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Mixtures of bosonic and fermionic atoms in optical lattices
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We discuss the theory of mixtures of bosonic and fermionic atoms in periodic potentials at zero temperature.
We derive a general Bose-Fermi Hubbard Hamiltonian in a one-dimensional optical lattice with a superim-
posed harmonic trapping potential. We study the conditions for linear stability of the mixture and derive a
mean-field criterion for the onset of a bosonic superfluid transition. We investigate the ground-state properties
of the mixture in the Gutzwiller formulation of mean-field theory, and present numerical studies of finite
systems. The bosonic and fermionic density distributions and the onset of quantum phase transitions to demix-
ing and to a bosonic Mott-insulator are studied as a function of the lattice potential strength. The existence is
predicted of a disordered phase for mixtures loaded in very deep lattices. Such a disordered phase possessing
many degenerate or quasidegenerate ground states is related to a breaking of the mirror symmetry in the lattice.
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I. INTRODUCTION

Recent spectacular progress in the manipulation of neu
atoms in optical lattices@1–3# has opened the way to th
simulation of complex quantum systems of condens
matter physics, such as high-Tc superconductors, Hall sys
tems, and superfluid4He, by means of atomic systems wi
perfectly controllable physical parameters@4#. Optical lat-
tices are stable periodic arrays of microscopic potentials
ated by the interference patterns of intersecting laser be
@5#. Atoms can be confined to different lattice sites, and
varying the strength of the periodic potential it is possible
tune the interatomic interactions with great precision. Th
can be enhanced well into regimes of strong correlati
even in the dilute limit. The transition to a strong couplin
regime can be realized by increasing the depth of the lat
potential wells, a quantity that is directly proportional to t
intensity of the laser light. This is an experimental parame
that can be controlled with great accuracy. For this reas
besides the fundamental interest for the investigation
quantum phase transitions@6# and other basic quantum phe
nomena@7–13#, optical lattices have become an importa
practical tool for applications ranging from laser cooling@14#
to quantum control and information processing@15,16#, and
quantum computation@17–21#.

The theory of neutral bosonic atoms in optical lattices h
been developed@7# by assuming that the atoms are confin
to the lowest Bloch band of the periodic potential. It can th
be shown that the system is effectively described by a sin
band Bose-Hubbard model Hamiltonian@22#. In such a
model the superfluid-insulator transition is predicted to oc
when the on-site boson-boson interaction energy beco
comparable to the hopping energy between adjacent la
sites. This situation can be experimentally achieved by
creasing the strength of the lattice potential, which result
a strong suppression of the kinetic-~hopping! energy term. In
this way, the superfluid–Mott-insulator quantum phase tr
1050-2947/2003/68~2!/023606~11!/$20.00 68 0236
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sition has been realized by loading an ultracold atomic Bo
Einstein condensate in an optical lattice@1#.

The present paper is concerned with the study of dil
mixtures of interacting bosonic and fermionic neutral ato
subject to an optical lattice and a superimposed trapping
monic potential at zero temperature. We assume the ferm
to be identical~for instance, spin-polarized in a magnet
trap!, so that there are onlys-wave boson-boson an
fermion-boson contact interactions present. We construc
effective single-band Bose-Fermi Hubbard Hamiltonian, a
we determine the ground-state energy and on-site den
distributions in different mean-field approximations of i
creasing complexity. Our main aim at this level of descr
tion is to determine the basic ground-state properties of
mixture and to study how the bosonic superfluid-insula
transition is influenced by the presence of the fermions.
sides the study of the latter issue, and the assessment o
properties of linear stability of the system against bos
fermion demixing, a remarkable finding of our analysis
that a quantum binary mixture loaded in a very deep opt
lattice allows for a disordered phase of very many degene
or quasidegenerate ground states separated by very high
tential energy barriers. In the limit of very large lattice p
tential strengths, the basic mirror symmetry of the opti
lattice is broken.

The plan of the paper is as follows: In Sec. II we set t
notation and derive the Bose-Fermi Hubbard model Ham
tonian. We then discuss the range of validity of the appro
mations and the assumptions used in the derivation. In S
III we introduce some basic mean-field descriptions to stu
the properties of stability of the mixture against phase se
ration, and we provide a simple analytical criterion for t
onset of a superfluid phase for the bosons starting from
Mott-insulating ground state.

In Sec. IV we present numerical simulations for a sm
number of particles in the framework of the Gutzwiller vari
tional ansatz. Two important cases have to be distinguish
boson-fermion repulsive or attractive interaction~the boson-
boson interaction is taken to be always repulsive!. In the first
©2003 The American Physical Society06-1
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instance, one can observe a continuous transition to a c
plete demixing of the fermions from the bosons, and to
Mott-insulating phase of the bosons, as the strength of
lattice potential is increased. In the case of attractive bos
fermion interactions there is no transition to demixing or
collapse of the mixture, while one still observes a Mo
insulating transition for the bosons. By studying the behav
of the superfluid order parameter we show that in both ca
the transition takes place at the same critical value of
lattice potential strength. Moreover, due to the strong attr
tion, the fermions and the bosons tend to form together
dered block-crystalline structures at the center of the tra

In Sec. V we present a numerical analysis that, altho
constrained to a small number of particles~five bosons and
five fermions!, seems to indicate the existence of a rich str
ture of degenerate energy minima for large enough value
the lattice potential strength. Such an energy landscape
gests the possible existence of disordered phases of the
ture due to the delicate interplay between the different ph
cal parameters~boson hopping, fermion hopping, boson o
site energy, boson-fermion on-site energy!, the lattice depth,
and the symmetries of the problem. Finally, a summary
an outlook to future research are shortly discussed in Sec

II. MODEL HAMILTONIAN

We start by introducing the Hamiltonian for a Bose-Fer
mixture loaded into optical lattice potentials and confined
additional, slowly varying, external~harmonic! trapping po-
tentials. It is given by

Ĥ5T̂B1T̂F1V̂B1V̂F1ŴBB1ŴBF , ~1!

where

T̂B52E d3r F̂†~r !
\2

“

2

2mB
F̂~r !, ~2!

