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Teleportation of coherent-state superpositions within a network

Nguyen Ba An*
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We propose a protocol for teleporting an unknown coherent-state superposition within a network consisting
of 2N parties withN an arbitrary positive integer. We show explicitly that for moderate and high intensity fields
the probability of success is 50%, i.e. the same as in the case ofN51.
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The prototype scenario of quantum teleportation by B
nett et al. @1# is based on a dual usage of both classical a
quantum channels to transfer an unknown quantum state
tween two remote parties without sending the state its
Inspired by that thrilling idea, a subsequent number of p
tocols have been proposed and some of them have bee
perimentally realized to teleport pure photonic@2# as well as
atomic @3# states, entangled states@4#, and states with con
tinuous variables@5#. Coherent-state superpositions can a
be teleported employing entangled coherent states@6# as a
quantum channel. Superpositions of coherent states not
play a fundamental role in understanding the transfer of
‘‘indeterminacy’’ of a microscopic system to the ‘‘unce
tainty’’ of a macroscopic one, but they can also be used
logical qubit encoding for the correction of spontaneo
emission errors@7#. For example, an exotic form of qubit ca
be made of two kinds of coherent-state superpositions: on
called even and the other is called odd coherent state.
advantage of utilizing such coherent-state superposit
rests in their distinguishability by parity providing an ea
way via a proper circuit to detect and correct bit-flip errors
any @8#.

Because of the reasons mentioned above telepor
coherent-state superpositions proves necessary in its
right. Recently, teleportation of states such as

uC&}aua&1bu2a& ~1!

or

uF&}aua&1ua&21bu2a&1u2a&2 , . . . , ~2!

with ua& a coherent state anda, b unknown complex coeffi-
cients, have been investigated by van Enk and Hirota@9# and
Wang @10#, respectively. However, both the publication
have confined to teleporting between two parties only. A
practical fact, real~quantum! information needs to be com
municated among as many parties as possible. This is a
work problem which has been studied for clonning machi
@11# as well as for teleporting schemes@12,13#. Note that in
Ref. @12# a discrete two-state system was treated among t
parties, whereas in Ref.@13# a general network was consid
ered for teleporting quadratures of a continuous field. In t
work we study teleportation of states of form~1! within a
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network consisting of more than two parties. The network
are interested in is a symmetric network, any party of wh
has an equal right. That is, teleportation should be equ
possible between any pair of parties within the network. T
question is that how many parties may be involved in
game? The answer depends on kinds of quantum cha
entangling all the participants. Because of the structure of
state to be teleported, state~1!, and the network symmetry
requirement, one could think of using a multipartite e
tangled coherent state of the form@14#

uC&12•••M5A12•••M~ ua&1ua&2•••ua&M

2u2a&1u2a&2•••u2a&M), ~3!

with A12•••M the normalization coefficient, as a quantu
channel to perform the teleportation within a network of a
numberM of parties. Our purpose is twofold: first produc
appropriate multipartite entangled states for the quan
channel and then use them to teleport the state of inte
within the network.

Let us now describe a technique to produce state~3! for
M52N with N51,2,3, . . . . Denote the phase shifter b
P̂j (u)5exp(2iuaj

†aj) and the beam splitter byB̂i , j (u)
5exp@iu(ai

†aj1aj
†ai)# whereaj

† (aj ) is the bosonic creation
~annihilation! operator for the state of modej. It is not diffi-
cult to check that the action of the modified beam split
B̂i , j[ P̂j (p/2)B̂i , j (p/4)P̂j (p/2) reads

B̂i , j ua& i ub& j5Ua1b

A2
L

i

Ua2b

A2
L

j

. ~4!

By means of transformation~4!, a 2N-mode state

ua&1ua&2•••ua&2N[)p51
2N

ua&p can be generated b
2N21 modified beam splitters from the 2N21-mode state

uA2a&1uA2a&2•••uA2a&2N21[) l 51
2N21

uA2a& l and 2N21

vacua in the following way:

)
p51

2N

ua&p5 )
q51

2N21

B̂q,q12N21 )
l 51

2N21

uA2a& l )
m51

2N21

u0&m12N21.

~5!

