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We discuss the theory of mixtures of bosonic and fermionic atoms in periodic potentials at zero temperature.
We derive a general Bose-Fermi Hubbard Hamiltonian in a one-dimensional optical lattice with a superim-
posed harmonic trapping potential. We study the conditions for linear stability of the mixture and derive a
mean-field criterion for the onset of a bosonic superfluid transition. We investigate the ground-state properties
of the mixture in the Gutzwiller formulation of mean-field theory, and present numerical studies of finite
systems. The bosonic and fermionic density distributions and the onset of quantum phase transitions to demix-
ing and to a bosonic Mott-insulator are studied as a function of the lattice potential strength. The existence is
predicted of a disordered phase for mixtures loaded in very deep lattices. Such a disordered phase possessing
many degenerate or quasidegenerate ground states is related to a breaking of the mirror symmetry in the lattice.
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[. INTRODUCTION sition has been realized by loading an ultracold atomic Bose-
Einstein condensate in an optical lattidd.

Recent spectacular progress in the manipulation of neutral The present paper is concerned with the study of dilute
atoms in optical lattice§1—3] has opened the way to the Mixtures of interacting bosonic and fermionic neutral atoms
simulation of complex quantum systems of condensedSUPIECt to an optical lattice and a superimposed trapping har-
matter physics, such as high- superconductors, Hall sys- monic potential at zero temperature. We assume the fermions

) . . to be identical(for instance, spin-polarized in a magnetic
tems, and superfluidHe, by means of atomic systems with ( pin-p g

_ ! trap, so that there are onlys-wave boson-boson and
perfectly controllable physical parameter]. Optical lat-  termion-hoson contact interactions present. We construct an

tices are stable periodic arrays of microscopic potentials crésffective single-band Bose-Fermi Hubbard Hamiltonian, and
ated by the interference patterns of intersecting laser beamge determine the ground-state energy and on-site density
[5]. Atoms can be confined to different lattice sites, and bydistributions in different mean-field approximations of in-
varying the strength of the periodic potential it is possible tocreasing complexity. Our main aim at this level of descrip-
tune the interatomic interactions with great precision. Theytion is to determine the basic ground-state properties of the
can be enhanced well into regimes of strong correlationmixture and to study how the bosonic superfluid-insulator
even in the dilute limit. The transition to a strong coupling transition is influenced by the presence of the fermions. Be-
regime can be realized by increasing the depth of the latticsides the study of the latter issue, and the assessment of the

potential wells, a quantity that is directly proportional to the PrOPErties of linear stability of the system against boson-
fermion demixing, a remarkable finding of our analysis is

intensity of the laser Iight: This is an experimental parametep . - quantum binary mixture loaded in a very deep optical
that can be controlled with great accuracy. For this reason,yice aliows for a disordered phase of very many degenerate

besides the fundamgntal interest for thg investigation of, quasidegenerate ground states separated by very high po-
quantum phase transitiofi§] and other basic quantum phe- (enia| energy barriers. In the limit of very large lattice po-

nomena[7-13|, optical lattices have become an importantiential strengths, the basic mirror symmetry of the optical
practical tool for applications ranging from laser cool[ig] lattice is broken.
to quantum control and information processiig,16, and The plan of the paper is as follows: In Sec. Il we set the
quantum computatiofl 7-21. notation and derive the Bose-Fermi Hubbard model Hamil-
The theory of neutral bosonic atoms in optical lattices hasonian. We then discuss the range of validity of the approxi-
been developefi7] by assuming that the atoms are confinedmations and the assumptions used in the derivation. In Sec.
to the lowest Bloch band of the periodic potential. It can thenlll we introduce some basic mean-field descriptions to study
be shown that the system is effectively described by a singlethe properties of stability of the mixture against phase sepa-
band Bose-Hubbard model Hamiltonid22]. In such a ration, and we provide a simple analytical criterion for the
model the superfluid-insulator transition is predicted to occuonset of a superfluid phase for the bosons starting from a
when the on-site boson-boson interaction energy becomédott-insulating ground state.
comparable to the hopping energy between adjacent lattice In Sec. IV we present numerical simulations for a small
sites. This situation can be experimentally achieved by innumber of particles in the framework of the Gutzwiller varia-
creasing the strength of the lattice potential, which results iional ansatz. Two important cases have to be distinguished:
a strong suppression of the kinetiwopping energy term. In  boson-fermion repulsive or attractive interactighe boson-
this way, the superfluid—Mott-insulator quantum phase tranboson interaction is taken to be always repulsive the first
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instance, one can observe a continuous transition to a com- . . .

plete demixing of the fermions from the bosons, and to a VF:f d3r WT(D[Ve(r) +Pe(r) ¥ (r) (7)
Mott-insulating phase of the bosons, as the strength of the

lattice potential is increased. In the case of attractive bosorare due to the trapping and lattice potentials. We consider
fermion interactions there is no transition to demixing or topure magnetic trapping for bosons and fermions so that fer-
collapse of the mixture, while one still observes a Mott-mions are spin-polarized and theiwave interaction energy
insulating transition for the bosons. By studying the behavioy,__ can be neglectedVr=0. In the subsequent analysis
of the superfluid order parameter we show that in both casgge will consider the harmonic approximation of a typical

the transition takes place at the same critical value of thgadrupolar magnetic field with strong anisotropy in trans-
lattice potential strength. Moreover, due to the strong attracyerse directiony andz, i.e.,

tion, the fermions and the bosons tend to form together or-

dered block-crystalline structures at the center of the trap. V(1) =mgw3(x>+\2y2+\?2%)/2 (8)
In Sec. V we present a numerical analysis that, although

constrained to a small number of particidive bosons and and

five fermions, seems to indicate the existence of a rich struc- 2,2 22122

ture of degenerate energy minima for large enough values of VE(N)=meop(X"+ Ny +\°Z%)/2, ©)

the lattice potential strength. Such an energy landscape sug- . . .