T̂F52E d3r Ĉ†~r !
\2

“

2

2mF
Ĉ~r ! ~3!

represent the boson and fermion kinetic energies, res
tively, while

ŴBB5
1

2

4p\2aBB

mB
E d3r F̂†~r !F̂†~r !F̂~r !F̂~r !, ~4!

ŴBF5
2p\2aBF

mR
E d3r F̂†~r !Ĉ†~r !Ĉ~r !F̂~r ! ~5!

denote the boson-boson and the fermion-boson con
interaction energies. They are parametrized by the bos
boson and the fermion-bosons-wave scattering lengthsaBB
and aBF , respectively, and by boson massmB and reduced
massmR5mBmF /(mB1mF), wheremF denotes the fermion
mass. Potential energies

V̂B5E d3r F̂†~r !@VB~r !1PB~r !#F̂~r !, ~6!
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V̂F5E d3r Ĉ†~r !@VF~r !1PF~r !#Ĉ~r ! ~7!

are due to the trapping and lattice potentials. We cons
pure magnetic trapping for bosons and fermions so that
mions are spin-polarized and theirs-wave interaction energy
ŴFF can be neglected:ŴFF50. In the subsequent analys
we will consider the harmonic approximation of a typic
quadrupolar magnetic field with strong anisotropy in tran
verse directionsy andz, i.e.,

VB~r !.mBvB
2~x21l2y21l2z2!/2 ~8!

and

VF~r !.mFvF
2~x21l2y21l2z2!/2, ~9!

where l@1 is the anisotropy parameter. Moreover, if w
assume trapping in the same magnetic state for the bo
and the fermions, then the trapping frequencies are rela
according tovF /vB5(mB /mF)1/2 so that the two potentials
coincide: VB(r )5VF(r ). The ground-state harmonic
oscillator lengths, however, are different due to the differ
masses, and also differ for thex direction on the one hand
and they andz directions on the other hand:

,B/F
i 5A\/~mB/FvB/F! ~10!

in the x direction and,B/F
' 5,B/F

i /Al in the y and z direc-
tions. We next consider a lattice structure for the bosons
the fermions in thex direction, associated with the corre
sponding bosonic and fermionic one-dimensional~1D! opti-
cal lattice potentialsPB(x) andPF(x):

PB~x!5VB
0sin2~px/a!,

~11!
PF~x!5VF

0sin2~px/a!,

wherea is the lattice spacing associated with wave vec
k5p/a of the standing laser light. If the lattice potentials a
produced by a far off-resonant laser for both species,
lattice potential strengths are equal for both fermions a
bosons:VF

05VB
05V0, and the two optical lattices coincid

exactly. This is the situation we will always consider in th
following.

In the presence of a strong optical lattice and a sufficien
shallow external confinement in thex direction, the field op-
erators can be expanded in terms of the single-particle W
nier functions localized at each lattice sitexi . Further, the
typical interaction energies involved are normally not stro
enough to excite higher vibrational states, and we can re
only the lowest vibrational state in each lattice potential w
both for bosons and fermions~single-band approximation!.
In case of stronger external confinements, or interactio
one should include higher Bloch bands as well in the exp
sion of the field operators, a case we do not consider in
present context. In the harmonic approximation, Wann
functions w(r ) factorize in the product of harmonic
oscillator states in each direction, with the trapping poten
almost constant between adjacent lattice sites. We then h
6-2
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F̂~r !5(
i

âiwx
B~x2xi !wy

B~y!wz
B~z!, ~12!

Ĉ~r !5(
i

b̂iwx
F~x2xi !wy

F~y!wz
F~z!, ~13!

whereâi and b̂i are, respectively, the bosonic and fermion
annihilation operators at thei th lattice site,xi5 ia, and index
i runs on positive and negative integers, the origin of
lattice being fixed ati 50 so that it coincides with the cente
~the minimum! of the external trapping potential. In eac
lattice potential well, the Wannier local ground states
bosons and fermions are Gaussians in the harmonic app
mation:

wy
B/F~y!5

exp@2y2/2~,B/F
' !2#

p1/4~,B/F
' !1/2

, ~14!

wz
B/F~z!5

exp@2z2/2~,B/F
' !2#

p1/4~,B/F
' !1/2

, ~15!

and

wx
B/F~x2xi !5

exp@2~x2xi !
2/2~,B/F

0 !2#

p1/4~,B/F
0 !1/2

, ~16!

where

,B/F
0 5a/@p~V0 /EB/F

R !1/4# ~17!

is the width of the harmonic-oscillator potential wells at ea
lattice site, withEB

R5(p\)2/2a2mB andEF
R5(p\)2/2a2mF

being the boson and fermion recoil energies, respectivel
In this paper we will consider the physical situation

very shallow trapping potentials, such that,B/F
i @aNB/F and

consequently local-density approximation~LDA ! can be ap-
plied in the study of the ground-state properties of the s
tem. Therefore, when exploiting the Wannier function exp
sions~12! and ~13! to map the full Hamiltonian~1! into its
lattice version, we discard all terms that are of ord
(aNB/F /,B/F

i )2 or of higher powers of it. Otherwise, nonlo
cal effects caused by the trapping potential, such as s
dependent hopping terms, have to be considered@23#. Fi-
nally, this approximation scheme leads to the followi
Hubbard-type Hamiltonian:

Ĥ52
1

2 (
i

~JBâi 11
† âi1JFb̂i 11

† b̂i1H.c.!

