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Studying the thermally entangled state of a three-qubit Heisenberg
XX ring via quantum teleportation
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We consider quantum teleportation as a tool to investigate the thermally entangled state of a three-qubit
HeisenbergXX ring. Our investigation reveals interesting aspects of quantum entanglement not reflected by the
pairwise thermal concurrence of the state. In particular, two mixtures of different pairs ofW states, which result
in the same concurrence, could yield very different average teleportation fidelities.
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Quantum entanglement, as a physical resource, lies a
heart of quantum computation and quantum information@1#.
An entangled composite system gives rise to nonlocal co
lation between its subsystems that does not exist classic
This nonlocal property enables the uses of local quan
operations and classical communication to teleport an
known quantum state via a shared pair of entangled partic
with fidelity better than any classical communication pro
col @2–4#. Quantum teleportation can thus serve as an op
tional test of the presence and strength of entanglement.
not only relevant to quantum communication between t
distant parties but also to quantum computation, as quan
teleportation is a universal computational primitive@5#. In
Refs. @6,7#, teleportation of a quantum state using thre
particle entangled GHZ state@8# and W state@9,10# as re-
sources have been theoretically demonstrated, respecti
Three-particle entangled states have also been shown to
advantages over the two-particle Bell states in their appl
tion to dense coding@11,12# and cloning@13,14#.

In recent years, the presence of entanglement
condensed-matter systems at finite temperatures has bee
vestigated by a number of authors~see, e.g., Refs.@15,16#,
and references therein!. The state of a typical condense
matter system at thermal equilibrium~temperatureT) is r
5e2bH/Z where H is the Hamiltonian,Z5tre2bH is the
partition function, andb51/kT wherek is Boltzmann’s con-
stant. The entanglement associated with the thermal stater is
referred to as thermal entanglement@17#. The bulk of these
investigations concentrated on the quantification of ther
entanglement, and how this quantity changes with temp
ture T and external magnetic fieldBm . More recently, quan-
tum teleportation of an unknown state using the therma
entangled state of a two-qubit HeisenbergXX chain@18# has
been theoretically demonstrated in Ref.@19#.

In this paper, we consider quantum teleportation in
three-qubit HeisenbergXX ring @15#. First, we carry out a
detailed analysis of the pairwise thermal entanglement in
model, in the presence of an external magnetic fieldBm . We
find that in contrast to results in Ref.@15#, the antiferromag-
netic ring can have nonzero pairwise thermal entanglem
whenBmÞ0. In addition, the maximum amount of pairwis
thermal entanglement in the ferromagnetic ring is increa
by the presence ofBm . Next, we describe the teleportatio
schemeP1 ~to be described in detail below! @20# and analyze
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the ‘‘average fidelity criterion,’’ Eq.~32!. Interestingly, the
nonzero thermal entanglement associated with the antife
magnetic ring cannot yield, for the teleportation schemeP1,
average fidelity better than any classical communication p
tocol. With the ferromagnetic ring, although quantum te
portation with average fidelity better than any classical co
munication protocol is possible, the amount of nonze
thermal entanglement does not guarantee this. In fact,
could have a more entangled thermal state not achievin
better average fidelity than a less entangled one.

The HamiltonianH for a three-qubit HeisenbergXX ring
in an external magnetic fieldBm along thez axis is

H5
1

2
J~sA

1
^ sB

1
^ sC

0 1sA
0

^ sB
1

^ sC
1 1sA

1
^ sB

0
^ sC

1

1sA
2

^ sB
2

^ sC
0 1sA

0
^ sB

2
^ sC

2 1sA
2

^ sB
0

^ sC
2 !

1
1

2
Bm~sA

3
^ sB

0
^ sC

0 1sA
0

^ sB
3

^ sC
0 1sA

0
^ sB

0
^ sC

3 !,

~1!

wheresa
0 is the identity matrix andsa

i ( i 51,2,3) are the
Pauli matrices at sitea5A,B,C:

s05S 1 0

0 1D , s15S 0 1

1 0D , s25S 0 2 i

i 0 D ,

s35S 1 0

0 21D .

