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Fundamental limit for integrated atom optics with Bose-Einstein condensates
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The dynamical response of an atomic Bose-Einstein condensate manipulated by an integrated atom-optics
device, such as a microtrap or a microfabricated waveguide, is studied. We show that when the miniaturization
of the device enforces a sufficiently high condensate density, three-body interactions lead to a spatial modu-
lational instability that results in a fundamental limit on the coherent manipulation of Bose-Einstein conden-
sates.
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I. INTRODUCTION In this paper, we discuss an additional effect that limits

the coherent control of atomic BECs in microtraps or micro-

The central idea of integrated atom optics is to miniatur-fabricated waveguides. Specifically, we show that when the
ize the size of active and passive atom-optical componentghiniaturization of the device results in a sufficiently high

such as atom lasers, wave guides, beam splitters, and intfondensate density, three-body interactions lead to a spatial
ferometers, and to combine them in integrated deVicegnodulatlonal instability that leads to the fragmentation of the

[1-12. Potential future applications include hand—carriedcondensate’ thereby imposing a fundamental limit on the

: o ; . densities that can be stably propagated and manipulated in
high-precision measurement devices such as gravimeters ant mic waveguides

gyroscopes. Integrated atom—opt.ica.I chips may also prove The paper is organized as follows: Section Il introduces
us_eful to control neutral atoms_, n mte_grated and _scalabl%ur model and establishes the notation. Section IIl uses a
mlcrotrlap ar_ray? kf)o_r quzéntum |nfor_ma:t|on processing. I:?)rlinear stability analysis to show analytically the existence of
example, microfabricated atom-optical components can bg 44y ational instability in the condensate dynamics when
fabricated W'th. current-carrying wires or mmrqstrgcturgd hree-body collisions become important. Section IV presents
su[jfaces_, quﬁmed with 'hoanoget?eous maggngtlcl bfl_alsdﬂel e results of selected numerical simulations that confirm the
and periodically magnetized substrates. Optical fields 0Enalytical predictions and show the onset of condensate frag-
electric fields may also be involved in the hybrid construc-eniation. Section V expands our analysis and presents ar-
t|or|1_|of such dﬁwcfes. Fi d . i d guments that reinforce the conclusions of the numerical
owever, the future of integrated atom optics Still de-ginjations and argue that the modulational instability even-
pends on finding solutions of a number of both technical an ually leads to a collapse of the condensate. Finally, Sec. VI

fundamental issues. For example, it will be essential to malnl-gl a summary and outlook.

tain the coherence of the matter waves to be manipulated,
step still to be demonstrated in waveguide-based beam split- Il. THE MODEL

ters. Atoms confined in wire-based microtraps on atom chips

face a relatively noisy environment, due e.g. to the heating For concreteness, we consider in this paper an atomic
from the chip substrate, which can cause the decoherence WRveguide resulting from the combination of a current-
atomic matter wav§13]. In addition, fluctuating currents in carrying wire(for instance electroplated on a substrate, and
microwires may perturb the atoms when they are brough@ static, homogeneous bias magnetic fijghs[10] perpen-
near its surface. Recent experiments have revealed the fragicular to the conductor. Assuming a linear wire, the distance
mentation of atomic Bose-Einstein condensd®&sCs con-  d of the waveguide to the chip surface is

fined in wire-based microtraps when the atom-surface dis- |
tance is reduced to micrometer scdl®0—14, and the d:<ﬂ , (1)
experimental data seems to support the argument that the 27| Bpjas

fluctuating currents in the wire and corrugations due to iM<yhere o is the vacuum permeability antl the current

p_erfect microfabrication are responsible for that fragmentafhrough the wire. Since the guide height can be reduced us-
tion. ing smaller currents or stronger bias field, the setup is ideal

While such experiments illustrate the technical limitationS¢, ' tne requirement of miniaturization in integrated atom op-
for the coherent control of atoms in the microtraps, it can betics

hoped that these will be eliminated by better engineering
solutions. In addition, though, it is also important to under-
stand the fundamental limitations to integrated atom optics. 27 [upQrme Blias

