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Studying the thermally entangled state of a three-qubit Heisenberg
XX ring via quantum teleportation
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We consider quantum teleportation as a tool to investigate the thermally entangled state of a three-qubit
HeisenbergXX ring. Our investigation reveals interesting aspects of quantum entanglement not reflected by the
pairwise thermal concurrence of the state. In particular, two mixtures of different palWstaites, which result
in the same concurrence, could yield very different average teleportation fidelities.
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Quantum entanglement, as a physical resource, lies at thhe “average fidelity criterion,” Eq(32). Interestingly, the
heart of quantum computation and quantum informafibn ~ nonzero thermal entanglement associated with the antiferro-
An entangled composite system gives rise to nonlocal corremagnetic ring cannot yield, for the teleportation schdPae
lation between its subsystems that does not exist classicallaverage fidelity better than any classical communication pro-
This nonlocal property enables the uses of local quanturfocol. With the ferromagnetic ring, although quantum tele-
operations and classical communication to teleport an unPortation with average fidelity better than any classical com-
known quantum state via a shared pair of entangled particle§)unication protocol is possible, the amount of nonzero
with fidelity better than any classical communication proto-thérmal entanglement does not guarantee this. In fact, we
col [2—4]. Quantum teleportation can thus serve as an operaP—OUId have a m_ore_entangled thermal state not achieving a
tional test of the presence and strength of entanglement. It REtter average fidelity than a less entangled one.
not only relevant to quantum communication between two The HamiltoniarH fpr a three-qubit Helsenb_eogx fing
distant parties but also to quantum computation, as quantuﬁq an external magnetic fiel, along thez axis is
teleportation is a universal computational primiti{&]. In
Refs. [6,7], teleportation of a quantum state using three- H= EJ(ai®aé®ag+ T R R a T
particle entangled GHZ sta{8] and W state[9,10] as re-
sources have been theoretically demonstrated, respectively. 1,2 03002+ 030 0i® 02+ 0a® 03® o)
Three-particle entangled states have also been shown to have L
advantages over the two-particle Bell states in their applica- 3 0_ 0 0. 3. 0. 0. 0. 3
tion to d?anse codinﬁll,lzpand cloning[13,14]. PP * EB”‘(UA@ 78 ICTIAB Ip®Ict TR®TE®aC),

In recent years, the presence of entanglement in (1)
condensed-matter systems at finite temperatures has been in-
vestigated by a number of authaisee, e.g., Ref15,18,  where ¢? is the identity matrix andr', (i=1,2,3) are the
and references therginThe sta_lt_e _of a typical cond_ensed- Pauli matrices at site=A,B,C:
matter system at thermal equilibriuttemperaturer) is p
=e PH/Z where H is the Hamiltonian,Z=tre " is the 1 0 0 1 0 —i
partition function, ang3=1/kT wherek is Boltzmann’s con- o :(O 1) 01:(1 0), 02=(i 0 )
stant. The entanglement associated with the thermal stiate

referred to as thermal entangleméh?]. The bulk of these 1 0
investigations concentrated on the quantification of thermal 03:( )
entanglement, and how this quantity changes with tempera- 0 -1

ture T and external magnetic fied,,. More recently, quan- _ o ) o
tum teleportation of an unknown state using the thermally? iS real coupling constant for the spin interaction. The ring is
entangled state of a two-qubit Heisenb§ chain[18] has said to be antiferromagnetic far>0 and ferromagnetic for
been theoretically demonstrated in Rgf9]. J<0. The eigenvalues and eigenvectorstbfare given by

In this paper, we consider quantum teleportation in the|‘||1000>:%|3m|000>, H|Wl>=%£5m+43)|wl>a H|W?9)
three-qubit Heisenber) X ring [15]. First, we carry out a =2(Bn—2J3)|W?%), HIW*=—3(B,—4J)|W*), H[W>9
detailed analysis of the pairwise thermal entanglement in th& — 3(Bm+2J)[W>%, H[111)= - 3B,|111), where
model, in the presence of an external magnetic fitggjd We
find that in contrast to results in R¢fl5], the antiferromag-
netic ring can have nonzero pairwise thermal entanglement
whenB,,#0. In addition, the maximum amount of pairwise
thermal entanglement in the ferromagnetic ring is increased 1
by the presence dB,,. Next, we describe the teleportation |W2)= —(|001) + q|010) + 2| 100)),
schemeP; (to be described in detail belgy20] and analyze J3

