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Quantum computing in the presence of spontaneous emission by a combined dynamical
decoupling and quantum-error-correction strategy
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A method for quantum computation in the presence of spontaneous emission is proposed. The method
combines strong and fast~dynamical decoupling! pulses and a quantum error correcting code that encodesn
logical qubits into onlyn11 physical qubits. Universal, fault-tolerant, quantum computation is shown to be
possible in this scheme using Hamiltonians relevant to a range of promising proposals for the physical imple-
mentation of quantum computers.
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I. INTRODUCTION

Decoherence@1# remains the most daunting obstacle
the realization of quantum information processing, coher
control, and other applications requiring a high degree
quantum coherence. As quantum computation~QC! moves
into the experimental realm, it becomes increasingly imp
tant to design methods for overcoming this main obstacle
realization, which are tailored to particular systems and
resulting errors that afflict them. Here we show how to p
form universal, fault-tolerant QC in the presence of decoh
ence due tospontaneous emission~SE!. Since SE is a con-
sequence of the inevitable coupling to the vacuum field@2#, it
cannot be ‘‘engineered away’’ and must eventually be de
with, in all QC proposals. Several methods have been
signed to this end, which may roughly be classified
‘‘hardware’’ and ‘‘software:’’ In the former category are pro
posals to construct quantum computers in materials wh
SE is strongly suppressed, e.g., placing atomic qubits
photonic band-gap structure@3#. In the latter category are
various error correction, avoidance, and suppression met
@4–10#. With the exception of the 2p pulsing method of Ref.
@10#, a unifying theme of these methods is to place the s
tem under continuous observation. It is then well known t
the Markovian quantum master equation can be unrav
into a set of quantum trajectories, consisting of a conditio
evolution ~governed by a non-Hermitian conditional Ham
tonianHc , defined below!, randomly interrupted by quantum
jumps~wave-function collapse! into different observed deca
channels@11–14#. The time evolution conditional to agiven
set of time-ordered observations is called ‘‘a posteriori dy-
namics’’ @15#, and isnot Markovian. The continuous obse
vation can lead to a Zeno-effect type suppression of deco
ence, a fact that was exploited in@9#, in conjunction with an
encoding into a decoherence-free subspace~DFS! @16,17#, in
order to resist SE. Quantum error correcting codes~QECCs!
can correct both the conditional evolution and the jumps@5#,
but more efficient constructions are possible when one c
siders subspaces of the full system’s Hilbert spaces that
invariant under the conditional evolution. It is then neces-
sary to correct only the errors arising due to the quant
1050-2947/2003/68~2!/022322~6!/$20.00 68 0223
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jumps@4–8#. The first proposal along these lines@4# did not
consider QC. A simple, but non-fault-tolerant QC schem
encoding a logical qubit into two physical qubits~four
atomic levels!, tailored to SE of phonons in trapped-ion QC
was subsequently presented in Ref.@5#. A QECC correcting
one arbitrary single-qubit error and invariant underHc was
given in Ref.@6#, using an encoding of one logical qubit int
eight physical qubits. When one makes the assumption
the qubit undergoing the quantum jump can be identifi
~‘‘detected jump’’!, a more efficient encoding is possible.
family of such detected jump codes~DJC! was first devel-
oped in Ref.@7#, using a DFS to construct a subspace inva
ant underHc . In Ref. @8# we showed how to perform fault
tolerant universal QC on a subclass of such codes enco
n21 logical qubits into 2n physical qubits.

Here we present a method for reducing and correcting
errors. Rather than constructing a code subspace inva
under Hc , we dynamically eliminateHc by applying dy-
namical decoupling@or ‘‘bang-bang’’ ~BB!# pulses@18,19#.
We then construct a QECC that deals with the remain
jump errors, under the detected-jump assumption. The
vantage of this method compared to the previous meth
using encoding is that it is significantly more economical
qubit and pulse timing resources: It uses a QECC in whicn
logical qubits are encoded into onlyn11 physical qubits;
and, while in Ref.@10# the pulse interval has to satisfy th
standard BB condition of being shorter than the inverse
the bath high-frequency cutoff@18,19#, in our case the re-
quirement is that the pulses are faster than the average
between photon emission events, which can be orders
magnitude longer. Furthermore, our method is fully comp
ible with universal QC using Hamiltonians that are natura
available in a large variety of quantum computer propos
@20#, so unlike Ref.@3#, it does not rely on one specifi
architecture.