J is real coupling constant for the spin interaction. The ring
said to be antiferromagnetic forJ.0 and ferromagnetic for
J,0. The eigenvalues and eigenvectors ofH are given by
Hu000&5 3

2 Bmu000&, HuW1&5 1
2 (Bm14J)uW1&, HuW2,3&

5 1
2 (Bm22J)uW2,3&, HuW4&52 1

2 (Bm24J)uW4&, HuW5,6&
52 1

2 (Bm12J)uW5,6&, Hu111&52 3
2 Bmu111&, where

uW1&5
1

A3
~ u001&1u010&1u100&),

uW2&5
1

A3
~ u001&1qu010&1q2u100&),
©2003 The American Physical Society16-1
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uW3&5
1

A3
~ u001&1q2u010&1qu100&),

uW4&5
1

A3
~ u011&1u101&1u110&),

uW5&5
1

A3
~ u011&1qu101&1q2u110&),

uW6&5
1

A3
~ u011&1q2u101&1qu110&),

with q5exp(i 2
3p). Here, we useu0& and u1& to denote an

orthonormal set of basis states for each two-level system.
the composite system in equilibrium at temperatureT, the
density operator is

xABC5
1

Z
@e2(3/2)bBmu000&^000u1e2(1/2)b(Bm14J)uW1&

3^W1u1e2(1/2)b(Bm22J)uW2&^W2u

1e2(1/2)b(Bm22J)uW3&^W3u

1e(1/2)b(Bm24J)uW4&^W4u1e(1/2)b(Bm12J)uW5&^W5u

1e(1/2)b(Bm12J)uW6&^W6u1e(3/2)bBmu111&^111u#,

~2!
02231
or

where the partition function Z52 cosh3
2bBm

12e22bJ cosh1
2bBm14ebJ cosh1

2bBm, the Boltzmann’s
constantk[1 from here on andb51/T. By symmetry under
cyclic shifts, the reduced density operatorsrAB5trC xABC ,
rBC5trA xABC , rAC5trB xABC are equal. In Ref.@15#,
Wanget al. quantify the amount of entanglement associa
with rAB , by considering the concurrence@21,22# C
5max$l12l22l32l4,0% where lk (k51,2,3,4) are the
square roots of the eigenvalues in decreasing order of m
nitude of the spin-flipped density-matrix operatorR
5rAB(s2

^ s2)rAB* (s2
^ s2), the asterisk indicates comple

conjugation. After some straightforward algebra,

l15
2

3
~2e22bJ1ebJ!coshS 1

2
bBmD ,

l252ebJ coshS 1

2
bBmD ,

l35l4

5AF1

3
~e22bJ12ebJ!G2

1
2

3
~e22bJ12ebJ!coshbBm11

~3!

and the thermal concurrence is
C~rAB!5maxH 2ue22bJ2ebJucosh1
2 bBm2A~e22bJ12ebJ!216~e22bJ12ebJ!coshbBm19

3~cosh3
2 bBm1e22bJ cosh1

2 bBm12ebJ cosh1
2 bBm!

,0J . ~4!

WhenBm50, Eq.~4! reduces to that in Ref.@15#. In contrast to the two-qubit HeisenbergXX chain@18,19#, the concurrence
is invariant only under the substitutionBm→2Bm but not underJ→2J. We thus restrict our considerations toBm>0. The
latter indicates that the entanglement would not be the same for the antiferromagnetic (J.0) and ferromagnetic (J,0) cases.

For J.0, Eq. ~2! reduces, in the zero-temperature limit, i.e.,b→`, to the following four possibilities.
~a! Bm50:

xABC5
1

Z
@ u000&^000u1ebJ~ uW2&^W2u1uW3&^W3u1uW5&^W5u1uW6&^W6u!1u111&^111u#

→ 1

4
~ uW2&^W2u1uW3&^W3u1uW5&^W5u1uW6&^W6u! ~5!

with Z5214ebJ. From Eq.~4!, the above equally weighted mixture has

C~rAB!5maxH 2
11e22bJ

11e22bJ12ebJ
,0J 50. ~6!

