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Fundamental limit for integrated atom optics with Bose-Einstein condensates
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The dynamical response of an atomic Bose-Einstein condensate manipulated by an integrated atom-optics
device, such as a microtrap or a microfabricated waveguide, is studied. We show that when the miniaturization
of the device enforces a sufficiently high condensate density, three-body interactions lead to a spatial modu-
lational instability that results in a fundamental limit on the coherent manipulation of Bose-Einstein conden-
sates.
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I. INTRODUCTION

The central idea of integrated atom optics is to miniat
ize the size of active and passive atom-optical compone
such as atom lasers, wave guides, beam splitters, and i
ferometers, and to combine them in integrated devi
@1–12#. Potential future applications include hand-carri
high-precision measurement devices such as gravimeters
gyroscopes. Integrated atom-optical chips may also pr
useful to control neutral atoms in integrated and scala
microtrap arrays for quantum information processing. F
example, microfabricated atom-optical components can
fabricated with current-carrying wires or microstructur
surfaces, combined with homogeneous magnetic bias fi
and periodically magnetized substrates. Optical fields
electric fields may also be involved in the hybrid constru
tion of such devices.

However, the future of integrated atom optics still d
pends on finding solutions of a number of both technical a
fundamental issues. For example, it will be essential to m
tain the coherence of the matter waves to be manipulate
step still to be demonstrated in waveguide-based beam s
ters. Atoms confined in wire-based microtraps on atom ch
face a relatively noisy environment, due e.g. to the hea
from the chip substrate, which can cause the decoherenc
atomic matter wave@13#. In addition, fluctuating currents in
microwires may perturb the atoms when they are brou
near its surface. Recent experiments have revealed the
mentation of atomic Bose-Einstein condensates~BECs! con-
fined in wire-based microtraps when the atom-surface
tance is reduced to micrometer scale@10–12#, and the
experimental data seems to support the argument that
fluctuating currents in the wire and corrugations due to
perfect microfabrication are responsible for that fragmen
tion.

While such experiments illustrate the technical limitatio
for the coherent control of atoms in the microtraps, it can
hoped that these will be eliminated by better engineer
solutions. In addition, though, it is also important to und
stand the fundamental limitations to integrated atom opt
For example, the strong compression typical of microtraps
waveguides can significantly increase the density of
atomic BECs, thereby enhancing inelastic collisions and
sulting in a fundamental source of decoherence that red
the lifetime of the confined BECs@10#.
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In this paper, we discuss an additional effect that lim
the coherent control of atomic BECs in microtraps or mic
fabricated waveguides. Specifically, we show that when
miniaturization of the device results in a sufficiently hig
condensate density, three-body interactions lead to a sp
modulational instability that leads to the fragmentation of t
condensate, thereby imposing a fundamental limit on
densities that can be stably propagated and manipulate
atomic waveguides.

The paper is organized as follows: Section II introduc
our model and establishes the notation. Section III use
linear stability analysis to show analytically the existence
a modulational instability in the condensate dynamics wh
three-body collisions become important. Section IV prese
the results of selected numerical simulations that confirm
analytical predictions and show the onset of condensate f
mentation. Section V expands our analysis and presents
guments that reinforce the conclusions of the numer
simulations and argue that the modulational instability ev
tually leads to a collapse of the condensate. Finally, Sec
is a summary and outlook.

II. THE MODEL

For concreteness, we consider in this paper an ato
waveguide resulting from the combination of a curre
carrying wire~for instance! electroplated on a substrate, an
a static, homogeneous bias magnetic fieldBbias @10# perpen-
dicular to the conductor. Assuming a linear wire, the distan
d of the waveguide to the chip surface is

d5S m0

2p D I

Bbias
, ~1!

where m0 is the vacuum permeability andI the current
through the wire. Since the guide height can be reduced
ing smaller currents or stronger bias field, the setup is id
for the requirement of miniaturization in integrated atom o
tics.

