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Free initial wave packets and the long-time behavior of the survival and nonescape probabilities
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The behavior of both the survivé(t) and the nonescap@(t) probabilities at long times for the one-
dimensional free-particle system is shown to be closely connected to that of the initial wave packet at small
momentum. We prove that bo®(t) and P(t) asymptotically exhibit the same power-law decrease at long
times, when the initial wave packet in momentum representation behaves aith m=0 or 1 at small
momentum. On the other hand, if the integebecomes greater than $(t) andP(t) decrease in different
power laws at long times.
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The study of the space-time evolution of the wave packetgxplicitly the asymptotic form of not onl§(t) but alsoP(t)
is very significant for understanding the scattering phenomat long times[12]. We then examine and clarify the differ-
ena and attracting many researchers in the various fields. It ence between the long-time behaviors of 8{€) and P(t),
then helpful to have the complete information about the freeaccording to the small-momentum behavior of the initial
particle system. For the one-dimensional case, if the Gausstates. Remark that a comparison between the long-time be-
ian wave packet is chosen as the initial one, the wave packéfaviors ofS(t) andP(t) was already made in Rdf7] for the
¥(x,t) decreases asymptotically s/ at long times. How-  potential systems in another context, though the analysis
ever, it has been recently found that the maximum of waveherein was correct fo(t), but not for P(t). The correct
packet does not necessarily behave @4’ for non-Gaussian result for P(t) turned out to be thé™3 behavior(see, Ref.
initial wave packet. In fact, a slower decrease thaH? can  [13], and references thergin
be found for the power-law tail wave packiet—3], and a For the one-dimensional free-particle system with the
faster decrease than *2 can occur for the wave packet HamiltonianH,= — (42%/2M)d?/dx?, we here define the sur-
which vanishes at zero momenty#. These facts remind us vival probability S(t) of the initial state(wave packetys as
of a naive question of how the characteristics of the initial
wave packet affect the long-time behavior of the wave w
packet or related quantities such as the survS@) and S(t)::|<¢,e‘”“0’h¢>|2=f P(X) (X, t)dx
nonescapeP(t) probabilities. The former stands for the o
probability of a state still being in the initial state at a later
time t. It is widely used for the decaying systertsee, e.g.,
Refs.[5—8|, and references thergiriThe latter is the prob-
ability to find a particle in a specific region under consider-:
ation at a later time. It is also used for the decaying systems
(see, e.g., Refd.7-10]). Such a question fog(t) was an-
swered in the following sense. For a one-dimensional free:
particle system, it was shown th&(t) behaves asymptoti-
cally like t=2™ 1 when the initial wave packet in
momentum representation behaves kRenear the zero mo-
mentumk=0 with an arbitrary nonnegative integar[11].
Hence, as is pointed out in Rg#], the small-momentum
behavior of initial wave packet plays a crucial role in deter- In order to estimate the asymptotic behavior i, t),
mining the long-time behavior of the survival probability. we first refer to the explicit solution to the Scklinger equa-
However, such strict structures for the wave packet and thé&on,
nonescape probability have not been clarified completely.

In this work, we consider the asymptotic behavior of a

2

. @

wherey(x,t) = (e ™Ho/"y)(x) and the bar () denotes com-
plex conjugate.y/(x) is assumed to be square integrable.
S(t) is the probability that the state at a later titnis found

in the initial one. We also define the nonescape probability
P(t) as the probability that a particle initially prepared in the
statey is found in a bounded interv@h,b] on the line at a
later timet:

b
t):= L | () [Pdx. @

free wave packety(x,t) at long times for the one- P(x,t)= elkxe—ltﬁk2/2M J(K)dk, 3)
dimensional case, assuming as in Réfl] that the initial \/_ —o0

wave packet behaves likk™ at small momentum. The

asymptotic behavior is evaluated at every positionnlike M \12 e

the studies in Ref§.1—4]. This advantage enables us to dis- :( : ) f eiM\X*VIZ/Zﬁtw(y)dy’ (4)
cuss whether the asymptotic behavior of the wave packet has 2minht —

the position dependence. In addition, we are able to calculate
wherek=p/h and thezp(k) is the initial state in momentum
representation. To see the long-time behavior of the solution,
*Electronic address: miyamo@hep.phys.waseda.ac.jp one can consider the asymptotic expansion of the integral in
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Eq. (3), using the phase stationary methidd!| as used in
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respectively. In Eq(10), (,G,;¢) is also described in terms