1
UBB

2 (
i

n̂B
( i )~ n̂B

( i )21!1UBF(
i

n̂B
( i )n̂F

( i )1(
i

VB
( i )n̂B

( i )

1(
i

VF
( i )n̂F

( i )1\~lvB1vB
0/2!N̂B1\~lvF1vF

0/2!N̂F .

~18!
02360
e

r
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The first line in the above Bose-Fermi Hubbard Hamiltoni
describes independent nearest-neighbor hopping of bo
and fermions, with amplitudesJB andJF , respectively. The
terms in the second line describe boson-boson on site re
sion ~with UBB.0) and boson-fermion on-site interactio
This interaction can be repulsive or attractive, depending
the sign ofUBF . The third line describes the energy offset
each lattice site due to thex component of external trappin
potentialsVB/F(r ), and the last line contains the overall co
stant zero-point energy terms due to they andz components
of VB/F(r ) and to the lattice potentialP(x). The on-site in-
teraction and offset energy terms are simple functions of
on-site boson and fermion occupation number opera
n̂B

( i )5âi
†âi andn̂F

( i )5b̂i
†b̂i , while the zero-point energy term

are proportional to the total particle number operatorsN̂B

5( i âi
†âi and N̂F5( i b̂i

†b̂i . Frequency

vB/F
0 5\/@~,B/F

0 !2mB/F# ~19!

fixes the bosonic and fermionic harmonic oscillations in ea
lattice well. The relevant parameters entering in the Ham
tonian are the on-site values of trapping harmonic poten

VB/F
( i ) 5

mB/F

2
vB/F

2 xi
2 , ~20!

the nearest-neighbor hopping amplitudes between adja
sitesxi andxi 11 for bosons and fermions

JB/F5E dx wx
B/F~x2xi !F2

\2

2mB/F

d2

dx2

1V0sin2S p
x

aD Gwx
B/F~x2xi 11!, ~21!

the strength of the on-site repulsion energy between
bosonic atoms at the same lattice site

UBB5
4p\2aBB

mB
E dx@wx

B~x2xi !#
4

3E dy@wy
B~y!#4E dz@wz

B~z!#4, ~22!

and the strength of the on-site interaction energy~either re-
pulsive or attractive! between a bosonic and a fermion
atom at the same lattice site

UBF5
2p\2aBF

mR
E dx@wx

B~x2xi !wx
F~x2xi !#

2

3E dy@wy
B~y!wy

F~y!#2E dz@wz
B~z!wz

F~z!#2.

~23!

In typical situations we may neglect next-to-nearest neigh
hopping amplitudes and nearest-neighbor interaction c
plings that are usually some orders of magnitude smaller
that Hamiltonian~18! provides a rather accurate model f
6-3
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ALBUS, ILLUMINATI, AND EISERT PHYSICAL REVIEW A 68, 023606 ~2003!
the dynamics of a Bose-Fermi mixture with thre
dimensional scattering in a one-dimensional periodic pot
tial. Terms involving nearest-neighbor interaction streng
or next-to-nearest neighbor hopping amplitudes can bec
relevant and need to be included, e.g., when considering
non exchange between fermions, and this would lead
Bose-Fermi analog of the so-called extended Hubbard m
els. To evaluate estimates for the parameters entering
Bose-Fermi Hubbard Hamiltonian~18! using Eqs.~14!, ~15!,
and ~16!, we will set boson recoil energyEB

R

5\2p2/(2mBa2) as the unit of energy. We then introduce
dimensionless quantityṼ05V0 /EB

R and, analogously, dimen

sionless quantitiesŨBB , ŨBF , ṼB
( i ) , ṼF

( i ) , J̃B , and J̃F . We
then have

ŨBB5A 8

p3

aBBa

~,B
'!2

Ṽ0
1/4, ~24!

ŨBF5A 8

p3S 11
mB

mF
D aBFa

~,B
'!21~,F

'!2
Ṽ0

1/4, ~25!

ṼB
( i )5

i 2

p2~,B
i /a!4

, ṼF
( i )5

mB

mF

i 2

p2~,F
i /a!4

, ~26!

J̃B5S p2

4
21D Ṽ0expF2

p2

4
AṼ0G , ~27!

J̃F5S p2

4
21D Ṽ0expF2

p2

4
AmF

mB
Ṽ0G . ~28!

In Fig. 1 we show the dependencies of these parameter
the potential strengthṼ0 ~compare also Ref.@16#!. For refer-
ence we have also included the overlap integral^w(x
2xi)uw(x2xi 11)& of adjacent Wannier functions. The ove
lap is negligible, but for very small values of the potent
strength, confirming that terms of the order of the over
integral can be neglected in the Hamiltonian. The Gauss
approximation holds rather well, as can be seen by com
ing the associated bosonic hopping amplitudeJB with the
one obtained by using the exact 1D Mathieu equation@13#.

Besides the conditions mentioned earlier, all the expr
sions derived in the present section are justified under
following circumstances. First of all, we must require th
the two-body scattering processes are not influenced by
confinements, a condition that is guaranteed if the length
the confining and lattice potentials in all directions are mu
larger than the boson-boson and fermion-boson scatte
lengths. Next, the single-band structure of the lattice Ham
tonian is assured if lattice spacinga is much greater than th
harmonic confinements in each direction at all lattice sit
On the other hand, in this limit the harmonic approximati
for the Wannier functions at each lattice well is automatica
satisfied. Finally, as mentioned earlier, the assumption o
slowly varying confining potential such that LDA is appl
cable leads to condition,B/F

i @aNB/F . We can summarize al
the above conditions with the following chain of inequalitie
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$uaBFu,aBB%!$,B/F
0 ,,B/F

' %!a!,B/F
i /NB/F . ~29!

Our model is for some aspects unrealistic, since in pres
experimental situations the transverse confinements ca
be made very strong. Therefore a multiband structure
appear with several radial states being occupied, as repo
in a recent experiment by the Florence group on Bose-Fe
mixtures in a 1D optical lattice@24#.

