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Measurement-based quantum computation on cluster states

Robert Raussendorf, Daniel E. Browne,* and Hans J. Briegel
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We give a detailed account of the one-way quantum computer, a scheme of quantum computation that
consists entirely of one-qubit measurements on a particular class of entangled states, the cluster states. We
prove its universality, describe why its underlying computational model is different from the network model of
quantum computation, and relate quantum algorithms to mathematical graphs. Further we investigate the
scaling of required resources and give a number of examples for circuits of practical interest such as the circuit
for quantum Fourier transformation and for the quantum adder. Finally, we describe computation with clusters
of finite size.
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I. INTRODUCTION

Recently, we introduced the scheme of the one-way qu
tum computer (QCC) @1#. This scheme uses a given e
tangled state, the so-called cluster state@2#, as its central
physical resource. The entire quantum computation cons
only of a sequence of one-qubit projective measurement
this entangled state. Thus, it uses measurements as the
tral tool to drive a computation@3–6#. We called this scheme
the ‘‘one-way quantum computer’’ since the entanglemen
the cluster state is destroyed by the one-qubit measurem
and therefore it can only be used once. To emphasize
importance of the cluster state for the scheme, we use
abbreviation QCC for ‘‘one-way quantum computer.’’

The QCC is universal since any unitary quantum log
network can be simulated on it efficiently. The QCC can thus
be explained as a simulator of quantum logic networ
However, the computational model that emerges for the QC
@7# makes no reference to the concept of unitary evolut
and it shall be pointed out from the beginning that the n
work model does not provide the most suitable descript
for the QCC . Nevertheless, the network model is the mo
widely used form of describing a quantum computer a
therefore the relation between the network model and
QCC must be clarified.

The purpose of this paper is threefold. First, it is to gi
the proof for universality of the QCC ; second, to relate quan
tum algorithms to graphs; and third, to provide a number
examples for QCC circuits, which are characteristic and o
practical interest.

In Sec. II we give the universality proof for the describ
scheme of computation in a complete and detailed form.
proof has already been presented to a large part in Ref.@1#.
What was not contained in Ref.@1# was the explanation o
why and how the gate simulations on the QCC work. This
omission seemed in order since the implementation of
gates discussed there@controlled NOT ~CNOT! and arbitrary
rotations# requires only small clusters such that the functio
ing of the gates can be easily verified in a computer simu
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tion. For the examples of gates and subcircuits given in S
IV, this is no longer the case. Generally, we want an analy
explanation for the functioning of the gate simulations on
QCC . This explanation is given in Sec. II F and applied
the gates of a universal set in Sec. II G as well as to m
complicated examples in Sec. IV.

In Sec. II H we discuss the spatial, temporal, and ope
tional resources required in QCC computations in relation to
the resources needed for the corresponding quantum l
networks. We find that overheads are at most polynom
But there does not always need to be overheads. For
ample, as shown in Sec. II I, all QCC circuits in the Clifford
group have unit logical depth.

In Sec. III we discuss non-network aspects of the QCC . In
Sec. III A we state the reasons why the network model is
adequate to describe the QCC in every respect. The networ
model is abandoned and replaced by a more approp
model @7#. This model is described very briefly.

In Sec. III B we relate algorithms to graphs. We show th
from every algorithm its Clifford part can be removed. Th
required algorithm-specific nonuniversal quantum resou
to run the remainder of the quantum algorithm on the QCC is
then a graph state@9#. All that remains of the Clifford part is
a mathematical graph specifying this graph state.

In Sec. IV we give examples of larger gates and sub
cuits, which may be of practical relevance, among them
QCC circuit for quantum Fourier transformation and for th
n-qubit adder.

In Sec. V we discuss the QCC computations on finite
~small! clusters and in the presence of decoherence. We
scribe a variant of the scheme consisting of repeated step
~re-!entangling a cluster via the Ising interaction, alternati
with rounds of one-qubit measurements. Using this modifi
scheme it is possible to split long computations such t
they fit piecewise on a small cluster.

II. UNIVERSALITY OF QUANTUM COMPUTATION
VIA ONE-QUBIT MEASUREMENTS

In this section we prove that the QCC is a universal quan-
tum computer. The technique to accomplish this is to sh
that any quantum logic network can be simulated efficien

e,
©2003 The American Physical Society12-1
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on the QCC . Before we go into details, let us state the ge
eral picture.

For the one-way quantum computer, the entire resou
for the quantum computation is provided initially in the for
of a specific entangled state—the cluster state@2#—of a large
number of qubits. Information is then written onto the clu
ter, processed, and read out from the cluster by one-par
measurements only. The entangled state of the clu
thereby serves as a universal ‘‘substrate’’ for any quant
computation. It provides in advance all entanglement tha
involved in the subsequent quantum computation. Clu
states can be created efficiently in any system with a qu
tum Ising-type interaction~at very low temperatures! be-
tween two-state particles in a lattice configuration.

It is important to realize here that information process
is possible even though the result of every measuremen
any direction of the Bloch sphere is completely random. T
mathematical expression for the randomness of the meas
ment results is that the reduced density operator for e
qubit in the cluster state is12 1. The individual measuremen
results are random but correlated, and these correlations
able quantum computation on the QCC .

For clarity, let us emphasize that in the scheme of the QC
we distinguish between cluster qubits onC, which are mea-
sured in the process of computation, and the logical qub
The logical qubits constitute the quantum information be
processed, while the cluster qubits in the initial cluster st
form an entanglement resource. Measurements of their i
vidual one-qubit state drive the computation.

To process quantum information with this cluster, it su
fices to measure its particles in a certain order and in a
tain basis, as depicted in Fig. 1. Quantum information
thereby propagated through the cluster and processed. M
surements ofsz observables effectively remove the respe
tive lattice qubit from the cluster. Measurements in thesx
~andsy) eigenbasis are used for ‘‘wires,’’ i.e., to propaga
logical quantum bits through the cluster, and for theCNOT

gate between two logical qubits. Observables of the fo
cos(w)sx6sin(w)sy are measured to realize arbitrary rot
tions of logical qubits. For these cluster qubits, the basis
which each of them is measured depends on the resul

FIG. 1. Simulation of a quantum logic network by measuri
two-state particles on a lattice. Before the measurements the q
are in the cluster stateuf&C of Eq. ~1!. Circles( symbolize mea-
surements ofsz , vertical arrows are measurements ofsx , while
tilted arrows refer to measurements in thex-y-plane.
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preceding measurements. This introduces a temporal ord
which the measurements have to be performed. The proc
ing is finished once all qubits except a last one on each w
have been measured. The remaining unmeasured qubits
the quantum register which is now ready to be read out.
this point, the results of previous measurements determin
which basis these ‘‘output’’ qubits need to be measured
the final readout, or if the readout measurements are in
sx , sy, or sz eigenbasis, how the readout measureme
have to be interpreted. Without loss of generality, we assu
in this paper that the readout measurements are performe
the sz eigenbasis.

