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Classes ofn-copy undistillable quantum states with negative partial transposition

Somshubhro Bandyopadhyay* and Vwani Roychowdhury†

Electrical Engineering Department, UCLA, Los Angeles, California 90095, USA
~Received 27 March 2003; published 28 August 2003!

The discovery of entangled quantum states from which one cannot distill pure entanglement constitutes a
fundamental recent advance in the field of quantum information. Such bipartite bound-entangled~BE! quantum
statescould fall into two distinct categories:~1! Inseparable states with positive partial transposition~PPT!, and
~2! states with negative partial transposition~NPT!. While the existence of PPT BE states has been confirmed,
only oneclass ofconjecturedNPT BE states has been discovered so far. We provide explicit constructions of
a variety of multicopy undistillable NPT states, and conjecture that they constitute families of NPT BE states.
For example, we show that for every pure state of Schmidt rank greater than or equal to 3, one can construct
n-copy undistillable NPT states, for anyn>1. The abundance of such conjectured NPT BE states, we believe,
considerably strengthens the notion that being NPT is only a necessary condition for a state to be distillable.

DOI: 10.1103/PhysRevA.68.022319 PACS number~s!: 03.67.Mn, 03.65.Ud
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INTRODUCTION

In the past decade, the search for efficient tools to de
mine whether a given quantum state is entangled@1#, and if
so, whether it can be potentially used in quantum inform
tion processing protocols has led to several fundamenta
sults about the nature of quantum entanglement@2–6#. Al-
most all quantum communication protocols, such
teleportation@7# and superdense coding@8#, require maxi-
mally entangled states that are shared among the spa
separated parties in conjunction with classical commun
tion. However, entangled states are noisy in general, du
environment-induced decoherence effects. Hence, in o
for an entangled state to be useful, one should be abl
extract maximally entangled states~in the asymptotic sense!
starting from an ensemble of the given state, while us
only local operations and classical communication. Sta
which allow such extraction of maximally entangled sta
are referred to as distillable quantum states. Generalizat
of classical information theory concepts have led to pro
cols for distillation of quantum entanglement from certa
classes of quantum states@9–12#.

Recent results have shown that even though most
tangled states are distillable, some are not. The undistilla
but entangled quantum states are said to possess boun
tanglement@5,13–15#. Bound-entangled~BE! states canno
be prepared locally as they are entangled, and being not
tillable cannot be directly used in quantum communicat
protocols. Interestingly, they can still enable nontrivial qua
tum processes, such as activation@14,16# and superactivation
of entanglement@17#, remote concentration of informatio
@18#, which are not possible with separable states. In
sense, the nonlocal properties of bound entanglement ca
distinctly utilized.

Many of the properties of entangled and distillable sta
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are studied using the partial transposition~PT! operation
@2,3#. Let rAB be a density matrix corresponding to a bipa
tite quantum system consisting of subsystemsA andB. Then
the partial transposition operation in an orthogonal prod
basis is defined as (rmm,nn)PT5rmn,nm , where the transpose
is taken with respect to the subsystemB. If rPT>0, the state
is said to be a state with positive PT~PPT!, otherwise it is
said to be a state with negative PT~NPT!. If a state is not
entangled~i.e., separable! then it must be PPT. For quantum
systems in 2̂ 2 and 2̂ 3, the NPT is a necessary and su
ficient for inseparability but only sufficient in higher dimen
sions@2,3#. It was proved that PPT states are not distillab
@21# and therefore, inseparable PPT states are bound
tangled. This leaves an interesting open question: Are
NPT states distillable? If the answer is yes, then negativ
under PT would be the necessary and sufficient condition
distillability. However, it turns out that even though mo
NPT states are distillable, some are possibly not. The e
tence of NPT states that are not distillable has been con
tured in Refs.@19,20#.

A stater is said to be distillable if and only if there exist
a positive integern and a Schmidt-rank~SR! 2 stateuf& such
that ^fu(rPT) ^ nuf&,0 @21#. Intuitively, this means that in
the tensor product Hilbert spaceH ^ n, there exists a 2̂ 2
subspace where the state is inseparable. Thus, a sta
n-copy undistillable if this condition is not satisfied byn
copies of the state. To prove that NPT bound-entangled st
exist, one needs to show that thesame stateis n-copy undis-
tillable for all n>1. In Refs.@19,20#, the conjectured NPT
bound-entangled states were proved to be one-copy undi
able. Moreover, for any given number of copies,n, states that
are n-copy undistillable were constructed. We explore th
issue further, and provide evidence that such conjectu
NPT BE states can be found at infinitely many neighb
hoods of the Hilbert space.