1

V3

W)= —(]003)+010 +|100)),
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1 5 where the partition function Z=2 cosiBB,
ﬁ(IOOlHq 010 +q[100), +2e %M cosh BB, +4e¥ coshiBB,,, the  Boltzmann’s
constank=1 from here on an@=1/T. By symmetry under

L cyclic shifts, the reduced density operat@iss=trc xasc,

a4y _ pec=taXxaBc, Pac=UBxasc are equal. In Ref[15],
W= ﬁ(|01]>+|10]>+|110)), Wanget al. quantify the amount of entanglement associated
with pag, by considering the concurrencf21,22 C
=maxXx\;—Ny—A3—N4,0p where A\, (k=1,2,3,4) are the
square roots of the eigenvalues in decreasing order of mag-
nitude of the spin-flipped density-matrix operatdR
=pap(0?® o) pirg(c?® d?), the asterisk indicates complex
conjugation. After some straightforward algebra,

W)=

_ 1 2
[WP) = \/§(|011>+Q|101>+q 110)),

1
We)= ﬁ(|013>+q2|101>+Q|110>),

2 1
with q=exp(2m). Here, we usg0) and |1) to denote an M=3(2e 2'BJ+eBJ)C°S"<§ﬁBm)v
orthonormal set of basis states for each two-level system. For
the composite system in equilibrium at temperatliyethe

. g 1
density operator is Ap=2e" cos)’( EBB"‘) ,

XABC= % [ e (3/2)ﬁBm| 000><Ooq +e (1/2)B(By+4J) | Wl>

><<W1|4_e—(llz)ﬁ(Bm—zJ)|W2><W2| N3=N\4
+ e~ (12B(Bn=29) | W3y (W3 B \/
+ e(U2B(Bm=43) WA (WA + eVDEE+ 29 |\£EY (W)

+ (V2B (Bt 23) W) (WS|4 e(3/2BBm| 111)(111]],

(2 and the thermal concurrence is

2

1 2
§(e‘253+ 2eP)| + (e 28I+ 2eA)coshBB,,+ 1

()

C(pap) =max

4

2|le 28— ePI|cosh; BB, — V(e 2P1+2e%)2+6(e 2P+ 2e7)coshBB,,+ 9 0
3(cosh: BB, + e~ 2 cosht BB+ 2e?’ coshi BB,) ’

WhenB,,=0, Eq.(4) reduces to that in Ref15]. In contrast to the two-qubit HeisenbeX chain[18,19, the concurrence
is invariant only under the substitutids,,— — B, but not underd— —J. We thus restrict our considerationsBg,=0. The
latter indicates that the entanglement would not be the same for the antiferromagdneliy &nd ferromagneticJ<0) cases.
For J>0, Eq.(2) reduces, in the zero-temperature limit, i8>, to the following four possibilities.
(@ Bp=0:

1
Xasc=[1000/(000] + e (|W2)(W?| + [WE) (WP + [WE) (WP + [WE)(WE]) + [ 111)(111]]
1
= 7 (IW2)(W2] - [WEH WP [WEH WP+ WP (W) (5

with Z=2+4e?J. From Eq.(4), the above equally weighted mixture has

1+e 2P
283 7.0
1+e 2P 2ef

Il
e

Clpap)=max —

6

(b) 0<B,=2J:
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1
Xnpc=7 [ (WAPEnZD(W2) (W] + [WoH(WP]) + e@2EEm 2 ([WO)H (WO + [WO) (WP ) +el¥2)8m 111)(111]

" P01 2eMBn 2

2 2 3 3
(IWEYOWE]+ WA + e

(WP (WPI+ W) (WP

1
" 1426 FBa 9 2 AEEnD 115114
1 .
5 (WB) (W + [We) (We]) if 0<By<
1 .
7] SN+ IWWS| + [11(111) if Bp= "
|111)(111] if J<Bp<2J

with Z=e(3/28Bm 1 2e(1/2)B(Bn+2J) 1 9= (1/2)B(Bn—2J) Equa-
tion (4), in the zero-temperature limit, reduces to

if 0<B,,<J

Clppg)= ———————
(paB) 32+ PG )

O OIN Wk

if J<B,=2J.
(c) 2J<B,<4J:

1
Xac= 5 [€2P(En* 20| W) (W + | WOy (WF)

+e(®2PBm| 111)(111]—|112)(111 9

with 7 = (3288 1 2a(1/2)8(By+29)
(d) 4J<B,:

1
XABC:Z[e(l/Z)B(Bm_4J)|W4><W4|

+e(M2BBm*23) (|WEY (W] + | WY (WP
+e(32)8Bm| 111)(111]]