The radial oscillation frequency of this trap is

v r5
2p

m0
AmBgFmF

mB0

Bbias
2

I
, ~2!

wheremB is the Bohr magneton,gF and mF the gyromag-
netic ratio and magnetic moment of the hyperfine state of
alkali metal atoms of massm being trapped, and we hav
©2003 The American Physical Society05-1
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assumed that the axial confinement of the atoms is achie
by a Ioffe-Pritchard-type trap that provides a fieldB0 in the
center of the trap.

Since the radial oscillation frequencyv r scales asBbias
2 /I ,

any miniaturization of the trap achieved through a reduct
of d results in an increase ofv r , and hence in the density o
the confined condensate. The closer to the chip surface
condensate is brought, the higher its density. In some of
present experiments, the condensate densities can alr
reach values in excess of 131015 cm23. For such high den-
sities, the effects of three-body interactions on the dynam
of BECs are expected to become important. Our goal in
paper is to understand their impact on the dynamics of
guided condensate.

Our starting point is the three-dimensional Gros
Pitaevskii equation for the wave functionC(r ,t) of a
trapped condensate, generalized to include three-body i
actions,

i\
]C

]t
5F2

\2

2m
¹21

1

2
mvz

2@j2~ t !r 21z2#2mGC
1\g2NuCu2C1\g3N2uCu4C. ~3!

Here m is the chemical potential,g2 and g3 measure the
strength of the two-body and three-body interactions, resp
tively, C(r ,t) is normalized to unity andN is the number of
atoms in the condensate. We have also introduced the dim
sionless ratio

j~ t !5v r~ t !/vz , ~4!

which determines the strength of the transverse confinem
relative to the longitudinal trapping.@We allow j(t) to be
time dependent to include possible time variations of b
magnetic fieldBbias or of the currentI, and hence ofv r .]

In the following, we assume that the microtrap is oper
ing in the regime of tight transverse confinement,j(t)@1
and also that the transverse trapping potential is much la
than the interatomic interaction. We further assume that
time variation ofv r(t) is slow enough so that the transver
profile of the BEC adiabatically follows the ground tran
verse oscillator state

f0~r ,t !5A 1

p l r
2~ t !

e2r 2/2l r
2(t), ~5!

with l r(t)5A\/mv r(t).
We can then proceed by approximating the conden

wave functionC(r ,t) as

C~r ,t !'u~z,t !f0~r ,t !expF2 i E t

dt8v r~ t8!G , ~6!

where it is understood that the radial wave functionf0(r ,t)
contains only slow time variations, and the envelope funct
u(z,t) incorporates all other time variations. We then obta
the approximate equation for the envelope function
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]t
5F2

\2

2m

]2

]z2
1

1

2
mvz

2z22mGu1\g2,z~ t !uuu2u

1\g3,z~ t !uuu4u, ~7!

where the reduced interatomic interaction coefficientsg2,z
andg3,z are

g2,z~ t !5g2NE 2prdr uf0~r ,t !u45S g2N

2p l z
2D j~ t !,

g3,z~ t !5g3N2E 2prdr uf0~r ,t !u65S g3N2

3p2l z
4D j2~ t !, ~8!

where l z5A\/mvz. From these definitions, we see that t
reduced two-body interaction coefficient varies linearly w
the transverse oscillator frequency or the ratioj(t)
5v r(t)/vz , whereas the three-body coefficient scales
j2(t). This implies that the relative significance of two- an
three-body interactions depends on the level of transve
confinement.

For alkali metal atoms, the two-body interaction coef
cient has fully been determined by experiments. Althou
information for three-body interactions is still sketchy, rece
theoretical studies have provided a way to estimate the th
body interaction coefficientg3 @14–18#. For rubidium atoms,
it may be expected to be negative, withug3u of the order of
10226–10227 cm6/s. With this in mind, we focus our discus
sion on atoms with repulsive two-body interactions (g2
.0) and attractive three-body interactions (g3,0).