GENERAL APPROACH

We now introduce a general technique@19# to construct
n-copy undistillable NPT states. Consider a class of bipar
d3d density matricesr(e), 0<e<1, wherer(e) is NPT

r-
c-
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whene.0, and PPT fore50. Let us also assume thatthe
null space of the partial transpose of the density mat
„r(e50)…^ n, for all d>3 and n>1, does not contain any
nonzero vector of Schmidt rank less than3. Now consider the
following function:

f ~e,n!5 min
SR(uf&)52

^fu„r
PT

~e!…^ nuf&, ~1!

where, as shown, the minimum is taken over all Schm
rank 2 states in the fulldn

^ dn Hilbert space. Since by as
sumption any stateuf& of Schmidt rank 2 does not lie in th
null space of„r ^ n(e50)…PT, @24#, f (e50,n).0. Hence, it
follows from continuity arguments that for alln, there exists
an en such thatf (en ,n)>0, whene is in the interval 0<e
<en . This implies that there is a finite range ofe.0 for
everyn such thatr(e) is n-copy undistillable. However, this
argument is not sufficient to conclude complete undistillab
ity because we have not established any result about
asymptotic behavior ofen asn→`. It might so happen tha
en→0 asn→` and then we cannot guarantee the existe
of a state that is undistillable for any number of copies.

The purpose of the present paper is to show that for qu
tum systems ind1^ d2 ,d1 ,d2>3, one can construct sever
classes of statesr(e), 0<e<1 such that~1! r(e) is NPT
whene.0, and PPT fore50, and~2! the null space of the
partial transpose of the density matrix,„r(e50)…^ n, for any
n>1, does not contain any nonzero vector of Schmidt ra
less than 3. Then by arguments of the preceding paragr
for any n>1 we can generate states that aren-copy undis-
tillable.

CONSTRUCTIONS

We first provide constructions of suchr(e) for a pair of
states (s,uw&^wu) that satisfy the following property. Lets
be a NPT state and letuw& be a pure entangled state
Schmidt rankk, 3<k<min(d1,d2), uw&5( i 50

k21l i u i i &, where
( i 50

k21ul i u251 and l i ’s are real and positive such tha
^wusPTuw&52uLu. We will later show thatsuch combina-
tions (s,w) of states are easy to construct. In fact, one can
start with any arbitraryuw& and accordingly chooses and
vice versa.

Very recently, it has been shown that the operator@1/(D
21)#(I2uw&^wu)PT, where I is the identity operator of the
total Hilbert spaceH, is a separable density matrix@23#. The
proof that it is PPT is based on the eigendecomposition
the partial transposed operator (uw&^wu)PT:

~ uw&^wu!PT5 (
i 50

k21

l i
2u i i &^ i i u1 (

i , j 50,i , j

k21

l il j uc i j
1&^c i j

1u

2 (
i , j 50,i , j

k21

l il j uc i j
2&^c i j

2u, ~2!

whereuc i j
6&5(1/A2)(u i j &6u j i &).

We now construct the following density matrix:
02231
t-
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f

r~e!5es1
~12e!

d221
~ I2uw&^wu!PT. ~3!

It is easy to verify that the density matrixr(e) is NPT when
e.0, and separable fore50: The negativity follows from
^wurPT(e)uw&5e^wusPTuw&52euLu.

The following result comprises the next crucial step in o
proof for the existence ofn-copy undistillable states.

Lemma 1.Given ar as defined in Eq.~3!, the null space
of „rPT(e50)…^ n, for all d>3 andn>1, does not contain
any nonzero vector of Schmidt rank less than 3.

Proof. For a single copy, the result is obvious since t
only state that lies in the null space ofrPT(e50) is uw&,
which of course has Schmidt rank greater than 2 by const
tion. Before we outline our proof forn copies, it is instruc-
tive to work with two copies in detail because the pro
contains all the essential elements that we need for the
involving n copies.

