfies the GPE@17#

i\
]C

]t
52

\2

2m
¹2C1@Vext1g0uCu2#C, ~4!

whereVext is the external potential andg054p\2a/m, with
m the atomic mass anda the s-wave scattering length;a
.0 (a,0) corresponds to an effective interatomic repuls
~attraction!. For the sake of clarity, we will focus on the ca
a.0 ~as for 87Rb atoms!, and Vext will be given by the
optical periodic potentialVP superimposed on a harmon
magnetic fieldVM . The periodic potential is

VP5V0sin2~kx!, ~5!

wherek52p/l and l is the wavelength of the lasers~the
lattice spacing isl/2). Theenergy barrier between adjace
sites,V05sER , is expressed in the units of the recoil ener
ER5\2k2/2m. From Eq,~5!, we see that the minima of th
laser potential are located at the pointsxj5 j (l/2). Around
these points,VP'(m/2)ṽx

2(x2xj )
2, where

ṽx5A2V0k2

m
. ~6!

The magnetic potential is VM5(m/2)@vx
2x21vy

2y2

1vz
2z2#, with ṽx@vx . It is convenient to write the externa

potential asVext5VL1VD , with the confining lattice poten
tial VL5V0sin2(kx)1(m/2)@vy

2y21vz
2z2# and the ‘‘driving’’

field VD5(m/2)vx
2x2. VD has a simple physical meaning

F52(]VD /]x) is the effective force acting on the center
mass of a condensate wave packet moving in the peri
potential, see Sec. VII.

Here we consider a one-dimensional optical lattice sup
imposed on a harmonic driving field, but the following co
siderations can be easily generalized to arbitraryVD and, in
particular, extended to the case of two-@18# and three- di-
mensional@1# arrays created by several counterpropagat
laser beams.

Replacing the nonlinear tight-binding approximation~3!
in the GPE~4! and integrating out the spatial degrees
freedom, we find the following DNL:
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i\
]c j

]t
5e jc j2x@c j~c j 11* 1c j 21* !1c.c.#c j1m j

locc j

2@K1x ~ uc j u21uc j 11u2!#c j 11

2@K1x~ uc j u21uc j 21u2!#c j 21 ~7!

~we use the normalization*drWF j
251, while the total number

of atoms isNT5( j uc j u2[( jNj ). In Eq. ~7!, the ‘‘local’’
chemical potential is the sum of three contributions,

m j
loc5m j

kin1m j
pot1m j

int

5E drWF \2

2m
~¹W F j !

21VLF j
21g0Uc jU2F j

4G , ~8!

where m j
loc depends on the atom numberNj through the

condensed wave functionF j„rW;Nj (t)…. The tunneling rates
K j , j 61 between the adjacent sitesj and j 61 also depend, in
principle, on the respective populations:K j , j 61(Nj ;Nj 61)
52*drW@(\2/2m)¹W F j•¹W F j 611F jVextF j 61#. In this case,
however, we can expand the wave functions around an a
age number of atoms per site,N0, and keep only the zero
order termF j (Nj ).F̃ j (N0):

K.2E drWF \2

2m
¹W F̃ j•¹W F̃ j 611F̃ jVextF̃ j 61G . ~9!

We have checked numerically that higher-order terms
negligible: for instance, with the experimental setup of R
@6#, V0510ER and N051000, we haveK15(]K/]N0)dN
;1024 K. Similarly, the coefficientx is given by

x52g0E drWF̃ j
3F̃ j 61 . ~10!

The on-site energies arising from any external potential
perimposed on the optical lattice are

e j5E drWVDF j
2 ; ~11!

e j} j 2 (e j} j ) when the driving field is harmonic~linear!. We
note that in the limitṽx@vx considered here,e j does not
depend on the on-site atomic populations.