gests the possible existence of disordered phases of the mi%_here A>1 IS the_ anisotropy parameter. Moreover, if we

ture due to the delicate interplay between the different physif’1ssume trapplng in the same mggne’uc state'for the bosons

cal parametergboson hopping, fermion hopping, boson on- and thg fermions, then the trsg)pmg frequencies are _related

site energy, boson-fermion on-site energye lattice depth, acg:or'dln.g towe: /wg= (Mg /M) ™= so that the two potenua]s

and the symmetries of the problem. Finally, a summary an§@incide: Ve(r)=Ve(r). The ground-state —harmonic-

an outlook to future research are shortly discussed in Sec, vPScillator lengths, however, are different due to the different
masses, and also differ for thedirection on the one hand

and they andz directions on the other hand:
Il. MODEL HAMILTONIAN

- - iitoni i e =Tl (Mg/rwge) (10)
We start by introducing the Hamiltonian for a Bose-Fermi BIF B/FWB/F

mixture loaded into optical lattice potentials and confined by.

. . 1 _ ” . . _
additional, slowly varying, externgharmonig trapping po- 1" the X direction ""r?d(iB/F_gE}/F/‘/X in the y and z direc
tentials. It is given by tions. We next consider a lattice structure for the bosons and

the fermions in thex direction, associated with the corre-
A=Tg+Te+Vg+Ve+WagtWer, (1) sponding bosonip and fermionic one-dimensiofid)) opti-
cal lattice potential$g(x) and P(X):

h
where Pa(x)=V3sir?(mx/a),
. N A (11)
TB=—f d°r d'(r) 2de)(r), 2 Pr(x)=VZsir(7x/a),
£2y2 wherea is the lattice spacing associated with wave vector
1‘-F: _ f d3r ¥i(r) (1) 3) k= mr/a of the standing laser light. If the lattice potentiz_ils are
2meg produced by a far off-resonant laser for both species, the

) o ) lattice potential strengths are equal for both fermions and
represent the boson and fermion kinetic energies, reSpeBbsons:ngvg:VO, and the two optical lattices coincide

tively, while exactly. This is the situation we will always consider in the
1 47422 following.
A B8=5 —BBBJ dBr dTndT(Nd()d(r), (@ In the presence of a strong optical lattice and a sufficiently

shallow external confinement in tixedirection, the field op-
. erators can be expanded in terms of the single-particle Wan-
Nep= ™ aBFf & SO FT N FND(r)  (5) nier functlons _Iocahzed at gach lattice sie. Further, the
R typical interaction energies involved are normally not strong
enough to excite higher vibrational states, and we can retain
denote the boson-boson and the fermion-boson contacbnly the lowest vibrational state in each lattice potential well
interaction energies. They are parametrized by the bosorboth for bosons and fermionsingle-band approximation
boson and the fermion-bos@wave scattering lengthagg In case of stronger external confinements, or interactions,
andagg, respectively, and by boson masg and reduced one should include higher Bloch bands as well in the expan-
massmg= mgmg/(mg+ mg), wheremg denotes the fermion sion of the field operators, a case we do not consider in the
mass. Potential energies present context. In the harmonic approximation, Wannier
functions w(r) factorize in the product of harmonic-
~ 3. & 2 oscillator states in each direction, with the trapping potential
VB_I d’r OT(N)[Va(r) +Pe(r)](r), ©®  aimost constant between adjacent lattice siters)PWge I?hen have
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. . The first line in the above Bose-Fermi Hubbard Hamiltonian
d(n=2 QW5 (X=X )Wy (Y)WE(2), (120 describes independent nearest-neighbor hopping of bosons
' and fermions, with amplituded; andJg, respectively. The
terms in the second line describe boson-boson on site repul-
V(r)=> BiWE(X_Xi)Wg(Y)WE(Z)v (13 sio.n (_With UBB>O) and boson—fermion on'—site interac'tion.
i This interaction can be repulsive or attractive, depending on
R . the sign ofUgg. The third line describes the energy offset at
wherea; andb; are, respectively, the bosonic and fermionic each lattice site due to thecomponent of external trapping
annihilation operators at théh lattice sitex;=ia, and index  potentialsVg,=(r), and the last line contains the overall con-
i runs on positive and negative integers, the origin of thestant zero-point energy terms due to thandz components
lattice being fixed at=0 so that it coincides with the center of Vg,z(r) and to the lattice potenti@(x). The on-site in-
(the minimum) of the external trapping potential. In each teraction and offset energy terms are simple functions of the
lattice potential well, the Wannier local ground states foron-site boson and fermion occupation number operators
bosons and fermions are Gaussians in the harmonic approx{)=afa; andn’=b'b; , while the zero-point energy terms

mation: are proportional to the total particle number operatfslras

_5.At3 S —S . ATR
eXF[_yZ/z(eé/F)Z] _Eiai a; and NF_Eibi bi . Frequency

B/F
W, = , 14
S VT 19 = I (£3)6) My (19
2 ol 2 fixes the bosonic and fermionic harmonic oscillations in each
WBF(z)= exl — Z°/2(Lge)”] (15) lattice well. The relevant parameters entering in the Hamil-
z 771/4((5iB/F)1/2 ' tonian are the on-site values of trapping harmonic potential
iy _Mer
and Vg/)F:Twé/FXiZ , (20
w2/ 0 )2
WEIF (x—x;) = ex — (x=x) 2 g/r) ], (16)  the nearest-neighbor hopping amplitudes between adjacent
mHA08,0) Y2 sitesx; andx; ; for bosons and fermions
where h%  d?
JB/F:J dx we'F(x—x;)| — 2 -
0 R 14 Mg/F dx
Cgp=al[m(Vo/Eg/p)™] 17
X
is the width of the harmonic-oscillator potential wells at each +Vosin2< 775) WEF (X=X 1), (21)
lattice site, WithER= (7%)%/2a’mg and ER= (7#i)?/2a’mg

being the boson and fermion recoil energies, respectively. o grength of the on-site repulsion energy between two
In this paper we will consider the physical situation of o< nic atoms at the same lattice site