The idea of using a hybrid BB-encoding approach to s
press decoherence was first proposed in Ref.@21#, where it
was pointed out that BB is fully compatible with encodin
into a QECC or DFS. In particular, it was observed there t
one could use BB to suppress phase-flip errors, thus lea
the QECC with the need only to correct bit-flip errors. How
©2003 The American Physical Society22-1
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ever, no method specifically tailored for SE errors was giv
An experimental nuclear-magnetic-resonance~NMR! imple-
mentation of a hybrid BB-QECC was presented in Ref.@22#,
where decoupling was used to remove coherent scalar
pling between protons~environment! and carbon qubits, to
gether with QECC used to further correct for fast relaxat
due to dipolar interactions modulated by random molecu
motion.

Clearly, correcting for SE errors is only a part of a gene
procedure for offsetting decoherence, as additional deco
ence sources will inevitably be present in any QC implem
tation. The methods we present here therefore will have
become part of this more general procedure, either as a
level of defense~in the case where SE is dominant!, or at
higher levels in a concatenated QECC scheme@23#, after
other more dominant errors have been accounted for.
importance of the results presented here lies in the fact
SE isalwayspresent, and therefore can never be ignored
code that is optimized with respect to this type of error c
potentially offer flexibility and significant savings in re
sources and overhead.

The structure of this paper is the following. In Sec. II, w
show how the conditional evolution during SE can be elim
nated using a sequence of simple, global BB decoup
pulses. In Sec. III, we construct a simple and econom
QECC that corrects for the remaining quantum jump erro
We address fault tolerance and various imperfections in S
IV. We then show how to quantum compute in a univer
and fault-tolerant manner over our QECC, using a variety
model Hamiltonians pertinent to a wide class of promis
quantum computing proposals. We conclude in Sec. VI.

II. ELIMINATING THE CONDITIONAL EVOLUTION OF
SPONTANEOUS EMISSION WITH BB PULSES

ConsiderN qubits that can each undergo SE, under
detected-jump assumption. This localizability of the S
events implies that the mean distance between qubits
ceeds the wavelength of the emission. Note that thisoptical
distinguishability between qubits does not limit our ability
couple the qubits via nonoptical interactions of the type
consider in Sec. V below.

The ground and excited states of each qubit are den
by u0& and u1&, respectively. Lets i

25u0& i^1u denote the
spontaneous emission error generator acting on thei th qubit
and letk i denote the corresponding error rate. We use
quantum trajectories approach@11–14# to describe the dy-
namics of the decohering system. The evolution is deco
posed into two parts: a conditionalnon-HermitianHamil-
tonian Hc , interrupted at random times by occurrence
random jumps, each corresponding to an observation of
cay channels in a quantum optical setting. For errors suc
SE, where the jump can be detected by observation of
emission, the quantum trajectories approach also provide
with a way to combine QECCs and BB, in analogy to t
way this was done for QECC and DFS in Refs.@7,8#. The
BB pulses take care of the conditional evolution, whereas
QECC deals with the random jumps. The conditional Ham
tonian is given in the SE case@11–14# by Hc
02232
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52(i/2)( i 51
N k is i

1s i
2 , wheres i

15(s i
2)†. In Ref. @8# we

assumed that the environment effectively does not dis
guish among the qubits that undergo spontaneous emiss
(k i5k) and the conditional Hamiltonian would then becom
2( i /2)k( i u1& i^1u. This assumption isnot necessary in the
current work. From here on, operatorsXi ,Yi ,Zi refer to the
corresponding Pauli matrices acting on thei th qubit. Now
suppose that we apply a collectiveX[ ^ j 51

N Xj pulse to the
system, at intervalsTc/2! 1/g, whereg is the SE rate@24#.
Under this condition and usingXis i

2Xi5s i
1 we can write

the evolution after a fullTc period as

U5expS 2 i
Tc

2
HcDX expS 2 i

Tc

2
HcDX

5expS 2
Tc

4 (
i

k i u1& i^1u D expS 2
Tc

4 (
i

k i u0& i^0u D
5expS 2

Tc

4 (
i

k i D I ,

where I is the identity operator. Therefore the decoheri
effect of the conditional Hamiltonian~that distinguishes
states with different numbers of 1’s! is removed and replace
by anoverall shrinking norm. When the jumps are include
in the dynamics, the state must be renormalized@11–14#, so
this shrinking disappears. Note that we havenot eliminated
Markovian decoherence using BB pulses, since we have c
sidered only a single trajectory. In fact, a comparison of
coherenceC5Tr(r2) ~wherer is the qubit density matrix!
shows that if the results are ensemble averaged over ta
posterioridynamics~recovering the Markovian master equ
tion!, and the jump errors are not corrected, then there is
advantage in using a BB sequence. More specifically, w
comparingC for the ~1! free evolution and~2! usingX pulses
at Tc/2 periods for a single qubit undergoing SE with rateg,
we find