In the derivation of Eq.~7!, we have exploited the~quasi!
orthogonality of the condensate wave functio
*drWF jF j 61.0. Moreover, we have verified numericall
that spatial integrals involving condensates distant more t
one site, as well as terms proportional to*drWF j

2F j 61
2 , can

be neglected. For example, withV0510ER and N051000,
g0N0*drWF j

2F j 61
2 /K;1024, while xN0 /K;1022. For V0

520ER and N0510 000, xN0 /K;1021. In a double well
with, e.g., ṽx52p(100 Hz) and N0510 000, xN0;K,
while K1 and g0N0*drWF j

2F j 61
2 can still be ignored. For

these reasons, we do not neglect thex terms in Eq.~7!. A
detailed account of the related numerical study will be p
sented elsewhere.
3-2
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NONLINEAR TIGHT-BINDING APPROXIMATION FOR . . . PHYSICAL REVIEW A68, 023613 ~2003!
The atom number dependence in Eq.~8! introduces an
effective time-dependent, real, local chemical potentia
m j

loc@Nj (t)#. This reflects an important approximation co
tained in the DNL: terms proportional to]F j /]t have been
neglected. In other words, we have neglected the phase
sociated with the spatial dynamics ofF j„rW;Nj (t)… in Eq. ~3!.
This adiabatic approximation is well satisfied when the tu
neling time (;Nj /Ṅj ) is much longer than time scales ass
ciated with the change in shape of the wave function
(;v r

21 ,ṽx
21). In this limit, well satisfied in realistic experi

ments, the spatial profile of the wave functions adapts a
batically to the instantaneous number of atoms present in
respective wells@19#.

The dependence of the local chemical potential on
number of atoms depends on the effective dimensionality
the condensates trapped in each well of the lattice. This
be determined by comparing the interaction chemical po
tial m j

int5uc j u2g0*drWF j
4 and the three frequenciesṽx , vy ,

vz obtained by expanding the lattice potential around
minima of each well VL.(m/2)@ṽx

2(x2xj )
21vy

2y2

1vz
2z2#. A sufficiently accurate calculation ofm j

int as a
function ofNj can be obtained by approximating the conde
sate order parameters with Gaussians or Thomas-Fermi f
tions @20#. Here we first consider some limit cases which a
particularly instructive.

When ṽx ,vy ,vz@m j
int , the spatial widths of each

trapped condensate do not depend~in first approximation! on
the number of particlesNj in the same well, and the conden
sates’ wave functions are well approximated by Gaussia
We consider this as a 0D~zero-dimensional! case~nD, with
n50,1,2,3, should not be confused with thespatial dimen-
sionality of the lattice!, and ansatz~3! reduces to the ordinary
TBA ~1!. The 1D case arises when two frequencies
greater than the interaction chemical potential. For instan
if ṽx ,vz@m j

int@vy , the system realizes an array of weak
coupled cigar-shaped condensates oriented along they axis:
the wave functionF j will be factorized as a product of two
Gaussians~in the x and z directions! and a Thomas-Ferm
function in they variable. In the 2D case only one frequen
is smaller than the local interaction chemical potential.
ṽx@m j

int@vy ,vz , we have an array of pancakelike conde
sates, withF j factorized as a Gaussian~along x) and a
Thomas-Fermi function in they and z variables@see Eqs.
~31!–~33!#. The 3D case is given by the conditionm j

int

@ṽx ,vy ,vz and the wave function in thej th well, F j , is
simply given by a three-dimensional Thomas-Fermi fun

TABLE I. Effective dimensionality of the condensates trapp
in each well of the lattice.

Case Condition

3D m j
int(;Nj

2/5)@va ,vb ,vc ~spherical!
2D va@m j

int(;Nj
1/2)@vb ,vc ~pancake!

1D va ,vb@m j
int(;Nj

2/3)@vc ~cigar!
0D va ,vb ,vc@m j

int(;Nj ) ~spherical!
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tion. To summarize the above refer to Table I, witha,b,c
arbitrarily corresponding to thex,y,z spatial directions, and
among square brackets are specified the geometric shap
the condensates in each well.

The crucial point is that the effective dimensionality
the condensates gives a different scaling of the local inte
tion chemical potential~8! with the number of atoms:

m j
loc5Uauc j ua, ~12!

a5
4

21D
, D50,1,2,3, ~13!

whereUa is a constant which depends neither on the num
of atoms nor on the site index. In the following, we w
often consider, for the sake of clarity, the limit cases wh
the local chemical potential is given by Eq.~12! ~generaliza-
tion to more complicated functional dependences ofm j

loc

from Nj is straightforward!. The DNLS~2! is recovered from
the DNL ~7! in the caseD50 ~i.e., a52) and neglecting
terms proportional tox.

The derivation of the Hamiltonian of the system requir
some care. The dynamical variablesc j* ,i\c j are canoni-

cally conjugate (ċ j5]He f f /]( i\c j* )) with respect to the
effective Hamiltonian

He f f5(
j

H e jc j* c j2K~c j* c j 111c.c.!2x@ uc j u2

3c j~c j 11* 1c j 21* !1c.c.#1
2

21a
Uauc j ua12J

~14!

