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Classes ofn-copy undistillable quantum states with negative partial transposition
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The discovery of entangled quantum states from which one cannot distill pure entanglement constitutes a
fundamental recent advance in the field of quantum information. Such bipartite bound-ent&tg)lgdantum
statescouldfall into two distinct categorieg1) Inseparable states with positive partial transpositRT), and
(2) states with negative partial transpositiddPT). While the existence of PPT BE states has been confirmed,
only oneclass ofconjecturedNPT BE states has been discovered so far. We provide explicit constructions of
a variety of multicopy undistillable NPT states, and conjecture that they constitute families of NPT BE states.
For example, we show that for every pure state of Schmidt rank greater than or equal to 3, one can construct
n-copy undistillable NPT states, for amy=1. The abundance of such conjectured NPT BE states, we believe,
considerably strengthens the notion that being NPT is only a necessary condition for a state to be distillable.
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INTRODUCTION are studied using the partial transpositid®T) operation
[2,3]. Let p”B be a density matrix corresponding to a bipar-
In the past decade, the search for efficient tools to detettite quantum system consisting of subsystekrendB. Then
mine whether a given quantum state is entanfigdand if ~ the partial transposition operation in an orthogonal product
so, whether it can be potentially used in quantum informabasis is defined a,.n,)” "= pmy.n. . Where the transpose
tion processing protocols has led to several fundamental rds taken with respect to the subsyst&mif p”7=0, the state
sults about the nature of quantum entanglenj@nt6]. Al-  is said to be a state with positive RPPT), otherwise it is
most all quantum communication protocols, such assaid to be a state with negative RNPT). If a state is not
teleportation[7] and superdense codif@], require maxi- entangledi.e., separablethen it must be PPT. For quantum
mally entangled states that are shared among the spatialystems in 22 and 223, the NPT is a necessary and suf-
separated parties in conjunction with classical communicaficient for inseparability but only sufficient in higher dimen-
tion. However, entangled states are noisy in general, due tons[2,3]. It was proved that PPT states are not distillable
environment-induced decoherence effects. Hence, in ordé21] and therefore, inseparable PPT states are bound en-
for an entangled state to be useful, one should be able t@ngled. This leaves an interesting open question: Are all
extract maximally entangled statéa the asymptotic senye NPT states distillable? If the answer is yes, then negativity
starting from an ensemble of the given state, while usinginder PT would be the necessary and sufficient condition for
only local operations and classical communication. Stategistillability. However, it turns out that even though most
which allow such extraction of maximally entangled statesNPT states are distillable, some are possibly not. The exis-
are referred to as distillable quantum states. Generalizatiorience of NPT states that are not distillable has been conjec-
of classical information theory concepts have led to prototured in Refs[19,20.
cols for distillation of quantum entanglement from certain A statep is said to be distillable if and only if there exists
classes of quantum state®-12. a positive integen and a Schmidt-rankSR) 2 state| ¢) such
Recent results have shown that even though most erhat(|(p”T)*"|¢)<0 [21]. Intuitively, this means that in
tangled states are distillable, some are not. The undistillablthe tensor product Hilbert spad¢®", there exists a @2
but entangled quantum states are said to possess bound enbspace where the state is inseparable. Thus, a state is
tanglement5,13—-15. Bound-entangledBE) states cannot n-copy undistillable if this condition is not satisfied by
be prepared locally as they are entangled, and being not disopies of the state. To prove that NPT bound-entangled states
tillable cannot be directly used in quantum communicationexist, one needs to show that th@me statés n-copy undis-
protocols. Interestingly, they can still enable nontrivial quan-tillable for all n=1. In Refs.[19,20], the conjectured NPT
tum processes, such as activati@d4,16 and superactivation bound-entangled states were proved to be one-copy undistill-
of entanglemenf17], remote concentration of information able. Moreover, for any given number of copiasstates that
[18], which are not possible with separable states. In thisare n-copy undistillable were constructed. We explore this
sense, the nonlocal properties of bound entanglement can ligsue further, and provide evidence that such conjectured
distinctly utilized. NPT BE states can be found at infinitely many neighbor-
Many of the properties of entangled and distillable statesioods of the Hilbert space.