Applying Eq. ~5! to its right-hand side and continuing th
process until we obtain the formula
©2003 The American Physical Society21-1
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)
p51

2N

ua&p5 )
Q5N

1 S )
q51

2Q21

B̂q,q12Q21D u2N/2a&1 )
m52

2N

u0&m .

~6!

It is clear from Eq.~6! that state~3! with M52N can be
produced by applying a suitable sequence of modified be
splitters to the direct product of the stateA12•••2N(u2N/2a&1
2u22N/2a&1) and the vacuau0&2u0&3•••u0&2N. Namely,

uC&12•••2N5A12•••2N )
Q5N

1 S )
q51

2Q21

B̂q,q12Q21D ~ u2N/2a&1

2u22N/2a&1) )
m52

2N

u0&m

5A12•••2N~ ua&1ua&2•••ua&2N

2u2a&1u2a&2•••u2a&2N), ~7!

with the normalization coefficient given by
02232
m

A12•••2N5@2$12exp~22N11uau2!%#21/2. ~8!

Since coherent states are nonorthogonal to each o
state~7! is not maximally entangled in general. The concu
rence@15# between one system, say, system 1, and the
maining systems, say, systems 2, 3,. . . , 2N, can be calcu-
lated as follows. The 2N-mode system is separated into tw
parts: partX is system 1 and partY includes all the remaining
systems 2, 3,. . . , 2N. Each part is treated as linearly inde
pendent with respect toa and 2a spanning a two-
dimensional subspace of the Hilbert space. According to
Gram-Schmidt theorem, we can always build in each s
space an orthonormal basis$u0& i ,u1& i%, i 5X,Y, which is
determined by

u0&X5ua&1 , ~9!

u1&X5
u2a&121^au2a&1ua&1

A12~1^au2a&1!2
, ~10!

u0&Y5ua&2ua&3•••ua&2N, ~11!
u1&Y5
u2a&2•••u2a&2N22N^au•••2^au2a&2•••u2a&2Nua&2•••ua&2N

A12~2N^au•••2^au2a&2•••u2a&2N!2
. ~12!
-

of
ta-
t

-
te
In terms of the orthonormal bases$u0&X,Y ,u1&X,Y% defined by
Eqs.~9!–~12!, our state~7! is expressed as

uC&12•••2N5a00u0&Xu0&Y1a01u0&Xu1&Y1a10u1&Xu0&Y

1a11u1&Xu1&Y , ~13!

where

a005A12•••2N~12Z2N
!, ~14!

a0152A12•••2NZA~12Z2(2N21)!, ~15!

a1052A12•••2NZ2N21A~12Z2!, ~16!

a1152A12•••2NA~12Z2!~12Z2(2N21)!, ~17!

with

Z5 j^au2a& j5exp~22uau2!, ; j . ~18!

The concurrenceC1(23•••2N) is then given by

C1(23•••2N)

52ua00a112a01a10u

5
A@12exp~24uau2!#$12exp@24~2N21!uau2#%

12exp~22N11uau2!
,

~19!

which varies fromA2N21/2N21 in the limit uau→0 to 1 in
the limit uau→` ~see Fig. 1!. The limiting value
C1(23•••2N)5A2N21/2N21 at uau50 agrees with the equal
ity @16#

C12
2 1C13

2 1•••1C12N
2

5C1(23•••2N)
2 , ~20!

as can be expected, since whenuau→0 the stateuC&12•••2N

reduces to theW2N state @17# for which C125C135•••

5C12N51/2N21. However, the nonmaximal entanglement
stateuC&12•••2N does not prevent having a perfect telepor
tion with a finite probability as we shall show in wha
follows.

FIG. 1. The concurrenceC1(23•••2N) between system 1 and sys
tems 2, 3, . . . , 2N in the 2N-partite entangled coherent sta
uC&12•••2N, Eq. ~7!, as a function ofuau2 for N51, 2, 3, and 4.
1-2
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First we deal withN52, i.e. a network consisting of fou
spacelike separate parties: Alice, Bob, Clair, and David. T
four parties will share a 4-partite entangled state serving
quantum channel of the form

uC&12345A1234~ ua&1ua&2ua&3ua&4

2u2a&1u2a&2u2a&3u2a&4), ~21!

with the normalization coefficient given by

A12345@2$12exp~28uau2!%#21/2. ~22!

