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Thermodynamics of a trapped Bose-Fermi mixture
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By using the Hartree-Fock-Bogoliubov equations within the Popov approximation, we investigate the ther-
modynamic properties of a dilute binary Bose-Fermi mixture confined in an isotropic harmonic trap. For
mixtures with an attractive Bose-Fermi interaction, we find a sizable enhancement of the condensate fraction
and of the critical temperature of Bose-Einstein condensation with respect to the predictions for a pure
interacting Bose gas. Conversely, the influence of the repulsive Bose-Fermi interaction is less pronounced. The
possible relevance of our results in current experiments on trapjRis*°K mixtures is discussed.
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The recent experimental realization of ultracold trappedRef.[10]. The generalization of this theory to a dilute binary
Bose-Fermi(BF) mixtures of alkali-metal atoms introduces BF mixture is straightforward. Here we merely give a sum-
an interesting new instance of a quantum many-body systemary of basic equations and emphasize the necessary modi-
[1-3)], and has also stimulated a number of theoretical invesfication in the presence of the BF interaction. The trapped
tigations that address, for example, the static proppfly  dilute mixture is portrayed as a thermodynamic equilibrium
the phase diagram and phase separdtnstability condi- ~ System under the grand canonical ensemble whose thermo-
tions[6], and collective excitation&—9] of trapped BF mix-  dynamic variables aré, and Ny, respectively, the total
tures. These investigations have mainly concentrated at zefgimber of trapped bosonic and fermionic atoffisthe ab-
temperature using the standard Gross-Pitae€d) equa-  Solute temperature, ang, and u¢, the chemical potentials.
tion for the Bose gas, in which all the bosonic atoms arelhe density Hamiltonian of the system is given (ay units
assumed to be in the Bose condensate. An extension of thegé7=1)
theories at finite temperatures where the condensate is
strongly depleted is therefore of high interest, and will also H="Hp+Hs+ Hps,
have practical applications. In the theory for a pure Bose gas,
the simplest generalization of the GP equation including the 5
effect of the noncondensed atoms in a self-consistent mannery, _ lﬂf(r){ - V_+Vb (r)_ﬂb} ¢(r)+%'ﬂuf¢¢
is the Popov version of the Hartree-Fock-BogoliulibhFB) 2m, P 2 ’
approximation10]. As discussed in Refl10], this approxi-
mation is expected to be good for both low and high tem- V2
peratures. Hf=¢T(r)[_ 2_+V’Irap(r)_luf}¢(r)v

In this paper, we generalize the HFB-Popov approxima- My
tion to binary BF mixtures and address the question of how
the BF interaction affects the thermodynamic properties of Hor=0pf (1) p(r) T (r) p(r), (]
mixtures. We calculateself-consistentlythe temperature-
dependent density profiles of mixtures, as well as the con- : .
densate acion and he el tamperitur o Bose Enstaetl) 4] 12 e BoseCerm fed apertor bt
condensatiofBEC), at various BF interaction strengths. Our cally svmmetric svstem. with tra otentialy®:f (
present results provide the self-consistent calculation of thesé y 3; Y ' b P trap

= 2 H
thermodynamic quantities within the HFB-Popov theory ~ Mb.f®b,if 12, wherem, ; are the atomic masses and
which goes beyond the semiclassical approximation use re the trap frequencies. The interaction between bosons and

previously for determining the critical temperaturil,12] etween bosons and fe”“'or.‘s are described k_)y the contact
and density profiles of binary BF mixturés3]. Our calcu- potenualszand are parametnzeg by the.coupllng constants
lations also show a highlyionlinear dependence of these Gob=4mh"8pp/My AN gpr =277 "y /M; in terms of the
quantities on the BF interaction. In the presence of the BFWave scattering lengthsap, and aye, with m,
attraction, the thermal depletion of the condensate is remark= MoMi/(MyMy) being the reduced mass. We neglect here
ably decreased and the critical temperature is shifted towardd€ fermion-fermion interactions, since we are considering a
high temperatures. Conversely, the repulsive BF interactiogPin-Polarized Fermi gas whesavave collisions are forbid-
affects the condensate fraction and critical temperature in the€n by the Pauli principle. In the dilute regime, we may treat
opposite direction. However, its influence is less pronounced€ density Hamiltonian describing the BF coupling in a self-
compared to the attractive case. consistent mean-field manner, namely