very shallow trapping potentials, such tHef,->aNg,r and

consequently local-density approximatidrDA) can be ap- 4rhlagg B 4

plied in the study of the ground-state properties of the sys- UBB:—mB f dX{ Wy (X=X) ]

tem. Therefore, when exploiting the Wannier function expan-

sions(12) and (13) to map the full Hamiltonian(1) into its B 4 B, v

lattice version, we discard all terms that are of order X | dylwy ()17 | d4wz(2)]%, (22)
(aNg/F /€L,F)2 or of higher powers of it. Otherwise, nonlo- o ) ]

cal effects caused by the trapping potential, such as sitednd the strength of the on-site interaction enefgjsher re-
dependent hopping terms, have to be consid¢2si Fi- pulsive or attractive between a bosonic and a fermionic
nally, this approximation scheme leads to the followingatom at the same lattice site

Hubbard-type Hamiltonian:
yp 27Th2a5[: B £ 2
UBF:m—R AX[ W, (X— X)W, (X—Xj) ]

N 1 e o~ P
H=-— z EI (JBaLlai-l-JFblei-l— HC)
X f dy[wo(y)wh (y)]? f dZwi(z)wh(2)]2.

u R S o
+ 223 AP - 1)+Uge, nAD+ > vORD 29
I |
o o o In typical situations we may neglect next-to-nearest neighbor
+2 VOO + (A wg+ 02 Ng+ i (N wp+ 02N hopping amplitudes and nearest-neighbor interaction cou-
! plings that are usually some orders of magnitude smaller, so
(18  that Hamiltonian(18) provides a rather accurate model for
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the dynamics of a Bose-Fermi mixture with three- 025 y - - - y -
dimensional scattering in a one-dimensional periodic poten-
tial. Terms involving nearest-neighbor interaction strengths
or next-to-nearest neighbor hopping amplitudes can becom:
relevant and need to be included, e.g., when considering pha
non exchange between fermions, and this would lead to ¢ 45|
Bose-Fermi analog of the so-called extended Hubbard modjl.
els. To evaluate estimates for the parameters entering th :
Bose-Fermi Hubbard Hamiltoniai8) using Eqs(14), (15), AN
and (16), we will set boson recoil energy EE i
=#272/(2mga?) as the unit of energy. We then introduce a

dimensionless quantiﬁ/ozvo/ES and, analogously, dimen-
sionless quantitiellgg, Uge, V§), VO, Jg, andJe. We
then have

02

0.05

Upa= A/ 2y (24)
BB 3(pLy2 0 FIG. 1. Top to bottom: fermion hoppi litudiy: f
w3 (Lg) . 1. Top to bottom: fermion hopping amplitud for
me /mg=0.5 in the Gaussian approximation; boson hopping ampli-
tudeJg from the exact 1D Mathieu equation; boson hopping am-

~ 8 Mg agrd <4 ) ~ . o . .
Uge= -3 1+— — V0 » (25) plitude Jg in the Gaussian approximation; the fermion hopping am-
T Me/ (€5)°+ (€F) plitude for mg/mg=1.5 in the Gaussian approximation; and, for
comparison, overlap integrgw(x—x;)|w(x—x; 1)) of adjacent

v 2 Vo) Mg i2 26 Wannier functions in the Gaussian approximation. All quantities are

= s dimensionless.

5 r2ea)t T me 22(elia)? menst
0
- [\ w2 = {lagl . age}<{€Q/r (et <a<Che/Nege. (29
‘]B: T_l VoeX _T\/V y (27)

Our model is for some aspects unrealistic, since in present

2 2 experimental situations the transverse confinements cannot

T B by _ ™ MR be made very strong. Therefore a multiband structure can
Je= 1|Voex Vol. (28 . . . .

4 4 Vmg appear with several radial states being occupied, as reported

in a recent experiment by the Florence group on Bose-Fermi

In Fig. 1 we show the dependencies of these parameters QRixtures in a 1D optical latticE24].
the potential strengtl’, (compare also Ref16]). For refer-
ence we have also i'ncluded thg overlap integfad(x IIl. PHASE STABILITY AND THE SUPERFLUID
—xi)|w(x—_xi_+1)> of adjacent Wannier functions. The over- TRANSITION
lap is negligible, but for very small values of the potential
strength, confirming that terms of the order of the overlap In this section we investigate the zero-temperature
integral can be neglected in the Hamiltonian. The Gaussiaground-state properties of the system in a mean-field ap-
approximation holds rather well, as can be seen by compaproximation. In the following, we will adopt a grand-
ing the associated bosonic hopping amplituljewith the  canonical description through Hamiltonian
one obtained by using the exact 1D Mathieu equalits].

Besides the conditions mentioned earlier, all the expres- K=H—ugNg— ugNg, (30)
sions derived in the present section are justified under the
following circumstances. First of all, we must require thatwhere uz and ur are the bosonic and fermionic chemical

the two-body scattering processes are not influenced by thgotentials. According to the Hohenberg-Kohn theorem,
confinements, a condition that is guaranteed if the lengths qfround-state energy

the confining and lattice potentials in all directions are much
larger than the boson-boson and fermion-boson scattering E= (V. |K|¥ 31
lengths. Next, the single-band structure of the lattice Hamil- (WolK[¥o) @D

tonian is assured if lattice spaciags much greater than the s o 4 ctional of the on-site bosonic and fermionic densities
harmonic confinements in each direction at all lattice sites.