@with the nonlinear term (2/21a)Uauc j ua12 obtained from
c j*dc j* m j

loc].
The effective HamiltonianHe f f is an exact integral of

motion, but differs from the ‘‘adiabatic’’ Hamiltonian re
trieved simply replacing Eq.~3! in the Gross-Pitaevskii en
ergy functional:

Had5(
j

H e jc j* c j2K~c j* c j 111c.c.!

2x@ uc j u2c j~c j 11* 1c j 21* !1c.c.#1
1

2
Uuc j u4J ,

~15!

with U5g0*drWF̃ j
4 . He f f andHad are identical only in the

0D case. In general,Had is not exactly, but only ‘‘adiabati-
cally,’’ conserved during the dynamics.

IV. EXCITATION SPECTRA

We now derive the Bloch excitation spectra and the B
goliubov dispersion relation of the system~with e j50), cal-
culate the sound velocity, and investigate the dynamical
bility of condensate traveling waves. Eigenfunctions of t
DNL are the plane wavescn5c0 ei (pn2mt/\), with chemical
potential and energy:
3-3
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m5m loc22~K14xN0!cosp,

E5Eloc22~K12xN0!N0cosp, ~16!

where N05uc0u2, m loc5m j
locuc j 5c0

5Uauc0ua, and Eloc

5c0*dc j* m j
locuc j 5c0

52Uauc0ua12/(a12) @see Eq.~12!#.
From Eq.~16!, we can recover the group velocity of Bloc
waves with quasimomentump: vg[(1/N0)(]E/]p)52(K
12xN0)sinp.

We remark that the Bloch energyE and the chemical po
tential m have the same cosp dependence on the quasim
mentump, but with different coefficients. This introduce
different effective masses for the system~see also Ref.@22#!,
which will enter in peculiar ways in the equations discuss
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in this paper, as will be reported elsewhere@21#. Here we
will write down our results only in terms of the DNL param
eters.

In order to derive the Bogoliubov dispersion relation
the system, we perturb the large amplitude wave ascn
5@c01u(t)eiqn1v* (t)e2 iqn#ei (pn2mt/\). Retaining only
first-order terms proportional tou/c0 andv/c0, we get

i\
d

dt S u

v D 5S a1b c

2c* a2bD S u

v D 5v6S u

v D , ~17!

with a52(K14xN0)sinpsinq, b52K cosp22(K
14xN0)cospcosq1N0(]mloc/]N0), and c524xc0

2cosp(1
1cosq)1c0

2(]mloc/]N0). Up to the orderx2N0
2/K2, we get the

eigenvalues
v52~K14xN0!sinp sinq62A4K~K18xN0!cos2p sin4
q

2
12~K12xN0!

]m

]N0
N0cosp sin2

q

2
. ~18!
r-
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V. SOUND WAVES AND INSTABILITIES

The smallq ~large wavelength! limit of the Bogoliubov
dispersion relation~18! is linear. Therefore, the system su
ports ~low amplitude! sound waves~propagating on top of
the large amplitude traveling wavec0 ei (pn2mt/\)) having
velocity

vs5
]v

]q U
q50

52~K14xN0!sinp6A2~K12xN0!
]m

]N0
N0cosp,

~19!

with m given by Eq.~16!. The 1(2) sign corresponds to a
sound wave propagating in the same~opposite! direction of
the large amplitude traveling wave. Note that, contrary to
case of a Galilean invariant system (V050), the sound ve-
locity depends on the quasimomentump. Moreover,vs de-
pends on the effective dimensionality of the condensa
since@from Eqs.~12! and ~13!# (]m/]N0)N0;a Ua N0

a/2 .
In the limit V050, the system is energetically unstable

v,0, namely when the group velocity is larger than t
sound velocity~Landau criteria for superfluidity!. This insta-
bility is present also when the system has a discrete tran
tional invariance (V0.0): from the Bogoliubov excitation
spectrum~18! and the conditionv,0, we have that the
system is not superfluid when

@2~K14xN0!sinp#2.2~K12xN0!
]m

]N0
N0cosp.

~20!