The HFB-Popov mean-field theory for an inhomogeneous
interacting Bose gas has been derived in detail by Griffin in ~ Hpr=gu{ 4 (D )+ () pTd— (T ) (T P)].
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This kind of decomposition has been used extensively fowhere z=ef?o~#)=1+1/N;, epyr=[€>+gi,n2(r)1*2
theoretical investigations of BF mixtures at zero temperatur%ndnb(r):nc(r)+ﬁ(r) is the total density of the Bose gas.
[17]. i In the above equations, to eliminate the numerical errors due
To the Bose field operatog(r,t), we shall apply the g the necessary truncation of the numerical basis set, we
usual decomposition into e-number part plus gﬂgogir)atltor adopt the strategy of Reff18] and introduce an energy cutoff
with vanishing expectation valugs(r,t)=d(r)e o #o E°, above which the semiclassical local-density approxima-
+(r). ®(r) represents the condensate wave function withtion has been employed.
eigenvalues, and the operators(r) represents the excita- To solve the generalized GP and BdG equations, one has
tions of the condensate. This ansatz is then inserted in thi® find the local density of the Fermi gas(r). To this end,

equation of motion forj(r,t): we insertg(r,t)=3;¢;(r)cie 4t in Eq. (1) to diagonalize
o v2 the quadratic Hamiltonian foe(r,t) in terms of the new
— =] — _+V?rap_lu’b b+ Qo Y+ (BT D) . Fermi operatorc; that annihilates a fermion at statg(r).
at 2my @ This leads to a stationary Scldiager equation fokp;(r),
2
The statistical average over E@) and the replacement of — V_Jrvf +0pi(N.+n) | o= €g;. (6)
. ~ o~ . . 2m trap bfillc i i¥i
the cubic termy"y by the average in the mean-field ap- f

proximation gZpT%Tp with neglecting the anomalous expec- The density of the Fermi gas is thus obtained by
tation value( /) and its complex conjugate lead to the gen- .
eralized GP equation, (1) =2 (O (El—e)+ fEfden«e,r), @
Lepd(r)=0, 3 ¢
(N=lo(n2cte
where  Lgp=—V22my+V{, ., — g0+ Gl Ne(r) +2n(1) ] n(n)=lei(n]Xcic),
+0piNs(r) with the local density of the condensate(r) 32

o~ ~ ~ m 1

=|®(r)|?, of the depletiomn(r)=(y'(r,t)¥(r,t)), and of ni(e,r)=— o= (€=Virap— GoMp(r)*2
the Fermi gasn;(r)=(a"(r,t)¢(r,t)). The condensate V2m? eflemm) 11

wave function in Eq(3) is normalized toN,=1/(ef(o™#0) .

—1) with 8= (kgT) % where (clc;)=(efls#)+1)"! is the Fermi distribution.

The subtraction of Eq3) from Eq.(2) gives rise to two Analogously to Eq.(5) we have applied the finite-
coupled equations of motion f@i(r,t) and its adjoint, which témperature Thomas-FermiiTF) approximation only for
can be solved by the usual Bogoliubov transformationNigh-lying Fermi levels above an energy cutéf to avoid
Wr)=Su(Nae 4 +of (Najel], to the new Bose e truncation errors.

N - ] i Equations(3)—(7) form a closed system of equations that
operatorsy; anda! . This gives the coupled Bogoliubov—de P ” ;
p i aj . 9 P g we have referred to as the “HFB-Popov” equations for a