For example, the strong compression typical of microtraps or Wy ZM—O WT 2
waveguides can significantly increase the density of the

atomic BECs, thereby enhancing inelastic collisions and rewhere ug is the Bohr magnetorge and mg the gyromag-
sulting in a fundamental source of decoherence that reduceeetic ratio and magnetic moment of the hyperfine state of the
the lifetime of the confined BECHL0]. alkali metal atoms of mass being trapped, and we have

The radial oscillation frequency of this trap is
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assumed that the axial confinement of the atoms is achieved Iu B2 2 1
by a loffe-Pritchard-type trap that provides a fi@g in the ih—=| — 5= —+=Mmw2z2?— u |u+%g,,(t)|ulu
center of the trap. at 2m 972 2 '

Since the radial oscillation frequeney scales a8j.J!, +hgs,(D)|ul*u @

any miniaturization of the trap achieved through a reduction

of d results in an increase @f, , and hence in the density of where the reduced interatomic interaction coefficiegis
the confined condensate. The closer to the chip surface thgnhdg,, are

condensate is brought, the higher its density. In some of the '

present experiments, the condensate densities can already goN

reach values in excess of110'® cm™ 3. For such high den- gz,z(t)ngNJ' 2ardr| go(r,t)]*= — | &),
sities, the effects of three-body interactions on the dynamics 2ml;

of BECs are expected to become important. Our goal in this

paper is to understand their impact on the dynamics of the gsN?

guided condensate. gs,z(t)IggNZJ 27Trdf|¢o(f,t)|6:(3772|4)§2(t)’ ®
Our starting point is the three-dimensional Gross- z

Pitaevskii equation for the wave functiof(r,t) of a \yherel,= \%/mw,. From these definitions, we see that the
trapped condensate, generalized to include three-body intefaqyced two-body interaction coefficient varies linearly with

actions, the transverse oscillator frequency or the ratigt)
5 =w,(t)/w,, whereas the three-body coefficient scales as
ihﬂ: _ ﬁ—V2+Emw2[§2(t)r2+zz]—,u, ¥ £2(t). This implies that the relative significance of two- and
dat 2m 27 three-body interactions depends on the level of transverse

confinement.

For alkali metal atoms, the two-body interaction coeffi-
) . ) cient has fully been determined by experiments. Although
Here u is the chemical potentialg, and g; measure the intormation for three-body interactions is still sketchy, recent
strength of the two-body and three-body interactions, respegneoretical studies have provided a way to estimate the three-

tively, W(r,t) is normalized to unity andl is the number of 4y interaction coefficierys [14—1§. For rubidium atoms,
atoms in the condensate. We have also introduced the dimeﬂ'may be expected to be negative, wjt| of the order of

sionless ratio

+hg,N|W|[2W + A gaN2 W | 4P, (3)

107261027 cmP/s. With this in mind, we focus our discus-
sion on atoms with repulsive two-body interactiong, (
§)=wr(V/w,, (4 >0) and attractive three-body interactiorgs €0).

which determines the strength of the transverse confinement

relative to the longitudinal trappingWe allow &(t) to be

time dependent to include possible time variations of bias To expose the basic modulational instability that arises at

magnetic fieldBy,s or of the current, and hence o, .] high densities, we first consider the case where the longitu-
In the following, we assume that the microtrap is operat-dinal trapping potential is switched off, the transverse trap-

ing in the regime of tight transverse confinemef(tt)>1 ping is fixed, so thaf>1 is constant, and the condensate has

and also that the transverse trapping potential is much larger homogeneous longitudinal distributiog over a lengthL.

than the interatomic interaction. We further assume that th@he chemical potential is them =179, | uo|?—%|gs||uo| *.

time variation ofw,(t) is slow enough so that the transverse  We are interested in the condensate dynamics in the pres-

profile of the BEC adiabatically follows the ground trans- ence of the attractive three-body interaction. For this pur-

