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Free initial wave packets and the long-time behavior of the survival and nonescape probabilities
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~Received 12 December 2002; published 7 August 2003!

The behavior of both the survivalS(t) and the nonescapeP(t) probabilities at long times for the one-
dimensional free-particle system is shown to be closely connected to that of the initial wave packet at small
momentum. We prove that bothS(t) and P(t) asymptotically exhibit the same power-law decrease at long
times, when the initial wave packet in momentum representation behaves askm with m50 or 1 at small
momentum. On the other hand, if the integerm becomes greater than 1,S(t) and P(t) decrease in different
power laws at long times.
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The study of the space-time evolution of the wave pack
is very significant for understanding the scattering pheno
ena and attracting many researchers in the various fields.
then helpful to have the complete information about the fr
particle system. For the one-dimensional case, if the Ga
ian wave packet is chosen as the initial one, the wave pa
c(x,t) decreases asymptotically ast21/2 at long times. How-
ever, it has been recently found that the maximum of wa
packet does not necessarily behave ast21/2 for non-Gaussian
initial wave packet. In fact, a slower decrease thant21/2 can
be found for the power-law tail wave packet@1–3#, and a
faster decrease thant21/2 can occur for the wave packe
which vanishes at zero momentum@4#. These facts remind u
of a naive question of how the characteristics of the ini
wave packet affect the long-time behavior of the wa
packet or related quantities such as the survivalS(t) and
nonescapeP(t) probabilities. The former stands for th
probability of a state still being in the initial state at a lat
time t. It is widely used for the decaying systems~see, e.g.,
Refs. @5–8#, and references therein!. The latter is the prob-
ability to find a particle in a specific region under consid
ation at a later timet. It is also used for the decaying system
~see, e.g., Refs.@7–10#!. Such a question forS(t) was an-
swered in the following sense. For a one-dimensional fr
particle system, it was shown thatS(t) behaves asymptoti
cally like t22m21, when the initial wave packet in
momentum representation behaves likekm near the zero mo-
mentumk50 with an arbitrary nonnegative integerm @11#.
Hence, as is pointed out in Ref.@4#, the small-momentum
behavior of initial wave packet plays a crucial role in det
mining the long-time behavior of the survival probabilit
However, such strict structures for the wave packet and
nonescape probability have not been clarified completely

In this work, we consider the asymptotic behavior of
free wave packetc(x,t) at long times for the one
dimensional case, assuming as in Ref.@11# that the initial
wave packet behaves likekm at small momentum. The
asymptotic behavior is evaluated at every positionx unlike
the studies in Refs.@1–4#. This advantage enables us to d
cuss whether the asymptotic behavior of the wave packet
the position dependence. In addition, we are able to calcu
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explicitly the asymptotic form of not onlyS(t) but alsoP(t)
at long times@12#. We then examine and clarify the differ
ence between the long-time behaviors of theS(t) andP(t),
according to the small-momentum behavior of the init
states. Remark that a comparison between the long-time
haviors ofS(t) andP(t) was already made in Ref.@7# for the
potential systems in another context, though the anal
therein was correct forS(t), but not for P(t). The correct
result for P(t) turned out to be thet23 behavior~see, Ref.
@13#, and references therein!.

For the one-dimensional free-particle system with t
HamiltonianH052(\2/2M )d2/dx2, we here define the sur
vival probability S(t) of the initial state~wave packet! c as

S~ t !ªu^c,e2 i tH 0 /\c&u25U E
2`

`

c~x!c~x,t !dxU2

, ~1!

wherec(x,t)5(e2 i tH 0 /\c)(x) and the bar (̄) denotes com-
plex conjugate.c(x) is assumed to be square integrab
S(t) is the probability that the state at a later timet is found
in the initial one. We also define the nonescape probab
P(t) as the probability that a particle initially prepared in th
statec is found in a bounded interval@a,b# on the line at a
later timet:

P~ t !ªE
a

b

uc~x,t !u2dx. ~2!

In order to estimate the asymptotic behavior ofc(x,t),
we first refer to the explicit solution to the Schro¨dinger equa-
tion,

c~x,t !5
1

A2p
E

2`

`

eikxe2 i t\k2/2Mĉ~k!dk, ~3!