Ref. [2,4] or making an integration by parts for the Fourier of the differential coefficients))(0) as

integral[15]. Then the differential coefficients af(k) at k
=0 naturally appear. However, to take into account xhe
dependence in the asymptotic behavior/igk,t), it may be
convenient for us to start with E¢4). Indeed, expansion of
the exponential function in Eq4) immediately leads to the
asymptotic behavior ofi4(x,t) with the x dependence. It
reads

o0

(-1 (j+1/2)

0= 2, wintizmy e oA O
whereG; is the integral operatdrl6] defined by
1 ® .
(szp)(x)zz—mj_wlx—yljz,b(y)dy. ®)

Here, we assume the exchange of the order of summatio

and integration to be allowed. Note th& § ) (x) in Eq. (5)

can be described in terms of the differential coefficient of

#(K) atk=0, similar to the result reached from E®). This
is seen from the following formal expansion @fk):

. 1 (= “(—ik) e
K)= — —iky dy~ - i d
d(k) mfwe wiy)dy~ 2, mj!fwy y(y)dy

“K L
=2 91(0),
j=0 ]!

()

where ¢4%(0)= (0). This implies that

“ dl (k) (=) =
(0)y= i = i dv. 8
W)= — - @f_wy gly)dy. (8

Then, we can rewrite&,;#)(x) in Eq. (6) for j=2j as

27 2 [2)\ _
(GM(X):_W%;O (n )i”t/f(”)(O)(—x)z’”.

9)

Substituting Eq(5) into Egs.(1) and(2), we can obtain the
asymptotic behaviors d&(t) andP(t) at long times as

C (=17 (j+1/2) 2
SO~ JZO m(iht/2M)I 12 (WG| . (10
and
o| & (= 1) (j+1/2) 2
P(t)wfa JZO wintizwi e CaY] B
(11

>

n=0

(-1)"'7

2j
<¢,sz¢>:W

( . )&‘21‘”(0)&(”)(0).
(12

We now consider such a special case that the initial wave
packety(x) satisfies

#(k)=0(k™ as k—O0, (13
wherem=1,2, . ... Wenotice from Eq.(7) that the condi-
tion (13) is equivalent to the condition

$90)=0, forj=0,1,...m—1. (14)

Note that the conditioril4) causes theéS(t) to behave like
t 2™ 1 To confirm this assertion, it suffices to show that the
condition (14) implies the next condition

(4,Gaj4) =0, (15
and vice versdl1]. In fact, substitution of Eq(15) into Eq.
(10) surely leads toS(t)~t 2™ 1. We briefly show the
equivalence between the conditiofis}) and (15). The fact
that Eqg.(14) implies Eq.(15) follows straightforwardly from
Eq. (12). Conversely, if Eqg.(15 holds, we have from
(,Go)=0 that 4#(¥(0)=0 [see Eq.(12)]. Then, we also
have fromg{%(0)=0 and(,G,#)=0 thaty)(0)=0 [see
Eqg. (12 agaif. In the same way, we can recursively show
Eqg. (14), and the proof is completed. Under the condition
(14), we see that the first nonvanishing tefm, G,i) in
the summation in Eq10) is reduced to

for j=0,1,...m—-1,

(_l)m—lﬂ_

= 7.(m) 2
A e L Ul (16

Then, we obtain the asymptotic behavior f&(t) as[11]

_ T(m+1/2)?
C(m)}(At/2M)2m L

|$M(0)[*+0O(t2m2),
(17)

Note that this formula is also seen to be valid fo=0. Let
us now examine how the same conditicB) [or (14)] af-
fects the asymptotic behavior @f(x,t). Under the condition
(14), we see that Eq9) reads