A. Cluster states and their quantum correlations

Cluster states are pure quantum states of two-level
tems ~qubits! located on a clusterC. This cluster is a con-
nected subset of a simple cubic latticeZd in d>1 dimen-
sions. The cluster statesuf$k%&C obey the set of eigenvalu
equations

K (a)uf$k%&C5~21!kauf$k%&C , ~1!

with the correlation operators

K (a)5sx
(a) ^

bPnghb(a)
sz

(b) . ~2!

Therein, $k%ª$kaP$0,1%u aPC% is a set of binary param
eters that specify the cluster state and nghb(a) is the set of
all neighboring lattice sites ofa.

A cluster stateuf$k%&C is completely specified by the ei
genvalue equations~1!, sinceK (a), aPC, form a complete
set of uCu independent and commuting observables for
system of qubits on the clusterC. This can most easily be
seen from the fact thatK (a) is obtained fromsx

(a) under
conjugation with a unitary transformation, as shown bel
Eq. ~11!. For a set of eigenvalues specified by$k% the cor-
responding eigenspace is thus one-dimensional, i.e.,uf$k%&C
is determined modulo an irrelevant phase factor. There
2uCu different choices for$k%P$0,1% uCu, and sinceK (a) are
Hermitian operators, the associated common eigenstates
cluster states, are mutually orthogonal and form a basis in
Hilbert space of the cluster.

The discussion in this paper will be based entirely
eigenvalue equations~1! and we will never need to work ou
some cluster state in any specific basis. In fact, to write do
a cluster state in its explicit form would be quite space co
suming since the minimum number of required terms sca
exponentially with the number of qubits@2#, and for compu-
tation we will be going to consider rather large cluster stat
Nevertheless, for illustration we give a few examples
cluster states of a small number of qubits. The cluster st
on a chain of 2, 3, and 4 qubits, fulfilling eigenvalue equ
tions ~1! with all ka50, are

uf&C2
5

1

A2
~ u0&1u1&21u1&1u2&2),

its
2-2
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MEASUREMENT-BASED QUANTUM COMPUTATION ON . . . PHYSICAL REVIEW A68, 022312 ~2003!
uf&C3
5

1

A2
~ u1&1u0&2u1&31u2&1u1&2u2&3), ~3!

uf&C4
5

1

2
u1&1u0&2u1&3u0&41

1

2
u1&1u0&2u2&3u1&4 ,

1
1

2
u2&1u1&2u2&3u0&41

1

2
u2&1u1&2u1&3u1&4 ,

with the notation

u0&aªu0&a,z5sz
(a)u0&a,z ,

u1&aªu1&a,z52sz
(a)u1&a,z , ~4!

u6&aª
1

A2
~ u0&a6u1&a).

The stateuf&C2
is local unitary equivalent to a Bell state an

uf&C3
to the Greenberger-Horne-Zeilinger~GHZ! state.

uf&C4
, however, is not equivalent to a four-particle GH

state. In particular, the entanglement inuf&C4
cannot be de-

stroyed by a single local operation@2#.
Ways to create a cluster state, in principle, are to mea

all the correlation operatorsK (a), aPC of Eq. ~2! on an
arbitrary uCu-qubit state or to cool into the ground state of
HamiltonianHK52\g(aPCkaK (a).

Another way—likely to be more suitable for realizatio
in the lab—is as follows. First, a product stateu1&C
5 ^ aPCu1&a is prepared. Second, the unitary transformat
S(C),

S(C)5 )
a,bPCub2aPgd

Sab, ~5!

is applied to the stateu1&. Often we will write S in
short for S(C). In Eq. ~5!, for the cases of dimensiond
51,2,3, we haveg15$1%, g25$(1,0)T,(0,1)T%, and g3
5$(1,0,0)T,(0,1,0)T,(0,0,1)T%, and the two-qubit transfor
mationSab is such that the stateu1&a^ u1&b acquires a phase
of p under its action, while the remaining stat
u0&a^ u0&b , u0&a^ u1&b , and u1&a^ u0&b acquire no phase
Thus,Sab has the form

Sab5u0&a^0u ^ 1(b)1u1&a^1u ^ sz
(b) , ~6!

which is a conditional phase gate betweena andb. Note that
all operationsSab in S mutually commute and that they ca
therefore be carried out at the same time. Initial individu
preparation of the cluster qubits inu1&aPC can also be done
in parallel. Thus, the creation of the cluster state is a two-s
process.The temporal resources to create the cluster st
are constant in the size of the cluster.

The stateu1&C obviously obeys the eigenvalue equatio
sx

(a)u1&C5u1&C , ;aPC and thus the cluster stateuf&C gen-
erated viaS obeys
02231
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uf&C5Ssx
(a)S†uf&C , ;aPC. ~7!

To obtain Ssx
(a)S†, we use the evolution relations for th

stabilizer of a state under the action of a phase gate@10#. We
observe that

Sabsx
(a)Sab†5sx

(a)
^ sz

(b) ,
~8!

Sabsx
(b)Sab†5sz

(a)
^ sx

(b) ,

and

Sabsx
(c)Sab†5sx

(c) , ;cPC\$a,b%. ~9!

Further, the Pauli phase flip operatorssz
(d) commute with all

Sab, i.e.,

Sabsz
(d)Sab†5sz

(d) , ;dPC. ~10!

Now, from Eqs.~8!–~10! it follows that

Ssx
(a)S†5sx

(a) ^
bPnghb(a)

sz
(b) . ~11!

Thus, the stateuf&C generated fromu1&C via the transforma-
tion S as defined in Eq.~5! does indeed obey eigenvalu
equations of form~1!, with

ka50, ;aPC. ~12!

As the eigenvalues are fixed in this case, we drop them in
notation for the cluster stateuf&C . Cluster states specified b
different sets$ka% can be obtained by applying Pauli pha
flip operatorssz

(a) . To see this, note that

sz
(a)K (b)sz

(a)†5~21!da,bK (b). ~13!

Therefore,

^
aPC

~sz
(a)!Dkauf$ka%&C5uf$ka1Dka%&C , ~14!

where the addition forka is modulo 2. Cluster states with
different sets$k% are equally suited for QCC computation.

Concerning a physical realization of the transformationS
defined in Eq.~5!, note thatS is generated by the Hamil
tonian

H5\g (
a,bPCub2aPgd

12sz
(a)

2

12sz
(b)

2
. ~15!

Now, S5exp(2ip/\gH) may be written in the form

S5F )
a,bPCub2aPgd

e2 i ~p/4!expS i
p

4
sz

(a)DexpS i
p

4
sz

(b)D G
3expS 2 i

p

4 (
a,bPCub2aPgd

sz
(a)sz

(b)D . ~16!