. . . GENERAL APPROACH
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onto, 80 St. George Street, Toronto, ON M5S 3H6, Canada. Elec- We now introduce a general techniq[f9] to construct
tronic address: som@ee.ucla.edu n-copy undistillable NPT states. Consider a class of bipartite
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when e>0, and PPT fore=0. Let us also assume thtite
null space of the partial transpose of the density matrix
(p(e=0))®", for all d=3 and n=1, does not contain any
nonzero vector of Schmidt rank less tt&alNow consider the
following function:

(1-¢)
I— PT,
e le)el)

ple)=eo+ )

It is easy to verify that the density matri €) is NPT when
€>0, and separable foe=0: The negativity follows from
(elpPT(e)|e)=e(¢lo"T| @)= —€lAl.

The following result comprises the next crucial step in our
proof for the existence afi-copy undistillable states.

. . . Lemma 1Given ap as defined in Eq(3), the null space
where, as shown, the minimum is taken over all Schmldt-of (pPT(e=0))®", for all d=3 andn=1, does not contain

rank 2 states in the fulli"®d" Hilbert space. Since by as- any nonzero vector of Schmidt rank less than 3.

sumption any S@E‘?‘{E"w of ETChm'dt rank 2 does not lie inthe  byoof. For a single copy, the result is obvious since the
null space of(p™"(e=0))"", [24], f(e=0,n)>0. Hence, it oy state that lies in the null space pPT(e=0) is l),
follows from continuity arguments that for ail there exists \hich of course has Schmidt rank greater than 2 by construc-
an e, such thatf(e,,n)=0, whene is in the interval 6<e  jon Before we outline our proof fon copies, it is instruc-
<¢,. This implies that there is a finite range e~0 for  {jye to work with two copies in detail because the proof
everyn such thafp(e) is n-copy undistillable. However, this contains all the essential elements that we need for the case
argument is not sufficient to conclude complete undlst|llab|l-inv0|ving n copies.

ity because we have not established any result about the | gt the following set be the basis for each of the Hilbert
asymptotic behavior o, asn—oc. It might so happen_that spaces Concerned[{lqm)}f:ol,{lij)}ilfj_(il<j):0,{|ij) ic{j—:lk]’

€,—0 asn— and then we cannot guarantee the existence, ;.o |y ==K\, |ii). Note that(e|e)=d. and fur-
of a state that is undistillable for any number of copies. =071 S y

fem= min (¢l (€)" ), (1)

SR(|¢))=2

The purpose of the present paper is to show that for qua

tum systems ird;®d,,d;,d,=3, one can construct several
classes of stateg(e), 0<e<1 such that(1) p(e) is NPT
whene>0, and PPT fore=0, and(2) the null space of the
partial transpose of the density matriy(e=0))“", for any

n=1, does not contain any nonzero vector of Schmidt rank
less than 3. Then by arguments of the preceding paragraph,

for anyn=1 we can generate states that areopy undis-
tillable.

CONSTRUCTIONS

We first provide constructions of sugl{e) for a pair of
states ¢,|¢)(¢|) that satisfy the following property. Let
be a NPT state and let¢) be a pure entangled state of
Schmidt rankk, 3<k=min(d;,d,), | ¢)=SF"3\|ii), where
Sk 4N\|?=1 and \'s are real and positive such that
(¢|d"T|@)=—]A|. We will later show thasuch combina-
tions (o, ¢) of states are easy to constru¢h fact, one can
start with any arbitrary}¢) and accordingly choose and
vice versa.

Very recently, it has been shown that the operdtid(D
—1)]1(1—|e){¢|)"T, where | is the identity operator of the
total Hilbert spacéH, is a separable density matfi23]. The
proof that it is PPT is based on the eigendecomposition
the partial transposed operatdpf(¢|)P™:

k—1 k-1
(o)D)= 2 NG+ 2, N[ur )i
k—1
2 ANl v

where|yi7) = (1V2) (i) = 1ji)).