III. PHASE STABILITY AND THE SUPERFLUID
TRANSITION

In this section we investigate the zero-temperat
ground-state properties of the system in a mean-field
proximation. In the following, we will adopt a grand
canonical description through Hamiltonian

K̂5Ĥ2mBN̂B2mFN̂F , ~30!

wheremB and mF are the bosonic and fermionic chemic
potentials. According to the Hohenberg-Kohn theore
ground-state energy

E5^C0uK̂uC0& ~31!

is a functional of the on-site bosonic and fermionic densit
nB

( i )5^âi
†âi& andnF

( i )5^b̂i
†b̂i&, where the expectation value

are taken with respect to the ground state with state ve
uC0&. We decompose functionalE according to

E5EB1EF1EBF2mB(
i

nB
( i )2mF(

i
nF

( i ) , ~32!

FIG. 1. Top to bottom: fermion hopping amplitudeJ̃F for
mF /mB50.5 in the Gaussian approximation; boson hopping am

tude J̃B from the exact 1D Mathieu equation; boson hopping a

plitude J̃B in the Gaussian approximation; the fermion hopping a
plitude for mF /mB51.5 in the Gaussian approximation; and, f
comparison, overlap integral^w(x2xi)uw(x2xi 11)& of adjacent
Wannier functions in the Gaussian approximation. All quantities
dimensionless.
6-4
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whereEB is the energy contribution depending only on b
son parametersJB , UBB , andVB

( i ) ; EF is the energy depend
ing only on the fermion parameters; andEBF is the term due
to boson-fermion interactions. We treat this latter term
mean-field approximation; neglecting exchange-correla
effects;

EBF5UBF(
i

nB
( i )nF

( i ) . ~33!

Exchange-correlation effects have been recently stud
for the case of homogeneous mixtures in the continu
@25,26#. For fermion energyEF , we take the energy of the
noninteracting homogeneous system and exploit lo
density approximation~LDA ! on it:

EF52
2JF

p (
i

sin~pnF
( i )!1(

i
VF

( i )nF
( i ) . ~34!

This approximate description of the fermions is well justifi
in the presence of a slowly varying trapping potential~so that
LDA can be applied!, when there are no direct interaction
among the fermions~as in our case! and moreover, when on
can neglect induced phonon-mediated self-interactions
to the presence of the bosons. Therefore, in this situation
nontrivial features of different quantum phases will rega
only the bosonic sector and not the fermionic one. Howe
the presence of the fermions will indirectly contribute to t
properties of the different bosonic phases, and this is
subject that we will study in the following.

In order to find an expression for boson energyEB , we
will proceed in steps of increasing accuracy. First, we p
form a very simple mean-field analysis in two extreme li
its: a completely superfluid boson ground state and a tot
Mott-insulating boson ground state. In the latter case we
provide a simple criterion for stability of the mixture again
demixing. Next, we will perform a perturbation expansi
around the Mott-insulating boson ground state to reco
perturbatively the phase boundary against transition to su
fluidity. Finally, in the following section, we will study the
ground-state properties of the mixture using a Gutzwiller
satz for the bosons capable of describing the intermed
regimes between the insulating and superfluid boso
phases.

We first consider the bosons to be superfluid. In this
gime the chemical potential and the number of particles i
homogeneous system are related, to lowest order inUBB , via
@8#

mB5UBBn022JB , ~35!

wheren0 is the density of condensed bosons. Additiona
for very weak interaction,n0'nB . Exploiting this result in
LDA and using the mean-field expression for the Bose-Fe
interaction energy, we can then write for the inhomogene
Bose-Fermi mixture at a given lattice site:

UBBnB
( i )5mB12JB2VB

( i )2UBFnF
( i ) . ~36!
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Next, we consider the case of a Mott-insulating boso
phase. To lowest order inJB we neglect the kinetic term
altogether. Then it is easily shown that the relation betwe
the bosonic chemical potential and the bosonic density fo
homogeneous system is given by

mB5UBBnB2UBB/2. ~37!

Exploiting LDA as before, we have in the inhomogeneo
case at a given lattice site,

UBBnB
( i )5mB1UBB/22VB

( i )2UBFnF
( i ) . ~38!

Comparing Eqs.~36! and~38!, we observe the same behavi
of the on-site density profiles but for a constant correction
the boson chemical potential, depending on whether
bosons are in a superfluid or in a Mott-insulating state.
nally, differentiating the energy functional with respect to t
on-site populations of the fermions, we determine the as
ciated density field and the set of coupled equations desc
ing the ground state of the mixture at any lattice site:

UBBnB
( i )5mB82VB

( i )2UBFnF
( i ) , ~39!

22JFcos~pnF
( i )!5mF2VF

( i )2UBFnB
( i ) , ~40!

where mB8 is the proper expression of the boson chemi
potential according to whether the bosons are in the M
insulating or superfluid regime. These equations are valid
a given lattice sitei if mB82VB

( i )2UBFnF
( i ).0, otherwise one

must setnB
( i )50. On the other hand, if

~mF2VF
( i )2UBFnB

( i )!/2JF,0 ~41!

we must imposenF
( i )50 at the given lattice site, whilenF

( i )

51 must be imposed when (mF2VF
( i )2UBFnB

( i ))/2JF.1.
These expressions are the lattice analogs of the Thom
Fermi description of boson-fermion mixtures in the co
tinuum. We remark that in the Mott-insulating regime th
boson on site populationsnB

( i ) must be rounded off to the
integer closest to the solutions of Eqs.~39! and ~40!.

In the Mott-insulating regime we can determine a cri
rion of linear stability against phase separation of the t
species if we expand energy functionalE to second order in
the small density variationsdnB/F

( i ) around the minimum pro-
vided by the solution of Eqs.~39! and ~40!:

d2E5 1
2 (

i
~dnB

~ i ! dnF
~ i !!S UBB UBF

UBF 2pJFsin~pnF
( i )!