We find that the interaction partHI of the HamiltonianH
generatingS is of the Ising form,
2-3
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RAUSSENDORF, BROWNE, AND BRIEGEL PHYSICAL REVIEW A68, 022312 ~2003!
HI5\
g

4 (
a,bPCub2aPgd

sz
(a)sz

(b) , ~17!

and, since the local partH local of the Hamiltonian commutes
with the Ising HamiltonianHI , the interactionS generated
by H is local unitary equivalent to the unitary transformati
generated by a Ising Hamiltonian.

For matter of presentation, the interactionSab in Eq. ~6!
and, correspondingly, the local part of the HamiltonianH in
Eq. ~15! has been chosen in such a way that eigenvalue e
tions ~1! take the particularly simple form withka50 for all
aPC, irrespective of the shape of the cluster.

To create quantum states that are useful as a resourc
the QCC , i.e., cluster- or local unitary equivalent states,
systems with a tunable Ising interaction and a localsz-type
Hamiltonian, i.e., with a Hamiltonian

H85 (
aPC

DEasz
(a)1\

g~ t !

4 (
a,bPCub2aPgd

sz
(a)sz

(b) ~18!

are suitable, provided the couplingg(t) can be switched be
tween zero and at least one nonzero value.

Even this condition can be relaxed. A permanent Is
interaction instead of a globally tunable one is sufficient
the measurement process is much faster than the chara
istic time scale for the Ising interaction, i.e., if the measu
ments are stroboscopic. If it takes the Ising interaction a t
TIsing to create a cluster stateuf&C from a product state
u1&C , then the Ising interaction acting for a time 2TIsing
performs the identity operation,S(C)S(C)51(C). Therefore,
starting with a product stateu1&C at time t50 evolving un-
der permanent Ising interaction, stroboscopic measurem
may be performed at times (2k11)TIsing,kPN.

One possibility to create a cluster state in practice is
cold controlled collisions in optical lattices, as described
Ref. @2#. Cold atoms representing the qubits can be arran
on a two- or three-dimensional~3D! lattice and state-
dependent interaction phases may be acquired via cold
lisions between neighboring atoms@14# or via tunneling@15#.
For a suitable choice of the collision phasesw, w
5p mod 2p, the state resulting from a product stateu1&C
after interaction is a cluster state obeying eigenvalue eq
tions ~1!, with the set$ka ,aPC% specified by the filling pat-
tern of the lattice.

Let us, at the end of this section, briefly state which te
niques will be used for the explanation of measureme
based quantum computation on cluster states. First, note
the operators (21)kaK (a) in Eq. ~1! generate the stabilizer o
the stateuf$k%&C . The stabilizer formalism, as developed b
Gottesman@10,11# and by Calderbanket al. @12# ~see also
Ref. @13#!, provides a compact characterization of the clus
state. It is also useful in understanding some of the work
principles of the QCC . In the subsequent sections, we fr
quently perform stabilizer manipulations.

Further, some basic notions of graph theory will be use
later when we discuss the relation between quantum a
rithms and graphs in Sec. III B. Therefore, let us, at t
point, establish a connection between quantum states su
02231
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the cluster state of Eq.~1!, and graphs. The treatment he
follows that of Ref.@9#, adapted to our notation.

Let us recall the definition of a graph@16#. A graph
G(V,E) is a setV of vertices connected via edgese from the
setE. The information of which vertexaPV is connected to
which other vertexbPV is contained in a symmetric
uVu3uVu matrix G, the adjacency matrix. The matrixG is
such thatGab51 if two verticesa andb are connected via an
edgeePE, andGab50 otherwise. We identify the clusterC
with the verticesVC of a graph,C5VC , and in this way
establish a connection to the notion introduced earlier.

To relate graphs to quantum mechanics, the vertices
graph can be identified with local quantum systems, in t
case qubits, and the edges with two-particle interactions
the present caseszsz interactions. If one initially prepares
each individual qubita in the state (sz

(a))kau1&a and subse-
quently switches on, for an appropriately chosen finite ti
span, the interaction

HG(V,E)5\g (
(a,b)PE

12sz
(a)

2

12sz
(b)

2
, ~19!

with (a,b)PE denoting an edge between qubitsa and b,
then one obtains quantum states that are graph code wor
introduced in Ref.@9#. Henceforth we will refer to these
graph code words as graph states and use them in a co
different from coding. The graph statesuf$k%&G are defined
by a set of eigenvalue equations, which read

sx
(a) ^

bPV
~sz

(b)!Gabuf$k%&G5~21!kauf$k%&G , ~20!

with kaP$0,1%, ;aPV. Here we useG instead ofV as an
index for the stateuf&, as the setE,V3V of edges is now
independent and no longer implicitly specified byV as was
the case in Eq.~1!.

Note that cluster states~1! are a particular case of grap
states~20!. The graphG(C,EC) that describes a cluster sta
is that of a square lattice in 2D and that of a simple cu
lattice in 3D, i.e., the setEC of edges is given by

EC5$~a,b!ua,bPC,bPnghb~a!%. ~21!

B. A universal set of quantum gates

To provide something definite to discuss right from t
beginning, we now give the procedures of how to realiz
CNOT gate and a general one-qubit rotation via one-qu
measurements on a cluster state. The explanation of why
how these gates work will be given in Sec. II G.

A CNOT gate can be realized on a cluster state of 15
bits, as shown in Fig. 2. All measurements can be perform
simultaneously. The procedure to realize aCNOT gate on a
cluster with 15 qubits, as displayed in Fig. 2, is the follow
ing.

Procedure 1.Realization of aCNOT gate acting on a two-
qubit stateuc in&.

~1! Prepare the state

uC in&C15
5uc in&1,9^ S ^

i PC
u1& i D .
15\$1,9%

2-4
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~2! Entangle the 15 qubits of the clusterC15 via the unitary
operationS(C15).

~3! Measure all qubits ofC15 except for the output qubits
7, 15 ~following the labeling in Fig. 2!. The measurement
can be performed simultaneously. Qubits 1, 9, 10, 11, 13
are measured in thesx eigenbasis and qubits 2–6, 8, 12
the sy eigenbasis.

Dependent on the measurement results, the following g
is thereby realized:

UCNOT8 5US,CNOTCNOT~c,t !, ~22!

where the byproduct operatorUS,CNOT has the form

US,CNOT5sx
(c)gx

(c)

,sx
(t)gx

(t)

sz
(c)gz

(c)

,sz
(t)gz

(t)

,

with

gx
(c)5s21s31s51s6 ,

gx
(t)5s21s31s81s101s121s14,

~23!
gz

(c)5s11s31s41s51s81s91s1111,

gz
(t)5s91s111s13.