We now construct the following density matrix:

thermore, in this notatiohpo) =|¢). The following set com-

r’Brises a basis for the null space of the operdtbkd?

11— le)(e)) %

{ledy®led).lenyeflet Nt legy®{lij 2HE Lo,
gy @{ij) ﬁ;jk,{|¢|l>}r;11®|¢c2)>:{|ij >l}=(;jl=0
®lep) i A2 0,

where the notatiom<j=0 in the subscripts is used to rep-
resent the set of all indices,{), such thai <j, andj varies
from O to the value in the corresponding superscript. Note
that the superscripts inpg? indicate the individual Hilbert
spaces. Let us further simplify the notation before we pro-
ceed. We rewrite the above basis Blpg)®|e3),|¢g)
®|ee) 05 ®|eb). o) @] e5). | 0p) @ | @5)], where the sub-
scripts E and P refer to the entangled and product states,
respectively. If there is a Schmidt-rank 2 state in the null
space, it can be written as a linear combination of the above
basis states. Using the fact that local projections cannot in-
crease the Schmidt rank of a state, it readily follows that the
coefficients of the basis states that are of the fdwp)
®|@3) or |eh)y®|¢2) are zero. If any of these coefficients is
not zero, then the reduced density matrix will have rarik.

Oﬁ'herefore, any Schmidt-rank 2 state has to have the follow-

ing form: a| o3) ®| ) + Bl et) ® | @3). Itis useful to analyze
this explicitly. Let| ) be the Schmidt-rank 2 state and hence
it can be written asZ{Ciaileg)® o)+ i1 Bileie)
®|@3)+ vl o) ®|@3), where the coefficients of the superpo-
sition are, in general, complex. On substituting the expres-
sions for the states and rearranging it in the bipartite form
one obtains the following expression fak):

k-1 k-1
jI§=:O Zl{ai)\il)\oj+13i)\0|)\ij}+7)\0j)\ol [iDalil)e -
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The subscript#\,B are used to emphasize the Schmidt formeigenvalues are of Schmidt rank 2. In particular, they are of
of the above state. Note that this equation [fof is already the form |¢i]>=(1/\/§)(|ij>—|ji>), i<j with negative ei-

in a Schmidt decomposed form, where the terms in the pagenvalueg; ;. Let |x) be one such eigenvector. Then, let
rentheses correspond to the Schmidt coefficients. If the stalg) = \/E| ¢ﬁ>+ \/E| 7). For instance, ify) has Schmidt

is indeed of Schmidt rank 2, then we must have all the corank (d—1), then|z)=|dd). Clearly|¢) has Schmidt rank
efficients but two equal to zero. This amounts to soMkig 3 in this case but the Schmidt rank can be greater than 3 if
linear equations for R—1 variables. One can explicitly more than one mutually biorthogonal product states that are
write down the above equations in a matrix forAx=y,  also orthogonal tar"T can be found. This would be deter-
where A, x, andy are of dimensionk?x(2k—1), (2k  mined by the Schmidt rank df). It is now obvious that
—1)x1, andk?x 1, respectively k=3). Moreover,y has (o @)=~ apB;iB;<0.

only two nonzero entries arid—2 zeros. The matriA can Construction method IlLet us chooseny arbitrary pure

be shown to have the following property: Any submatrix of state |¢) that has Schmidt rank ,k3<k=min(d;,d,), | )