On the other hand, in this limit the harmonic approximationng):<aiJrai> gndng)=(b?bi), where the expectation values
for the Wannier functions at each lattice well is automatically@r® taken with respect to the ground state with state vector
satisfied. Finally, as mentioned earlier, the assumption of k¥ o). We decompose function& according to

slowly varying confining potential such that LDA is appli-

cable leads to conditiofiy;->aNg,r . We can summarize all E=Ep+Er+Epr— s N —pur > nd, (32

the above conditions with the following chain of inequalities: i i
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whereEg is the energy contribution depending only on bo- Next, we consider the case of a Mott-insulating bosonic
son parameterds , Ugg, andV{) ; Er is the energy depend- phase. To lowest order idg we neglect the kinetic term
ing only on the fermion parameters; aBg is the term due altogether. Then it is easily shown that the relation between
to boson-fermion interactions. We treat this latter term inthe bosonic chemical potential and the bosonic density for a
mean-field approximation; neglecting exchange-correlatiodomogeneous system is given by

effects;
#g=Uggng—Upgp/2. (37
Egr=Ugr>, ndnd . (33  Exploiting LDA as before, we have in the inhomogeneous
[ case at a given lattice site,
Exchange-correlation effects have been recently studied Uggn = ug+Ugg/2— VY —Ugen® . (39

for the case of homogeneous mixtures in the continuum _ _
[25,26). For fermion energyEg, we take the energy of the Comparing Eqs(36) and(38), we observe the same behavior
noninteracting homogeneous System and exp|oit |0ca|0f the on-site denSlty prOflleS but for a constant correction to

density approximatioiLDA) on it: the boson chemical potential, depending on whether the
bosons are in a superfluid or in a Mott-insulating state. Fi-

2J¢ _ o nally, differentiating the energy functional with respect to the
Ep=— 4 Sin(an))Jrzi: vind (34  on-site populations of the fermions, we determine the asso-

ciated density field and the set of coupled equations describ-

. . - . . . ... .ing the ground state of the mixture at any lattice site:
This approximate description of the fermions is well justified g g y

in the presence of a slowly varying trapping potentsa that U BBng) = up— V(Ei) .y Ban) , (39)
LDA can be applieg] when there are no direct interactions
among the fermiongas in our caseand moreover, when one —2Jrcog mn®) = e~ VO —Ugenl) | (40)

can neglect induced phonon-mediated self-interactions due

to the presence of the bosons. Therefore, in this situation, thﬁhere MI’B is the proper expression of the boson chemical
nontrivial features of different quantum phases will regardpotentia| according to whether the bosons are in the Mott-

only the bosonic sector and not the fermionic one. Howeveringylating or superfluid regime. These equations are valid at
the presence of the fermions will indirectly contribute to theg given lattice site if we— VY —Ugen®>0, otherwise one

properties of the different bosonic phases, and this is the, st sem@®=0. On the other hand. if
subject that we will study in the following. B ’

In order to find an expression for boson enefy, we (ue— VO —Ugen®)/23.<0 (41)
will proceed in steps of increasing accuracy. First, we per-
form a very simple mean-field analysis in two extreme lim-we must imposeng)zo at the given lattice site, whileg)
its: a completely superfluid boson ground state and a totally=1 must be imposed whenug— V% —Ugen)/23>1.
Mott-insulating boson ground state. In the latter case we Willrhese expressions are the lattice analogs of the Thomas-
provide a simple criterion for stability of the mixture against Fermj description of boson-fermion mixtures in the con-
demixing. Next, we will perform a perturbation expansion tinyum. We remark that in the Mott-insulating regime the
around the Mott-insulating boson ground state to recovepason on site populationlsg) must be rounded off to the
perturbatively the phase boundary against transition to SUPefiteger closest to the solutions of EG89) and (40).
fluidity. Finally, in the following section, we will study the In the Mott-insulating regime we can determine a crite-
ground-state properties of the mixture using a Gutzwiller ansjon of linear stability against phase separation of the two
satz for the bosons capable of describing the intermediatgpecies if we expand energy functiofato second order in
regimes between the insulating and superfluid bosoni?he small density variation&ng,)F around the minimum pro-

phases. . : )
We first consider the bosons to be superfluid. In this re-vIded by the solution of Eq439) and (40):

gime the chemical potential and the number of particles in a Ugs Ugr )( 5ng)>

homogeneous system are related, to lowest ordeigig, via  §?E=3 S5, 5 0 _ , .
g 9 Yy B! 2 Z (Ong" One) Uge 2mJesin(7n®) /| sn®
(42)
#e=UegNo—2Je, B9 This quadratic form is positive at a given sité and only if
wheren, is the density of condensed bosons. Additionally, 27TJFSin(7Tn§:i))UBB>U§F (43)
for very weak interactionng~ng. Exploiting this result in
LDA and using the mean-field expression for the Bose-Fermjpg 2mdesin(m®)+Ugg=0. This last condition is always
interaction energy, we can then write for the inhomogeneougagisfied forUgg>0 and identical fermions. If this is not the
Bose-Fermi mixture at a given lattice site: case for every sitd, then the ground state is not stable
0 0 0 against demixing. This result is similar to that recently ob-
Uggng'=upt2Jg— V' —Ugeng’. (36)  tained for a mixture of two different boson species on a
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lattice [27], which states that the mixture is stableUfU,  states consistent in the following way:
>U2,, whereU, and U, are the boson-boson interaction -

strengths of species 1 and 2, respectively, &hd is the (.)(ai )"
interspecies coupling. The form of expressidd) then sug- |\P>BHH En: fnli Jnt 10), (46)
gests that the Pauli on-site energyrZ-sin(mn) has the ' v

meaning of a density-dependent interaction strength. A simig;here thef( are taken to be real and positive. Using the
. . - i
lar correspondence was previously pointed out for homOgeGutzwiIIer ansatz in the determination of the energy func-

neous Bose-Fermi mixtures in the continu{i2g]. ) . . o .
Introducing a perturbation expansion with respectlfo fuonal, while keeping the same approximations prewou_sly

around the Mott-insulating ground state, we can recover th(lantroduced for the boson-fermion interaction and the fermion

" ’ ; energy, the total ground-state energy reads

zero-temperature phase transition to the superfluid phase.

The reverse, i.e., to build a perturbative expansion in powers o

of Ugg around the superfluid ground state fails to describe E=Eg+Eg+Uge>, ndn{, (47)

the transition to a Mott insulator, as pointed out in R&f :

for the pure Bose case. We follow the procedure adopted in - . . .