Therein, thesi represent the measurement outcomessi on the
qubits i. Expression~23! is modified if redundant cluster qu
bits are present and/or if the cluster state on which theCNOT

gate is realized is specified by a set$ka% different from Eq.
~12!; see Sec. II C. This concludes the presentation of
CNOT gate, the proof of its functioning is given in Sec. II G

An arbitrary rotationURotPSU(2) can be realized on
chain of five qubits. Consider a rotation in its Euler rep
sentation

FIG. 2. Realization of elementary quantum gates on the QC .
Each square represents a lattice qubit. The squares in the ext
left column marked with white circles denote the input qubits, tho
in the rightmost column denote the output qubits.
02231
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URot@j,h,z#5Ux@z#Uz@h#Ux@j#, ~24!

where the rotations about thex andz axes are

Ux@a#5expS 2 ia
sx

2 D ,

~25!

Uz@a#5expS 2 ia
sz

2 D .

Initially, the first qubit is prepared in some stateuc in&, which
is to be rotated, and the other qubits are prepared inu1&.
After the five qubits are entangled by the unitary transform
tion S, the stateuc in& can be rotated by measuring qubi
1–4. At the same time, the state is also swapped to sit
The qubits 1–4 are measured in appropriately chosen ba

Bj~w j !5H u0& j1eiw j u1& j

A2
,
u0& j2eiw j u1& j

A2
J , ~26!

whereby the measurement outcomessjP$0,1% for j
51, . . . ,4 areobtained. Here,sj50 means that qubitj is
projected into the first state ofBj (w j ). In Eq. ~26! the basis
states of all possible measurement bases lie on the equat
the Bloch sphere, i.e., on the intersection of the Bloch sph
with the x-y plane. Therefore, the measurement basis
qubit j can be specified by a single parameter, the meas
ment anglew j . The measurement direction of qubitj is the
vector on the Bloch sphere that corresponds to the first s
in the measurement basisBj (w j ). Thus, the measuremen
anglew j is the angle between the measurement direction
qubit j and the positivex axis. In summary, the procedure t
realize an arbitrary rotationURot@j,h,z#, specified by its
Euler anglesj,h,z, is the following.

Procedure 2.Realization of general one-qubit rotation
URotPSU(2).

~1! Prepare the state

uC in&C5
5uc in&1^ S ^

i 52

5

u1& i D .

~2! Entangle the five qubits of the clusterC5 via the uni-
tary operationS(C5).

~3! Measure qubits 1–4 in the following order and bas

~3.1! measure qubit 1 inB1~0!,

~3.2! measure qubit 2 inB2„2j ~21!s1t), ~27!

~3.3! measure qubit 3 inB3„2h~21!s2
…,

~3.4! measure qubit 4 inB4„2z~21!s11s3
….

Via Procedure 2 the rotationURot8 is realized:

URot8 @j,h,z#5US,RotURot@j,h,z#. ~28!

Therein, the random byproduct operator has the form

US,Rot5sx
s21s4sz

s11s3 . ~29!

It can be corrected for at the end of the computation, as
be explained in Sec. II E.

There is a subgroup of rotations for which the realizati
procedure is somewhat simpler than Procedure 2. These

me
e
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tations form the subgroup of local operations in the Cliffo
group. The Clifford group is the normalizer of the Pau
group.

Among these rotations are, for example, the Hadam
gate and thep/2-phase gate. These gates can be realized
a chain of five qubits in the following way.

Procedure 3. Realization of the Hadamard and th
p/2-phase gates.

~1! Prepare the state

uC in&C5
5uc in&1^ S ^

i 52

5

u1& i D .

~2! Entangle the five qubits of the clusterC5 via the uni-
tary operationS(C5).

~3! Measure qubits 1–4. This can be done simultaneou
For the Hadamard gate, measure individually the observa
sx

(1) , sy
(2) , sy

(3) , sy
(4) . For the p/2-phase gate measur

sx
(1) , sx

(2) , sy
(3) , sx

(4) .

The difference with respect to Procedure 2 for general ro
tions is that in Procedure 2 no measurement bases need
adjusted according to previous measurement results
therefore, the measurements can all be performed at the s
time.

As in the cases before, the Hadamard and thep/2-phase
gates are performed only modulo a subsequent bypro
operator, which is determined by the random measurem
outcomessk ,

US,H5sx
s11s31s4sz

s21s3 ,

~30!
US,Uz(p/2)5sx

s21s4sz
s11s21s311 .

Before we explain the functioning of the above gates,
would like to address the following questions: First,‘‘Ho
does one manage to occupy only those lattice sites with c
ter qubits that are required for a particular circuit but lea
the remaining ones empty?’’ The answer to this question
that redundant qubits will not have to be removed physica
It is sufficient to measure each of them in thesz eigenbasis,
as will be described in Sec. II C.

Second, ‘‘How can the described procedures for g
simulation be concatenated such that they represen
measurement-based simulation of an entire circuit?’’ It see
at first sight that the described building blocks would on
lead to a computational scheme consisting of repeated s
of entangling operations and measurements. This is not
case. As will be shown in Sec. II D, the three procedu
stated are precisely of such a form that the descri
measurement-based scheme of quantum computation ca
decomposed into them.

The third question is ‘‘How does one deal with the ra
domness of the measurement results that leads to the byp
uct operators~23!, ~29!, and ~30!?’’ The appearance o
byproduct operators may suggest that there is a need
local correction operations to counteract these unwanted
tra operators. However, there is neither a possibility for s
counter rotations within the described model of quant
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computation, nor is there a need. The scheme works w
unit efficiency despite the randomness of the individual m
surement results, as will be discussed in Sec. II E.

C. Removing the redundant cluster qubits

A cluster state on a two-dimensional cluster of rectangu
shape, say, is a resource that allows for any computation
fits on the cluster. If one realizes a certain quantum circuit
this cluster state, there will always be qubits on the clus
which are not needed for its realization. Such cluster qu
we call redundant for this particular circuit.

In the description of the QCC as a quantum logic network
the first step of each computation will be to remove the
redundant cluster qubits. Fortunately, the situation is not s
that we have to remove the qubits~or, more precisely, the
carriers of the qubits! physically from the lattice. To make
them ineffective to the realized circuit, it suffices to measu
each of them in thesz eigenbasis. In this way, one is le
with an entangled quantum state on the clusterCN of the
unmeasured qubits and a product state onC\CN ,

uf$k%&C→uZ&C\CN
^ uf$k8%&CN

, ~31!

with uZ&C\CN
5( ^ i PC\CN

usi& i ,z) and si the results of thesz

measurements. The resulting entangled stateuf$k8%&CN
on the

subclusterCN is again a cluster state obeying the set of E
~1!, and the measurement outcomes determine the sign
tors therein. This can be easily seen with stabilizer meth
@10,13#. Nevertheless, for completeness we give the ar
ment here. First, by definition, we have

uZ&C\CN
^ uf$k8%&CN

5S ^
i PC\CN

11~21!sisz
( i )

2 D uf$k%&C .

~32!