Let the following set be the basis for each of the Hilbe
spaces concerned:@$uw l&% l 50

k21 ,$u i j &% i , j ( i , j )50
k21 ,$u i j &% i , j 5k

d21 ],
where uw l&5( i 50

k21l i l u i i &. Note that ^w l uws&5d ls and fur-
thermore, in this notationuw0&5uw&. The following set com-
prises a basis for the null space of the operator@1/(d2

21)2#(I2uw&^wu) ^ 2:

ˆuw0
1& ^ uw0

2&,uw0
1& ^ $uw l

2&% l 51
k21 ,uw0

1& ^ $u i j &2% i , j 50
k21 ,

uw0
1& ^ $u i j &% i , j 5k

d21 ,$uw l
1&% l 51

k21
^ uw0

2&,$u i j &1% i , j 50
k21

^ uw0
2&,$u i j &1% i , j 5k

d21
^ uw0

2&‰,

where the notationi , j 50 in the subscripts is used to rep
resent the set of all indices (i , j ), such thati , j , andj varies
from 0 to the value in the corresponding superscript. N
that the superscripts inuw0

1,2& indicate the individual Hilbert
spaces. Let us further simplify the notation before we p
ceed. We rewrite the above basis as@ uw0

1& ^ uw0
2&,uw0

1&
^ uwE

2&,uw0
1& ^ uwP

2 &,uwE
1& ^ uw0

2&,uwP
1 & ^ uw0

2&], where the sub-
scripts E and P refer to the entangled and product state
respectively. If there is a Schmidt-rank 2 state in the n
space, it can be written as a linear combination of the ab
basis states. Using the fact that local projections cannot
crease the Schmidt rank of a state, it readily follows that
coefficients of the basis states that are of the formuw0

1&
^ uwP

2 & or uwP
1 & ^ uw0

2& are zero. If any of these coefficients
not zero, then the reduced density matrix will have rank>3.
Therefore, any Schmidt-rank 2 state has to have the follo
ing form: auw0

1& ^ uwE
2&1buwE

1& ^ uw0
2&. It is useful to analyze

this explicitly. Letuc& be the Schmidt-rank 2 state and hen
it can be written as ( i 51

k21a i uw0
1& ^ uw iE

2 &1( i 51
k21b i uw iE

1 &
^ uw0

2&1guw0
1& ^ uw0

2&, where the coefficients of the superp
sition are, in general, complex. On substituting the expr
sions for the states and rearranging it in the bipartite fo
one obtains the following expression foruc&:

(
j ,l 50

k21 S (
i 51

k21

$a il i l l0 j1b il0ll i j %1gl0 jl0l D u j l &Au j l &B .
9-2
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The subscriptsA,B are used to emphasize the Schmidt fo
of the above state. Note that this equation foruc& is already
in a Schmidt decomposed form, where the terms in the
rentheses correspond to the Schmidt coefficients. If the s
is indeed of Schmidt rank 2, then we must have all the
efficients but two equal to zero. This amounts to solvingk2

linear equations for 2k21 variables. One can explicitly
write down the above equations in a matrix form:Ax5y,
where A, x, and y are of dimensionsk23(2k21), (2k
21)31, andk231, respectively (k>3). Moreover,y has
only two nonzero entries andk222 zeros. The matrixA can
be shown to have the following property: Any submatrix
A whereany two of the rows are deleted@hence, the subma
trix is of dimension (k222)3(2k21)] is still of full col-
umn rank. Hence,x50, and it would imply that the above
state has Schmidt rank zero. This completes the proof
two copies.

For n copies, the proof follows the same line as for tw
copies. The basis for then-copy case of the null space
given by

H S n

mD uw0&
^ muw l&

^ n2mJ , m50, . . . ,n21, l 51, . . . ,k21.

Following the same arguments as in the two-copy case,
can obtain a similar set of linear equations. The numbe
equations iskn and the number of variables can easily
counted and turns out to bekn2(k21)n; moreover, the
right-hand side of the equations~i.e., y) has kn22 zeros.
Therefore, no matter how largen may be, the number o
equations is always greater than the number of variables,
one can show from the properties of the matrix that the se
linear equations does not have any nontrivial solution.

With the above result and the arguments provided in
beginning of the paper, we can now directly state the follo
ing theorem.