~b! 0,Bm<2J:
6-2
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xABC5
1

Z
@e2(1/2)b(Bm22J)~ uW2&^W2u1uW3&^W3u!1e(1/2)b(Bm12J)~ uW5&^W5u1uW6&^W6u!1e(3/2)bBmu111&^111u#

5
1

eb(2Bm2J)12ebBm12
~ uW2&^W2u1uW3&^W3u!1

1

eb(Bm2J)1212e2bBm
~ uW5&^W5u1uW6&^W6u!

1
1

112e2b(Bm2J)12e2b(2Bm2J)
u111&^111u

→5
1

2
(uW5&^W5u1uW6&^W6u) if 0 ,Bm,J

1

3
(uW5&^W5u1uW6&^W6u1u111&^111u) if Bm5J

u111&^111u if J,Bm<2J

~7!
io
e
m

tu
d
se

a

te
r-

es
g-

-

it,
with Z5e(3/2)bBm12e(1/2)b(Bm12J)12e2(1/2)b(Bm22J). Equa-
tion ~4!, in the zero-temperature limit, reduces to

C~rAB!5
2

3~21eb(Bm2J)!
→5

1

3
if 0 ,Bm,J

2

9
if Bm5J

0 if J,Bm<2J.

~8!

~c! 2J,Bm,4J:

xABC5
1

Z
@e(1/2)b(Bm12J)~ uW5&^W5u1uW6&^W6u!

1e(3/2)bBmu111&^111u#→u111&^111u ~9!

with Z5e(3/2)bBm12e(1/2)b(Bm12J).
~d! 4J<Bm :

xABC5
1

Z
@e(1/2)b(Bm24J)uW4&^W4u

1e(1/2)b(Bm12J)~ uW5&^W5u1uW6&^W6u!

1e(3/2)bBmu111&^111u#

→u111&^111u ~10!

with Z5e(3/2)bBm1e(1/2)b(Bm24J)12e(1/2)b(Bm12J). Clearly,
the concurrence in both possibilities~c! and ~d! are zero.
Bm5J therefore marks the point of quantum phase transit
~phase transitions taking place at zero temperature du
variation of interaction terms in the Hamiltonian of a syste
@17#! from an entangled phase to an unentangled one.

It is obvious from Eq.~6! that in possibility~a!, the ther-
mal concurrence remains zero even at nonzero tempera
@15#. However, forBm.J, unequal mixing of entangled an
unentangled states in the spectra of the three-qubit Hei
berg XX ring results in nonzero thermal concurrence atT
.0. The thermal entanglement would, in general, decre
02231
n
to

res

n-

se

in quantity asxABC approaches the maximally mixed sta
1
8 I ABC in the limit of infinite temperature. It is thus an inte
esting problem to determine the critical temperaturesT1 be-
yond which the amount of thermal entanglement becom
zero. From Eq.~4!, T1 clearly depends on the external ma
netic field Bm , in contrast to the two-qubitXX Heisenberg
chain@18#. TheseT1’s can be obtained by numerically solv
ing

2~ebJ2e22bJ!cosh
1

2
bBm

2A~e22bJ12ebJ!216~e22bJ12ebJ!coshbBm19

50 ~11!

~see Fig. 1!. We note thatT1 increases with increasingBm .
WhenBm is large enough, Eq.~11! reduces to

x626x522x323x21150, ~12!

with x[ebJ, which can be numerically solved to yieldT1*
'0.554 641J. Consequently, as long asT,T1* , the thermal
concurrence would be nonzero, albeit very small.

For J,0, Eq. ~2! reduces, in the zero-temperature lim
i.e., b→`, to the following four possibilities.

~e! Bm50:

xABC5
1

Z
@ u000&^000u1e22bJ~ uW1&^W1u1uW4&^W4u!

1u111&^111u#

→ 1

2
~ uW1&^W1u1uW4&^W4u! ~13!

with Z5212e22bJ. From Eq. ~4!, the above equally
weighted mixture has
6-3
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FIG. 1. The critical tempera-
tureT1 is a function of bothJ and
Bm5hJ,h.0.
22bJ bJ 1

ag-

ly
C~rAB!5maxH e 2~314e !

3~11e22bJ12ebJ!
,0J → 1

3
. ~14!