GenneqBdG) equations, dilute BF mixture. We have numerically solved these equa-
_ tions by an iterative procedure as follows: The generalized
[Lept GooNe(N)]i(1) + GopNe(vi(r) = €ui(r), GP and BdG equations are first solved self-consistently for
[ Lop+ Goone(F)]oi(F)+ Gpone()Ui(F)=— €u;(r). (4) d(r), ui(r~), andf)i(r) as described in Ref10] tq evaluate .
n.(r) andn(r), with n¢(r) set to the result for an ideal Fermi
These equations define the quasiparticle excitation energi%%sl Oncen,(r) andn(r) are known, the eigenfunctions in
€ rglative to Fhe condensate eigenvaleg, and th_e_ quasi- Eq. (6) are obtained numerically and are used to update)
particle amplitudesu; andv;. Once these quantities have jn Eq. (7). This newly generated;(r) is then inserted in the
been determined, the density of the depletion is obtained ip and BdG equations and the process is iterated to conver-
terms of the thermal number of quasiparticléa?aQ gence. At each step, the chemical potentials for the Bose gas
=(zefi—1)"1 by and the Fermi gas are fixed by the normalization conditions
Jdrny(r)=Ny and fdrn;(r)=N;, respectively.
~ N = b_ e~ As an illustration of this procedure, we consider a mixture
n(r)—Z (MO (Ec—e)+ ngden(e,r), ®) of 2000 8’Rb (boson and 20004 (fermion) atoms in an
isotropic harmonic trap, for which the order parameaidr),
~ lui(0)]2+ [oi(r)2 the quasiparticle amplitudas(r) andv;(r), and the orbits
n(r)= +|vi(n)|?, @;(r) can be labeled bynI,m), according to the number of
zefi-1 nodes in the radial solution, the orbital angular momentum
I, and its projectionm. In addition, we use the following
my’2 1 1 e ) parameters[3]: m,=1.45<10"2°kg, w,=2mX216 Hz,
\/5772 Zeﬁe_l—’_E_FHF [fHF_Vtrap+80 mf/mb:O.463, (x)f/(x)b:l.47-, abb=99a0, and apf=
—410a,, whereay=0.529 A is the Bohr radius. Because
—20uuNp(F) — gpns(r) 12 our calculations are especially delicate near the critical tem-

N(e,r)=
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10 FIG. 2. Temperature dependence of the condensate fraction. The

dashed and dash-dotted lines correspondage=+410a, and
—410a,, respectively. The solid lines show the result for a pure

FI_G' 1. The density' profiles of the7 condensager)o and of the interacting Bose gas. The empty circles show ideal Bose gas result
Fermi gasng(r) for a mixture of 2000°’Rb and 2000*°K atoms in with the finite-size correction N°/Nb= 1—(TITY3
1 C [

an isotropic harmonic trap at various BF interactiag;=0 (full P 1825(I'/T°)2N*1’3 where kBTO—O 94€wa1/3 The inset
. c b ’ [ b -

:!ne), a?]f: +4£(l305;%azhgd ::nEBa;d ab(fj_: —étl()ao (dﬁl‘Sh'dﬁttedd highlights the condensate fraction near the critical temperature. The
ine), whereao=0. Is the Bohr radius. Insets show the den- i, parameters are the same as in Fig. 1.

sity profiles of the noncondensatér). We have taker,,= 9%,
andw,=2mX216 Hz. The coordinateand densities are measured
in units of the harmonic-oscillator lengtte, and @f.)°, respec-
tively.

teraction are more subtle and are always very small. The
sizable enhancement of the condensate fraction predicted by
our calculation follows from the fact that in the presence of
perature, we have takem,, =32, | nax=64 and high energy the BF. attraction. the conden_sate effectively experiences a
cutoffs of E2=60%w, and Ef=90% w, to ensure the accu- MOre tightly confining potential. As a consequence, if we
racy. Throughout the paper, we also express the lengths amgglect the_cprrec_:tlons due to the mtgractlon between bosons
energies in terms of the characteristic oscillator lergfly ~ @Nd the finite-size effect, the critical temperatufie
= (h/myw,) Y2 and characteristic trap enerdyw,,, respec- =0.9%we.fqu kg is effectively increased anq the condgn-
tively. sate fraction is, therefore, enhanced according to the ideal

In Fig. 1, we present our results for the density profiles ofdas resulNg/Ny=1—(T/TJ)®.
the condensate, of the noncondensate, and of the Fermi gas Closely related to the condensate fraction, another impor-
at two temperatures. The cases with the BF interaction antint parameter characterizing the effect of the BF interaction
without the BF interaction are shown by the dash-dotteds the shift of the critical temperature from the pure interact-
lines and full lines, respectively. We have also considered &9 Bose gas case. In Fig. 3, we report the HFB-Popov re-
fictitious case of a positive BF interactiomy,;= +410a, sults for the relative shift of the critical temperatu¥&. /T,
(dashed lines The choice of the first temperatur® as a function ofy; in solid circles. Her€él . is determined as
—80 nK corresponds to the situation in which the condenthe maximum of the functiod®N/d T2 [19]. The semiclas-
sate and noncondensate have an approximately equal numiséeal predictions fosT. /T, calculated as in Ref11] in the
of atoms, while the other temperatufe=110 nK is chosen first order ofa,, are also shown by the dashed line. The
to be close to the critical temperature for a pure interactingdgreement of these two approaches is reasonably good for a
Bose gas with the same number of bosdhsy 112 nK. As ~ Weak BF interaction |@,¢|<100a,). However, aday,| in-
clearly emerges from the figure, the density profiles of thecreases, our HFB-Popov results diverge from the semiclassi-
condensate and of the Fermi gas are strongly affected by tHe@l predictions. In particular, for the realistic Bfwave scat-
BF interaction at both temperatures. In particular, the densitering length for Rb-*K mixtures, a,¢= —4108,, the
ties around the center are significantly enhanced in the cagteviation becomes remarkable.
of the BF attraction. The density profile of the noncondensate We now turn to consider the experimental relevance of
(shown in the inselson the other hand, is less influenced by our results. In current experiments, the realistic number of
the BF interaction due to its broad distribution and the strong®’Rb and * atoms in mixtures is about ten times larger
repulsion from the condensate. than what we assumed hef@]. For such large number of