Using eigenvalue equations~1!, we now insert a correlation
operatorK (a) with aPCN into the right-hand side~rhs! of Eq.
~32! between the projector and the state, and obtain

uZ&C\CN
^ uf$k8%&CN

5~21!ka8K8(a)uZ&C\CN
^ uf$k8%&CN

,
~33!

with the correlation operators

K8(a)5sx
(a) ^

cPnghb(a)ùCN

sz
(c) , ~34!

and the set$ka8% specifying the eigenvalues

ka85S ka1 (
bPnghb(a)ù(C\CN)

sbDmod 2. ~35!

As the new correlation operatorsK8(a) in Eq. ~33! only act
on the cluster qubits inCN , the statesuf$k8%&CN

again obey
eigenvalue equations of type~1!, i.e.,

K8(a)uf$k8%&CN
5~21!ka8uf$k8%&CN

, ;aPCN . ~36!

There areuCNu such eigenvalue equations for a state ofuCNu
qubits. Thus, the stateuf$k8%&CN

is specified by Eq.~36! up to
a global phase.
2-6
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From Eq. ~35! we find that the redundant qubits hav
some remaining influence on the process of computat
After they have been measured, the random measurem
results enter into the eigenvalues that specify the resid
cluster stateuf$k8%&CN

on the clusterCN . However, from Eq.

~14! it follows that uf$k8%&CN
is equivalent touf&CN

modulo

local sz rotations. These can be accounted for by absorb
them into the subsequent measurements.

In this way, a QCC computation with arbitrary$ka8% may
always be traced back to the case of$ka850u;aPCN%, and
we therefore adopt the following two rules to simplify th
further discussion:

~1! The redundant cluster qubits are discarded. We o
consider the subclusterCN .

~37!
~2! We assume thatka850 for all aPCN .

D. Concatenation of gate simulations

A quantum circuit on the QCC is a spatial and tempora
pattern of measurements on individual qubits, which ha
previously been entangled to form a cluster state. To be
understand its functioning we would like—as in the netwo
model of quantum computation—to decompose the circ
into basic building blocks. These building blocks should
such that out of them any circuit can be assembled. In
plaining the QCC in a network language, we can relate t
building blocks of a quantum logic network—the quantu
gates—to building blocks of QCC circuits. To do so, we need
to prove that, in a QCC computation, measurement patter
representing the gates can be patched together like the q
tum gates themselves. This proof is given in the followin

To realize a gateg on the QCC , consider a clusterC(g).
This cluster has an input sectionCI(g), a bodyCM(g), and
an output sectionCO(g), with

CI~g!øCM~g!øCO~g!5C~g!,

CI~g!ùCM~g!5B,
~38!

CI~g!ùCO~g!5B,

CM~g!ùCO~g!5B.

The measurement bases of the qubits inCM(g), the body of
the gateg, encodeg. The general scheme for procedures
realize a gateg on a clusterC(g), for which examples have
been given with Procedures 1–3 for theCNOT gate and the
rotations, is the following.

Scheme 1.Simulation of the gateg on C(g), acting on the
input stateuc& in .

~1! Prepare the input stateuc in& on CI(g) and the qubits in
CM(g)øCO(g) individually in the stateu1&5u0&x such that
the quantum state of all qubits inC(g) becomes

uC in&C(g)5uc in&CI (g) ^ ^
kPCM(g)øCO(g)

u1&k . ~39!

~2! EntangleuC in&C(g) by the interaction
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S„C(g)…5 )
a,bPC(g)ub2aPgd

Sab, ~40!

such that the resulting quantum state isuC«&CN

5S„C(g)…uC in&C(g) .
~3! Measure the cluster qubits inCI(g)øCM(g), i.e.,

choose measurement bases specified byrWkPS2, k
PCI(g)øCM(g) and obtain the random measurement resu
sk such that the projector

P„CI (g)øCM(g)…5 ^
kPCI (g)øCM(g)

11~21!skrWk•sW (k)

2
~41!

is applied; thereby the stateuCout&C(g) is obtained.
Putting all three steps of Scheme 1 together, the rela

betweenuC in&C(g) and uCout&C(g) is

uCout&C(g)5P„CI (g)øCM(g)…S„C(g)…uC in&C(g) . ~42!

As we will show later, the stateuCout&C(g) has the form

uCout&C(g)5 S ^
kPCI (g)øCM(g)

usk&k,rWkD ^ ucout&CO(g) , ~43!

where usk&k,rWk
denotes the state of the qubitk after the ob-

servablerWk•sW (k) has been measured and the measurem
outcome wassk , and

ucout&5US,gUguc in&. ~44!

Therein,Ug is the desired unitary operation, and the bypro
uct operatorUS,g is an extra multilocal rotation that depend
on the measurement results$skukPCI(g)øCM(g)%. The
byproduct operator is always in the Pauli group, i.e.,

US,g5 ^
i 51

n

~sx
[ i ] !xi~sz

[ i ] !zi ~45!

modulo a possible global phase, andn is the number of logi-
cal qubits. In Eq.~45! s [ i ] denote Pauli operators acting o
the logical qubit i, not cluster qubit. The valuesxi ,zi
P$0,1% are computed from the outcomes of the measu
ments by which the respective gate is realized.

As will be proved in Sec. II F, each gate may be realiz
only modulo a subsequent byproduct operatorUS,g . The
byproduct operator is random, but known from the outcom
of the measurements that realize the gate. This knowledg
sufficient to drive the QCC computation deterministically, a
we will demonstrate in Sec. II E.

Given a quantum circuit implemented on a clusterCN of
qubits, which is divided into two consecutive circuits, su
pose that circuitg1 is implemented on the subclusterC(g1)
and the subsequent circuitg2 is implemented on the subclus
ter C(g2), such thatCN5C(g1)øC(g2). There is an overlap
betweenC(g1) andC(g2), which consists of the output qu
bits of circuit 1 ~identical to the input qubits of circuit 2!,
CO(g1)5CI(g2)5C(g1)ùC(g2). The location of the readou
quantum register isCO(g2),C(g2).
2-7
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Now compare the following two strategies. Strategy~i!
consists of the following steps:~1! write input and entangle
all qubits ofCN ; ~2! measure qubits inCN\CO(g2), to imple-
ment the circuit except the readout measurements. Stra
~ii ! consists of steps~1! write input and entangle the qubit
on C(g1); ~2! measure the qubits inC(g1)\CO(g1). This
implements the first subcircuit and writes the intermedi
output toCO(g1)5CI(g2); ~3! entangle the qubits onC(g2);
~4! measure all qubits inC(g2)\CO(g2). Steps 3 and 4 imple
ment the second subcircuitg2 on the subclusterC(g2). The
measurements onC(g1)\CO(g1), represented by the projec
tor P1 commute with the entanglement operation restric
to C(g2), S(C(g2))5:S2 , P1S25S2P1, because these two op
erations act on different subsets of particles. WithP2 repre-
senting the measurements onC(g2)\CO(g2) and S1
5S„C(g1)…, it follows that S2S15S(CN) and P2P1
5P„CN\CO(g2)…8. Therefore,

P2S2P1S15P2P1S2S15P„CN\CO(g2)…S(CN). ~46!