~f! 0,Bm,22J:

xABC5
1

Z
@e2(1/2)b(Bm14J)uW1&^W1u

1e(1/2)b(Bm24J)uW4&^W4u1e(3/2)bBmu111&^111u#

→uW4&^W4u ~15!

with Z5e(3/2)bBm1e(1/2)b(Bm24J)1e2(1/2)b(Bm14J). In the
zero-temperature limit, Eq.~4! reduces to

C~rAB!5maxH 2

3~11eb(Bm12J)!
,0J → 2

3
, ~16!

a signature ofuW4&.
~g! 22J<Bm<24J:

xABC5
1

Z
@e2(1/2)b(Bm14J)uW1&^W1u1e(1/2)b(Bm24J)uW4&

3^W4u1e(1/2)b(Bm12J)~ uW5&^W5u1uW6&^W6u!

1e(3/2)bBmu111&^111u#

→H 1

2
(uW4&^W4u1u111&^111u) if Bm522J,

u111&^111u otherwise

~17!

with Z5e(3/2)bBm12e(1/2)b(Bm12J)1e(1/2)b(Bm24J)

1e2(1/2)b(Bm14J). It follows from Eqs.~16! and ~17! that
02231
C~rAB!5H 3
if Bm522J,

0 otherwise.

~h! 24J,Bm:

xABC5
1

Z
@e(1/2)b(Bm24J)uW4&^W4u1e(1/2)b(Bm12J)~ uW5&^W5u

1uW6&^W6u!1e(3/2)bBmu111&^111u#

→u111&^111u ~18!

with Z5e(3/2)bBm12e(1/2)b(Bm12J)1e(1/2)b(Bm24J). Conse-
quently, the concurrence is zero in this case. So,Bm522J
marks the point of quantum phase transition in the ferrom
netic ring.

The critical temperaturesT1 for the ferromagnetic ring
again depends onBm and can be obtained by numerical
solving

2~e22bJ2ebJ!cosh
1

2
bBm

2A~e22bJ12ebJ!216~e22bJ12ebJ!coshbBm19

50 ~19!

~see Fig. 2!. In particular, whenBm50, Eq. ~19! reduces to

e22bJ2~314ebJ!50, ~20!

which yields T1'21.271 36J @15#. We note thatT1 simi-
larly increases with increasingBm . For large enoughBm ,
Eq. ~19! reduces to

y623y422y326y1150, ~21!
6-4
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FIG. 2. The critical tempera-
tureT1 is a function of bothJ and
Bm52hJ,h.0.
g

u
si
-
,

si

th

t

f

t
e

-
th

s,

on

get
with y[e2bJ, which can be numerically solved, givin
T1** '21.326 39J. So, for largeBm , the thermal concur-
rence would be small but nonzero as long asT,T1** .

For bothJ.0 andJ,0, T1 increases with increasingBm

up to T1* and T1** , respectively, as long asBm is not infi-
nitely large, in which casexABC→u111& and the thermal
concurrence would become zero. Physically, one could
derstand this phenomenon by looking at the thermal den
operator, Eq.~2!. Recall that while an equally weighted mix
ture of uW2&, uW3&, uW5&, and uW6& has zero concurrence
Eqs. ~5! and ~6!; an equally weighted mixture ofuW5& and
uW6&, Eqs.~7! and ~8!, and uW4&, Eqs.~15! and ~16!, have
nonzero concurrence. At nonzero temperatures, increa
Bm creates a diminishing proportion ofuW2& and uW3&, but
an increasing proportion ofuW4&,uW5&,uW6& ~entangled
states!, and of courseu111& ~unentangled state!. The small
but nonzero proportion of entangled states contributes to
nonzero thermal concurrence.

Now we describe the quantum teleportation protocolP1
using the above three qubit mixed statexABC as a resource. I
involves a sender, Alice~at siteA), and two receivers, Bob
~at siteB) and Cindy~at siteC). Alice is in possession o
two two-level quantum systems, the input systemS, and an-
other systemA entangled with both a third two-level targe
systemB in Bob’s possession and a fourth two-level targ
system C in Cindy’s possession~i.e. a three-particle en
tangled state!. Here, we label the entangled systems by
site indices. Initially the composite systemSABC is pre-
pared in a state with density operator

sSABC
total 5pS^ xABC ,

where
02231
n-
ty

ng

e

t

e

pS5uc&S^cu, uc&S5cos
u

2
u0&S1eif sin

u

2
u1&S ,

~22!