Ref.[27] for the two-component boson mixture, with the Oluewhere thg subsidiary conditions ensuring particle number

modifications for the present case of a boson-fermion mix_conservatlon are

ture, by treating the bosonic kinetibiopping term as the _

perturbation with respect to the bosonic Mott-insulating > nd=> (ala)=Ng, (48)

ground state. This scheme was first introduced for one- i !

component Bose systems in Ref8,29,3F. We proceed by

expanding the ground-state energy with respect tdltdoal) (i)— AR —

bosonic superfluid parametef('’=Re(a;). At the phase EI nF EI (biby) =N (49

boundary between a Mott insulatéMl) and a superfluid

(SP the expansion coefficients must vanish, yielding the fol-The boson energy contribution is now

lowing criterion for the onset of the transition to tklecal)

SF state: 1 i i Uss i) i
EB: - EJB 2| lﬂ(H—l)* lﬂ(l)‘l'C.C. +2i T(Ug)—ng))
Uge(2ng’ — 1)~ 23— (Uga—4Ugg(2n) +1) +495) 12 £ V0D, (50)
|

<pe—V§ —Ugen{!<Upgg(2ng)— 1)~ 235
and the bosonic observables are related to the Gutzwiller

2 4112 (i 2\1/2
+(Ugg—4Ugg(2ng’+1) +4J35)"~ (44) amplitudes by
The minimum value olUgz/Jg, where a Ml phase can ex- ng): 2 n(fﬂ))z, (51)
ist, is given by condition n=0
Ups/dg=4ni+2+22n0+1)°—1, (45 of =(alaala)= 2, n*(f()? (52)
and it involves the fermionic sector indirectly through the w(i):Re(éi>:rgo In+ 1f$_li)f§1i_)'_1_ (53

dependence orﬁg) on the fermionic parameters and density
distributions provided by Eq$39) and(40). Apart from this ) )
important modification, the phase diagram, at this level of¥loreover, we must impose the natural constraints that
approximation, is analogous to that of a one-component Bose

system. )
IRecently we have performed as an alternative approach an exact

numerical diagonalization of the Bose-Fermi Hubbard Hamiltonian
without approximation, which is feasible for a small number of
particles. This analysis shows that the behavior of the on-site quan-
tities as considered here is qualitatively very much in agreement
with the Gutzwiller ansatz, even for this small number of particles.

The simplest ansatz for the boson ground state, which if, turn, the Gutzwiller ansatz does not grasp all relevant properties
capable of describing both the SF and the MI phases, is thef the ground state in an appropriate manner, in particular in this 1D
Gutzwiller ansatz, which contains the mean-field approximasituation. For example, one should expect the transition to a Ml
tions previously discussed as special cases. It consists of fastate at larger values of the lattice strength in an exact treatment, as
torizing the amplitudes of superpositions of all possible FockRef. [31] suggests.

IV. GUTZWILLER ANSATZ
AND NUMERICAL ANALYSIS
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FIG. 2. On-site bosonic densities for a Bose-Fermi repulsion G 4. The bosonic superfluid on-site order parameter for a

agr=0.04, as a function of the Iattice~p0tential strength. In thisgose-Fermi repulsioags=0.04, as a function of the lattice poten-
figure, as well as in the following figure¥, runs from 1 to 8. tial strength.

- , tem of five bosons and five fermions with moderate repulsive
> (f)2=1, (54 boson-fermion interaction. We note from Fig. 2 that as the
n=0 strength of the lattice potential increases, the bosons go in a
complete Mott-insulating phase, forming a block crystalline
configuration around the center of the tri@ghich coincides
with the origin of the optical latticewith exactly one boson

o=n<1, (55)

for each lattice site, reflecting the fact that the Gutzwiller ; - . ) S .
amplitudes form a probability distribution for each lattice per lattice site. The corresponding on-site fermionic densities

site, and that the on-site fermion occupation number cannq%re plotted n Fig. 3 From bqth flgures_ we can see that if
exceed one. se=>0, by increasing the lattice potential strength the sys-

Identifying the ground state amounts to solving a con—tfam eventually undergoes simulta_neogsly a boson M t_ransi-
strained optimization problem: one has to minimize energ);fg alnd comﬁleEte pgise ngparatlon, in accordance with Eq.
functional (50) subject to the constraints given by E¢48) ( )kz]iolng V;”t q;.( )—( ﬂ)'. ) for th
and (49), together with Eqs(54) and (55). We have solved T 1€ loca bpsomc super .u'd .parametfz‘i‘ or the same
the problem numerically for a small system of ten particlesphys'(.mlI situation is shown in Fig. 4. Although we are deal-
(five bosons and five fermiohsThe first observation is that Ing with a finite system, we can already see a rather clear
the optimization problem is not a convex optimization prob-.Slgnature of.the onset of a phase. fransition to a Mott-
lem. Hence, one has to expect several local, “poorer” eX_lnsulator regime when the superfluid parameter suddgnly
trema in addition to thénot necessarily uniquaglobal one. drops .to very Iov~v values at an approximate critical lattice
The numerical solution of this optimization problem hasPotential strength/g=7.
been performed first using a simulated annealing method e next consider the ground-state properties in the case
[32] with an appropriate |Ogarithmic annea“ng Schedu|e'0f an attractive boson-fermion interaction. Because of the
Quadratic constraintés4) and (55) have been incorporated Strong attraction with growing lattice depth, the fermions fol-

in a dynamical penalty formulatiofsee, e.g., Ref33]). Fi-  low the bosons in building a sharp crystalline block around
nally, for the local refinement the Nelder-Mead downhill the center of the trap, as can be seen from Figs. 5 and 6. We
simplex method34] has been applied. cannot expect in this case to observe a simultaneous mean-

In Fig. 2 we show the change of the on-site bosonic denfield collapse like the one predicted for a trapped Bose-Fermi
sities with increasing lattice potential strength for a sys-

FIG. 3. On-site fermionic densities for a Bose-Fermi repulsion FIG. 5. On-site bosonic densities for a Bose-Fermi attraction
age=0.04, as a function of the lattice potential strength. age=—0.04, as a function of the lattice potential strength.