III. MODULATIONAL INSTABILITY

To expose the basic modulational instability that arises
high densities, we first consider the case where the long
dinal trapping potential is switched off, the transverse tra
ping is fixed, so thatj@1 is constant, and the condensate h
a homogeneous longitudinal distributionu0 over a lengthL.
The chemical potential is thenm5\g2,zuu0u22\ug3,zuuu0u4.

We are interested in the condensate dynamics in the p
ence of the attractive three-body interaction. For this p
pose, we first carry out a linear stability analysis by settin

u~z,t !5@u01du~z,t !#e2 imt/\, ~9!

and looking at longitudinal excitations of the form

du~z,t !5(
k

@akUk~z!e2 inkt2ak
†Vk~z!* einkt#.

Substituting Eqs.~9! and ~10! into Eq. ~7!, we obtain

S 2
\

2m

]2

]z2
1h D Uk2hVk5nkUk ,

S 2
\

2m

]2

]z2
1h D Vk2hUk52nkUk , ~10!
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where we have defined

h5g2,zuu0u222ug3,zuuu0u4. ~11!

Considering plane-wave excitationsUk5(1/L)exp(ikz) and
Vk5(1/L)exp(2ikz), Eq. ~10! gives the excitation frequen
cies

nk5A\k2

2m S \k2

2m
12h D , ~12!

which reduce to the familiar Bogoliubov spectrum in t
absence of three-body excitations. In that limit, the excitat
energies are always positive and the condensate is st
However, the situation changes completely wheng2,z
,2ug3,zuuu0u2, or h,0, in which case the excitation ene
gies can become imaginary. Physically, such complex
quencies imply that spatially modulated perturbations
grow with time, that is, a modulational instability may occu
The maximum gain occurs for the wave numberk such that
\k2/2m5uhu, which yields the spatial period of the mo
unstable wave asLm5A2p2\/(muhu). Provided that the
length of the BEC satisfiesL.Lm , it will then become
modulationally unstable due to the attractive three-body
teractions. As a result, a spatial inhomogeneity will deve
in the condensate density profile along thez axis. Three-body
interactions impose a fundamental limit on the linear den
ties that can be stably propagated and manipulated in
waveguide.

Consider a 87Rb BEC as an example. The two-bod
interaction coefficient of 87Rb is g254p\as /m
;4.95310211 cm3/s. The theoretical estimate of the thre
body interaction coefficient isug3u;10226210227 cm6/s.
The onset of the modulational instability occurs then
ug3ur0;g2/2, with r0 being the three-dimensional density
the condensate. This yields a threshold density of the o
of 1015–1016 cm23, beyond which the condensate becom
dynamically unstable. We remark that such densities m
have already been achieved in recent experiments. The
responding modulational length is on the order of a f
microns.

IV. NUMERICAL SIMULATIONS

In this section, we present numerical simulations that
lustrate the effect of the modulational instability on the co
densate dynamics. In particular, we consider the case
which the magnitude of the bias magnetic fieldBbias is de-
creased to lower a magnetically trapped gas towards
atom chip surface. We assume that the initial trapped ga
stable against modulational instabilities. As the condens
approaches the surface of the chip, its linear density
creases concomitantly with the increasing transverse t
ping frequency. The gas can then become modulation
unstable. Our numerics give illustrative examples of the
velopment of this instability.

For convenience of numerical calculation, we introdu
the dimensionless variablest5vzt,z5z/ l z , and F(z,t)
5Al zu, to yield
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1

2

]2

]z2
1

1

2
z2D F1b2f ~t!uFu2F

1b3f 2~t!uFu4F, ~13!

where

b25
~g2N/2p l z

3!

\vz
j0 , b35

~g3N2/3p2l z
6!

\vz
j0

2 . ~14!