S(t)

(Goj¥)(x)=0 for all xeR, (18

wherej=0,1,...m—1. Them—1 is the largest integer
satisfying 2(n—1)< m—1, and them turns out to be
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— |m/i2 foreven m,
m= (19) 100 *‘ o]
(m+1)/2 forodd m.
Equation(18) consequently implies that the asymptotic ex-
pansion(5) for the wave packet reads 6
oot b
i =~
sopy= LMD o,
x,t)= mib) (X ,
a(ikt/aMmymez A
(20)
-
ast—o. One also see that this formula is valid fior=0. 1077 ! !
By using Eq.(14), the first nonvanishing termQ,n,#)(X) 107 10° 10! 102
can be reduced to a simple expression as
\/Z—_m 100 *’ <] o)
2™,
— = yJm
2 |
for evenm, or 6 10
y
_ \/ﬂierl R R € |
— _ (m+1) i (m) & 10
(Gomth) ()= e gL ™ (O i m+ Dxg™(0)],
(22)
—6 |
for odd m. Substituting Eq.(20) into Eq. (2), we can also 10 . (
derive the asymptotic behavior f&(t): 107! 10° 10! 102

T

I'(m+1/2)? b o FIG. 1. (8 S(T) andP(T) (square and diamond, respectively
P(t)= WL |(Gomip) (¥)[2dx+O(t~2Mm"2), of the wave functionp, in Eq. (25), and their asymptotes predicted
. 23 by Eqgs.(17) and(23) (solid and dashed lines, respectivelwhere
T=nht/2M ag is the reduced time. In this cas®(T) andP(T) show
ast—o. The above formula is also expressed in terms of thélf(eTjanhpower dc:cayt_b?gaviorﬁs "atlong titmtes(b%hS(T) ?ntd
. . - ~ . of the wave functionp,, and their asymptotes. The notations
differential CoefﬂClentsw(J)(O), by using Eq.(21) [or Eq. and symbols are the same as thos@nS(T) andP(T) exhibit the
(22)]: ) , ) . same power decay; however, they behave Tké instead ofT 2.
Itis _vvp_rth not_mg that, in the case af being odd, there is Here, we setky=0.0 andx,=0.0, in ¢, and ¢;, and a/ay=
a p035|b|llty_ to find a speC|a}I position, denoted &y where ~ —2.0 andb/ag=2.0 in P(T)’s .
(Gomt) (X) In EqQ. (22) vanishes. This means that at this

position, thez_p(x,t) follows the power law in the next o_rder. time behaviors ofS(t) and P(t). When the initial statey
However, this matter may be regarded as an exception, be- tisfiesi(K) = O(k™ with an arbitrary integem=2, S(t)

L N a
Ezuf(;z? gmir;;t gi]vtehlf s;ure line has only zero measure. Fro@oes asymptotically like 2™"1, whereasP(t) like t™m !
. y 60

for evenm or like t—™ 2 for odd m. For a largem, S(t)
(1) - ) decreases much faster thd”(t). We also see tham
Eo=T (0)/[(m+1)¢A™(0)], (249 —m+1 for oddm. This means that, in the case of an odd

i lik P in th I
and must be real. We can find suclggfor the initial wave integerm, unlike (t), (t). _decr(?ases In the same poweriaw
under both the conditions;y(k)=0(k™ and (k)

packet, e.g.N, kMe~2o(k-ko)?/2-ixok whereag>0, ko, Xo  —(km+l),

e, andNp, being the nzgrmallzanop constant. In this case, g jjystrate the difference in the long-time behaviors of

the & is given byxo+iagko. Then, it becomes real if and gty and P(t), we choose three initial wave functions

only if ko=0, which leads t@&,=X,, the center of the initial 5 (), %,(x), and ¢,(x), defined by

wave packet. Note that such a special position in @4),

if any, does not have an influence on the asymptotic . ,

form of P(t), becauseP(t) is obtained by the integral bm(K) =NkMe2k—k)72=ixok = for m=0,1,2.