There is a further different~dynamical! instability mecha-
nism, which disappears in the translational invariant lim
e

s,

la-

t

~whena.0). This instability is associated with the appea
ance of an imaginary component in the Bogoliubov frequ
cies: from Eq.~18!, this component appears if cosp,0. This
reflects on an exponential increase of the amplitude of
perturbation modes, with the consequent strong depha
and energy dissipation of the condensate traveling wave.
unstable modesq, for a given quasimomentump, are given
by

2S 11
6xN0

K D ucospusin2
q

2
,

]m

]N0
N0 . ~21!

For a52 andx50, we recover the standard DNLS resu
@12,23#. The onset of energetic and dynamical instabiliti
with an arbitraryV0 has also been studied in Ref.@11#. Ex-
perimental evidences are reported in Ref.@24#. A different
dynamical instability is associated with the self-trapping o
condensate wave packet at rest in an optical lattice@10#. First
experimental results are reported in Ref.@25#.

VI. GROUND-STATE ATOMIC DISTRIBUTION

We now consider a magnetic harmonic potential super
posed on the optical latticee j5V j 2, with V5mvx

2l2/8. For
a large nonlinearity, the ground-state atomic distribution c
be calculated from the DNL~7! in Thomas-Fermi approxi-
mation, i.e., neglecting the kinetic terms proportional toK
andx with respect to the nonlinear term:

Nj5S n2V j 2

Ua
D 2/a

5S n

Ua
D 2/aS 12

j 2

j inv
2 D 2/a

, ~22!

where the inversion point isj inv
2 5n/V. Replacing sums with

integrals, we get
3-4
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n5S NTV1/2Ua
2/a

Ca
D 2a/(a14)

, ~23!

where Ca524/a11@G(2/a11)#2/G(4/a12) is a numerical
constant (G is the Gamma function!. For a52 ~0D!, C2
54/3; while for a51 ~2D!, C1516/15.

VII. NEWTONIAN DYNAMICS AND SMALL AMPLITUDE
OSCILLATION FREQUENCIES

We now study the wave-packet dynamics of a BEC in
optical lattice. We resort to a variational approach, pre
ously considered in Ref.@10#. Here we use a general varia
tional wave function

c j5AK~s! f S j 2j

s Deip( j 2j)1 i (d/2)( j 2j)2
, ~24!

where j(t) and s(t) are, respectively, the center and t
width of the wave packet,p(t) and d(t) their associated
momenta, andK(s) a normalization factor~such that( jNj
5NT). f is a generic function, even in the variableX5( j

2j)/s. For example, we can choosef (X)5e2X2
or f (X)

5(12X2)1/a ~with 21<X<1) to describe, respectively, th
dynamics of a Gaussian or a Thomas-Fermi wave pac
With the LagrangianL5 i\( jc j* ċ j2He f f , we can recover
the equations of motions for the variational paramet
qi(t)[j(t),s(t),p(t),d(t), given by (d/dt)(]L/]q̇i)
5(]L/]qi). With the variational wave function~24!, the La-
grangian becomes

L
NT

5\pj̇2\s2ḋ
I2

2I1
2VD~j,s!2Ũa

NT
a/2

sa/2

1
2K

I1
IJ~s;d!cosp1

2xNT

sI 1
2

Ix~s;d!cosp, ~25!

where

VD~j,s!5
1

I1
E dX f2~X!e~sX1s!,

Ũa52UaINL /@~a12!I 1
a/211#,

IJ~s;d!5E dX f~X11/2s! f ~X21/2s!eisdX,

and

Ix~s;d!5E dX f~X11/2s! f ~X21/2s!

3@ f 2~X11/2s!1 f 2~X21/2s!#eisdX.

Furthermore,I15*dX f2(X), I25*dXX2f 2(X), and INL
5*dX fa12(X) are real numbers which depend on the p
ticular choice off. From the Lagrangian equation of motio
02361
n
-
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we get the group velocityj̇ and the effective force acting o
the center of mass of the wave packet:

\j̇5F2K

I1
IJ~s;d!1

2xNT

sI 1
2

Ix~s;d!Gsinp,

\ ṗ52
]VD

]j
. ~26!