Let us rewrite the state to be teleported in a more pre
form as

uC&05A0~aua&01bu2a&0), ~23!

with the normalization coefficient given by

A05@ uau21ubu212 Re~a* b!exp~22uau2!#21/2. ~24!

Without loss of generality, we suppose that Alice posses
the stateuC&0 and her task is to teleport it to David. For th
purpose, system 1 is sent to Alice, system 2 to Bob, syste
to Clair, and system 4 to David. The entire system of
state to be teleported, state~23!, and the 4-partite entangle
coherent state of the quantum channel, state~21!, is their
direct product

uF&012345uC&0uC&1234

5A0A1234~aua&0ua&1ua&2ua&3ua&4

2aua&0u2a&1u2a&2u2a&3u2a&4

1bu2a&0ua&1ua&2ua&3ua&4

2bu2a&0u2a&1u2a&2u2a&3u2a&4). ~25!
d’

e

il-
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Under the action ofB̂0,1 on the two modes at Alice’s statio
the initial state~25! is transformed into a new stateuQ&01234
of the form

uQ&012345A0A1234~auA2a&0u0&1ua&2ua&3ua&4

2au0&0uA2a&1u2a&2u2a&3u2a&4

1bu0&0u2A2a&1ua&2ua&3ua&4

2bu2A2a&0u0&1u2a&2u2a&3u2a&4).

~26!

Then Alice needs detecting the photon numbers of mod
and mode 1 by two detectorsD0 andD1 at her station, while
Bob and Clair should carry out the local number measu
ment of mode 2 and mode 3 by their detectorsD2 and D3
~see Fig. 2!. Let the measurement outcomes of Alice ben0
and n1 , whereasn2 (n3) photons are counted by Bob’
~Clair’s! detector. It can be realized from Eq.~26! that there
are only two possibilities: case 1 withn050, n1.0, and
case 2 withn0.0, n150. If case 1 happens then the state
David’s station collapses into

uC8&45A0@~21!n21n3au2a&42~21!n1bua&4]. ~27!

Clearly, if Alice, Bob, and Clair send to David their measur
ment outcomes via a public~classical! channel, andn11n2
1n3 is odd, then after obtaining the classical informati
David will apply the operatorP̂4(p) to Eq. ~27! to get the
stateuC&45 P̂4(p)uC8&4 which coincides withuC&0 ~up to a
global unimportant phase constant sometimes!. The probabil-
ity of success in this situation is given by
P485u1^n1u2^n2u3^n3uQ&01234u25A1234
2 (

n151;n2 ,n350;n11n21n3 :odd

`

uNn1
~A2a!Nn2

~a!Nn3
~a!u2, ~28!
y

re-

sses

to
where

Nn~b!5 j^nub& j5
bn

An!
expS 2ubu2

2 D , ~29!

independent of modej.
Alternatively, if case 2 occurs then the state at Davi

station collapses into

uC9&45A0@aua&42~21!n01n21n3bu2a&4]. ~30!

Transparently, ifn01n21n3 is odd, then nothing should b
done by David because in this situation state~30! is an exact
replica ofuC&0. It is easy to verify that the success probab
ity P495u0^n0u2^n2u3^n3uQ&01234u2 in case 2 is precisely
s

equal to that in case 1, i.e.,P495P48 . Therefore, the total
probability of successful teleportation is explicitly given b

P452P485
1

2
@12csch~4uau2!sinh~2uau2!#, ~31!

which tends to 1/4 in the limituau→0 and to 1/2 in the limit
uau→`, as illustrated in Fig. 3.

It is straightforward to generalize the above obtained
sult to the case of an arbitraryN. The quantum channel is
now served by the 2N-partite entangled coherent state~7!.
Without loss of generality, we suppose that party 1 posse
the stateuC&0 and the task is to teleportuC&0 to party 2N.
For that purpose, system 1 is sent to party 1, system 2
party 2, etc., and system 2N sent to party 2N. The entire
1-3
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system of the state to be teleported, state~23!, and the
2N-partite entangled coherent state of the quantum chan
state~7!, is

uF&012•••2N5uC&0uC&12•••2N

5A0A12•••2N~aua&0ua&1ua&2ua&3•••ua&2N

2aua&0u2a&1u2a&2u2a&3•••u2a&2N

1bu2a&0ua&1ua&2ua&3•••ua&2N2bu2a&0

3u2a&1u2a&2u2a&3•••u2a&2N). ~32!