C1512gTc~b2!1O~g2!,

C2512gTc~a41b4!1O~g2!

where the initial qubit stateuc&5au0&1bu1& is normalized:
a21b251. Averaging over a random sample of initial stat
chosen from a uniform distribution~of a and b subject to
normalization! we have ^C1&5^C2&; so as expected fo
purely Markovian dynamics, there is no improvement af
using just BB pulses.

III. CORRECTING SPONTANEOUS EMISSION JUMPS
WITH A QECC

We now introduce a very simple QECC that corrects
remaining part of the decoherence process, the rand
jumps. Since the error correction process by necessity ta
place during the conditional evolution~the jump is instanta-
neous and the QECC takes time!, we must ensure that th
QECC keeps its error correcting properties under the co
tional Hamiltonian and BB pulses. A minimal example
2-2
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QUANTUM COMPUTING IN THE PRESENCE OF . . . PHYSICAL REVIEW A 68, 022322 ~2003!
such a ‘‘decoupled-detected jump corrected’’ code is giv
by the subspaces of theN5n11 qubit Hilbert space tha
have even Hamming weight, or parity, defined asw(x)[
% i 51

n xi5(( i 51
n xi)mod2, whereux&5ux1 , . . . ,xn& is a com-

putational basis state (xiP$0,1%). We define a code subspac
Cn with even parity as the linear span of the codewords,

ux&L[ux1 , . . . ,xn&L5ux1 , . . . ,xn,w~x!&. ~1!

For example, forn52, the codeC2 is

u00&L5u000& u01&L5u011&

u10&L5u101& u11&L5u110&. ~2!

As indicated by the underline, the first two qubits are t
same in the physical and logical codewords, and the th
qubit is set equal to the parity of the first two qubits. ThatCn
is a QECC against the jump errors follows from the fact t
a spontaneous emission error always changes the parity
given codeword, which is then taken to an orthogonal st
and that by construction no two codewords can be take
the same state. More specifically, the sufficient condition t
a QECC must satisfy is that orthogonal codewords mus
mapped to orthogonal states after the occurrence of error
that the errors can be resolved and undone@25#. Recall that,
here we are assuming that we know the location of the er
after recording the position of the spontaneous emiss
Hence we need to only compare orthogonal codewords a
the action of an error in aknownlocation i:

L^yus i
1s i

2ux&L5H dxy if yi5xi

0 if yiÞxi ,

where the second line follows from the change in parity
ux&L or uy&L . Thus the QECC condition is satisfied. To s
that recovery from the errors is indeed possible, we desc
a simple~non-fault-tolerant! scheme. To recover from an S
error on qubitj, we apply controlled-NOT gates from all other
qubits ~as controls! to qubit j ~as target!. That this unitary
operation fixes the SE error, can be seen as follows.
codewords in which qubitj was in the stateu0& before SE did
not change after SE. In this case the number of remain
qubits in the stateu1& was even, and the recovery operati
will flip the erred qubit an even number of times, thus havi
no effect. If qubitj was in the stateu1& before the SE error
then it changed tou0&. In this case the number of remainin
qubits in the stateu1& was odd, and the recovery operatio
flips the erred qubit. To illustrate this we discuss in detail
case ofC2. The conditional evolution, under the collectiv
BB pulseX5X1X2X3, has the sole effect of shrinking th
norm of all codewords in Eq.~2! equally. Thus the BB-
modified conditional evolution does not change the ortho
nality of the codewords. Now suppose SE from the first qu
has been observed. Then an arbitrary encoded stateuc&L
5au00&L1bu01&L1cu10&L1du11&L changes into ucerr&
[au000&1bu011&1cu001&1du010&. To reverse the error we
use the unitary operatorU5CN31CN21, where CNi j is
a controlled-NOT gate with qubit i ~j! as the control
02232
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~target!, i.e., CNi j uxi ,xj&5uxi ,xj % xi&. The erred state is
then transformed to Uucerr&5au000&1bu011&1cu101&
1du110&5uc&L .