D S dnB
( i )

dnF
( i )D .

~42!

This quadratic form is positive at a given sitei if and only if

2pJFsin~pnF
( i )!UBB.UBF

2 ~43!

and 2pJFsin(pnF
(i))1UBB>0. This last condition is always

satisfied forUBB.0 and identical fermions. If this is not th
case for every sitei, then the ground state is not stab
against demixing. This result is similar to that recently o
tained for a mixture of two different boson species on
6-5
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lattice @27#, which states that the mixture is stable ifU1U2

.U12
2 , whereU1 and U2 are the boson-boson interactio

strengths of species 1 and 2, respectively, andU12 is the
interspecies coupling. The form of expression~43! then sug-
gests that the Pauli on-site energy 2pJFsin(pnF

(i)) has the
meaning of a density-dependent interaction strength. A s
lar correspondence was previously pointed out for homo
neous Bose-Fermi mixtures in the continuum@28#.

Introducing a perturbation expansion with respect toJB
around the Mott-insulating ground state, we can recover
zero-temperature phase transition to the superfluid ph
The reverse, i.e., to build a perturbative expansion in pow
of UBB around the superfluid ground state fails to descr
the transition to a Mott insulator, as pointed out in Ref.@8#
for the pure Bose case. We follow the procedure adopte
Ref. @27# for the two-component boson mixture, with the d
modifications for the present case of a boson-fermion m
ture, by treating the bosonic kinetic~hopping! term as the
perturbation with respect to the bosonic Mott-insulati
ground state. This scheme was first introduced for o
component Bose systems in Refs.@8,29,30#. We proceed by
expanding the ground-state energy with respect to the~local!
bosonic superfluid parameterc ( i )5Rê ai&. At the phase
boundary between a Mott insulator~MI ! and a superfluid
~SF! the expansion coefficients must vanish, yielding the f
lowing criterion for the onset of the transition to the~local!
SF state:

UBB~2nB
( i )21!22JB2~UBB

2 24UBB
2 ~2nB

( i )11!14JB
2 !1/2

,mB2VB
( i )2UBFnF

( i ),UBB~2nB
( i )21!22JB

1~UBB
2 24UBB

2 ~2nB
( i )11!14JB

2 !1/2. ~44!

The minimum value ofUBB /JB , where a MI phase can ex
ist, is given by condition

UBB /JB54nB
( i )1212A~2nB

( i )11!221, ~45!

and it involves the fermionic sector indirectly through t
dependence ofnB

( i ) on the fermionic parameters and dens
distributions provided by Eqs.~39! and~40!. Apart from this
important modification, the phase diagram, at this level
approximation, is analogous to that of a one-component B
system.

IV. GUTZWILLER ANSATZ
AND NUMERICAL ANALYSIS

The simplest ansatz for the boson ground state, whic
capable of describing both the SF and the MI phases, is
Gutzwiller ansatz, which contains the mean-field approxim
tions previously discussed as special cases. It consists of
torizing the amplitudes of superpositions of all possible Fo
02360
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states consistent in the following way:1

uC&B°)
i

(
ni

f ni

( i )
~ âi

†!ni

Ani !
u0&, ~46!

where thef ni

( i ) are taken to be real and positive. Using t

Gutzwiller ansatz in the determination of the energy fun
tional, while keeping the same approximations previou
introduced for the boson-fermion interaction and the ferm
energy, the total ground-state energy reads

E5EB1EF1UBF(
i

nB
( i )nF

( i ) , ~47!

where the subsidiary conditions ensuring particle num
conservation are

(
i

nB
( i )5(

i
^âi

†âi&5NB , ~48!

(
i

nF
( i )5(

i
^b̂i

†b̂i&5NF . ~49!

The boson energy contribution is now

EB52
1

2
JBS (

i
c ( i 11)* c ( i )1c.c.D 1(

i

UBB

2
~sB

( i )2nB
( i )!

1(
i

VB
( i )nB

( i ) , ~50!

and the bosonic observables are related to the Gutzw
amplitudes by

nB
( i )5 (

n50

`

n~ f n
( i )!2, ~51!

sB
( i )5^âi

†âi âi
†âi&5 (

n50

`

n2~ f n
( i )!2, ~52!

c ( i )5Rê âi&5 (
n50

`

An11 f n
( i ) f n11

( i ) . ~53!

Moreover, we must impose the natural constraints that

1Recently we have performed as an alternative approach an e
numerical diagonalization of the Bose-Fermi Hubbard Hamilton
without approximation, which is feasible for a small number
particles. This analysis shows that the behavior of the on-site qu
tities as considered here is qualitatively very much in agreem
with the Gutzwiller ansatz, even for this small number of particl
In turn, the Gutzwiller ansatz does not grasp all relevant proper
of the ground state in an appropriate manner, in particular in this
situation. For example, one should expect the transition to a
state at larger values of the lattice strength in an exact treatmen
Ref. @31# suggests.
6-6
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(
n50

`

~ f n
( i )!251, ~54!

0<nF
( i )<1, ~55!

for each lattice sitei, reflecting the fact that the Gutzwille
amplitudes form a probability distribution for each lattic
site, and that the on-site fermion occupation number can
exceed one.

Identifying the ground state amounts to solving a co
strained optimization problem: one has to minimize ene
functional ~50! subject to the constraints given by Eqs.~48!
and ~49!, together with Eqs.~54! and ~55!. We have solved
the problem numerically for a small system of ten partic
~five bosons and five fermions!. The first observation is tha
the optimization problem is not a convex optimization pro
lem. Hence, one has to expect several local, ‘‘poorer’’ e
trema in addition to the~not necessarily unique! global one.
The numerical solution of this optimization problem h
been performed first using a simulated annealing met
@32# with an appropriate logarithmic annealing schedu
Quadratic constraints~54! and ~55! have been incorporate
in a dynamical penalty formulation~see, e.g., Ref.@33#!. Fi-
nally, for the local refinement the Nelder-Mead downh
simplex method@34# has been applied.