5S M

2p i\t D
1/2E

2`

`

eiM ux2yu2/2\tc~y!dy, ~4!

wherek5p/\ and theĉ(k) is the initial state in momentum
representation. To see the long-time behavior of the solut
one can consider the asymptotic expansion of the integra
©2003 The American Physical Society02-1
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Eq. ~3!, using the phase stationary method@14# as used in
Ref. @2,4# or making an integration by parts for the Fouri
integral @15#. Then the differential coefficients ofĉ(k) at k
50 naturally appear. However, to take into account thx
dependence in the asymptotic behavior ofc(x,t), it may be
convenient for us to start with Eq.~4!. Indeed, expansion o
the exponential function in Eq.~4! immediately leads to the
asymptotic behavior ofc(x,t) with the x dependence. It
reads

c~x,t !;(
j 50

`
~21! j 21G~ j 11/2!

p~ i\t/2M ! j 11/2
~G2 jc!~x!, ~5!

whereGj is the integral operator@16# defined by

~Gjc!~x!ª2
1

2~ j ! !
E

2`

`

ux2yu jc~y!dy. ~6!

Here, we assume the exchange of the order of summa
and integration to be allowed. Note that (G2 jc)(x) in Eq. ~5!
can be described in terms of the differential coefficient
ĉ(k) at k50, similar to the result reached from Eq.~3!. This
is seen from the following formal expansion ofĉ(k):

ĉ~k!5
1

A2p
E

2`

`

e2 ikyc~y!dy;(
j 50

`
~2 ik ! j

A2p j !
E

2`

`

yjc~y!dy

5(
j 50

`
kj

j !
ĉ ( j )~0!, ~7!

whereĉ (0)(0)5ĉ(0). This implies that

ĉ ( j )~0!5
dj ĉ~k!

dkj U
k50

5
~2 i ! j

A2p
E

2`

`

yjc~y!dy. ~8!

Then, we can rewrite (G2 jc)(x) in Eq. ~6! for j 52 j as

~G2 jc!~x!52
A2p

2@~2 j !! # (
n50

2 j S 2 j

n D i nĉ (n)~0!~2x!2 j 2n.

~9!

Substituting Eq.~5! into Eqs.~1! and ~2!, we can obtain the
asymptotic behaviors ofS(t) andP(t) at long times as

S~ t !;U(
j 50

`
~21! j 21G~ j 11/2!

p~ i\t/2M ! j 11/2
^c,G2 jc&U2

, ~10!

and

P~ t !;E
a

bU(
j 50

`
~21! j 21G~ j 11/2!

p~ i\t/2M ! j 11/2
~G2 jc!~x!U2

dx,

~11!
02270
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respectively. In Eq.~10!, ^c,G2 jc& is also described in term
of the differential coefficientsĉ ( j )(0) as

^c,G2 jc&5
~21! j 21p

~2 j !! (
n50

2 j S 2 j

n D ĉ (2 j 2n)~0!ĉ (n)~0!.

~12!

We now consider such a special case that the initial w
packetc(x) satisfies

ĉ~k!5O~km! as k→0, ~13!

wherem51,2, . . . . Wenotice from Eq.~7! that the condi-
tion ~13! is equivalent to the condition

ĉ ( j )~0!50, for j 50,1, . . . ,m21. ~14!

Note that the condition~14! causes theS(t) to behave like
t22m21. To confirm this assertion, it suffices to show that t
condition ~14! implies the next condition

^c,G2 jc&50, for j 50,1, . . . ,m21, ~15!

and vice versa@11#. In fact, substitution of Eq.~15! into Eq.
~10! surely leads toS(t);t22m21. We briefly show the
equivalence between the conditions~14! and ~15!. The fact
that Eq.~14! implies Eq.~15! follows straightforwardly from
Eq. ~12!. Conversely, if Eq.~15! holds, we have from

^c,G0c&50 that ĉ (0)(0)50 @see Eq.~12!#. Then, we also
have fromĉ (0)(0)50 and^c,G2c&50 thatĉ (1)(0)50 @see
Eq. ~12! again#. In the same way, we can recursively sho
Eq. ~14!, and the proof is completed. Under the conditi
~14!, we see that the first nonvanishing term^c,G2mc& in
the summation in Eq.~10! is reduced to

^c,G2mc&5
~21!m21p

~m! !2
uĉ (m)~0!u2. ~16!