IV. FAULT-TOLERANT PREPARATION, MEASUREMENT,
AND RECOVERY

So far we have assumed perfect error detection, recov
and gates. Of course, in reality these assumptions mus
relaxed. Here we discuss the implications of imperfection

In general, a procedure is said to be fault tolerant if t
occurrence of an error in one location does not lead~via the
applied procedure! to the catastrophic multiplication of er
rors in other locations@23#, an event that the code cann
correct.

Let us first discusspreparation of the encoded qubits
Since the stateu0&L5u01 , . . . ,0n11& is part of the code,
preparation is as simple as preparing each physical qub
its ground state, which can be done, e.g., via cooling
strong polarizing field, or repeated strong measurement
all qubits. This step is manifestly fault tolerant. Onceu0&L
has been prepared, computation proceeds using the faul
erant logical operations given in Sec. V below, so any ot
state can be reached fault tolerantly.Readoutis also very
simple: a measurement of the firstn physical qubits inCn is
easily seen to be equivalent to a direct measurement of
logical state. The measurement procedure must be tailore
the specific implementation, but our only assumption is t
single-qubit measurements are possible, and that these
surements do not couple qubits. The measurement proce
is then fault tolerant.

Next considerrecovery. The codeCn is an especially
simple example of CSS stabilizer codes@26#, with stabilizer
generated by the single element^ j 51

n11Zj . It is well known
how in general to perform fault-tolerant recovery from th
class of codes@23# ~see also Ref.@27#!, so we will not repeat
the general construction here, which involves preparing
measuring encoded ancilla qubits~note that this typically
doubles the number of physical qubits required, even be
concatenation!.

Finally, considerdetection of SE events. Above we as-
sumed that it is possible to perfectly identify the position
a qubit that underwent SE. Note that this measurement i
itself fault tolerant, in the sense that observing an SE ev
on a specific qubit cannot cause errors to multiply. Clea
detecting which qubit emitted a photon is very demand
experimentally, and can in practice only be done to so
finite precision~though there is no fundamental limit, pro
vided the distance between the qubits is larger than the w
lengths of emitted photons!, and at the cost of introducing
potentially cumbersome detection apparatus. The same d
culty is shared by previous detected-jump schemes@7–9#.

More specifically, in reality there is a finite probabilit
that the emitted photon will~i! Go undetected;~ii ! be attrib-
uted to the wrong atom~misidentification!. The latter possi-
bility applies also to other qubit measurements;~iii ! in case
~ii !, there is the additional possibility of an error by applyin
the correction step to the wrong qubit. In general, fau
tolerance results again come to the rescue: provided tha
2-3
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probability of an undetected photon and/or misidentificat
can be kept sufficiently low, concatenated QECC guaran
that the procedure will remain robust@23,28,29#. However,
several additional comments are in order. First, we note
the performance of DJC codes in the presence of imper
tions such as detection inefficiencies and time delay betw
error detection and recovery operations, has been analyz
Ref. @30#, with favorable conclusions regarding fidelity de
radation. We expect similar conclusions for our curre
method. Second, unlike the case of DJC codes@7,8,30#, we
do not require equal error ratesk i . Hence our qubits need
not be identical: qubits can be tuned to different cav
modes and therefore emit distinguishable photons. T
should enable a significant reduction in the misidentificat
error rate. Third, we can take advantage of the fixed-pa
property of our code. An undetected SE event will chan
the overall parity of the codewords. Hence by adding o
more ancilla qubit~initalized into theu0& state! that functions
as a parity check bit, we can monitor for undetected SE
non-fault tolerant procedure for enforcing the parity check
to make the ancilla qubit the target of successive control
NOT gates from the code qubits, and periodically check to
if it has changed tou1&. In such a case the computation h
to be restarted and the ancilla qubit has to be reset. Fa
tolerant procedures are known for parity check as w
@23,28,29#. There is also the possibility of SE on the pari
qubit, but this can only be caused by two successive spo
neous emissions~one on the code qubits and one on t
parity qubit!, which has a lower probabilityp2, wherep is
the probability of a single SE error occurring during t
same observation period, before the first one is detec
Note that the parity bit also helps preventing the error
applying a correction step without an SE event having ta
place.