of [(Gomth) (). (25)
Let us now consider and compare the long-time behaviors

of S(t) and P(t). We see from Eq(19) thatm andm are ~ These are the same ones considered after(£4). They

different whenm=2, and this fact directly affects the long- behave like¢,,(k)=0(k™) for smallk. Figure 1 shows the
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o *_ NN T ity at long times, and compared that of the survival and non-
10 8 @ escape probabilities. It is of interest that they can decrease in
o the different power laws depending on the initial states, in
L N o, spite of the apparent similarity between their physical mean-
6 107 - Y T ings. Our derivation can be easily extended to an arbitrary
ot ) “e dimension, by starting with Eq4) in a corresponding di-
- » mension. In these analyses, we assume that the exchange of
> 107 g the order of summation and integration is admitted in the
formal expansions in Eq$5) and (7). Indeed, this assump-
o tion can be rigorously guaranteed, when we make the same
107 - ] discussion with the finite series involving an appropriate re-
1o 1(')0 181 102 mainder, insteaq o_f Eq$5) and (7). In any such procedure,
T to keep the validity of the formula, e.g., EQO), what
should be satisfied at least is that all of the differential coef-

ficients #()(0) with j up tom (or m+1) are finite for even

FIG. 2. S(T) and P(T) of the wave functiong,, and their

asymptotes, wheré=#%t/2M ag. The same notations and symbols
as in Fig. 1 are used. In this cas¥,T) andP(T) exhibit different m (or oddm). See Eq/(21) [or Eq.(22)]. It should be noted

power decays at long times. The former behavesTiké, while the ~ that  this condition — also implicitly  implies  that
latter like T~2. Here, we sekp=0.0 andxy=0.0, in ¢, and  lim, D (k)=lim 40 (k) for j=0,1,...m (or m

a/ay=~2.0 andb/a=2.0 in P(T). +1). These conditions are satisfied by thage which are

time evolution ofS(t) andP(t), and their asymptotic forms rapidly decreasing functions as in HS). However, such a
predicted by Eqs(17) and(23). The initial statesb, and ¢, circumstance is not always vahd_for an arbitrary |n|t|ql wave
are used in Figs.(&) and 1b), respectively. It is clearly seen Packet, e.g., the wave packet with the power-law [t 3]
that in Fig. 1a), S(t) and P(t) behave asymptotically like or that treated in Ref4]. The former causels/(0)| = and
t™* at long times, and in Fig. (D) like t"°. In these cases, the latter causes lim , @#(™(k)#lm _ #™(K). It is
the difference between the behaviorsS§t) andP(t) is not
found. On the other hand, we notice that in FigS@) and
P(t) for the initial state¢, differ asymptotically at long
times. The former behaves asymptotically like’, however,
the latter behaves like 3. In our calculation, we have cho-
sen a set of parametekg=0.0 andxy,=0.0 for the three

then significant to consider how our results are modified for
such initial wave packets. Furthermore, it is important to
extend our consideration to the potential systems. In particu-
lar, it is relevant to examine in that case the possible influ-
ence of the characteristics of the initial states on the long-
> ) time behavior of the survival and nonescape probabilities. In
initial states, and/ao=—2.0 andb/a,=2.0 for the interval g0t guch an attempt has not been done in previous investi-
[a,b] for P(t). Then, as is seen from Figs. 1 andPX0)  yations. An extension may be realized by starting, instead of
~1, i.e., the initial states are well localized in the interval. Eq. (5), with the asymptotic expansion of the wave packet at
In conclusion, we have considered for every position thggng times for the short-range potential systems, attained by

long-time behavior of the wave packet moving freely in onege\eral methodssee, for example, Reff7,8,10,17, and ref-
dimension, according to the characteristics of the initial Waveyrences therejn

packet at small momentum. We have then found that the

asymptotic power of obeyed by the wave packet is constant The author would like to thank Professor I. Ohba and
everywhere, at most excluding one positign We also have Professor H. Nakazato for useful and helpful discussions,
obtained the asymptotic behavior of the nonescape probabiind Professor J. G. Muga for valuable comments.
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