023606-7



ALBUS, ILLUMINATI, AND EISERT PHYSICAL REVIEW A 68, 023606 (2003

in the Bose-Fermi Hubbard Hamiltonian assuming that the
on-site fermionic and bosonic trapping potentials coincide.

A similar transmutation of bosons into fermions in strong
optical lattices has been pointed out by Paredes and Cirac in
a recent papdrll]. They consider a model of pure bosons in
an optical lattice and show that in the limit of very strong
boson-boson on-site interaction, the bosonic operators can be
mapped into fermionic operators by means of the well-
known Jordan-Wigner transformation. Let us consider what
happens in the case of a boson-fermion mixture. As the lat-
tice strength grows, configurations of lowest energy, which
, o . , _are mirror-symmetric with respect to the center of the lattice,
FIG. 6. On-site ferm_lonlc densme_s for a que-Ferml attractlon"ke, e.g., those of Figs. 2 and 3, become approximately en-
agr=—0.04, as a function of the lattice potential strength. ergetically equivalent to other symmetric configurations

) ) ) (e.g., a checkerboard of alternating bosons and fermions with
mixture in the continuun{35,3§ (for the effects beyond one particle per lattice sitas well as to nonsymmetric con-

mean field, see Ref37]), as this possibility is forbidden in a - figyrations(like a succession of four fermions followed by
single-band approximation. Finally, we consider the behaviofye hosons and then a last fermion, again with one particle
of the bosonic superfluid on-site parameter in the case of Ber lattice sitg, and mirror symmetry breaking takes place.

boson-fermion attractive interaction. We may thus consider sequences of energy functionals with

Comparing Fig. 7 with Fig. 4, we see that the transition toincreasin lattice potential strengthg. For each value of
a Mott-insulating phase for the bosons takes place at the 9 P g

same lattice potential strength, irrespective of the repulsivé/o, ON€ may identify a ground state. Then, the difference in
or attractive nature of the boson-fermion interaction. This€nergy of this ground state to those states that can be ob-
finding confirms the results of the mean-field analysis pre_talned by |nterchan~g|ng the role of fermions and bosons will
sented in the preceding section. converge to zero ag, grows. The boson hopping contribu-

tion will become negligible, whereas the behavior bfg

will enforce the mean bosonic on-site occupation number to

be at most one. Hence, for each lattice site, the constraints on

the boson and fermion occupation numbers become identical
The above optimization problem associated with the con{at most one boson or one fermion per lattice )sité¢otice

strained minimization of the energy is not convex, hencethat the suppression of the hopping terms is exponential.

there can be many local minima in addition to the global onemoreover, sinceV’=V{ for all lattice sitesi, larger the

However, even the ground state may be approx_|mately alue of Vo, more symmetric the role of bosons and fermi-
exactly degenerate. In fact, this is what happens in the ca

. ) hs. There are then many ground states that are degenerate in
of boson-boson and boson—l‘ermlon~repuIS|on for large Va'“eénergy with respect to any permutation of lattice sites, as
of lattice potential strengtlVo. As Vo grows, it becomes |ong as all particles are located around the minimum of the
eventually energetically more favorable for the bosons to b%onfining external potentiglgo)zv(FO):O. These degenerate

arranged in single-particle occupancy of the available Siteﬁonfi urations will be given by all possible symmetric and
around the center of the external trap. The bosonic and fer- 9 g yalp y

S . . onsymmetric fermion and boson distributions in a region
mionic on-site occupation numbers can only assume values

1 d a definite b formi ) blish round the center of the lattice, with every site of the region
or 1, and a definite boson-fermion symmetry is establisheccpied by one and only one particle. Such possible con-

figurations are, for example, checkerboard alternating pat-
terns of bosons and fermions, or Mott bosonic central con-
figurations with fermionic wings on the sides, or consecutive
block crystalline arrangements of variable length of bosons
and fermions. In brief, while the Hamiltonian formally re-
tains its mirror-symmetry under reflection of the lattice
around its center, the degenerate ground states need not, and
spontaneous mirror symmetry breaking occurs. At the same
time, complete boson-fermion exchange symmetry sets on.
No ground state is priori favored compared to any other:
any random pattern of consecutive bosons and fermions lo-
cated around the minimum of the external trapping potential
is a legitimate ground state. Figure 8 shows representative

FIG. 7. The bosonic superfluid on-site order parameter for n-site bosonic densities in the regime of large value¥pf

Bose-Fermi attractioags=—0.04, as a function of the lattice po- around V=50 for the case of boson-boson and boson-
tential strength. fermion repulsion in a system composed of five bosons and

V. MIRROR SYMMETRY BREAKING
AND TRANSITION TO DEGENERACY
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Fermi dilute atomic system loaded in a deep optical lattice at
zero temperature, provided that intercomponent interactions
are repulsive and the on site confining potentials coincide for
the different components. It clearly cannot take place in a
single-component system, say a pure single-component Bose
gas, where only a SF-MI transition occuyrg]. The rather
complex and rich interplay between ordered and disordered
configurations of Bose-Fermi mixtures in very deep optical
lattices will be considered in more detail elsewhere.