A whereany two of the rows are deletddhence, the subma- =3k 2\ [ii), where SKZ}\|?=1 and\;'s are real and
trix is of dimension k*—2)x (2k—1)] is still of full col-  positive. For any two operatorsA and B, we have
umn rank. Hencex=0, and it would imply that the above Tr(ABPT)=Tr(AP™B). For any o, we, therefore, have
state has Schmidt rank zero. This completes the proof fof,|oPT| o) =Tr(| ) o|a”T)=Tr(|¢)"(¢|a). It follows

two copies. _ from Eq.(3) that if we chooser as the convex combination
For n copies, the proof follows the same line as for tWoof the eigenvectors with the negative eigenvalue of
copies. The basis for the-copy case of the null space is 10)PT( |, then(e|o"T|@) will be negative. We, therefore,
given by take the following representation of o: o
== 2o <jaijl i (| Then (elo™T@)=—Saj\i;
<0. The method of our construction makes it clear that for
®@m ®N—m — _ — _
r(m)WO) 1) ] m=0,...n-1,1=1,... k-1 every pure entangletlp) of Schmidt rank greater than or
equal to three one would be able to generate a finite copy

Following the same arguments as in the two-copy case, onlénd'suIIabIe NPT state.

can obtain a similar set of linear equations. The number of
equations isk" and the number of variables can easily be GENERALIZED CONSTRUCTIONS
counted and turns out to be"—(k—1)"; moreover, the
right-hand side of the equatiorige., y) hask"—2 zeros. . )
T?lerefore, no matter ho(\q/v Iargr; ma))//)be, the number of M=Ld/Kl, Wh_ere [x] is the “floor” operator deno_tlng
equations is always greater than the number of variables, affle largest integer less than or equal 1(3 Define
one can show from the properties of the matrix that the set of '€ mfollowmg Pftates: pm(€) =€+ [(1—e)/(d*—m)](l
linear equations does not have any nontrivial solution. _Ei=_1|‘Pi><‘Pi|) , where|g;)’s are pure entangled states of
With the above result and the arguments provided in the>¢chmidt rankk=3 states such that each of them are in or-
beginning of the paper, we can now directly state the fonow_thogonal subspaces. Note that it is not necessary to _have the
ing theorem. Schmidt rank of the states to be equal but the choice was
Theorem 1.Let o be a bipartited; < d, (whered;,d, _made for simplicity_and convenien¢rotationa). Clearly,m
=3) NPT state and lep) be a pure state of Schmidt rank IS maximum for a 9:(‘.’?2'” whenk=3. The states are defined
equal to k [3<k=min(d;,d,)], such that (¢|c”T|@)  as follows: )= 1)\jlij)". As before,oc may be
=—|A|. Then for anyn=1, there exists ag,>0, such that chosen to be the convex combination of the states with nega-
the state p(e):60+[(1_6)/(d2_1)](|_|¢><(P|)PT is tive eigenvalues in the eigendecomposition of the partial
n-copy undistillable for G e<e,. transpose of the pure statgs;). Note thatm=1 corre-
We now show thathe pairs of state¢o,¢) stipulated in sponds to the states in Theorem 1. One can then state the
Theorem 1 are fairly easy to construdh our first method, following generalization of Theorem 1.
we will specify o first, and then accordingly we will specify ~ Theorem 2 The statespy,(€)=eo+[(1—€)(d*~m)](I
|@). In our second example, we will do just the opposite, i.e.,~ =1l @i){¢i|)?T for sufficiently smalle aren-copy undis-
we will fix an arbitrary statd) and based on the eigende- tillable for anyn=1.
composition of its partial transpose, we will constract
Constructiqn method IChoose any pure entangled state  5,sTANCE FROM THE MAXIMALLY MIXED STATE
|) of Schmidt rankm, 2<m=<d—1, of the form |y)
=3 tgiii), where="'|3|?=1 and the Schmidt coeffi- We next explore how these NPii-copy undistillable
cients 8;’s are real and positive. Lat=|y)(y|. Since the states are distributed in the Hilbert space, and in particular,
Schmidt rank of ) is at most — 1), therefore, there is at how far they are from the maximally mixed state. For any
least one product state that is orthogonal to the subspad&0 quantum stateg, and p,, the distance between the
spanned by the eigenvectorsef’. Let|7) be such a prod- ~States is given by the Hilbert-Schmi@S) norm defined by
uct state. From the eigendecomposition of any pure fsae  [p1— pal|= VTr(p1—p,)?. Let us first note that the operator
Eq. (3)] having Schmidt rank greater than or equal to 2, we[ 1/(d2—m)](1—=_|¢i}{¢i[)PT is a PPT density matrix.
know that the eigenvectors corresponding to the negativdhe proof can be easily obtained by using E). Since our