At party 1 station a sequence of local operato
P̂1(p/2)B̂0,1(p/4)P̂1(p/2) is performed on system 0 an
system 1 transforming state~32! into stateuQ&012•••2N of the
form

uQ&012•••2N5A0A12•••2N~auA2a&0u0&1ua&2ua&3•••ua&2N

2au0&0uA2a&1u2a&2u2a&3•••u2a&2N

1bu0&0u2A2a&1ua&2ua&3•••ua&2N2bu

2A2a&0u0&1u2a&2u2a&3•••u2a&2N).
~33!

FIG. 2. The scheme for teleporting the superposition stateuC&0,
Eq. ~23!, from Alice to David within a network of four parties.Pj ,
phase shifters;B0,1, nonabsorbing beam splitter;D j , detectors
counting photon numbers;nj , the measurement outcomes; and t
dashed lines, classical communication channels.
02232
el,

s

To fulfill the task mentioned above party 1 needs count
the photon numbers of mode 0 and mode 1 by two lo
detectorsD0 andD1, while parties 2, 3,. . . , 2N21 should,
respectively, carry out the local number measurement
mode 2, mode 3,. . . , mode 2N21 by local detectorsD2 ,
D3 , . . . , D2N21. Let the measurement outcomes at party
station ben0 andn1, whereasn2 , n3 , . . . , n2N21 photons
are detected at the stations of party 2, party 3,. . . , party
2N21, respectively. Again, the structure of stateuQ&012•••2N,
Eq. ~33!, allows only two possibilities as in the case ofN
52. Let us recall that the two cases are case 1 withn050,
n1.0, and case 2 withn0.0, n150. If case 1 happens the
the state at party 2N station collapses into

uC8&2N5A0@~21!n21n31•••1n2N21au2a&2N

2~21!n1bua&2N]. ~34!

Clearly, if all the parties who performed the number me
surement send their outcomes to party 2N via a public~clas-
sical! channel and the outcomes are such thatn11n21•••

1n2N21 is odd, then after obtaining the classical informati
party 2N will apply the operatorP̂2N(p) to Eq. ~34! to get
the stateuC&2N5 P̂2N(p)uC8&2N which is nothing else but
the desired stateuC&0 ~up to a global unimportant phas
constant sometimes!. The probability of success in this situ
ation is equal to

FIG. 3. The probability of successful teleportationP2N, Eq.
~37!, as a function ofuau2 for N51, 2, 3, and 4.
P2N8 5u1^n1u2^n2u
•••2N21

^n2N21uQ&012•••2Nu2

5A12•••2N
2 (

n151;n2 ,n3 , . . . ,n2N2150;n11•••1n2N21 :odd

`

uNn1
~A2a!Nn2

~a!•••Nn2N21
~a!u2. ~35!
1-4
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Alternatively, if case 2 occurs then the state at partyN

station collapses into

uC9&2N5A0@aua&2N2~21!n01n21n31•••1n2N21bu2a&2N].
~36!

Transparently, ifn01n21n31•••1n2N21 is odd, then, by
doing nothing, party 2N gets an exact replica of the desire
state uC&0. In this case 2 the success probabilityP2N9

5u0^n0u2^n2u•••2N21^n2N21uQ&012•••2Nu2 is also precisely
equal to that in case 1, i.e.,P2N9 5P2N8 . Hence, the total
probability of successful teleportation can be calculated
the formula

P2N52P2N8 5
1

2
$12csch~2Nuau2!sinh@2~2N2121!uau2#%.

~37!

Formula ~37! holds true also forN51 for which P251/2,
independent ofa, recovering the result reported in Ref.@9#.
For anyN.1, the probability of perfect teleportation tend
to 1/2N in the limit uau→0 and to 1/2 in the limituau→`
~see Fig. 3!. A property worth emphasizing is that in factP2N

for any N.1 saturates to 1/2 already starting fromuau2

53. So, for moderate and high intensity fields~say, uau2
>3) the success of teleportation can be considereda inde-
pendent and is equal to 1/2 as in the case ofN51. In this
sense, for fields containing at least three photons on aver
i.e., for uau2>3, the teleportation can be regarded asN inde-
pendent as well.