VI. SUMMARY AND OUTLOOK

FIG. 8. The disordered pattern of bosonic ground-state distribu- In conclusion, we have studied the zero-temperature prop-
tions for repuIsLive boson;boson and boson-fermion interactions foérties of a mixture of weakly interacting gases of neutral
large values oV, aroundV,=50. bosonic and fermionic atoms loaded in one-dimensional op-
] ] ) _ tical lattices and confined by harmonic trapping potentials.
five fermions: at each value of the lattice potential strength, e have derived a single-band Bose-Fermi Hubbard Hamil-
particular state is selected from the set of those with SaMgynjan, and performed some mean-field studies of the zero-
energy. Each vanishing value of the on-site bosonic densityamperature phase diagram. We have considered the case of a
means that exactly one fermion h~as filled that particular |at-quasifree fermion sea acting on the bosons, which have been
tice site. The large value chosen g allows one to clearly treated in their full dynamical range. We have always worked
stress the random nature of the configuration patterns even the approximation ofs-wave boson-boson and boson-
for very small changes of the lattice potential strengthfermion contact interactions. According to the different pos-
whereas degeneracy and disorder can set in already at lowsible combinations of intraspecies and interspecies attractive
values of the lattice depth, depending on the tuning of theand repulsive interactions, the system displays a rich phase
harmonic oscillator and scattering lengtfsee below The  structure, including the onset of a SF-MI transition in the
degenerate states are separated by energy barriers. The sgsson sector, and a simultaneous transition to demixing in
tem is nonergodic, and hysteresis should be observed: whiie boson-fermion sector. The optical lattice potential plays a
particular state is chosen, depends on the exact mechanissrucial role, allowing to tune the system into regimes of
of preparation of the system and of loading of the mixturestrong boson-boson and boson-fermion couplings as the lat-
into the optical lattice. tice depth is increased. For very deep lattices the system

The criterion for the onset of degeneracy and nonperiodiglisplays a remarkable transition to a multiply degenerate
ground states in the bulk region around the center of th¢phase in which all possible permutations of configurations
lattice and of the trapping potential is easily identified, bywith one bosonic or fermionic atom per site are legitimate
looking at the relative importance of the trapping on-siteground states. The transition is related with breaking of the
energy with respect to the on-site boson or fermion interactattice mirror symmetry for very large values of the lattice
tion energy. For instance, to allow for the fermionic behaviordepth. This peculiar disordered pattern of degenerate ground-
of the boson on-site occupation numbésgher O or 1) one state configurations separated by very large barriers is some-
must require that the energy is lower, having one boson at thikow reminiscent of the behavior of classical disordered sys-
edge of the bulk central region rather than having it sitting ontems, such as glasses and spin glasses, but it takes place in a

top of another boson at the center of the lattice: guantum system at zero temperature.
5 5 The setting that has been investigated in detail in the
Ugg>Vg [i=(Ng+Ng)/2]. (56)  present paper can be extended in various ways. Certainly a

larger number of bosons and fermions have to be considered
The analogous condition for the Bose-Fermi on-site interacin order to obtain a more realistic description of the system.
tion is: While our previous analytical findings are applicable to any
~ ~ numbers of atoms, in order to extend the numerical calcula-
Ugr>Veir  [I=(Ng+Ng)/2]. (57)  tions to larger numbers more powerful numerical methods
5 have to be introduced. So far, Monte Carlo simulations with
For smaller values oY, the boson hopping contribution a fairly large number of particles have been carried out only
will become more and more important. A representative situfor an inhomogeneous Bose-Hubbard mofk8]. The au-
ation of this intermediate regime is depicted in Figs. 2 and 3thors have also speculated that the qualitative phase diagram
here, the repulsion between bosons and fermions is stromdpes not depend on the dimensionality of the system.
enough to allow for phase separation, while the non- In order to extend the work presented in this paper to the
negligible hopping terms still favor configurations where case of interacting fermions, one may either allow for differ-
bosons have bosons as nearest neighbors. The transitiondat fermionic species in magnetic traps or for spin-
degeneracy and disorder, exact in the limit of infinite latticeunpolarized identical fermions in optical traps. Exchange-
depth, is a peculiar feature of Bose-Fermi mixtures and itorrelation effects that are already included in the Gutzwiller
should hold in general for any multicomponent Bose orAnsatz for the bosons will then become important for the
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fermions as well[39]. In this way, the Bose-Fermi interac- ing behavior, whereas the bosons could be used to let the
tion has to be consistently incorporated beyond the mearsystems interact and perform operations.
field level. In the present paper, the mean-field treatment of In turn, the study of such coupled quantum systems ex-
the Bose-Fermi interaction is consistent, since we only inhibiting collective phenomena with the methods of the
cluded the fermions in a mean-field and LDA prescription. theory of multiparticle entanglement is an attractive investi-
At the opposite extreme, one can consider the fermions tgation in its own right. The aim here is not to use the coupled
be static impurities for the bosons, as very recently discusseslystem to prepare strongly entangled systems that form the
by Vignolo and Akdeniz, and Je$t0]. Recently, Buchler starting point for applications in quantum information pro-
and Blatter reported on the induced boson-boson interactiocessing. Instead, the motivation of such investigations is to
due to the fermions for mixtures loaded in a 2D lattjid4]. go beyond conventional methods to characterize the natural
Besides these fundamental theoretical aspects related torrelations present in the distributed system at zero tem-
the theory of quantum phase transitions and the statisticgderature[43—46¢. The quantitative theory of entanglement,
mechanics of complex systems, ultracold Bose-Fermi mixwhich abstracts from the actual physical realization of a
tures in an optical lattice qualify for potential applications in Bose-Fermi Hubbard model, could provide the tools to un-
the physics of quantum information. As with systems involv-derstand how global properties emerge here from quantum
ing either bosons or fermions which have been studied so farorrelations between the elementary constituents.
[18,17,21,19,1F mixtures could be used for the preparation
of multiparticle entangled statg$6], such as cluster states or
certain instances of graph statp#?], as well as for the
implementation of quantum gates. With bosons and fermions We thank Kai Bongs, Giovanni Modugno, Luis Santos,
serving two different purposes, Bose-Fermi mixtures couldand Marcus Cramer for very useful discussions. A.A. and
in fact allow for new possibilities of quantum information J.E. thank the DFG and the ESF for financial support. F.I.
processing in optical lattices. The fermions would be suitablehanks the INFM for financial support as well as COSLAB
for storage of quantum information due to their noninteract-and BEC2008- ESF programs.