0<u<p, 0<f<2p are the polar and azimuthal angle
respectively, andxABC is as given in Eq.~2!. To teleport the
input statepS to Bob’s target systemB and Cindy’s target
systemC, Alice performs a joint Bell basis measurement
systemsS and A, described by operatorsPSA

j
^ I BC , where

I BC is the identity operator on the composite subsystemBC,
j labels the outcome of the measurement, and

PSA
1 5uF1&SÂ F1u, PSA

2 5uF2&SÂ F2u,

PSA
3 5uC1&SÂ C1u, PSA

4 5uC2&SÂ C2u. ~23!

Here

uF6&SA5
1

A2
~ u00&SA6u11&SA),

uC6&SA5
1

A2
~ u01&SA6u10&SA)

are the Bell states. If Alice’s measurement has outcomej, she
broadcasts her measurement result~two bit! to Bob and
Cindy via a classical channel. The joint state of Bob’s tar
systemB and Cindy’s target systemC conditioned on Alice’s
measurement resultj is given by

rBC
j 5

1

pj
trSA@~PSA

j
^ I BC!~pS^ xABC!#, ~24!

where
6-5
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pj5trSABC@~PSA
j

^ I BC!~pS^ xABC!#. ~25!

Substituting Eqs.~2!, ~22!, and~23! into Eq. ~25! yields

p15p25
1

12Z
e22b(Bm1J)~ f 1g cosu!,

p35p45
1

12Z
e22b(Bm1J)~ f 2g cosu!, ~26!

where

f 53e(3/2)bBm~11ebBm!~112e3bJ!

13e(1/2)bBm~11e3bBm!e2bJ,

g5e(3/2)bBm~12ebBm!~112e3bJ!

13e(1/2)bBm~12e3bBm!e2bJ.

To successfully complete the teleportation protocol, Bob a
Cindy performj-dependent unitary operationsUB

j 5UC
j 5U j

on systemsB and C, respectively (rB
j 5trCrBC

j 5trBrBC
j

5rC
j 5r j ), such that

tB
j 5tC

j 5t j5U jr jU j †, ~27!

whereU j could either be the identity matrix or one of th
Pauli matrices~see Table I!. The success of the teleportatio
scheme can be measured by the fidelity@23# between the
input statep in and the output statetout

j , averaged over al
possible Alice’s measurement outcomesj and over an isotro-
pic distribution of input statesp in :

^F&5
1

4pE0

pE
0

2p

sinududf(
j 51

4

pjF
j , ~28!

where

F j[tr~tout
j p in!. ~29!

It follows from Eq. ~22! and results from Eq.~24! that

F15F25
h11h2 cos 2u

4~ f 1g cosu!
,

F35F45
h11h2 cos 2u

4~ f 2g cosu!
, ~30!

TABLE I. Bob’s and Cindy’s unitary operations conditione
only on Alice’s measurement results.

Alice’s measurement
result j

Bob’s unitary
operationU j

Cindy’s unitary
operationU j

1 sx sx

2 sy sy

3 I I
4 sz sz
02231
d

where

h153e(3/2)bBm~11ebBm!~314e3bJ!

13e(1/2)bBm~11e3bBm!e2bJ,

h252e(3/2)bBm~11ebBm!~124e3bJ!

23e(1/2)bBm~11e3bBm!e2bJ.

Substituting Eqs.~26! and ~30! into Eq. ~28! gives

^F&5
1

3
1

2

9

~21e3bJ!cosh1
2 bBm

~112e3bJ!cosh1
2 bBm1e2bJ cosh3

2 bBm

.

~31!

In order to transmitp in with fidelity better than any classica
communication protocol, we require^F& to be strictly greater
than 2

3 . In other words, we require

1

3
~e22bJ24ebJ!.

cosh3
2 bBm

cosh1
2 bBm

~32!

and henceJ,0. That is, the nonzero thermal entangleme
for J.0 is ‘‘not suitable’’ as a resource for teleportation v
P1.