In Fig. 2 we show the change of the on-site bosonic d
sities with increasing lattice potential strengthṼ0 for a sys-

FIG. 2. On-site bosonic densities for a Bose-Fermi repuls
aBF50.04, as a function of the lattice potential strength. In t

figure, as well as in the following figures,Ṽ0 runs from 1 to 8.

FIG. 3. On-site fermionic densities for a Bose-Fermi repuls
aBF50.04, as a function of the lattice potential strength.
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tem of five bosons and five fermions with moderate repuls
boson-fermion interaction. We note from Fig. 2 that as
strength of the lattice potential increases, the bosons go
complete Mott-insulating phase, forming a block crystalli
configuration around the center of the trap~which coincides
with the origin of the optical lattice! with exactly one boson
per lattice site. The corresponding on-site fermionic densi
are plotted in Fig. 3. From both figures we can see tha
UBF.0, by increasing the lattice potential strength the s
tem eventually undergoes simultaneously a boson MI tra
tion and complete phase separation, in accordance with
~43! along with Eqs.~24!–~28!.

The local bosonic superfluid parameterc ( i ) for the same
physical situation is shown in Fig. 4. Although we are de
ing with a finite system, we can already see a rather c
signature of the onset of a phase transition to a Mo
insulator regime when the superfluid parameter sudde
drops to very low values at an approximate critical latti
potential strengthṼ0

c.7.
We next consider the ground-state properties in the c

of an attractive boson-fermion interaction. Because of
strong attraction with growing lattice depth, the fermions fo
low the bosons in building a sharp crystalline block arou
the center of the trap, as can be seen from Figs. 5 and 6
cannot expect in this case to observe a simultaneous m
field collapse like the one predicted for a trapped Bose-Fe

n FIG. 4. The bosonic superfluid on-site order parameter fo
Bose-Fermi repulsionaBF50.04, as a function of the lattice poten
tial strength.

FIG. 5. On-site bosonic densities for a Bose-Fermi attract
aBF520.04, as a function of the lattice potential strength.
6-7
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ALBUS, ILLUMINATI, AND EISERT PHYSICAL REVIEW A 68, 023606 ~2003!
mixture in the continuum@35,36# ~for the effects beyond
mean field, see Ref.@37#!, as this possibility is forbidden in a
single-band approximation. Finally, we consider the behav
of the bosonic superfluid on-site parameter in the case
boson-fermion attractive interaction.

Comparing Fig. 7 with Fig. 4, we see that the transition
a Mott-insulating phase for the bosons takes place at
same lattice potential strength, irrespective of the repuls
or attractive nature of the boson-fermion interaction. T
finding confirms the results of the mean-field analysis p
sented in the preceding section.

V. MIRROR SYMMETRY BREAKING
AND TRANSITION TO DEGENERACY

The above optimization problem associated with the c
strained minimization of the energy is not convex, hen
there can be many local minima in addition to the global o
However, even the ground state may be approximately
exactly degenerate. In fact, this is what happens in the c
of boson-boson and boson-fermion repulsion for large val
of lattice potential strengthṼ0. As Ṽ0 grows, it becomes
eventually energetically more favorable for the bosons to
arranged in single-particle occupancy of the available s
around the center of the external trap. The bosonic and
mionic on-site occupation numbers can only assume valu
or 1, and a definite boson-fermion symmetry is establis

FIG. 6. On-site fermionic densities for a Bose-Fermi attract
aBF520.04, as a function of the lattice potential strength.

FIG. 7. The bosonic superfluid on-site order parameter fo
Bose-Fermi attractionaBF520.04, as a function of the lattice po
tential strength.
02360
r
a

e
e

s
-

-
e
.

or
se
s

e
s
r-
0
d

in the Bose-Fermi Hubbard Hamiltonian assuming that
on-site fermionic and bosonic trapping potentials coincid

A similar transmutation of bosons into fermions in stro
optical lattices has been pointed out by Paredes and Cira
a recent paper@11#. They consider a model of pure bosons
an optical lattice and show that in the limit of very stron
boson-boson on-site interaction, the bosonic operators ca
mapped into fermionic operators by means of the we
known Jordan-Wigner transformation. Let us consider w
happens in the case of a boson-fermion mixture. As the
tice strength grows, configurations of lowest energy, wh
are mirror-symmetric with respect to the center of the latti
like, e.g., those of Figs. 2 and 3, become approximately
ergetically equivalent to other symmetric configuratio
~e.g., a checkerboard of alternating bosons and fermions
one particle per lattice site! as well as to nonsymmetric con
figurations~like a succession of four fermions followed b
five bosons and then a last fermion, again with one part
per lattice site!, and mirror symmetry breaking takes plac
We may thus consider sequences of energy functionals
increasing lattice potential strengthsṼ0. For each value of
Ṽ0, one may identify a ground state. Then, the difference
energy of this ground state to those states that can be
tained by interchanging the role of fermions and bosons w
converge to zero asṼ0 grows. The boson hopping contribu
tion will become negligible, whereas the behavior ofŨBB
will enforce the mean bosonic on-site occupation numbe
be at most one. Hence, for each lattice site, the constraint
the boson and fermion occupation numbers become iden
~at most one boson or one fermion per lattice site!. Notice
that the suppression of the hopping terms is exponen
Moreover, sinceṼB

( i )5ṼF
( i ) for all lattice sitesi, larger the

value of Ṽ0, more symmetric the role of bosons and ferm
ons. There are then many ground states that are degener
energy with respect to any permutation of lattice sites,
long as all particles are located around the minimum of
confining external potentialṼB