—[111(11Y (10)

in quantity asyagc approaches the maximally mixed state
51 agc in the limit of infinite temperature. It is thus an inter-
esting problem to determine the critical temperaturedbe-
yond which the amount of thermal entanglement becomes
zero. From Eq(4), T, clearly depends on the external mag-
netic fieldB,,, in contrast to the two-qubXX Heisenberg
chain[18]. TheseT;'s can be obtained by numerically solv-

ing

1
2(ePl—e” 2/J*‘J)coshz—,BBm

— (e 2P+ 2eM) 2+ 6(e 25+ 2eP)coshBB , + 9

=0 (12)

(see Fig. L We note thafT, increases with increasing,, .
WhenB,, is large enough, Eq11) reduces to
x8—6x°—2x3-3x%2+1=0, (12)
with x=e#?, which can be numerically solved to yielt}
~0.554 641. Consequently, as long 8<T7} , the thermal
concurrence would be nonzero, albeit very small.

For J<0, Eq.(2) reduces, in the zero-temperature limit,
i.e., B—x, to the following four possibilities.

with Z=e(®288n g(128(Bn~49) 4 2e(V2BBn+2)  Clearly, (e) B,=0:
the concurrence in both possibilitids) and (d) are zero.
B,,=J therefore marks the point of quantum phase transition 1

" . - -2B3 1 1 4 4
(phase transitions taking place at zero temperature due to XABC z[|000><00q+e (W WA+ [wH W)

variation of interaction terms in the Hamiltonian of a system

[17]) from an entangled phase to an unentangled one.
It is obvious from Eq.6) that in possibility(a), the ther-

mal concurrence remains zero even at nonzero temperatures

+111)(114]]

1
— 5 ((WEWH W (W) (13

[15]. However, forB,,>J, unequal mixing of entangled and
unentangled states in the spectra of the three-qubit Heisen-
berg XX ring results in nonzero thermal concurrenceTat with Z=2+2e 24,
>0. The thermal entanglement would, in general, decreaseeighted mixture has

From Eq. (4), the above equally
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0 otherwise.
(f) 0<B<—2J:
(h) —4J<B,:

1
Yapc= Z[e— (U2)8(Brn*43) WLy (W

+ e(l/Z)B(Bm—4J)|W4><W4| + e(3/2)BBm| 111><111H

— W (WA (15)
with Z= e(328Bm 4 o(U2)8(Bn=4) 4 o= (V2BBn+4)  |n the
zero-temperature limit, Eq4) reduces to

C = 0 2 16
(pag) = max 311,073 (16)

a signature of W*).
(9 —2J=B,=—4J:

XABC:%[e—(l/Z)ﬁ(Bm+4J)|W1><W1| + e(12)B(Bm=49)|\\4y

X(W4| + e(l/2)B(Bm+2J)(|W5><W5| + |W6><W6|)
+e(32P8m 111)(111]]

%(IW“><W“| +]112(111))  if Bp=—2J,

[111(111 otherwise

17
with 7 — (3288 4 9 a(U2)B(By+2)) | o(1U2)8(By—4))
+e~ (M2BBm*4) |t follows from Eqgs.(16) and(17) that

XABC:%[e(llz)ﬁ(sm—4J)|W4><W4| + eWDBEm+29) (| WE) (W

+ [WOY(WO) +el¥2PBm| 11 1)(111]]
—|111(111) (18)

with Z= e(328Bm 4+ 2(12)8(Bn+23) 1 a(12B(Bm-4)  Conse-
guently, the concurrence is zero in this case. Bg= —2J
marks the point of quantum phase transition in the ferromag-
netic ring.

The critical temperature3, for the ferromagnetic ring
again depends oB,, and can be obtained by numerically
solving

1
2(e 28— e‘”)coshz—/BBm

— (e %P+ 2eP) 2+ 6(e 2P+ 2eP7)coshBB ,+ 9
=0 (19
(see Fig. 2 In particular, wherB,,=0, Eq.(19) reduces to
e - (3+4ef)=0, (20)

which yields T;~—1.271 3@ [15]. We note thatT; simi-
larly increases with increasinB,,. For large enougtB,,,
Eq. (19 reduces to

y®—3y*—2y3-6y+1=0, (21)
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with y=e ), which can be numerically solved, giving P 8