Then, we obtain the asymptotic behavior forS(t) as @11#

S~ t !5
G~m11/2!2

~m! !4~\t/2M !2m11
uĉ (m)~0!u41O~ t22m22!.

~17!

Note that this formula is also seen to be valid form50. Let
us now examine how the same condition~13! @or ~14!# af-
fects the asymptotic behavior ofc(x,t). Under the condition
~14!, we see that Eq.~9! reads

~G2 jc!~x!50 for all xPR, ~18!

where j 50,1, . . . ,m̄21. The m̄21 is the largest intege
satisfying 2(m̄21)< m21, and them̄ turns out to be
2-2
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m̄5H m/2 for even m,

~m11!/2 for odd m.
~19!

Equation~18! consequently implies that the asymptotic e
pansion~5! for the wave packet reads

c~x,t !5
~21!m̄21G~m̄11/2!

p~ i\t/2M !m̄11/2
~G2m̄c!~x!1O~ t2m̄23/2!,

~20!

as t→`. One also see that this formula is valid form50.
By using Eq.~14!, the first nonvanishing term (G2m̄c)(x)
can be reduced to a simple expression as

~G2m̄c!~x!5
2A2p i m

2~m! !
ĉ (m)~0!, ~21!

for evenm, or

~G2m̄c!~x!5
2A2p i m11

2@~m11!! #
@ĉ (m11)~0!1 i ~m11!xĉ (m)~0!#,

~22!

for odd m. Substituting Eq.~20! into Eq. ~2!, we can also
derive the asymptotic behavior forP(t):

P~ t !5
G~m̄11/2!2

p2~\t/2M !2m̄11Ea

b

u~G2m̄c!~x!u2dx1O~ t22m̄22!,

~23!

ast→`. The above formula is also expressed in terms of
differential coefficientsĉ ( j )(0), by using Eq.~21! @or Eq.
~22!#.

It is worth noting that, in the case ofm being odd, there is
a possibility to find a special position, denoted byj0, where
(G2m̄c)(x) in Eq. ~22! vanishes. This means that at th
position, thec(x,t) follows the power law in the next orde
However, this matter may be regarded as an exception,
cause a point in the entire line has only zero measure. F
Eq. ~22!, j0 is given by

j05 i ĉ (m11)~0!/@~m11!ĉ (m)~0!#, ~24!

and must be real. We can find such aj0 for the initial wave

packet, e.g.,Nmkme2a0
2(k2k0)2/22 ix0k, where a0.0, k0 , x0

PR, andNm being the normalization constant. In this cas
the j0 is given byx01 ia0

2k0. Then, it becomes real if an
only if k050, which leads toj05x0, the center of the initial
wave packet. Note that such a special position in Eq.~24!,
if any, does not have an influence on the asympto
form of P(t), becauseP(t) is obtained by the integra
of u(G2m̄c)(x)u2.

Let us now consider and compare the long-time behav
of S(t) and P(t). We see from Eq.~19! that m and m̄ are
different whenm>2, and this fact directly affects the long
02270
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time behaviors ofS(t) and P(t). When the initial statec
satisfiesĉ(k)5O(km) with an arbitrary integerm>2, S(t)
goes asymptotically liket22m21, whereasP(t) like t2m21

for even m or like t2m22 for odd m. For a largem, S(t)
decreases much faster thanP(t). We also see thatm̄
5m11 for odd m. This means that, in the case of an o
integerm, unlikeS(t), P(t) decreases in the same power la
under both the conditions;ĉ(k)5O(km) and ĉ(k)
5O(km11).

To illustrate the difference in the long-time behaviors
S(t) and P(t), we choose three initial wave function
f0(x), f1(x), andf2(x), defined by

f̂m~k!5Nmkme2a0
2(k2k0)2/22 ix0k, for m50,1,2.

~25!