Theorem 1.Let s be a bipartited13d2 ~where d1 ,d2
>3) NPT state and letuw& be a pure state of Schmidt ran
equal to k @3<k<min(d1,d2)#, such that ^wusPTuw&
52uLu. Then for anyn>1, there exists anen.0, such that
the state r(e)5es1@(12e)/(d221)#(I2uw&^wu)PT is
n-copy undistillable for 0,e<en .

We now show thatthe pairs of states(s,w) stipulated in
Theorem 1 are fairly easy to construct. In our first method,
we will specifys first, and then accordingly we will specif
uw&. In our second example, we will do just the opposite, i
we will fix an arbitrary stateuw& and based on the eigend
composition of its partial transpose, we will constructs.

Construction method I.Choose any pure entangled sta
uc& of Schmidt rankm, 2<m<d21, of the form uc&
5( i 50

m21b i u i i &, where( i 50
m21ub i u251 and the Schmidt coeffi

cientsb i ’s are real and positive. Lets5uc&^cu. Since the
Schmidt rank ofuc& is at most (d21), therefore, there is a
least one product state that is orthogonal to the subsp
spanned by the eigenvectors ofsPT. Let uh& be such a prod-
uct state. From the eigendecomposition of any pure state@see
Eq. ~3!# having Schmidt rank greater than or equal to 2,
know that the eigenvectors corresponding to the nega
02231
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eigenvalues are of Schmidt rank 2. In particular, they are
the form uc i j

2&5(1/A2)(u i j &2u j i &), i , j with negative ei-
genvalueb ib j . Let ux& be one such eigenvector. Then, l
uw&5Aauc i j

2&1A12auh&. For instance, ifuc& has Schmidt
rank (d21), thenuh&5udd&. Clearly uw& has Schmidt rank
3 in this case but the Schmidt rank can be greater than
more than one mutually biorthogonal product states that
also orthogonal tosPT can be found. This would be dete
mined by the Schmidt rank ofuc&. It is now obvious that
^wusPT uw&52ab ib j,0.

Construction method II.Let us chooseany arbitrary pure
state uw& that has Schmidt rank k, 3<k<min(d1,d2), uw&
5( i 50

k21l i u i i &, where ( i 50
k21ul i u251 and l i ’s are real and

positive. For any two operatorsA and B, we have
Tr(ABPT)5Tr(APTB). For any s, we, therefore, have
^wusPTuw&5Tr(uw&^wusPT)5Tr(uw&PT^wus). It follows
from Eq. ~3! that if we chooses as the convex combination
of the eigenvectors with the negative eigenvalue
uw&PT^wu, then ^wusPTuw& will be negative. We, therefore
take the following representation of s: s
5( i , j 50,i , j

k21 a i j uc i j
2&^c i j

2u. Then ^wusPTuw&52(a i j l il j

,0. The method of our construction makes it clear that
every pure entangleduw& of Schmidt rank greater than o
equal to three one would be able to generate a finite c
undistillable NPT state.

GENERALIZED CONSTRUCTIONS

We can generalize our states in the following way. L
m5 bd/kc, where bxc is the ‘‘floor’’ operator denoting
the largest integer less than or equal tox. Define
the following states: rm(e)5es1@(12e)/(d22m)#(I
2( i 51

m uw i&^w i u)PT, whereuw i& ’s are pure entangled states
Schmidt rankk>3 states such that each of them are in
thogonal subspaces. Note that it is not necessary to have
Schmidt rank of the states to be equal but the choice
made for simplicity and convenience~notational!. Clearly,m
is maximum for a givend whenk53. The states are define
as follows: uw i&5( j 5k( i 21)

ki21 l j
i u j j & i . As before,s may be

chosen to be the convex combination of the states with ne
tive eigenvalues in the eigendecomposition of the par
transpose of the pure statesuw i&. Note that m51 corre-
sponds to the states in Theorem 1. One can then state
following generalization of Theorem 1.

Theorem 2. The statesrm(e)5es1@(12e)(d22m)#(I
2( i 51

n uw i&^w i u)PT for sufficiently smalle aren-copy undis-
tillable for anyn>1.