(0)5ṼF
(0)50. These degenerat

configurations will be given by all possible symmetric a
nonsymmetric fermion and boson distributions in a reg
around the center of the lattice, with every site of the reg
occupied by one and only one particle. Such possible c
figurations are, for example, checkerboard alternating p
terns of bosons and fermions, or Mott bosonic central c
figurations with fermionic wings on the sides, or consecut
block crystalline arrangements of variable length of boso
and fermions. In brief, while the Hamiltonian formally re
tains its mirror-symmetry under reflection of the lattic
around its center, the degenerate ground states need not
spontaneous mirror symmetry breaking occurs. At the sa
time, complete boson-fermion exchange symmetry sets
No ground state isa priori favored compared to any othe
any random pattern of consecutive bosons and fermions
cated around the minimum of the external trapping poten
is a legitimate ground state. Figure 8 shows representa
on-site bosonic densities in the regime of large values ofṼ0

around Ṽ0550 for the case of boson-boson and boso
fermion repulsion in a system composed of five bosons

a

6-8
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five fermions: at each value of the lattice potential strengt
particular state is selected from the set of those with sa
energy. Each vanishing value of the on-site bosonic den
means that exactly one fermion has filled that particular
tice site. The large value chosen forṼ0 allows one to clearly
stress the random nature of the configuration patterns e
for very small changes of the lattice potential streng
whereas degeneracy and disorder can set in already at l
values of the lattice depth, depending on the tuning of
harmonic oscillator and scattering lengths~see below!. The
degenerate states are separated by energy barriers. The
tem is nonergodic, and hysteresis should be observed: w
particular state is chosen, depends on the exact mecha
of preparation of the system and of loading of the mixtu
into the optical lattice.

The criterion for the onset of degeneracy and nonperio
ground states in the bulk region around the center of
lattice and of the trapping potential is easily identified,
looking at the relative importance of the trapping on-s
energy with respect to the on-site boson or fermion inter
tion energy. For instance, to allow for the fermionic behav
of the boson on-site occupation numbers~either 0 or 1) one
must require that the energy is lower, having one boson a
edge of the bulk central region rather than having it sitting
top of another boson at the center of the lattice:

ŨBB.ṼB @ i 5~NB1NF!/2#. ~56!

The analogous condition for the Bose-Fermi on-site inter
tion is:

ŨBF.ṼB/F @ i 5~NB1NF!/2#. ~57!

For smaller values ofṼ0, the boson hopping contributio
will become more and more important. A representative s
ation of this intermediate regime is depicted in Figs. 2 and
here, the repulsion between bosons and fermions is st
enough to allow for phase separation, while the no
negligible hopping terms still favor configurations whe
bosons have bosons as nearest neighbors. The transiti
degeneracy and disorder, exact in the limit of infinite latt
depth, is a peculiar feature of Bose-Fermi mixtures and
should hold in general for any multicomponent Bose

FIG. 8. The disordered pattern of bosonic ground-state distr
tions for repulsive boson-boson and boson-fermion interactions

large values ofṼ0 aroundṼ0550.
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Fermi dilute atomic system loaded in a deep optical lattice
zero temperature, provided that intercomponent interacti
are repulsive and the on site confining potentials coincide
the different components. It clearly cannot take place in
single-component system, say a pure single-component B
gas, where only a SF-MI transition occurs@7#. The rather
complex and rich interplay between ordered and disorde
configurations of Bose-Fermi mixtures in very deep opti
lattices will be considered in more detail elsewhere.

VI. SUMMARY AND OUTLOOK

In conclusion, we have studied the zero-temperature pr
erties of a mixture of weakly interacting gases of neut
bosonic and fermionic atoms loaded in one-dimensional
tical lattices and confined by harmonic trapping potentia
We have derived a single-band Bose-Fermi Hubbard Ham
tonian, and performed some mean-field studies of the z
temperature phase diagram. We have considered the cas
quasifree fermion sea acting on the bosons, which have b
treated in their full dynamical range. We have always work
in the approximation ofs-wave boson-boson and boso
fermion contact interactions. According to the different po
sible combinations of intraspecies and interspecies attrac
and repulsive interactions, the system displays a rich ph
structure, including the onset of a SF-MI transition in t
boson sector, and a simultaneous transition to demixing
the boson-fermion sector. The optical lattice potential play
crucial role, allowing to tune the system into regimes
strong boson-boson and boson-fermion couplings as the
tice depth is increased. For very deep lattices the sys
displays a remarkable transition to a multiply degener
phase in which all possible permutations of configuratio
with one bosonic or fermionic atom per site are legitima
ground states. The transition is related with breaking of
lattice mirror symmetry for very large values of the lattic
depth. This peculiar disordered pattern of degenerate grou
state configurations separated by very large barriers is so
how reminiscent of the behavior of classical disordered s
tems, such as glasses and spin glasses, but it takes plac
quantum system at zero temperature.

The setting that has been investigated in detail in
present paper can be extended in various ways. Certain
larger number of bosons and fermions have to be consid
in order to obtain a more realistic description of the syste
While our previous analytical findings are applicable to a
numbers of atoms, in order to extend the numerical calcu
tions to larger numbers more powerful numerical metho
have to be introduced. So far, Monte Carlo simulations w
a fairly large number of particles have been carried out o
for an inhomogeneous Bose-Hubbard model@38#. The au-
thors have also speculated that the qualitative phase diag
does not depend on the dimensionality of the system.