IIl. MODULATIONAL INSTABILITY

verse oscillator state pose, we first carry out a linear stability analysis by setting
1 u(z,t)=[ug+ du(z,t)Je  # ©)
o(r )=\ =z e 2O, (5)
mli(t) and looking at longitudinal excitations of the form

with |,(t) = Vh/mo,(t).
We can then proceed by approximating the condensate
wave functionW¥ (r,t) as

ou(zt)= Ek: [ Ui (z)e "= alV,(z)* "],

Substituting Egs(9) and (10) into Eq.(7), we obtain

t
‘P(r,t)wu(z,t)%(r,t)ex;{—if dt'w.(t")|, (6 PRy
( —ﬁEJF 7| U= 7Vi= Uy,

where it is understood that the radial wave functipg(r,t)
contains only slow time variations, and the envelope function 5

: : - . h d
u(z,t) incorporates all other time variations. We then obtain — — —+ 7| Vi— U= — U, (10)
the approximate equation for the envelope function 2m 472
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where we have defined o 162 1
i——=| —3 53| P+ Bf (]P0
7= 02/ Uol*— 2|3l [uo|*. (11) aT 2902 2
2 4
Considering plane-wave excitatiots,= (1/L)exp(kz) and + st ()| 0D, (13
Vi=(1/L)exp(-ik?), Eq. (10) gives the excitation frequen- .
cies
(goN/2713) (g3N?/37219)
hk” 7k Bo=—— kg, Pam——— g2 (14)
"= N2m ﬁ+27]>’ (12 2 hw, 0 s Lo, 0

: . . ) Here we have written
which reduce to the familiar Bogoliubov spectrum in the

absence of three-body excitations. In that limit, the excitation )=o) w,=E&f (1),
energies are always positive and the condensate is stable.
However, the situation changes completely whgp, &o=w,(0)/w, being the initial ratio of the transverse and
<2|gs3,l|ugl? or »<0, in which case the excitation ener- longitudinal trapping frequencies. The functié@r) incor-
gies can become imaginary. Physically, such complex freporates the time variation of the magnetic bias field. We
qguencies imply that spatially modulated perturbations carchooseé, such that the three-body interactions are initially
grow with time, that is, a modulational instability may occur. negligible for the trapped gas and the condensate is initially
The maximum gain occurs for the wave numBesuch that stable. As it is lowered the transverse trapping frequency and
#k?/2m=|7|, which yields the spatial period of the most linear density increase, and §6r) increases from unity. We
unstable wave a$..,=\272%/(m|7|). Provided that the note from Eq.(13) that the two-body interaction term is pro-
length of the BEC satisfiet >L,,, it will then become portional tof(7) and the three-body term is proportional to
modulationally unstable due to the attractive three-body inf2(7), so that as the BEC approaches the surface, the impor-
teractions. As a result, a spatial inhomogeneity will developgiance of three-body interactions increases, as we have seen.
in the condensate density profile along #exis. Three-body We take parameters appropriate to®%&Rb BEC com-
interactions impose a fundamental limit on the linear densiposed of N=10* atoms, m=1.44x10 kg, g,
ties that can be stably propagated and manipulated in the 4.95<10 ! cm®/s, g;=—4x10 26 cm®/s, with a longi-
waveguide. tudinal trap frequency w,=2m7X14 rad/s, giving |,

Consider a®Rb BEC as an example. The two-body =2.8 um [20]. With these parameters we figg,=375 and
interaction  coefficient of 8Rb is g,=4mhas/m |B3|=270. We choose the initial transverse trapping fre-
~4.95< 10 cm?/s. The theoretical estimate of the three- quency such that,=w,(0)/w,=10, and assume a linear
body interaction coefficient igs|~10"26—10"2"cm®/s.  ramp of w,(7), f(7)=1+ar, where «=1.5. The initial
The onset of the modulational instability occurs then atmacroscopic wave functio(£,0) is chosen as the ground
|gslpo~9/2, with py being the three-dimensional density of statey({) of the trap, neglecting the three-body interactions.
the condensate. This yields a threshold density of the ordekn approximation to the ground state is obtained in the
of 10*°-10' cm™3, beyond which the condensate becomesThomas-Fermi approximation by setting (¢, 7) =exp
dynamically unstable. We remark that such densities migh{—iyn)x({) and imposing the normalization condition
have already been achieved in recent experiments. The cofd|x(£)|?=1 to yield
responding modulational length is on the order of a few