Thus, the two strategies are mathematically equivalent.
above argument can be iterated. It follows that entangling
whole cluster once and subsequently performing all the m
surements is equivalent to simulating a quantum logic n
work gate by gate. The exchange of the order of operation
illustrated in Fig. 3.

Now, we want to specialize to the case where the quan
input is knownand where the quantum output is measur
This is the situation that interests us most in this paper.
amples of such a situation are Shor’s factoring algorit
@17# and Grover’s search algorithm@18#. In both cases, the
quantum input isuc in&5 ^ i 51

n u1& i .
Let us denote the input section of the whole clusterC,

comprising the input qubits of the network simulation, asI;
and the output section, comprising the qubits of the re
out quantum register, asO. As long as the quantum
input is known, it is sufficient to consider the stateu1& I
5 ^ i PI u1& i . For different but known input statesuc in& I ,
one can always find a transformationU in such thatuc in& I
5U inu1& I and instead of realizing some unitary transform
tion U on uc in& I one realizesU U in on u1& I .

FIG. 3. Here the exchange of the order of the measurements
the entanglement operations is shown. The crosses ‘‘3 ’’ denote the
one-qubit measurements and the horizontal lines between adja
cluster qubits denote the unitary transformationsSa,a11.
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Preparing an input stateu1& I and entangling it viaS(C)

with the rest of the clusterC\I is the same as creating
cluster stateuf&C on the entire clusterC5I øC\I , S(C) u1& I
^ u1&C\I5S(C) u1&C5uf&C . Therefore, the entire procedur
of realizing a quantum computation on the QCC amounts to
the following scheme.

Scheme 2.Performing a computation on the QCC .

~1! Prepare a cluster stateuf$k%&C of sufficient size.
~2! Perform a sequence of measurements onuf$k%&C and

obtain the result of the computation from all the measu
ment outcomes.

For practical realization of a QCC computation, Scheme 2 i
advantageous over the mathematically equivalent sequ
of gate simulations according to Scheme 1. This sequenc
turn, may be used to explain the functioning of the QCC in
network terminology.

E. Randomness of the measurement results

We will now show that the described scheme of quant
computation with the QCC works with unit efficiency despite
the randomness of the individual measurement results.

First note that a byproduct operatorUS that acts after the
final unitary gateUguNu

does not jeopardize the scheme.
only effect is that the results of the readout measureme
have to be reinterpreted. The byproduct operatorUS that acts
upon the logical output qubits 1, . . . ,n has the form

US5)
i 51

n

~sx
[ i ] !xi~sz

[ i ] !zi, ~47!

wherexi ,ziP$0,1% for 1< i<n. Let the qubits on the cluster
which are left unmeasured, be labeled in the same way as
readout qubits of the quantum logic network.

The qubits on the cluster, which take the role of the re
out qubits are, at this point, in a stateUSuout&, whereuout& is
the output state of the corresponding quantum logic netwo
The computation is completed by measuring each qubi
thesz eigenbasis, thereby obtaining the measurement res
$si8%, say. In the QCC scheme, one measures the sta
USuout& directly, whereby outcomes$si% are obtained and
the readout qubits are projected into the stateuM&
5) i 51

n $@11(21)sisz
( i )#/2%USuout&. Depending on the

byproduct operatorUS , the set of measurement results$s%,
in general, has a different interpretation from what the n
work readout$si8% would have. The measurement basis is t
same. From Eq.~47! one obtains

uM&5)
i 51

n 11~21!sisz
( i )

2
USuout&

5USS US
† )

i 51

n 11~21!sisz
( i )

2
USD uout&

5US )
i 51

n 11~21!si1xisz
( i )

2
uout&. ~48!

nd

ent
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From Eq. ~48! we see that asz measurement on the sta
USuout& with results$s% represents the same algorithmic ou
put as asz measurement of the stateuout& with the results
$si8%, where the sets$s% and$si8% are related by

si8[si1xi mod 2. ~49!

The set$si8% represents the result of the computation. It c
be calculated from the results$si% of the sz measurements
on the ‘‘readout’’ cluster qubits and the values$xi% that are
determined by the byproduct operatorUS .

Let us now discuss the sequence of the individual g
simulations. Because of Eq.~44! and the argument presente
in Sec. II D, the quantum outputucout& of a whole sequence
of unitary gates is related to the respective input via

ucout&5S )
i 51

uN u

US,gi
Ugi D uc in&, ~50!

where the gatesgiPN are labeled corresponding to the ord
of their action.

Thus, we find that one can cope with the randomnes
the measurement results provided the byproduct opera
US,gi

in Eq. ~50! can be propagated forward through t
subsequent gates such that they act on the cluster qubits
resenting the output register. This can be done. To propa
the byproduct operators we use the propagation relation

CNOT~c,t !sx
(t)5sx

(t)CNOT~c,t !,

CNOT~c,t !sx
(c)5sx

(c)sx
(t)CNOT~c,t !,

~51!
CNOT~c,t !sz

(t)5sz
(c)sz

(t)CNOT~c,t !,

CNOT~c,t !sz
(c)5sz

(c)CNOT~c,t !,

for the CNOT gate,

URot@j,h,z#sx5sxURot@j,2h,z#,
~52!

URot@j,h,z#sz5szURot@2j,h,2z#,

for general rotationsURot@j,h,z# as defined in Eq.~24!, and

Hsx5szH,

Hsz5sxH,
~53!

Uz@p/2#sx5syUz@p/2#,

Uz@p/2#sz5szUz@p/2#,

for the Hadamard andp/2-phase gates propagation relatio
~52! apply to general rotations realized via Procedu
2—including the Hadamard andp/2-phase gates—while th
propagation relations~53! apply to the Hadamard an
p/2-phase gates as realized via Procedure 3.