Here we have written

j~t!5v r~t!/vz5j0f ~t!,

j05v r(0)/vz being the initial ratio of the transverse an
longitudinal trapping frequencies. The functionf (t) incor-
porates the time variation of the magnetic bias field. W
choosej0 such that the three-body interactions are initia
negligible for the trapped gas and the condensate is initi
stable. As it is lowered the transverse trapping frequency
linear density increase, and sof (t) increases from unity. We
note from Eq.~13! that the two-body interaction term is pro
portional to f (t) and the three-body term is proportional
f 2(t), so that as the BEC approaches the surface, the im
tance of three-body interactions increases, as we have s

We take parameters appropriate to a87Rb BEC com-
posed of N5104 atoms, m51.44310225 kg, g2
54.95310211 cm3/s, g3524310226 cm6/s, with a longi-
tudinal trap frequency vz52p314 rad/s, giving l z
52.8 mm @20#. With these parameters we findb25375 and
ub3u5270. We choose the initial transverse trapping f
quency such thatj05v r(0)/vz510, and assume a linea
ramp of v r(t), f (t)511at, where a51.5. The initial
macroscopic wave functionF(z,0) is chosen as the groun
statex(z) of the trap, neglecting the three-body interaction
An approximation to the ground state is obtained in t
Thomas-Fermi approximation by settingF(z,t)5exp
(2igt)x(z) and imposing the normalization conditio
*dzux(z)u251 to yield

ux~z!u25
1

b2
~m2z2/2!u~m2z2/2!, g5

1

2 S 3b2

2 D 2/3

,

~15!

whereu(y) is the Heaviside step function. Our condition th
the transverse trapping frequency varies slowly compare
the longitudinal dynamics requiresg@a, which is satisfied
by our chosen parameters.

Figure 1 shows the evolution of the scaled linear dens
uF(z,t)u2 versusz andt, in the absence of ramping of th
transverse trapping frequency (a50). The density profile
remains intact in time, except for a small modulation th
arises from the fact that the initial macroscopic wave fun
tion is the ground state without the three-body interactio
whereas the numerical simulation in Fig. 1 incorporates
three-body interactions. This results in some small rearran
ment of the density profile. The robustness of the den
profile to the inclusion of the three-body interactions sho
that the initial state is stable and the three-body effects
5-3
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not important for these initial parameters. This also justifi
our use of this particular initial wave function.

This result should be compared and contrasted with F
2, which shows the evolution of the scaled linear dens
uF(z,t)u2 versust for t50→7.5 for a situation where the
transverse trapping frequency is ramped (a51.5). As the
transverse trapping frequencyj(t)5v(t)/vz5103(1
11.5t) increases in time, the initial effect is a broadening
condensate width. This is a consequence of the fact tha
dominant repulsive two-body interactions are becom
stronger. The density undulations, seen in Fig. 2, arise f
the interplay between the attractive harmonic trapping
the increasing two-body repulsion.

As time increases further, the role of the attractive thr
body interactions starts to become important, with the on
of the modulational instability increasing fort.7.5. Figure
3 shows the development of the instability around the ce
of the trap at the dimensionless timest57.64 ~dotted line!,
t57.68 ~dashed line!, and t57.72 ~solid line!. A spatial
modulation of the condensate density of periodL/ l z.0.8 is

FIG. 1. Scaled densityuF(z,t)u2 versusz and t for the case
with no ramping of the transverse trapping frequency (a50).

FIG. 2. Scaled densityuF(z,t)u2 versusz and t for the case
with ramping of the transverse trapping frequency (a51.5).
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clearly seen to be developing, resulting in a fragmentation
the density profile of the trapped gas.

One can compare this period with the analytical pred
tions of Sec. III by treating the center of the BEC as appro
mately homogeneous. Converting to dimensionless units,
period of the most unstable wave vector becomes

Lm

l z
.A 2p2

ub2f maxnc22ub3u f max
2 nc

2u
, ~16!

where f max513 is the value off (t58) for times in the vi-
cinity where the instability develops, andnc.0.06 is the
value of the scaled linear density at the trap center. From
we obtainLm / l z'0.74, in reasonable agreement with t
period 0.8 between the peaks in Fig. 3. We remark that
threshold for the modulational instability occurs when t
denominator in Eq. ~16! vanishes, that is,ub2f maxnc