1 1 3/32)2’3
2

microns. IX(O|2=—(pu—2212) 0(u—E212), y==
B2 2

IV. NUMERICAL SIMULATIONS (15

In this section, we present numerical simulations that il-whered(y) is the Heaviside step function. Our condition that
lustrate the effect of the modulational instability on the con-the transverse trapping frequency varies slowly compared to
densate dynamics. In particular, we consider the case ithe longitudinal dynamics requireg>«, which is satisfied
which the magnitude of the bias magnetic fi#lg,sis de- by our chosen parameters.
creased to lower a magnetically trapped gas towards the Figure 1 shows the evolution of the scaled linear density
atom chip surface. We assume that the initial trapped gas isb(¢,7)|? versus and 7, in the absence of ramping of the
stable against modulational instabilities. As the condensatgansverse trapping frequencyr£€0). The density profile
approaches the surface of the chip, its linear density inremains intact in time, except for a small modulation that
creases concomitantly with the increasing transverse tragrises from the fact that the initial macroscopic wave func-
ping frequency. The gas can then become modulationallyion is the ground state without the three-body interactions,
unstable. Our numerics give illustrative examples of the dewhereas the numerical simulation in Fig. 1 incorporates the
velopment of this instability. three-body interactions. This results in some small rearrange-

For convenience of numerical calculation, we introducement of the density profile. The robustness of the density
the dimensionless variables=w,t,Z=2/1,, and ®({,7) profile to the inclusion of the three-body interactions shows
=l,u, to yield that the initial state is stable and the three-body effects are
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FIG. 1. Scaled densityd(¢,7)|? versus? and 7 for the case

H 2 7 —
with no ramping of the transverse trapping frequenay=Q). FIG. 3. Scaled densityd(¢,7)|* versus{ for times 7=7.64

(dotted ling, 7=7.68 (dashed ling and 7=7.72(solid line).
not important for th_ese |n_|t|_a_l parameters. _Thls also justlflesclearly seen to be developing, resulting in a fragmentation of
our use of this particular initial wave function. ; X

; : . the density profile of the trapped gas.

This result should be compared and contrasted with Fig. . . . . .

) : ; . One can compare this period with the analytical predic-

2, which shows the evolution of the scaled linear density,. . ;
tions of Sec. Il by treating the center of the BEC as approxi-

2 _ . .
L:I;gi\/zlsevfrr;usrnforfrg l?e_n>c7.ﬁgorra?nsg;iz?g)wg\esretrfge mately homogeneous. Converting to dimensionless units, the
pping Ireq y P ~ period of the most unstable wave vector becomes

transverse trapping frequency(r)=w(7)/w,=10X (1
+1.57) increases in time, the initial effect is a broadening of
condensate width. This is a consequence of the fact that the Lm \/ 27
dominant repulsive two-body interactions are becoming N | Bof made— 2| B3l F2n2|’
stronger. The density undulations, seen in Fig. 2, arise from

the .mterpla.y between the aftractive harmonic trapping an(\j/vherefmaxz 13 is the value off (=8) for times in the vi-
the increasing two-body repulsion.

cinity where the instability develops, antg,=0.06 is the

As time increases further, the role of the attractive three- X : .
. ) ) ! alue of the scaled linear density at the trap center. From this
body interactions starts to become important, with the onsef

: : b : . Wwe obtainL,,/l,~0.74, in reasonable agreement with the
of the modulational instability increasing fet>7.5. Figure . m. 'z ’ A
3 shows the development of the instability around the cente‘?erIOd 0.8 beiween the pgaks n Fig. 3 We remark that the
of the trap at the dimensionless times 7.64 (dotted ling, threshc_)ld for t_he modula‘uonal_ instability occurs when the
+=7.68 (dashed ling and r=7.72 (solid line). A spatial denoMinator in Eq.(16) vanishes, that is,|B;f mafe