Note that propagation relations~51!–~53! are such that the
Pauli operators are mapped onto the Pauli operators u
propagation and thus the byproduct operators remain in
02231
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Pauli group when being propagated. Further note that the
a difference between the relations for propagation throu
gates that are in the Clifford group and through those that
not. ForCNOT, the Hadamard, and thep/2-phase gates, the
byproduct operator changes under propagation, while
gate remains unchanged. This holds for all gates in the C
ford group because the propagation relations for the Cliff
gates are of the formUgUS5(UgUSUg

21)Ug as Eqs.~51!
and~53!, i.e., the byproduct operatorUS is conjugated under
the gate, and the Clifford group by its definition as the n
malizer of the Pauli group maps the Pauli operators o
Pauli operators under conjugation. Propagation relations~51!
and ~53! are identical to the propagation relations for Pa
errors given in Ref.@19#. For the gates that are not in th
Clifford group, conjugation of the byproduct operator und
the gate would, in general, not work and therefore, for
rotations that are not in the Clifford group, the propagati
relations are different. There, the gate is conjugated under
byproduct operator, and thus the byproduct operator rem
unchanged in propagation while the gate is modified. In b
cases, the forward propagation leaves the byproduct op
tors in the Pauli group. In particular, their tensor produ
structure is maintained.

Let us now discuss how byproduct operator propagat
affects the scheme of computation with the QCC . Using the
above propagation relations, Eq.~50! can be rewritten in the
following way:

ucout&5S )
i 51

uN u

US,gi
uVD S )

i 51

uN u

Ugi
8 D uc in&. ~54!

Therein, US,gi
uV are forward propagated byproduct oper

tors, resulting from the byproduct operatorsUS,gi
of the

gatesgi . They accumulate to the total byproduct opera
US whose effect on the result of the computation is co
tained in Eq.~49!,

US5)
i 51

uN u

US,gi
uV . ~55!

Further,Ugi
8 are the gates modified under the propagation

the byproduct operators. As discussed above, for gates in
Clifford group we have

Ug85Ug , ;gPClifford group, ~56!

as can be seen from Eqs.~51! and ~53!.
The gates that are not in the Clifford group are modifi

by byproduct operator propagation. Specifically, general
tations ~24! are conjugated, as can be seen from Eq.~52!.
From the structure of Eq.~50! we see that only the byproduc
operators of gatesgk earlier thangi in the network may have
an effect onUgi

, i.e., those withk, i . To give an explicit

expression, let us defineUS,gk
uOi

, which are byproduct op-

eratorsUS,gk
propagated forward by propagation relatio

~51!–~53! to the vertical cutOi through the network, see Fig
4. A vertical cut through a network is a cut that interse
2-9
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each qubit line exactly once and does not intersect gates.
vertical cutOi has the additional property that it intersec
the network just before the input of gategi . The relation
between a rotationUgi

8 modified by the byproduct operator

and the nonmodified rotationUgi
is

Ugi
8 5S )

kuk, i
US,gk

uOi DUgiS )
kuk, i

US,gk
uOi D †

,

;Ugi
PSU~2!. ~57!

Now that we have investigated the effect of byprodu
operator propagation on the individual gates let us return
Eq. ~54!. There, we find that the operations that act on
input stateuc in& group into two factors. The first is compose
of the modified gate operationsUgi

8 and the second is com

posed of the forward propagated byproduct operators.
second factor gives the accumulated byproduct operatorUS

and is absorbed into the result of the computation via
~49!. It does not cause any complication.

So what remains is the first factor, and we find that
unitary evolution of the input stateuc in& that is realized is
composed of the modified gatesUgi

8 . The gates we will re-

alize are thusUgi
8 , not Ugi

. However, the standard proce

dures~Procedures 1–3! in Sec. II B are for the operation
Ugi

. Thus, we have to read Eq.~57! in reverse. We need to

deduceUgi
from Ugi

8 . Once the gatesgk for all k, i have

been realized, this can be done for each gategi since the
byproduct operatorsUS,k are then known for allk, i . Fi-
nally, with Ugi

determined fromUgi
8 , Procedure 2 gives the

measurement bases required for the realization of the
gi . Note that it is a sufficient criterion for the realization
the gategi that all gatesgk with k, i must have been real
ized before, but not a necessary one.

Let us, at this point, address the question of tempo
ordering more explicitly. For proper discussion of the te
poral ordering we have to step out of the network frame
a moment. First, note that in the case of the QCC the basic
primitive are measurements. Thus, the temporal comple

FIG. 4. Vertical cuts. The vertical cuts intersect each qubit l
exactly once, but do not intersect gates. Thus,Oi , Oj , andV are
vertical cuts, butO” is not. The cutOi intersects the rotationUx just
before its input. For two of the rotations in the displayed netwo
the subclusters on which these gates are realized are symbol
displayed in gray underlay. Via the measurement of the cluster
bits a andb ~displayed as black dots with white border!, the rotation
angles of the respective rotationsUx andUz are set.
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will be determined by the temporal ordering of these m
surements, unlike in quantum logic networks, where it d
pends on the ordering of gates. The most efficient orderin
measurements that simulates a quantum logic network is
predescribed by the temporal ordering of the gates in
network.

A temporal ordering among the measurements is infer
from the requirement to keep the computation on the QC
deterministic in spite of the randomness introduced by
measurements. This randomness is accounted for by
byproduct operators. The key to obtain the temporal order
of measurements is Eq.~57!. There, the byproduct operator
US,gk

uOi
may modify Euler angles of the one-qubit rotatio

in the network and, consequently, change measurem
bases. The temporal ordering thus arises due to the fact
bases for one-qubit measurements must be chosen in a
dance with outcomes obtained from the measurement
other qubits.

For each cluster qubitq that needs to be measured in
nontrivial basis, i.e., not in the eigenbasis ofsx , sy , or sz ,
a set of cluster qubitspi can be identified, whose measur
ment outcomes influence the choice of the measuremen
sis for qubitq. We say thatq is in the forward cone@7# of pi ,
qPFC(pi). Each cluster qubit has a forward cone, and in
forward cone there appears a qubit that is measured
trivial basis.

The rule is that a cluster qubitq can only be measured
once all cluster qubitspi for which qPfc(pi) have been
measured earlier. The forward cones thereby generate an
tireflexive partial ordering among the measurements fr
which the most efficient measurement strategy can be
ferred; see Ref.@7#. Gates in the Clifford group do not con
tribute to the temporal complexity of a QCC algorithm, see
Sec. II I.

F. Using quantum correlations for quantum computation

In this section we give a criterion that allows us to de
onstrate the functioning of the QCC simulations of unitary
gates in a compact way. Specifically, Theorem 1 given be
establishes a correspondence between general quantum
and quantum correlations of states. Using this corresp
dence, the explanation of QCC gates can be reduced to stab
lizer manipulations.

Before we state the theorem, let us make the notion o
measurement pattern more precise. In a QCC computation
one can only choose the measurement bases, while the
surement outcomes are random. This is sufficient for de
ministic computation. Thus, one can perform measureme
specified by a spatial and temporal pattern of measurem
bases, but one cannot control into which of the two eig
states the qubits are projected.