22ub3ufmax
2 nc

2u50.
For timest.8 the main density peaks generated by t

modulational instability in Fig. 3 continue to grow, and th
numerical simulations quickly break down thereafter. Inde
the numerical solutions indicate that the density peaks
undergoing a collapse whereby the density locally increa
towards infinity within a finite time. Abdullaevet al. @21#
have previously shown that a collapse is possible in
trapped gas with repulsive two-body interactions. This c
lapse is analogous to the corresponding case for two
three-dimensional condensates, where a collapse occur
condensates large enough so that the attractive two-bod
teractions overcome the ‘‘quantum pressure’’ associated w
the trap ground state. By contrast, the present system is
fectively one-dimensional~in z), but with a combination of
repulsive two-body interactions and attractive three-body
teractions, and it is the competition between these t
mechanisms that leads to condensate collapse for sufficie
high densities. This places a fundamental limitation on
linear densities that can be stably sustained in atom
crotraps and waveguides.

FIG. 3. Scaled densityuF(z,t)u2 versusz for times t57.64
~dotted line!, t57.68 ~dashed line!, andt57.72 ~solid line!.
5-4
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In practice, the predicted collapse will be regularized
some additional physical process, such as three-body lo
as in the case of higher-dimensional collapse in the Bo
Novae. We conjecture that a form of soliton turbulence w
ensue@22,23#. In addition, as the linear density continues
grow the mean-field energy will eventually exceed the tra
verse mode energy, in which case multiple transverse mo
will be excited thereby arresting the collapse.

We point out that the above results are based on the
sumption that the Gross-Pitaevskii equation is valid to
scribe the dynamics of the confined one-dimensional Bo
Einstein condensate. In fact, we can assess the validity of
use of the Gross-Pitaevskii equation to model the confi
one-dimensional BEC by examining the dimensionless
rameter g5mg/\2n, where g5\g2,z /N5(\g2/2p l z

2)j is
the effective one-dimensional coupling constant andn
'r0p l z

2 is the linear density@24,25#. In particular, previous
theoretical studies have shown thatg!1 corresponds to the
Gross-Pitaevskii regime, whereasg@1 corresponds to the
strongly interacting Tonks-Girardeau regime@24,25#. For our
case we obtaing5(mg2j/2p2\ l z

4r0), which for the previ-
ously stated87Rb parameters,j5100, andr0.1015 cm23,
givesg.1025, so we are well justified in using the Gros
Pitaevskii equation. Furthermore, the simulations presen
here well obey the diluteness conditionr0a3!1, with a the
scattering length, since 1/a3.1019 cm23 which is a very
large density compared to those considered here in
atomic BEC experiments.

V. COLLAPSE AND MODULATIONAL INSTABILITY

In this section, we present a discussion that reinforces
argument that the modulational instability eventually leads
condensate collapse. We proceed by reexamining the ge
alized Gross-Pitaevskii equation~13!, which can be inter-
preted as resulting from the effective potential

Ue f f~z!5
1

2
z21b2f uFu21b3f 2uFu4. ~17!

Consider a normalized Gaussian approximate trial solu
of width l

F~z!'S 1

p l 2D 1/4

e2z2/(2l 2), ~18!

which relates the peak densityuF(0)u2 at trap center tol via

nc5uF~0!u251/Ap l 2. ~19!

Near the center, and evaluating the potential for parame
f max,nc in the vicinity of where the modulational instabilit
develops, we have

Ue f f~z!'~b2 f maxnc2ub3u f max
2 nc

2!

1
z2

l 2 S l 2

2
2b2p f maxnc12ub3up f max

2 nc
2D1••• .

~20!
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We are interested in the term in large parenthesis, wh
controls the dominant confinement properties due to
combined effects of the linear trap and two- and three-bo
interactions. At densities low enough for the two-body int
actions to dominate over the three-body processes, the
body collisions oppose the focusing of the trap, and th
balance produces a stable and confined solution. In cont
when attractive three-body interactions dominate, both
trap and the three-body interactions work to compress
density, causing a strong focusing of the density distribut
and collapse. We, therefore, anticipate that the crosso
from stability to collapse will occur when the two- and thre
body focusing terms in the large parentheses cancel e
other,

b2p f maxnc22ub3up f max
2 nc

250. ~21!