T#* ~—1.32639. So, for largeB,,, the thermal concur- Ts=|9)s(],  [¢)s=cos5|0)st e'¢5|n§|1>5,

rence would be small but nonzero as longTasT;™ . (22)
For bothJ>0 andJ<O0, T, increases with increasirgj,

up to T andT7* , respectively, as long a8, is not infi- O0sé<m, O<¢=<27 are the polar and azimuthal angles,

nitely large, in which caseagc—|111) and the thermal respectively, andiagc is as given in Eq(2). To teleport the

concurrence would become zero. Physically, one could uninput statews to Bob’s target systenB and Cindy’s target

derstand this phenomenon by looking at the thermal densitgystemC, Alice performs a joint Bell basis measurement on

operator, Eq(2). Recall that while an equally weighted mix- systemsS and A, described by operatold,®Izc, where

ture of [W?), |W3), |WP), and|WP) has zero concurrence, g is the identity operator on the composite subsysB)

Egs. (5) and (6); an equally weighted mixture div®) and | labels the outcome of the measurement, and

|W8), Egs.(7) and (8), and|W*), Egs.(15) and (16), have

nonzero concurrence. At nonzero temperatures, increasing M= P ) DPT], TEp=|D Hgu (P |,
B, Creates a diminishing proportion ¢iv?) and|W?3), but
an increasing proportion ofW*),|W®),|W®) (entangled M3,=T ) ¥T], M= AP |. (23

stateg, and of coursg111) (unentangled stateThe small
but nonzero proportion of entangled states contributes to thelere
nonzero thermal concurrence.

Now we describe the quantum teleportation protoeel . 1
using the above three qubit mixed stgtg;c as a resource. It |CD_>SA:E(|OO>SAJ—’ 11D sA).
involves a sender, Alicéat siteA), and two receivers, Bob
(at siteB) and Cindy(at siteC). Alice is in possession of 1
two two-level quantum systems, the input syst&nand an- = -
other systemA entangled with both a third two-level target V)5 \/§(|01>SA_|10>SA)
systemB in Bob’s possession and a fourth two-level target
systemC in Cindy’s possessionii.e. a three-particle en- are the Bell states. If Alice’s measurement has outcprake
tangled state Here, we label the entangled systems by thebroadcasts her measurement redqito bit) to Bob and
site indices. Initially the composite systeBABCis pre-  Cindy via a classical channel. The joint state of Bob's target
pared in a state with density operator systemB and Cindy'’s target systefd conditioned on Alice’s

measurement resultis given by
total

oz = Ts® XABC» . 1 .
SABCT TSTAABC p’Bc=p—jtrSA[<HgA®lBc><wS®xABc>], (24)

where where

022316-5



YE YEO

TABLE I. Bob’s and Cindy’s unitary operations conditioned
only on Alice’s measurement results.

Alice’s measurement  Bob’s unitary Cindy’s unitary

resultj operationU' operationU!
1 Ty Ty
2 ay ay
3 | |
4 a, g,

P =trsapd (11558 1 5) (7s® xapc) 1. (25

Substituting Eqs(2), (22), and(23) into Eqg. (25) yields

1
p1= pzzﬁeﬂﬁ(Bm”)(Hg cosé),

1
Ps=Pa=155€ Cn*I(f—gcosy), (26)

where
f =3e(32PBm(1+ eFBm) (14 2&357)
+3e(Y2)BBm(1 4 g36Bm)g283,

g=e(®2PBm(1— efBm)(1+2e3A7)

+ 3e(l/2)BBm( 1— eSBBm) eZ,BJ'

To successfully complete the teleportation protocol, Bob an

Cindy performj-dependent unitary opelratiomﬁé= ch= Uj
on systemsB and C, respectively pp=trcppc=1trgphc
=pk=p'), such that

mh=1h=7=UlplUIT, (27
whereU! could either be the identity matrix or one of the
Pauli matricegsee Table)l The success of the teleportation
scheme can be measured by the fide]®3] between the
input statem;, and the output state) ,, averaged over all
possible Alice’s measurement outconjesd over an isotro-
pic distribution of input statesr;,, :

(F) (28)

1 (m[2n L
=Ef0 fo sinededd);l pF,
where
(29

FjEtr( Tf)utTrin).