The frequency of small amplitude oscillations of the wa
packet, driven by a harmonic fielde j5V j 2

„which gives
VD(j,s)5V@j21s2(I2 /I1#…, is

vdip
2 5

2V

\2 S 2K1
8xN0I3

I 1
2 D , ~27!

whereN05NT/2s @26#. Equation~27! has been calculated in
the limit of a large widths@1, whereIJ(s;0).I1 and
Ix(s;0).2I3, with I35*dX f4(X). The same results fol-
low from the exact equation of motion forj5( j jN j and p
5w j 112w j , with the latter assumed equal for eachj along
the array ~and using the fact that( jANjNj 11.NT and
( jNjANjNj 11.( jNj

2). For x50, Eq. ~27! coincides with
the result in Ref.@6#.

To calculate the quadrupole oscillation frequency,
need the equation of motion for the widths and the conju-
gate momentumd ~still with VD5Vj2):

2\ṡ
I2

I1
5

2K

sI1

]I J

]d
cosp1

2xNT

s2I 1
2

]I x

]d
cosp,

\ḋ
I2

I1
522V

I2

I1
1

aŨaNT
a/2

2sa/212
1

2K

sI1

]I J

]s
cosp

1
2xNT

s2I 1
2 S ]I x

]s
2

I x

s D cosp. ~28!

The equilibrium position is given byḋ50, ṡ50, j50, and
p50. Linearizing around the equilibrium for the Thoma
Fermi ground state~22!, and after a lenghty calculation, w
get the frequency of the quadrupole oscillations:

vquadr
2 5

Va~a14!I NL

2\2I2~a12!
S 2K1

8xN0I4

I1I2
D , ~29!

whereI45*dXX2f 4(X) @27#. Equation~29! shows that the
quadrupole frequency explicitly depends on the effective
mensionality of the condensates in each well@28#. Collecting
Eqs.~27! and ~29!, we get
3-5
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vquadr
2

vdip
2

5
a~a14!INL

4~a12!I2

114
xN0

K

I4

I1I2

114
xN0

K

I3

I 1
2

. ~30!

When xN0!K, (vquadr
2 /vdip

2 )52(D13)/(D12). In par-
ticular, vquad

2 /vdip
2 53 in the zero-dimensional case, D50.

The 2D,x50 result, (vquadr
2 /vdip

2 )5 5
2 , is in agreement the

results of@29#.

VIII. NUMERICAL ESTIMATES

We now consider a specific example to further clarify t
calculation of the DNL coefficients@Eqs.~8!–~11!#. Consid-
ering the experimental apparatus of Ref.@6#, we put vx
52p(9 Hz), vy5vz[v r52p(90 Hz), l5795 nm,
ER /h53.6 kHz, andV0 /Er from 2 to 15. From Eq.~6!, we
obtain ṽx/2p5As(7.2 kHz).

Sinceṽx@v r , we findm j
kin1m j

harm'\ṽx/2. With an av-
erage value of atoms in each well,N0;1000, and withV0

55Er , we obtain an interaction chemical potentialm j
int

;h(2 kHz), which corresponds, according to Table I, to t
2D case. The system can be seen as a horizontal pil
panakes, having a smaller diameter at the border of the
dense at the center and more dilute at the surface. In
limit, we have

F j„rW,Nj~ t !….fG
( j )~x2xj !fTF

( j )~y,z!, ~31!

where fG
( j )5(sAp)21/2e2(x2xj )

2/2s2
is a Gaussian with

width s @we impose *dx(fG
( j ))25*dydz(fTF

( j ) )251]. A
variational calculation shows that there is a very weak
pendence ofs on Nj ; we therefore assume it as site ind
pendent@16,30#: s5(l/2ps1/4). Replacing Eq.~31! by Eq.
~4! and integrating out along thex direction, we obtain an
equation forfTF

( j ) (y,z):

F2
\2

2m
¹RW

2
1V~RW !1g̃0Nj~fTF

( j ) !2GfTF
( j )5m j

intfTF
( j ) , ~32!

with g̃05g0 /A2ps, RW 5(y,z) is the vector expressing th
position in they-z radial plane, andV(RW )5(m/2)v r

2R2. In
Thomas-Fermi approximation@i.e., neglecting the kinetic
terms in Eq.~32!#, we find

fTF
( j )~RW !5S m j

int2V~RW !

g̃0Nj
D 1/2

. ~33!

The inversion point isR'
2 52m j

int/mv r
2 . Replacing Eq.~33!

by Eq. ~8!, we obtain

m j
loc5A mv r

2g0

A2pps
Nj

1/2. ~34!
02361
of
le,
is

-

The on-site energies~11! are given bye j5V j 2, whereV
5(m/2)mvx

2(l/2)2. We have neglected the kinetic term

e j
(kin)5(\2/2m)*dRW (¹WRfTF

( j ) ), consistent with the Thomas
Fermi approximation~33!. Using Eq.~34!, we get the DNL
~7! with D52 (a51) and@see Eq.~12!#

U15A mv rg0

A2pps
. ~35!