- - S —2Bdf,n3=0.
lat f th t ty of =0. 3l'max ¢ . :
modulation of the condensate density of perldt,=0.8 is For times7>8 the main density peaks generated by the

modulational instability in Fig. 3 continue to grow, and the
numerical simulations quickly break down thereafter. Indeed,
the numerical solutions indicate that the density peaks are
undergoing a collapse whereby the density locally increases
towards infinity within a finite time. Abdullaeet al. [21]
have previously shown that a collapse is possible in a
%o.oe\.»»-~""" _ o S trapped gas with repulsive two-body interactions. This col-
; lapse is analogous to the corresponding case for two- or
three-dimensional condensates, where a collapse occurs for
condensates large enough so that the attractive two-body in-
teractions overcome the “quantum pressure” associated with
the trap ground state. By contrast, the present system is ef-
fectively one-dimensiona(in ¢), but with a combination of
repulsive two-body interactions and attractive three-body in-
teractions, and it is the competition between these two
=2/ =50 0 =w 1 mechanisms that leads to condensate collapse for sufficiently
* high densities. This places a fundamental limitation on the
FIG. 2. Scaled density® (¢, 7)|? versus{ and 7 for the case linear densities that can be stably sustained in atom mi-
with ramping of the transverse trapping frequeney=(1.5). crotraps and waveguides.

(16)

(€
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In practice, the predicted collapse will be regularized byWe are interested in the term in large parenthesis, which
some additional physical process, such as three-body losseentrols the dominant confinement properties due to the
as in the case of higher-dimensional collapse in the Bosezombined effects of the linear trap and two- and three-body
Novae. We conjecture that a form of soliton turbulence willinteractions. At densities low enough for the two-body inter-
ensug22,23. In addition, as the linear density continues to actions to dominate over the three-body processes, the two-
grow the mean-field energy will eventually exceed the transbody collisions oppose the focusing of the trap, and their
verse mode energy, in which case multiple transverse moddmlance produces a stable and confined solution. In contrast,
will be excited thereby arresting the collapse. when attractive three-body interactions dominate, both the

We point out that the above results are based on the asrap and the three-body interactions work to compress the
sumption that the Gross-Pitaevskii equation is valid to dedensity, causing a strong focusing of the density distribution
scribe the dynamics of the confined one-dimensional Boseand collapse. We, therefore, anticipate that the crossover
Einstein condensate. In fact, we can assess the validity of odrom stability to collapse will occur when the two- and three-
use of the Gross-Pitaevskii equation to model the confinethody focusing terms in the large parentheses cancel each
one-dimensional BEC by examining the dimensi(Z)nIess paether,
rameter y=mg/#2n, where 0=7%0,,/N=(hg,/2ml;)¢& is
the effective one-dimensional coupling constant amd B2 malc— 2| Ba| mffianc=0. (22)
~poml? is the linear density24,25. In particular, previous
theoretical studies have shown thak1 corresponds to the
Gross-Pitaevskii regime, whereas>1 corresponds to the
strongly interacting Tonks-Girardeau regifr@2,25. For our

This coincides precisely with the modulational instability
threshold from Eq(16). Thus, the appearance of a modula-
tional instability also signals that the condensate will col-
. . . lapse if the trapped gas is too close to the atom chip surface.
case we obge;w=(m92§/27r2iil‘z‘po), which for th5e PTEVI" " This conclusion is also in agreement with the results of Ab-
O.USW statequb parameters§=.10(_): an.dpoz.lol cm = dullaev et al. [21], regarding the stability of trapped gases.
gives y=10"7, so we are well justified in using the Gross- \ye ramark that, although we have considered a magnetically
Pitaevskii equation. Furthermore, the simulations presentegapped gas, the same conclusions clearly apply to an opti-
here wgll obey the Qiluteness cognditip9a3<.1, v_vith athe cally trapped gas at sufficiently high densities.
scattering length, since df=10"cm™* which is a very We can also use a variational approach to treat the col-
Iarge_ density compared to those considered here in th%pse of the condensate more rigorously. Consider (ES).
atomic BEC experiments. as the variational wave function with widttbeing the varia-
tional parameter. The energy functional associated with the
V. COLLAPSE AND MODULATIONAL INSTABILITY dimensionless Schdinger equatior{13) is then given by