V. FAULT-TOLERANT COMPUTATION

So far we have described a fault-tolerant implementat
of quantummemoryin the presence of SE. Now we describ
how to perform universal quantumcomputationfault toler-
antly on our code. Formally, one can use the formalism
normalizer group operations, together with a non-normali
element such as thep/8 or Toffoli gate@23#. However, here
we are interested in how to carry this out from the persp
tive of the naturally available interactions for a given phys
cal system. Similar questions have been raised recently un
the heading of ‘‘encoded universality:’’ the ability to qua
tum compute universally directly in terms of a given a
limited set of Hamiltonians, possibly by use of encoded q
bits ~see, e.g., Refs.@20,31# and references therein!. The
problem then translates into finding sets of Hamiltonians t
generate a universal set of logic gates on the code. There
many options, depending on the set of naturally availa
interactions. Nevertheless, all encoded universality const
tions rely on showing that the well-known universal set of
single-qubit operations and a single entangling gate can
generated on the encoded qubits. Underlying this are a
elementary identities. Let us defineconjugationas:
02232
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[e2 iwBAeiwB.

Then for any three su(2) generators$Jx ,Jy ,Jz% ~e.g.,
$X/2,Y/2,Z/2%):

Jx →
Jz ,w

Jxcosw1Jysinw. ~3!

This can be lifted to unitary evolutions using

UeAU†5eUAU†
, ~4!

valid for any unitaryU. Hence where convenient we prese
our arguments in terms of transformed Hamiltonians. Eq
tions ~3!,~4! show that given two su(2) generators, one c
generate a unitary evolution about any axis. This is also
basis for the well-known Euler angle construction, used
argue that all single qubit operations can be generated f
sx and sz Hamiltonians: an arbitrary rotation by an ang
v around the unit vectorn is given by three successiv
rotations around the z and x axes: e2 ivn•s

5e2 ibsz
e2 iusx

e2 iasz
@32#. Equations~3! and ~4! show that

this is true also for ‘‘encoded Hamiltonians’’, which we de
fine as Hamiltonians that have the same effect on enco
states as do regular Hamiltonians on ‘‘bare’’~unencoded! qu-
bits. We denote encoded Hamiltonians by a bar. For the c
states~1!, these are given by

X̄i5XiXn11 , Z̄i5Zi , ~5!

and generate su(2). Therefore controllableXiXn11 and Zi
Hamiltonians suffice to generate arbitrary single encod
qubit transformations. To complete the set of universal lo
gates we requiresomenontrivial ~entangling! gate@33#, such
as controlled phase~CP!, CP5diag(1,1,1,21), in the com-
putational basis. CP can be generated from the Ising inte
tion ZiZj as follows: CPi j 5e2 i (p/4)(Zi1Zj )e2 i (3p/4)ZiZj . An
entangling gate can also be generated from the Hamilton
XiXj @one way to see this is to note that it can be rotated
ZiZj usingYi andYj in Eqs. ~3! and ~4!#. Encoded CP can
thus be generated from the encoded HamiltoniansZ̄i Z̄ j

5ZiZj or X̄i X̄j5XiXj . Note that in both cases the physic
interaction is also the corresponding encoded Hamilton
Thus the sets of controllable Hamiltonians$Zi ,XiXj% or
$Zi ,XiXn11 ,ZiZj% suffice for encoded universal QC on ou
code. Importantly, these sets moreover exhibit ‘‘natural fa
tolerance’’@17#: they preserve the code subspaceand hence
will not expose the code to uncorrectable errors. Anaccur-
racy error in the time over which the Hamiltonians a
turned on can be dealt with using the technique of conc
enated QECCs@23#. The question now is how to genera
these sets, or an equivalent fault-tolerant universal set, f
the given, naturally available interactions. We will consid
here the most important cases, extending methods devel
in Refs. @20,34,35#. Note that the decoupling procedure r
quires us to assume in any case the ability to apply aglobal
~nonselective! X pulse, and the recovery procedure requir
the ability to apply a controlled-NOT gate. We comment on
these requirements in each of the cases we next analyze
2-4
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A. Case 1: Natural ˆZi ,XiXj‰

The HamiltoniansZi ,XiXj are naturally available, e.g., i
the Sørensen-Mølmer scheme for trapped-ion QC@36#, and
in proposals using Josephson charge qubits@37#. This is a
universal set for our code, so that encoded computatio
automatically compatible with these proposals. Regard
decoupling, there are at least two ways to obtain anX pulse:
~i! to generate it by simultaneously turning on all interactio
$X2i 21X2i% i 51

N/2 for a timep/(2Ji), whereJi is the coupling
between spins 2i 21,2i . However,$Zi ,XiXj% alone is insuf-
ficient for generating a controlled-NOT gate and hence we
must ~ii ! assume the ability to turn on spin-selectiveXi
Hamiltonians. In case~ii ! it is clear that controlled-NOT can
be generated, since$Xi ,Zi ,XiXj% is a universal set of Hamil-
tonians.