The population distribution in the ground state, accord
to Eq. ~22!, is given by

Nj5S n

U1
D 2S 12

j 2

j inv
2 D 2

. ~36!

The inversion point isj inv5A(n/V) and the discrete chemi
cal potential~23! is n5(15NTU1

2AV/16)2/5. Therefore

j inv
2 5

2\v̄

mvx
2d2 S 15

8Ap
NT

ad

ahos
D 2/5

, ~37!

where d5l/2, aho5A\/mv̄, and v̄5(v r
2vx)

1/3. The D
52 ground state~36! and ~37! is in agreement with Ref.
@16#, previously calculated with a different approach.

IX. QUANTUM CASE: AN EXTENDED
BOSE-HUBBARD MODEL

The quantization of the DNL requires some care. T
quantum equation for the bosonic gas in an external poten
is

i\
]

]t
Ĉ~rW,t !5@T1Vext1g0Ĉ†Ĉ#Ĉ. ~38!

The Gross-Pitaevskii equation~4! can be retrieved intro-
ducing the classical fieldC5^Ĉ& and with ^Ĉ†ĈĈ&
.^Ĉ†&^Ĉ&^Ĉ&.

In the tight-binding approximation,

Ĉ~rW,t !5(
j

ĉ j~ t !F j~rW ! ~39!

~with ĉ j
†ĉ j the bosonic number operator!, we obtain the

Bose-Hubbard model~BHM! @31,32#,

Ĥ5(
j

H 2K~ ĉ j
†ĉ j 111H.c.!1

U2

2
~ ĉ j

†ĉ j
†ĉ j ĉ j !1e j ĉ j

†ĉ j J .

~40!

We now discuss the case in which the localized wave fu
tion F j in the j th well adiabatically depends on the avera
number of particles in the same well: the generalization
the quantum case of Eq.~3! is
3-6
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Ĉ~rW,t !5(
j

ĉ j~ t !F j„rW;Nj~ t !…, ~41!

where

Nj5^ĉ j
†ĉ j&. ~42!

Replacing ansatz~41! in Eq. ~38!, it is easy to recover the
quantum equation of motion for bosonic operatorsĉ j . Such
equations are generated, with the standard bosonic com
tation relations, from the extended Bose-Hubbard Ham
tonian

Ĥ5(
j

H e j ĉ j
†ĉ j1

1

2
U~ ĉ j

†ĉ j
†ĉ j ĉ j !2K~ ĉ j

†ĉ j 111H.c.!

2x@ĉ j
†ĉ j ĉ j~ ĉ j 11

† 1ĉ j 21
† !1H.c.#J , ~43!

with the parametersK,x,e j ,U expressed as in the classic
DNL ~7!. Note that the extended BHM can be alternative
recovered quantizing the classicaladiabatic Hamiltonian
Had ~15! @and not theeffectiveHamiltonian~14!#.
A

A.

p,

02361
u-
l-

X. CONCLUSIONS

The Gross-Pitaevskii dynamics of a Bose-Einstein c
densate trapped in a deep periodic potential can be studie
terms of a discrete, nonlinear equation. This mapping allo
a clear and intuitive picture of the main dynamical propert
of the system, which can be calculated analytically. We h
shown that the slopes of the energy and chemical poten
Bloch excitation spectra, with respect to the quasimomen
of the condensate, are different. We have calculated the
goliubov dispersion relation and studied the sound-wave
locity as a function of~i! the effective dimensionality of eac
condensate and~ii ! the quasimomentum of the carrier wav
Through a Lagrangian formalism, we have recover
Newtonian-like equation of motion of localized wave pac
ets, and the frequencies of dipole and quadrupole small
plitude oscillations. We have finally quantized the discre
nonlinear Hamiltonian recovering an extended Bo
Hubbard model.

Note added in proof. An equation similar to DNL~7!
~with a52, and including the term proportional t

*drWF̃ j
2F̃y61

2 ), has been derived by O¨ ster, Johansson, an
Eriksson@33# to describe the dynamics of an electric field
an array of coupled waveguides embedded in a material w
Kerr nonlinearities.
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