We can generalize our states in the following way. Let
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n-copy undistillable states exist arbitrarily close to this stateand substitutes Eq2) with the present choice dfp) in that
it is sufficient to find the distance of this state from the maxi-of p"T(e=0), one obtains

mally mixed one. Using the HS norm, one can show that the

distance is given by/m/D(D—m). We also note that this

distance is nothing but the distance of the maximally mixed 1 (971 d-1
state, 1D, from any normalized —m) dimensional pro-  pPT(e=0)= — D leed+ > |kINKI| .
jectorly_p,. Let us denote ,=|[I/D—1p_,/D—m]. d°—1\k=1 kl=0k#1

Theorem 3For a bipartite quantum system dwd, the
boundary of the balls of radiusr, for all m
=1,...]d/k|, k=3, around the maximally mixed state con-
tains n-copy undistillable NPT states. For a givein maxi-
mum number of such balls is obtained when 3.

It is instructive to analyze how close these states are rela- DISCUSSIONS AND CONCLUDING REMARKS
tive to the largest separable ball, the radius of which has
recently been obtained in Ref22], and is given by We have shown that-copy undistillable NPT statesn(
1/yD(D—1). The result of Theorem 3 shows that the case=1) exist at infinitely many neighborhoods of the Hilbert
m=1 corresponds to the NPFcopy undistillable states that SPace. Such states lie right on the surface of the largest sepa-
lie on the boundary of the largest separable ball. This is a&ble ball(LSB); thus, they are as noisy as any inseparable
close as the states can be to the maximally mixed state. Lé&tate can be. They can also be found well outside of the LSB,
us now try to answer how far from the maxima”y mixed where distillable and Separable states coexist. Can the gen-
state these NPT finite copy undistillable states can be founcgral approach adopted here lead to a proof of the existence of
In our Construction, for a gived, maximumrm is obtained NPT BE states? Not in a Straightforward manner: In our

for m=|d/3]. This corresponds to a distance that grows agonstructionsp”’(e=0) hasD —1 identical nonzero eigen-

The above similarity is striking considering the very different
approaches adopted in the two construction methodologies.

1/DV4 values, 1/p—1). Hence, the function f(e=0,n)
=min sg(g)-2(dl(p (€=0))*"|4) is bounded above by
COMPARISON WITH PREVIOUSLY [1/(D-1)]", and lim _ f(e=0n)=0. Thus, we cannot
CONJECTURED NPT BE STATES claim that simple continuity arguments will yield the exis-

We now point out a remarkable similarity of the class oftence of states that are NPT but undistillable for any number

states presented in this work with that obtained in Reg]. ~ ©Of Copies. However, since(e=0) is a separable statand
It turns out that for certain choices of the parameters in theif€nce, undistillable one should expect lim... f(e=0,n)
class of states and for a particular choicd @f in our case, 0, @nd it provides no evidence that the provahbigopy
the null space of the partial transposed operator is exactly thidndistillable states do not remain undistillable for any num-

. ~ ber of copies. In factwe conjecture that all the n-copy un-
same. Let us denote the class of states in Ré&f. asp(c, €) o i
(following their notation. Whene=0 andc—=1/d(d+1), distillable states constructed here are also truly NPT bound

entangled statesMoreover, we believe that even in our
approach, it is possible to show that there exists a neighbor-
hood O<e<e., where IirnrHoo f(e,n)=0; thus, proving

that at least all the states in this neighborhood are also NPT
BE states.

1
d?>-1

d-1 d-1
(p(c,e)PT= > lew(ed+ > [kINKI|],
k=1 k,1=0k=I
where  |@)=(1Nd)S{Zle2mijk/d|jj),k=1, ... d—1.
Going back to our class, let us chodge to be the maxi-
mally entangled state of Schmidt rank (i.e., |¢) ACKNOWLEDGMENTS
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