In order to extend the work presented in this paper to
case of interacting fermions, one may either allow for diffe
ent fermionic species in magnetic traps or for sp
unpolarized identical fermions in optical traps. Exchang
correlation effects that are already included in the Gutzwi
Ansatz for the bosons will then become important for t

-
or
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fermions as well@39#. In this way, the Bose-Fermi interac
tion has to be consistently incorporated beyond the me
field level. In the present paper, the mean-field treatmen
the Bose-Fermi interaction is consistent, since we only
cluded the fermions in a mean-field and LDA prescription

At the opposite extreme, one can consider the fermion
be static impurities for the bosons, as very recently discus
by Vignolo and Akdeniz, and Jest@40#. Recently, Buchler
and Blatter reported on the induced boson-boson interac
due to the fermions for mixtures loaded in a 2D lattice@41#.

Besides these fundamental theoretical aspects relate
the theory of quantum phase transitions and the statis
mechanics of complex systems, ultracold Bose-Fermi m
tures in an optical lattice qualify for potential applications
the physics of quantum information. As with systems invo
ing either bosons or fermions which have been studied so
@18,17,21,19,16#, mixtures could be used for the preparati
of multiparticle entangled states@16#, such as cluster states o
certain instances of graph states@42#, as well as for the
implementation of quantum gates. With bosons and fermi
serving two different purposes, Bose-Fermi mixtures co
in fact allow for new possibilities of quantum informatio
processing in optical lattices. The fermions would be suita
for storage of quantum information due to their nonintera
A

le
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e

tt
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t
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ing behavior, whereas the bosons could be used to let
systems interact and perform operations.

In turn, the study of such coupled quantum systems
hibiting collective phenomena with the methods of t
theory of multiparticle entanglement is an attractive inves
gation in its own right. The aim here is not to use the coup
system to prepare strongly entangled systems that form
starting point for applications in quantum information pr
cessing. Instead, the motivation of such investigations is
go beyond conventional methods to characterize the nat
correlations present in the distributed system at zero t
perature@43–46#. The quantitative theory of entanglemen
which abstracts from the actual physical realization of
Bose-Fermi Hubbard model, could provide the tools to u
derstand how global properties emerge here from quan
correlations between the elementary constituents.
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@13# H.P. Büchler, G. Blatter, and W. Zwerger, Phys. Rev. Lett.90,

130401~2003!.
@14# A.J. Kerman, V. Vuletic, C. Chin, and S. Chu, Phys. Rev. Le

84, 439 ~2000!.
@15# P.S. Jessen, D.L. Haycock, G. Klose, G.A. Smith, I.H. De

sch, and G.K. Brennen, Quantum Inf. Comput.1, 20 ~2001!.
@16# L.–M. Duan, E. Demler, and M.D. Lukin, e-prin

cond-mat/0210564.
@17# I.H. Deutsch, G.K. Brennen, and P.S. Jessen, Fortschr. P

48, 925 ~2000!.
.

r,

v.

v.

v.

.

-

s.

@18# D. Jaksch, H.–J. Briegel, J.I. Cirac, C.W. Gardiner, and
Zoller, Phys. Rev. Lett.82, 1975~1999!.

@19# J.J. Garcia–Ripoll and J.I. Cirac, Phys. Rev. Lett.90, 127902
~2003!.

@20# U. Dorner, P. Fedichev, D. Jaksch, M. Lewenstein, and P. Z
ler, e-print quant-ph/0212039.

@21# J. Pachos and P.L. Knight, e-print quant-ph/0301084.
@22# M.P.A. Fisher, P.B. Weichman, G. Grinstein, and D.S. Fish

Phys. Rev. B40, 546 ~1989!.
@23# For a detailed study of the effects of inhomogeneities in bos

fermion lattice models cfr: A. Albus, M. Cramer, J. Eisert, a
F. Illuminati ~unpublished!.

@24# G. Modugno, F. Ferlaino, R. Heidemann, G. Roati, and
Inguscio, e-print cond-mat/0304242.

@25# A.P. Albus, S.A. Gardiner, F. Illuminati, and M. Wilkens, Phy
Rev. A65, 053607~2002!.

@26# L. Viverit and S. Giorgini, Phys. Rev. A66, 063604~2002!.
@27# G.-H. Chen and Y.S. Wu, Phys. Rev. A67, 013606~2003!.
@28# L. Viverit, C.J. Pethick, and H. Smith, Phys. Rev. A61, 053605

~2000!.
@29# J.K. Freericks and H. Monien, Europhys. Lett.26, 545~1994!.
@30# K. Sheshadri, H.R. Krishnamurthy, R. Pandit, and T.V. Ram

rishnan, Europhys. Lett.22, 257 ~1993!.
@31# J.J. Garcia-Rippoll, J.I. Cirac, P. Zoller, C. Kollath, U. Scho

woeck, and J. von Delft, e-print cond-mat/0306162.
@32# S. Kirkpatrick, C.D. Gelatt, and M.P. Vecchi, Science220, 671

~1983!.
@33# B.W. Wah and T. Wang, inPrinciples and Practice of Con-

straint Programming, Vol. 461 ~Springer, Heidelberg, 1999!.
@34# J.A. Nelder and R. Mead, Comput. J.7, 308 ~1965!.
@35# R. Roth, Phys. Rev. A66, 013614~2002!.
6-10



u-

t

8.
ys.

MIXTURES OF BOSONIC AND FERMIONIC ATOMS IN . . . PHYSICAL REVIEW A68, 023606 ~2003!
@36# M.A. Cazalilla and A.F. Ho, e-print cond-mat/0303550.
@37# A.P. Albus, F. Illuminati, and M. Wilkens, Phys. Rev. A67,

063606~2003!.
@38# G.G. Batrouni, V. Rousseau, R.T. Scalettar, M. Rigol, A. M

ramatsu, P.J.H. Denteneer, and M. Troyer, Phys. Rev. Lett.89,
117203~2002!.

@39# E.H. Lieb and F.Y. Wu, Phys. Rev. Lett.20, 1445~1968!; 21,
192 ~1968!.

@40# P. Vignolo, Z. Akdeniz, and M.P. Tosi, e-prin
02360
cond-mat/0304104.
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