These are the same ones considered after Eq.~24!. They
behave likef̂m(k)5O(km) for small k. Figure 1 shows the

FIG. 1. ~a! S(T) and P(T) ~square and diamond, respectivel!
of the wave functionf0 in Eq. ~25!, and their asymptotes predicte
by Eqs.~17! and ~23! ~solid and dashed lines, respectively!, where
T5\t/2Ma0

2 is the reduced time. In this case,S(T) andP(T) show
the same power decay behavior likeT21 at long times.~b! S(T) and
P(T) of the wave functionf1, and their asymptotes. The notation
and symbols are the same as those in~a!. S(T) andP(T) exhibit the
same power decay; however, they behave likeT23 instead ofT21.
Here, we setk050.0 and x050.0, in f0 and f1, and a/a05
22.0 andb/a052.0 in P(T)’s .
2-3
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time evolution ofS(t) andP(t), and their asymptotic forms
predicted by Eqs.~17! and~23!. The initial statesf0 andf1
are used in Figs. 1~a! and 1~b!, respectively. It is clearly see
that in Fig. 1~a!, S(t) and P(t) behave asymptotically like
t21 at long times, and in Fig. 1~b! like t23. In these cases
the difference between the behaviors ofS(t) andP(t) is not
found. On the other hand, we notice that in Fig. 2S(t) and
P(t) for the initial statef2 differ asymptotically at long
times. The former behaves asymptotically liket25, however,
the latter behaves liket23. In our calculation, we have cho
sen a set of parametersk050.0 andx050.0 for the three
initial states, anda/a0522.0 andb/a052.0 for the interval
@a,b# for P(t). Then, as is seen from Figs. 1 and 2,P(0)
;1, i.e., the initial states are well localized in the interva

In conclusion, we have considered for every position
long-time behavior of the wave packet moving freely in o
dimension, according to the characteristics of the initial wa
packet at small momentum. We have then found that
asymptotic power oft obeyed by the wave packet is consta
everywhere, at most excluding one positionj0. We also have
obtained the asymptotic behavior of the nonescape prob

FIG. 2. S(T) and P(T) of the wave functionf2, and their
asymptotes, whereT5\t/2Ma0

2. The same notations and symbo
as in Fig. 1 are used. In this case,S(T) andP(T) exhibit different
power decays at long times. The former behaves likeT25, while the
latter like T23. Here, we setk050.0 and x050.0, in f2, and
a/a0522.0 andb/a052.0 in P(T).
.
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ity at long times, and compared that of the survival and n
escape probabilities. It is of interest that they can decreas
the different power laws depending on the initial states,
spite of the apparent similarity between their physical me
ings. Our derivation can be easily extended to an arbitr
dimension, by starting with Eq.~4! in a corresponding di-
mension. In these analyses, we assume that the exchan
the order of summation and integration is admitted in
formal expansions in Eqs.~5! and ~7!. Indeed, this assump
tion can be rigorously guaranteed, when we make the s
discussion with the finite series involving an appropriate
mainder, instead of Eqs.~5! and ~7!. In any such procedure
to keep the validity of the formula, e.g., Eq.~20!, what
should be satisfied at least is that all of the differential co

ficients ĉ ( j )(0) with j up to m ~or m11) are finite for even
m ~or oddm). See Eq.~21! @or Eq. ~22!#. It should be noted
that this condition also implicitly implies tha

lim
k→10

ĉ ( j )(k)5 lim
k→20

ĉ ( j )(k) for j 50,1, . . . ,m ~or m

11). These conditions are satisfied by thosec ’s which are
rapidly decreasing functions as in Eq.~25!. However, such a
circumstance is not always valid for an arbitrary initial wa
packet, e.g., the wave packet with the power-law tail@1–3#
or that treated in Ref.@4#. The former causesuĉ(0)u5` and
the latter causes lim

k→10
ĉ (m)(k)Þ lim

k→20
ĉ (m)(k). It is

then significant to consider how our results are modified
such initial wave packets. Furthermore, it is important
extend our consideration to the potential systems. In part
lar, it is relevant to examine in that case the possible in
ence of the characteristics of the initial states on the lo
time behavior of the survival and nonescape probabilities
fact, such an attempt has not been done in previous inve
gations. An extension may be realized by starting, instead
Eq. ~5!, with the asymptotic expansion of the wave packet
long times for the short-range potential systems, attained
several methods~see, for example, Refs.@7,8,10,17#, and ref-
erences therein!.
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