B. Case 2:ˆZi , XY Model‰

Members of a relatively large class of promising QC p
posals~quantum dots@38,39#, atoms in a cavity@40#, quan-
tum Hall qubits@41#, subradiant dimers in a solid host@42#,
and capacitively coupled superconducting qubits@43#! have a
controllable Hamiltonian of the XY form:Hi j

XY5Ji j (XiXj

1YiYj ). Let Ti j [
1
2 (XiXj1YiYj ). Thenu01&↔

T12

u10&, and an-
nihilatesu00&,u11&; i.e., theXY Hamiltonian cannot chang
the total number of 1’s in a computational basis state@34,35#.
Therefore by itself, or even if supplemented withZi Hamil-
tonians, it cannot generate su(2) on our code. This con
sion is unchanged even if one considers conjugatingHi j

XY

with Hik
XY : then $T12,T13,2Z1Z2T23% close as su~2!, and

still preserve the total number of 1’s. Therefore in this ca
we must assume the ability to tuneXi Hamiltonians as well,
to obtain universality. However, in order to preserve the co
space we must ensure that only thepulses~unitary transfor-
mations! XiXj5e2 i (p/2)(Xi1Xj ) are applied using thes
Hamiltonians, since such pulses preserve parity. N
XiXj (Tjk)XiXj5

1
2 (XjXk2YjYk), which commutes with

Tjk . Therefore, using Eq. ~4!, we have
XiXje

2 iuTjkXiXje
2 iuTjk5e2 iuXjXk, showing that theHamil-

tonian XjXk can be generated in four steps. At this point w
have the same set of Hamiltonians as in Case 1, so
universal encoded computation is possible, as are the gl
X pulse and recovery.

C. Case 3:ˆZi , Heisenberg interaction‰

Next we consider the case of single-qubitZi control to-
gether with the Heisenberg interactionHi j

Heis5Ji j (XiXj

1YiYj1ZiZj ). Heisenberg interactions prevail in QC pr
posals using spin-coupled quantum dots@44–46# and donor
atoms in Si@47,48#. This case is similar to that of theXY
i
.

02232
is
g

s

-

u-

e

e

,

at
al

model, sinceHi j
Heis also preserves the total number of 1’s

the computational basis states. Therefore, as in theXY case,
we must assume the ability to generate anXiXj pulse. Then,
XiXj (H jk

Heis)XiXj5Jjk(XjXk2YjYk2ZjZk), which com-

mutes with H jk
Heis, so that XiXje

2 i tH jk
Heis

XiXje
2 i tH jk

Heis

5e22i tJ jkXjXk, and we are back to Case 1. There is no
another option for generating an entangling gate: we
generate a pureZZ interaction usingZI(HHeis)ZI52XX
2YY1ZZ, which commutes with HHeis, so that
e2 i tH Heise2 i (p/2)ZIe2 i tH Heise2 i (p/2)ZI5e22i tJZZ. This is a
four-step, naturally fault-tolerant procedure. The decoupl
pulse and recovery are now the same as in Case 1.

Finally, there remains the issue of compatibility betwe
the encoded logic operations and the decoupling pulses
are being constantly applied to the system. All three inter
tion Hamiltonians we have considered commute with
global X BB pulse, so are fully compatible with the BB op
erations. On the other hand, the single-qubitZi

L5Zi terms
anti-commute with theX pulse. Hence when usingZi , one
must be extra careful only to apply it after an even numbe
X BB pulses, so that the effect of the BB pulse is neutraliz
before and after theZi Hamiltonian is used.

VI. CONCLUSIONS

We have proposed a method for performing univers
fault-tolerant quantum computation in the presence of sp
taneous emission. The method combines dynamic dec
pling pulses with a particularly simple and efficient quantu
error correcting code, encodingn logical qubits inton11
physical qubits. Computation is performed by controllin
single-qubitsx andsz terms together with any of three ma
jor examples of qubit-qubit interaction Hamiltonians, app
cable to a wide range of quantum computing proposals.
proposed method offers an improvement over previo
schemes for protecting quantum information against spo
neous emission in that the code is at least twice as efficien
terms of qubit resources, and the method is fully compati
with computation using physically reasonable resources
interactions.
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