This coincides precisely with the modulational instabili
threshold from Eq.~16!. Thus, the appearance of a modul
tional instability also signals that the condensate will c
lapse if the trapped gas is too close to the atom chip surf
This conclusion is also in agreement with the results of A
dullaev et al. @21#, regarding the stability of trapped gase
We remark that, although we have considered a magnetic
trapped gas, the same conclusions clearly apply to an o
cally trapped gas at sufficiently high densities.

We can also use a variational approach to treat the
lapse of the condensate more rigorously. Consider Eq.~18!
as the variational wave function with widthl being the varia-
tional parameter. The energy functional associated with
dimensionless Schro¨dinger equation~13! is then given by

E~ l !5E dzF~z!F2
1

2

]2

]z2
1

1

2
z21

1

2
b2f uF~z!u2

1
1

3
b3f 2uF~z!u4GF~z!5

l 2

4
1

A
l

2
B
l 2

, ~22!

whereA5b2f /(2A2p) andB5ub3u f 2/(3A3p)21/4.
From Eq.~22!, we haveE( l )→2` asl→0 provided that

B.0. This means that under such a condition, the cond
sate is not stable against collapse. However, the system
still become metastable ifE( l ) possesses a local minimum
finite l. This is analogous to the metastability of an attract
condensate with a sufficiently small number of atoms@19#.
The condition for the existence of a local minimum
dE( l )/dl50 andd2E( l )/d2l .0, which yields

F~ l ![
1

2
l 42Al 12B50,

l .
8B
3A .

It can be shown that the above conditions are satisfied if
only if

FS 8B
3AD5

1

2 S 8B
3AD 4

2
2

3
B,0. ~23!
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The local minimum vanishes when the above inequality
comes an equality. For the parameters of our numerical
culations, this happens att'8.4, which is in reasonable
agreement with the onset of collapset.8 found in the simu-
lations. This not only further establishes the connection
tween the modulational instability and the condensate
lapse, but also provides the condition for the threshold of
instability through Eq.~23!.

VI. SUMMARY AND CONCLUSIONS

Generic microtraps and atomic waveguides based on
technology are characterized by an increased level of tr
verse confinement, and hence increased atomic densit
their distance from the chip is reduced. As a result, the th
body collisions become increasingly important. We ha
shown that for attractive collisions they can lead to a mo
lational instability in the dynamics of the condensate, and
eventual collapse, in agreement with the prior work of A
dullaev et al. @21# on the stability of trapped gases. Th
physics underlying this collapse, which involves the com
tition between repulsive two-body collisions and attract
three-body collisions, is reminiscent of the physics unde
ing the collapse of condensates with attractive two-body
teractions, except that in that latter case, the competitio
between the effect of collisions and the quantum press
associated with the trap ground state. In both cases, tho
the competition leads to a fundamental limit on the size
condensates that can be stably trapped and coherently
nipulated, since the modulational instability and collapse c
respond to a form of spatial fragmentation that will pers
e
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for trapped gases even though current technical source
noise are eliminated.

In addition to predicting a fundamental limit in integrate
atom optics, the present study also opens up intriguing n
directions of investigation. For instance, we recall that
use of Feshbach resonances to switch the sign of the sca
ing length from positive to negative has lead to the discov
of fascinating dynamical effects, such as Bose-Novae in
three-dimensional condensates. Similar studies, but in
dimension, should now become possible simply by modu
ing either the bias fieldBbias or the currentI in wire mi-
crotraps. In practice, the predicted collapse and the su
quent dynamics of the collapsing filaments will b
regularized by some additional physical process, such
three-body losses as in the case of higher-dimensional
lapse in the Bose-Novae, or excitation of higher-order tra
verse modes as the mean-field energy rises due to colla
In future work, we shall investigate the detailed dynamics
this one-dimensional Bose-Novae beyond the initial grow
of the modulational instability considered here.
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