As is evident from above, the success of the propo
teleportation is determined by parity of the counted pho
numbers rather than by the numbers themselves. The d
tors thus must be highly parity sensitive. For high intens
fields distinguishing the number parity may be confused.
get rid of such confusion an additional technique, if nec
sary, can be applied in the following way. The Fock st
unj& j appearing after the measurement of modej by detector
D j is coupled to a two-level atom via a dispersive interact
@18# governed by the interaction Hamiltonia
Hint5 f aj

†ajsx where f is the coupling strength andsx

5ug&^eu1ue&^gu with ug& (ue&) the atomic ground~excited!
state. Let the atom be initially prepared either in the exci
or in the ground state. After a finite interaction timet the
Fock state of the field remains unchanged but the ato
state becomes a superposition like this

H ue&

ug&
→cos~ f tnj !H ug&

ue&
2 i sin(f tnj )H ue&

ug&
. ~38!

If the interaction time is chosen such thatt f 5p/2, then
observing a state-flipping~e.g.,ug&→ue& or ue&→ug&) means
that the numbernj is odd, whereas no-flipping event signa
an evennj , no matter how manynj is. This thus provides a
convenient way to infer the parity of the detected pho
number by just monitoring the atomic state att50.5p/ f .

In summary, we have dealt with a symmetric netwo
problem for teleporting an unknown coherent-state supe
sition from a party to any one of the other parties. We ha
02232
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found out that for low intensity fields (uau2,3) the probabil-
ity of successful teleportation decreases with decreasinguau
and with increasing size of the network:P2N}22N in the
limit of vanishinguau. However, for fields containing at leas
three photons on average the teleportation turns out to
faithful with a success probability equal to 1/2, independ
of the number of participating parties as well as of the fie
intensity. Of course, no more than one party can get an e
replica of the teleported state because the parties 1, 2,. . . ,
2N21 counted the photon number and, by doing so, th
destroyed the state at their locations. This accords with
no-clonning theorem. Also, no party is left jobless. All a
involved in a global cooperation. Without the action of a
of the parties the teleportation can never be completed s
the measurement outcomes of all the 2N21 parties should
arrive at the party 2N station before that latter party is able
infer the teleported state. This takes some time for the p
2N to collect all the necessary data by means of class
channels guaranteeing a peace with the special relativit
should also be kept in mind that in the proposed protocol
teleportation cannot be reliable~i.e., with a probability of
success equal to 1!. There may happen thatn01n11n2
1•••1n2N21 is even in which case the state at the partyN

station differs from the original stateuC&0 by a relative
phase factor. Since no unitary transformations that ca
aua&2bu2a& into aua&1bu2a& have been available, th
teleportation fails. The number of participating parties here
limited to M52N just because we have not yet known tec
niques to produce the stateuC&12•••M , Eq. ~3!, for anyM. If
such a technique exists then our formalism remains fu
applicable to anyM. Yet, looking for other kinds of quantum
channel towards an optimal teleportation protocol as wel
taking into account effects of noise and decoherence, etc.
worth for further efforts.

Last but not least, we would emphasize that our propo
protocol can potentially be applied to quantum informati
processing based on continuous variables@19#. Actually,
there have appeared tendencies to encode informatio
quantum states with continuous variables~logical qubits!
since such an encoding allows the information to be mani
lated much more efficiently than with traditional discret
variable states~qubits!. As mentioned at the beginning, su
perpositions of coherent states have proved to be, am
others, a good candidate for logical qubits to be used
computational bases in quantum computing. Furtherm
the beam-splitter-based measurement~performed here by Al-
ice! for coherent states would be helpful also for quantu
cryptography and quantum error correction. As for expe
mental implementation of our ideas, it is also simple. T
50:50 beam splitters are presently available and the diffic
associated with determination of the parity of photon num
in a Fock state by individual parties could greatly be fac
tated by additionally employing atom-field dispersive inte
action as described in the text.

Discussions with the KIAS’s Quantum Information Grou
and members of the KAIST’s Physics Department are gra
fully acknowledged. This work was supported by KIAS R
search Grant No. 02.0149.001.
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