In Fig. 2, we show our predictions for the temperatureatoms, our calculation is very time consuming and we then
dependence of the condensate fracthy(T)/N,. The es- resort to the semiclassical version of the HFB-Popov theory
sential feature of the figure is the importance of éitteactive by settingE'g to an energy of a fevi w, and applying the TF
BF interaction that results in a sizable quenching of the therapproximation for the whole Fermi spectra. The accuracy of
mal depletion compared to the prediction for a pure interactthis semiclassical treatment has been checked by the com-
ing Bose gas. Contrarily, the effects of the repulsive BF in-parison with the full quantum-mechanical calculations for a
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FIG. 4. Temperature dependence of the condensate fraction for a
FIG. 3. The relative shift of the critical temperature as a func-mixture of 2x10* 8Rb and 5< 10" 4°K atoms confined in an
tion of the BFs-wave scattering lengthy; (in units ofag). The jsotropic trap withw,= 27X 91.7 Hz, calculated in the semiclassi-

solid circles show the result calculated using the HFB-Popov equacal version of the HFB-Popov theory as mentioned in the text.
tions and the full line is a parabolic fit to guide eye. The dashed line

is the result calculated by E(L8) in Ref.[11]. The inset shows the
functionsdN, /d T andd?N,/d T? for the case o= —4108,. T,

is extracted from the maximum dfN./dT2. The other parameters
are the same as in Fig. 1.

theory to binary BF mixtures and have presented a detailed
study of the thermodynamic properties of mixtures at finite
temperature, including the density profiles, the condensate
fraction, as well as the critical temperature of BEC. These
guantities are found to depend on the BF interaction in a
fonlinear way. Moreover, under conditions appropriate to the
8’Rb-4%K mixture in the LENS experiments, the condensate
a7 4 ) . fraction and the critical temperature of BEC are significantly
ture of 2x10° ®Rb and 5<10" "X atoms confined in an enhanced with respect to the prediction for a pure interacting

isotropic trap withw,=27X91.7 Hz. This choice corre- . : .
sponds to the typical experimental situations at LES8]. Bose gas. This enhancement might be observable in current
e€<perlments.

Although the trap becomes more shallow, the enhancemen
of the condensate fraction shown in Fig. 4 is quantitatively we are very grateful to Dr. M. Modugno and Dr. G.
similar to the one of Fig. 2, due to the much larger values oMiodugno for simulating discussions and for a careful read-
N}, andN¢ contained in the trap. Finally, in this case we alsoing of the manuscript. One of u$i.H.) would like to thank
roughly estimate the relative shift of the critical temperaturethe hospitality of LENS while part of this work was per-
due to the BF attraction,dT./Tc),s=+4%), which is com-  formed. X.-J. L. was supported by the K.C.Wong Education
parable to the shift due to the boson-boson interactionFoundation, the Chinese Research Fund, the NSF-China un-
(8Te/Te)pp=—1.33(@ys/ak)NE®= —3.2%, and the finite- der Grant No. 10205022 and the ICTP Programme for Train-
size correction,QTC/TC)sz—O.73\Ig1/3=—2.7% [21]. ing and Research in Italian Laboratori€SRIL), Trieste,

In conclusion, we have generalized the HFB-Popovitaly.

small mixture. The condensate fraction obtained by thes
two methods coincides within 1% errors.
In Fig. 4, we present the results foi,(T)/N,, of a mix-
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