DISTANCE FROM THE MAXIMALLY MIXED STATE

We next explore how these NPTn-copy undistillable
states are distributed in the Hilbert space, and in particu
how far they are from the maximally mixed state. For a
two quantum statesr1 and r2, the distance between th
states is given by the Hilbert-Schmidt~HS! norm defined by
ir12r2i5ATr(r12r2)2. Let us first note that the operato
@1/(d22m)#(I2( i 51

n uw i&^w i u)PT is a PPT density matrix.
The proof can be easily obtained by using Eq.~2!. Since our
9-3
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n-copy undistillable states exist arbitrarily close to this sta
it is sufficient to find the distance of this state from the ma
mally mixed one. Using the HS norm, one can show that
distance is given byAm/D(D2m). We also note that this
distance is nothing but the distance of the maximally mix
state, 1/DI , from any normalized (D2m) dimensional pro-
jector ID2m . Let us denoter m5i I /D2ID2m /D2mi .

Theorem 3.For a bipartite quantum system ind^ d, the
boundary of the balls of radiusr m for all m
51, . . . ,bd/kc, k>3, around the maximally mixed state co
tains n-copy undistillable NPT states. For a givend, maxi-
mum number of such balls is obtained whenk53.

It is instructive to analyze how close these states are r
tive to the largest separable ball, the radius of which
recently been obtained in Ref.@22#, and is given by
1/AD(D21). The result of Theorem 3 shows that the ca
m51 corresponds to the NPTn-copy undistillable states tha
lie on the boundary of the largest separable ball. This is
close as the states can be to the maximally mixed state.
us now try to answer how far from the maximally mixe
state these NPT finite copy undistillable states can be fou
In our construction, for a givend, maximumr m is obtained
for m5 bd/3c. This corresponds to a distance that grows
1/D1/4.

COMPARISON WITH PREVIOUSLY
CONJECTURED NPT BE STATES

We now point out a remarkable similarity of the class
states presented in this work with that obtained in Ref.@19#.
It turns out that for certain choices of the parameters in th
class of states and for a particular choice ofuw& in our case,
the null space of the partial transposed operator is exactly
same. Let us denote the class of states in Ref.@19# asr̃(c,e)
~following their notation!. Whene50 andc51/d(d11),

„r̃~c,e!…PT5
1

d221
S (

k51

d21

uwk&^wku1 (
k,l 50,kÞ l

d21

ukl&^klu D ,

where uwk&5(1/Ad)( j 51
d21e2p i jk /du j j &,k51, . . . ,d21.

Going back to our class, let us chooseuw& to be the maxi-
mally entangled state of Schmidt rankd ~i.e., uw&
5(1/Ad)( i 50

d21u i i &), instead of our general original choice o
any pure entangled state. If one expresses the identity op
tor as

1

d2
I5

1

d2 S uw&^wu1 (
k51

d21

uwk&^wku1 (
k,l 50,kÞ l

d21

ukl&^klu D
A

02231
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and substitutes Eq.~2! with the present choice ofuw& in that
of rPT(e50), one obtains

rPT~e50!5
1

d221
S (

k51

d21

uwk&^wku1 (
k,l 50,kÞ l

d21

ukl&^klu D .

The above similarity is striking considering the very differe
approaches adopted in the two construction methodolog

DISCUSSIONS AND CONCLUDING REMARKS

We have shown thatn-copy undistillable NPT states (n
>1) exist at infinitely many neighborhoods of the Hilbe
space. Such states lie right on the surface of the largest s
rable ball~LSB!; thus, they are as noisy as any insepara
state can be. They can also be found well outside of the L
where distillable and separable states coexist. Can the
eral approach adopted here lead to a proof of the existenc
NPT BE states? Not in a straightforward manner: In o
constructions,rPT(e50) hasD21 identical nonzero eigen
values, 1/(D21). Hence, the function f (e50,n)
5min SR(^fu)52^fu„r

PT
(e50)…^ nuf& is bounded above by

@1/(D21)#n, and lim
n→`

f (e50,n)50. Thus, we cannot

claim that simple continuity arguments will yield the exi
tence of states that are NPT but undistillable for any num
of copies. However, sincer(e50) is a separable state~and
hence, undistillable!, one should expect limn→` f (e50,n)
50, and it provides no evidence that the provablyn-copy
undistillable states do not remain undistillable for any nu
ber of copies. In fact,we conjecture that all the n-copy un
distillable states constructed here are also truly NPT boun
entangled states. Moreover, we believe that even in ou
approach, it is possible to show that there exists a neigh
hood 0<e<e` , where lim

n→`
f (e,n)50; thus, proving

that at least all the states in this neighborhood are also N
BE states.
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