It follows from Eq.(22) and results from Eq(24) that

|:1:|:2:hl+hzﬂ
4(f+gcosh)’
h,+h, cos 2
3_p4_
F=F 4(f—gcosb)’ (30

PHYSICAL REVIEW A 68, 022316 (2003

where
h, = 3e(®¥2BBm( 1+ eFBm) (3+4e347)

+ 3e(1/2)BBm( 1+ eS,BBm)eZ,BJ'

h2: -
_ 3e(1/2)ﬁBm( 1+ e3,8Bm) eZﬂJ.

e(3/2BBm(1 + efBm)(1—4e34))

Substituting Eqs(26) and (30) into Eq. (28) gives

(2+e®*)coshi BB,

(1+2e3)coshi BB, + €2 coshi BB,
(31

Fy— 22
=39

In order to transmitr;,, with fidelity better than any classical
communication protocol, we requi{€) to be strictly greater
than$. In other words, we require

coshi 8B,

(32
coshs; BB,

1
§(e*2[“—4e‘”)>

and hencel<0. That is, the nonzero thermal entanglement
for J>0 is “not suitable” as a resource for teleportation via
P;.

In the zero-temperature limit, E¢31) reduces to

(7
— if 0=B,<—2J
9
dpy_l, 4 5.2 4 g )
<F>_3+g(1+eﬁ(am+za))_’< 9°3 m
1<2 if —2J<B
| 33 n
(33

So, in spite of the fact that in possibilitg), the concurrence

is only 3, the equally weighted mixture in E¢L3) is able to
yield (F)=%. Comparing this with the equally weighted
mixture of|[W®) and|W®) in Eq. (7), which has concurrence
also equal tg;, but cannot yield F)>$, certainly illustrates

a fundamental difference between the entangled mixed states
not reflected by the concurrence. FoxB,<—2J, (F)

={ is a clear signature ofW?) (see Ref.[7]). At B,
=—2J, the mixing of [W*) with an equal proportion of
|111) deteriorates the “quality” of the entanglement so much
that (F) is now less tharg. We note thaB,,= —2J marks
the point of “transition” from(F)>% to (F)<%. This coin-
cides with the point of quantum phase transition in the fer-
romagnetic ring.

For nonzero temperatures, it is again an interesting prob-
lem to determine the critical temperaturés beyond which
(Fy=<$%. From Eq.(32), T, is clearly dependent on the mag-
netic field B,,, as in Ref.[19]. They can be obtained by
numerically solving

1 3
(e2—4e”)cosh; BB, —3 cosly fB,=0  (34)
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(see Fig. 3. Interestingly, wherB,,=0, Eq.(34) reduces to tum entanglement not reflected by concurrence. On the one
Eq. (20) which thus vyields T,=T;~—1.2713@. This hand, whereas comparable mixing of entangled states cer-
means that all nonzero thermal entanglement, in this case, tainly decreases the resulting pairwise concurrdsee Egs.
“suitable” as a resource for teleportation vilg. The mixing  (5) and (6), Egs.(7) and (8), Egs.(13) and (14)], it could
of states here clearly does not have a devastating effect asult either in low quality states which yie{&F)<2, or in
the quality of the thermal entanglement. Supppbsesmall  high quality states givingF)>2. On the other hand, com-
enough, and leBy,=—»J, 0< 7, then Eq.(34) yields parable mixing of entangled with unentangled states not only
certainly decreases the resulting pairwise concurr¢eee
Egs.(7), (8), and(17)] but definitely degrades the teleporta-
tion quality of the entangled mixed state. Furthermore, the
teleportation quality of the entangled mixed state is more
sensitive to the degree of mixing than to its concurrence. As
a result, we could have a more entangled thermal state not
giving a better average fidelity than a less entangled one.
Since entanglement is such an important resource in quan-
tum information, it is very important to have a more funda-
(hnental understanding of these aspects of quantum entangle-
mt.

1
- 3(2-m3=o. (35)

T,=
So, » can at most equal 2, and as—~2, T,—0 consistent
with our assumption. As shown in Fig. B, decreases with
increasingB,, and eachT, is strictly less than the corre-
spondingT; (compare Fig. 2 which increases asymptoti-
cally to TT* . This means that with increasiri8}, we have
an increasing range of nonzero thermal entanglement whic
is however not able to yieldF)> 3. Physically, one could
attribute the cause of the poor quality of thermal entangle- The author thanks Yuri Suhov and Andrew Skeen for use-
ment to the fact that there is now a comparable or greatefiul discussions. This paper is an output from project activity
proportion of unentangled11l) than the “teleportation funded by The Cambridge MIT Institute LimitsdCMI” ).
grade” W) and|W*). CMI is funded in part by the United Kingdom Government.
In conclusion, our “average teleportation fidelity crite- The activity was carried out for CMI by the University of
rion,” Eq. (32), reveals several interesting aspects of quanCambridge and Massachusetts Institute of Technology.
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