ACKNOWLEDGMENTS

[1] M. Greiner, O. Mandel, T. Esslinger, TW. 'Hsch, and I. [18] D. Jaksch, H.-J. Briegel, J.I. Cirac, C.W. Gardiner, and P.

Bloch, Nature(London 415, 39 (2002. ) Zoller, Phys. Rev. Lett82, 1975(1999.
[2] M. Greiner, I. Bloch, O. Mandel, TW. Hech, and T. Es- [19] J.J. Garcia—Ripoll and J.I. Cirac, Phys. Rev. L8, 127902
slinger, Phys. Rev. LetB7, 160405(2001). (2003.

(3] E Orz'eII;A.SK._ T“g‘glag'sg/lél(‘z'gggsela“’ M. Yasuda, and M-A. 50 . Dorner, P. Fedichev, D. Jaksch, M. Lewenstein, and P. Zol-
asevich, Scienc . . ]

[4] J.R. Anglin and W. Ketterle, Naturg.ondon 416, 211(2002. ler, e-print quant ph/0212039. .

[5] P.S. Jessen and I.H. Deutsch, Adv. At., Mol., Opt. PBys95 [21] J. Pachos and P.L. Knight, e-print quant-ph/0301084.

(1996. [22] M.P.A. Fisher, P.B. Weichman, G. Grinstein, and D.S. Fisher,
[6] S. SachdevQuantum Phase Transitioni€ambridge Univer- Phys. Rev. BAO, 546 (1989.
sity Press, Cambridge, 1999 [23] For a detailed study of the effects of inhomogeneities in boson-
[7] D. Jaksch, C. Bruder, J.I. Cirac, C.W. Gardiner, and P. Zoller, fermion lattice models cfr: A. Albus, M. Cramer, J. Eisert, and
Phys. Rev. Lett81, 3108(1998. F. llluminati (unpublisheg
[8] D. van Oosten, P. van der Straten, and H.T.C. Stoof, Phys. Re{24] G. Modugno, F. Ferlaino, R. Heidemann, G. Roati, and M.
A 63, 053601(2002). Inguscio, e-print cond-mat/0304242.
[9] J. Ruostekoski, G.V. Dunne, and J. Javanainen, Phys. Re{25] A.P. Albus, S.A. Gardiner, F. llluminati, and M. Wilkens, Phys.
Lett. 88, 180401(2002. Rev. A65, 053607(2002.
[10] W. Hofstetter, J.I. Cirac, P. Zoller, E. Demler, and M.D. Lukin, [26] L. Viverit and S. Giorgini, Phys. Rev. A6, 063604(2002.
Phys. Rev. Lett89, 220407(2002. [27] G.-H. Chen and Y.S. Wu, Phys. Rev.6%, 013606(2003.

[11] B. Paredes and J.I. Cirac, Phys. Rev. L8€. 150402(2003. [28] L. Viverit, C.J. Pethick, and H. Smith, Phys. Rev6A 053605
[12] A. Recati, P.O. Fedichev, W. Zwerger, and P. Zoller, Phys. Rev. (2000.

Lett. 90, 020401(2003. [29] J.K. Freericks and H. Monien, Europhys. L&t6, 545(1994).
[13] H.P. Bichler, G. Blatter, and W. Zwerger, Phys. Rev. Lef), [30] K. Sheshadri, H.R. Krishnamurthy, R. Pandit, and T.V. Rama-
130401(2003. rishnan, Europhys. LetR2, 257 (1993.
[14] A.J. Kerman, V. Vuletic, C. Chin, and S. Chu, Phys. Reuv. Lett.[31] J.J. Garcia-Rippoll, J.I. Cirac, P. Zoller, C. Kollath, U. Scholl-
84, 439(2000. woeck, and J. von Delft, e-print cond-mat/0306162.
[15] P.S. Jessen, D.L. Haycock, G. Klose, G.A. Smith, I.H. Deut-[32] S. Kirkpatrick, C.D. Gelatt, and M.P. Vecchi, Scier20, 671
sch, and G.K. Brennen, Quantum Inf. Compl;t20 (2002). (1983.
[16] L.—M. Duan, E. Demler, and M.D. Lukin, e-print [33] B.W. Wah and T. Wang, irPrinciples and Practice of Con-
cond-mat/0210564. straint Programming\Vol. 461 (Springer, Heidelberg, 1999
[17] I.H. Deutsch, G.K. Brennen, and P.S. Jessen, Fortschr. Phy§34] J.A. Nelder and R. Mead, Comput. d.308 (1965.
48, 925 (2000. [35] R. Roth, Phys. Rev. &6, 013614(2002.

023606-10



MIXTURES OF BOSONIC AND FERMIONIC ATOMS IN . .. PHYSICAL REVIEW A8, 023606 (2003

[36] M.A. Cazalilla and A.F. Ho, e-print cond-mat/0303550. cond-mat/0304104.

[37] A.P. Albus, F. llluminati, and M. Wilkens, Phys. Rev. &, [41] H.P. Bichler and G. Blatter, e-print cond-mat/0304534.
063606(2003. [42] W. Dur and H.-J. Briegel, Phys. Rev. Lef0, 067901(2003.

[38] G.G. Batrouni, V. Rousseau, R.T. Scalettar, M. Rigol, A. Mu- [43] T.J. Osborne and M.A. Nielsen, Phys. Rev.68, 032110
ramatsu, P.J.H. Denteneer, and M. Troyer, Phys. Rev. 8@it. (2002.
117203(2002. [44] J.I. Latorre, E. Rico, and G. Vidal, e-print quant-ph/0304098.

[39] E.H. Lieb and F.Y. Wu, Phys. Rev. Lef20, 1445(1968); 21, [45] K. Audenaert, J. Eisert, M.B. Plenio, and R.F. Werner, Phys.
192 (1968. Rev. A66, 042327(2002.

[40] P. Vignolo, Z. Akdeniz, and M.P. Tosi, e-print [46] P. Giorda and P. Zanardi, e-print quant-ph/0304151.

023606-11