In this section, we present a discussion that reinforces the
argument that the modulational instability eventually leads to E(|):f dzd({)
condensate collapse. We proceed by reexamining the gener-
alized Gross-Pitaevskii equatioi3), which can be inter-
preted as resulting from the effective potential

10 1,1 5
—5(9—§2+§§ +§B2f|¢’(§)|

2

I A B
¢(§)=Z+I——|—2, (22

1
+ 382

1
Uori(0) = = 24 Bof | ® |2+ Baf2| D |4, 17) =
ff 2 BZ | | B3 | | WhereA=ﬁ2f/(2 /277-) andB:|B3|f2/(3 37T)_1/4

Consider a normalized Gaussian approximate trial solutiork From Eq.(22), we have&(l) — = asl—0 provided that

of width | >0: This means tha_t under such a condition, the conden-
sate is not stable against collapse. However, the system can
1\ ¥4 s still become metastable E(l) possesses a local minimum at
D()~ ( 7) g (@9, (18 finite . This is analogous to the metastability of an attractive
aw

condensate with a sufficiently small number of atdrh§].
The condition for the existence of a local minimum is

which relates the peak densiig (0)|? at trap center to via dE(1)/dI=0 andd?E(1)/d2l >0, which yields

n.=|®(0)|2=1/\/ml2. (19

Near the center, and evaluating the potential for parameters
fmax.N¢ in the vicinity of where the modulational instability
develops, we have | >

1 4
F(l)= 51"~ Al+2B=0,

8B
ﬂ.
Uett( )=~ (B2 Fmadic— | Bal fma?) . o
It can be shown that the above conditions are satisfied if and
s - only if
+_2 5_,327Tfmaxnc+2|:83|77fmaxnc teee
| () e
(20) 34/ 2134/ 3 ' 23
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The local minimum vanishes when the above inequality befor trapped gases even though current technical sources of
comes an equality. For the parameters of our numerical cahoise are eliminated.

culations, this happens at=8.4, which is in reasonable In addition to predicting a fundamental limit in integrated
agreement with the onset of collapse 8 found in the simu- atom optics, the present study also opens up intriguing new
lations. This not only further establishes the connection bedirections of investigation. For instance, we recall that the
tween the modulational instability and the condensate coluse of Feshbach resonances to switch the sign of the scatter-
lapse, but also provides the condition for the threshold of théng length from positive to negative has lead to the discovery

instability through Eq(23). of fascinating dynamical effects, such as Bose-Novae in the
three-dimensional condensates. Similar studies, but in one
VI. SUMMARY AND CONCLUSIONS dimension, should now become possible simply by modulat-

o ) ) ing either the bias fieldB,;,s or the currentl in wire mi-

Generic microtraps and atomic waveguides based on chigrotraps. In practice, the predicted collapse and the subse-
technology are characterized by an increased level of tranguent dynamics of the collapsing filaments will be
verse confinement, and hence increased atomic density, sgularized by some additional physical process, such as
their distance from the chip is reduced. As a result, the thregree-body losses as in the case of higher-dimensional col-
body collisions become increasingly important. We haveiapse in the Bose-Novae, or excitation of higher-order trans-
lational instability in the dynamics of the condensate, and ity future work, we shall investigate the detailed dynamics of
eventual collapse, in agreement with the prior work of Ab-this one-dimensional Bose-Novae beyond the initial growth

dullaev et al. [21] on the stability of trapped gases. The of the modulational instability considered here.
physics underlying this collapse, which involves the compe-

tition between repulsive two-body collisions and attractive
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