In the zero-temperature limit, Eq.~31! reduces to

^F&5
1

3
1

4

9~11eb(Bm12J)!
→5

7

9
if 0<Bm,22J

5

9
,

2

3
if Bm522J

1

3
,

2

3
if 22J,Bm .

~33!

So, in spite of the fact that in possibility~e!, the concurrence
is only 1

3 , the equally weighted mixture in Eq.~13! is able to
yield ^F&5 7

9 . Comparing this with the equally weighte
mixture of uW5& anduW6& in Eq. ~7!, which has concurrence
also equal to1

3 , but cannot yield̂ F&. 2
3 , certainly illustrates

a fundamental difference between the entangled mixed st
not reflected by the concurrence. For 0,Bm,22J, ^F&
5 7

9 is a clear signature ofuW4& ~see Ref.@7#!. At Bm
522J, the mixing of uW4& with an equal proportion of
u111& deteriorates the ‘‘quality’’ of the entanglement so mu
that ^F& is now less than2

3 . We note thatBm522J marks
the point of ‘‘transition’’ from ^F&. 2

3 to ^F&< 2
3 . This coin-

cides with the point of quantum phase transition in the f
romagnetic ring.

For nonzero temperatures, it is again an interesting pr
lem to determine the critical temperaturesT2 beyond which
^F&< 2

3 . From Eq.~32!, T2 is clearly dependent on the mag
netic field Bm , as in Ref.@19#. They can be obtained by
numerically solving

~e22bJ24ebJ!cosh
1

2
bBm23 cosh

3

2
bBm50 ~34!
6-6
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FIG. 3. The critical tempera-
tureT2 is a function of bothJ and
Bm52hJ, h.0.
e,
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a-
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not
ne.
an-

a-
gle-

se-
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t.
f

~see Fig. 3!. Interestingly, whenBm50, Eq. ~34! reduces to
Eq. ~20! which thus yields T25T1'21.271 36J. This
means that all nonzero thermal entanglement, in this cas
‘‘suitable’’ as a resource for teleportation viaP1. The mixing
of states here clearly does not have a devastating effec
the quality of the thermal entanglement. SuppposeT is small
enough, and letBm52hJ, 0,h, then Eq.~34! yields

T252
1

ln 3
~22h!J>0. ~35!

So, h can at most equal 2, and ash→2, T2→0 consistent
with our assumption. As shown in Fig. 3,T2 decreases with
increasingBm and eachT2 is strictly less than the corre
spondingT1 ~compare Fig. 2!, which increases asymptot
cally to T1** . This means that with increasingBm we have
an increasing range of nonzero thermal entanglement w
is however not able to yield̂F&. 2

3 . Physically, one could
attribute the cause of the poor quality of thermal entang
ment to the fact that there is now a comparable or gre
proportion of unentangledu111& than the ‘‘teleportation
grade’’ uW1& and uW4&.

In conclusion, our ‘‘average teleportation fidelity crite
rion,’’ Eq. ~32!, reveals several interesting aspects of qu
-

. A

02231
is

on

ch

-
er

-

tum entanglement not reflected by concurrence. On the
hand, whereas comparable mixing of entangled states
tainly decreases the resulting pairwise concurrence@see Eqs.
~5! and ~6!, Eqs. ~7! and ~8!, Eqs. ~13! and ~14!#, it could
result either in low quality states which yield^F&< 2

3 , or in
high quality states givinĝF&. 2

3 . On the other hand, com
parable mixing of entangled with unentangled states not o
certainly decreases the resulting pairwise concurrence@see
Eqs.~7!, ~8!, and~17!# but definitely degrades the teleport
tion quality of the entangled mixed state. Furthermore,
teleportation quality of the entangled mixed state is m
sensitive to the degree of mixing than to its concurrence.
a result, we could have a more entangled thermal state
giving a better average fidelity than a less entangled o
Since entanglement is such an important resource in qu
tum information, it is very important to have a more fund
mental understanding of these aspects of quantum entan
memt.

The author thanks Yuri Suhov and Andrew Skeen for u
ful discussions. This paper is an output from project activ
funded by The Cambridge MIT Institute Limited~‘‘CMI’’ !.
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Cambridge and Massachusetts Institute of Technology.
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