Definition 1.A measurement patternM (C) on a clusterC
is a set of vectors

M (C)5$rWaPS2uaPC%, ~58!

defining the measurement bases of the one-qubit meas
ments onC.

,
lly

u-
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If this patternM (C) of measurements is applied on an initi
stateuCE&C and thereby the set of measurement outcome

$s%C5$saP$0,1%uaPC% ~59!

is obtained, then the resulting stateuCM&C is, modulo norm
factor, given byuCM&C5P$s%

(C)(M)uCE&C , where

P$s%
(C)~M!5 ^

kPC

11~21!skrWk•sW (k)

2
. ~60!

Additionally, let us introduce some conventions for lab
ing. Let CI(g) and CO(g) be such thatuCI(g)u5uCO(g)u
5n, wheren is the number of logical qubits processed byg.
Operators acting on qubitspPCI(g) and qPCO(g) are la-
beled by upper indices (CI(g),i ) and (CO(g),i 8), 1< i ,i 8
<n, respectively. The qubitspPCI(g) and qPCO(g) are
ordered from 1 ton in the same way as the logical qubits th
they represent.

We make a distinction between the gateg and the unitary
transformationU it realizes. The gategPN does, besides
specifying the unitary transformationU, also comprise the
information about the location of the gate within th
network.

After these definitions and conventions we can now s
the following theorem.

Theorem 1. Let C(g)5CI(g)øCM(g)øCO(g) with
CI(g)ùCM(g)5CI(g)ùCO(g)5CM(g)ùCO(g)5B be a
cluster for the simulation of a gateg, realizing the unitary
transformationU, anduf&C(g) the cluster state on the cluste
C(g).

Suppose the stateuc&C(g)5P$s%
„CM(g)…(M) uf&C(g) obeys the

2n eigenvalue equations

sx
„CI (g),i …

~Usx
( i )U†!„CO(g)…uc&C(g)5~21!lx,iuc&C(g) ,

~61!

sz
„CI (g),i …

~Usz
( i )U†!„CO(g)…uc&C(g)5~21!lz,iuc&C(g) ,

with lx,i ,lz,iP$0,1% and 1< i<n.
Then, on the clusterC(g) the gate g acting on an arbitrar

quantum input stateuc in& can be realized according t
Scheme 1 with the measurement directions inCM(g) de-
scribed byM „CM(g)… and the measurements of the qubits
CI(g) beingsx measurements. Thereby, the input and out
state in the simulation ofg are related via

ucout&5UUSuc in&, ~62!

whereUS is a byproduct operator given by

US5 ^
„CI ~g!{ i …51

n

~sz
[ i ] !si1lx,i~sx

[ i ] !lz,i. ~63!

The significance of the above theorem is that it provide
comparably simple criterion for the functioning of gate sim
lations on the QCC . We can now base the explanation of t
gates directly on eigenvalue equations~1!, which were also
used to define the cluster states in a compact way. The q
02231
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tum correlations required to explain the functioning of t
gates are derived from the basic correlations~2! rather easily,
and thus the use of Theorem 1 makes the explanation of
gates more transparent and compact.

In the simulation of an individual quantum gate accordi
to Scheme 1, after reading of the input state and the en
gling operationS„C(g)…, but before the measurements that r
alize the gates are performed, the resulting state carries
quantum input in an encoded form. This state is, in gene
not a cluster state. It is therefore not cleara priori that cluster
state correlations alone are sufficient to explain the functi
ing of the gate. However, this is what Theorem 1 states.
prove the functioning of a gateg on the QCC it is sufficient to
demonstrate that a cluster state onC(g) exhibits certain
quantum correlations.

Before we turn to the proof of Theorem 1 let us note th
the measurements described byP$s%

„CM(g)…
„M(g)…, as they

have full rank, project the initial cluster stateuf&C(g) into a
tensor product state,uc&C(g)5um&CM(g) ^ uc&CI (g)øCO(g) .

Thereof only the second factor,uc&CI (g)øCO(g) , is of interest.
This state alone satisfies eigenvalue equations~61! and is
uniquely determined by these equations. To see this, cons
the stateuc8&CI (g)øCO(g)

5U†uc&CI (g)øCO(g)
. It satisfies the 2n

eigenvalue equations

sx
„i ,CI (g)…

sx
„i ,CO(g)…uc8&5~21!lx,iuc8&,

~64!
sz
„i ,CI (g)…

sz
„i ,CO(g)…uc8&5~21!lz,iuc8&,

where we have written in shortuc8& for uc8&CI (g)øCO(g) . The

stateuc8&CI (g)øCO(g) is uniquely defined by the above set
commuting observables, it is a product of the Bell stat
Therefore,uc&CI (g)øCO(g) is uniquely defined as well.

Proof of Theorem 1. We will discuss the functioning of
the gates for two cases of inputs. First, for all input states
the computational basis. This leaves relative phases o
which have to be determined. Second, to fix them, we d
cuss the input state with all qubits individually inu1&. As we
will see, from these two cases it can be concluded that
gate simulation works for all input states of the compu
tional basis. This is sufficient because of the linearity of t
applied operations; if the gate simulations work for states
the computational basis, then they work for superpositions
such inputs as well.

Case 1. The inputuc in& is one of the states of the compu
tational basis, i.e.,uc in&5uz&ª^ i 51

n uzi&z,i with ziP$0,1%, i
51, . . . ,n. Then the stateuCout(z)&C(g) of the qubits inC
@after performing a procedure according to Scheme 1, usin
measurement patternM „CM(g)… on the bodyCM(g) of the
gateg, and applyingsx measurements onCI(g)] is

nO~z!uCout~z!&C(g)5P$s%
„CI (g)…

~X!P$s%
„CM(g)…

~M!S„C(g)…,uz&CI (g)

^ u1&CM(g)øCO(g) , ~65!

with norm factorsnO(z) that are nonzero for allz, as we
shall show later.
2-11
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The inputuz& in Eq. ~65! satisfies the equation

nI~z!uz&5PZ,z
„CI (g)…

^
i 51

n

u1& i , ~66!

with PZ,z
„CI (g)…

5 ^ i 51
n @11(21)zisz

[ i ] #/2, andnI(z)51/2n/2 for

all z. Now note that S„C(g)… and PZ,z
„CI (g)… , as well as

P$s%
„CM(g)…(M) andPZ,z

„CI (g)… , commute. Thus,uCout(z)&C(g) can
be written as

nO8 ~z!uCout~z!&C(g)5P$s%
„CI (g)…

~X!PZ,z
„CI (g)…P$s%

„CM(g)…
~M!uf&C(g)

5P$s%
„CI (g)…

~X!PZ,z
„CI (g)…uc&C(g) , ~67!

where uc&C(g) is specified by eigenvalue equations~61! in
Theorem 1.

Let us, at this point, emphasize that the projectio
P$s%
„CI (g)…(X) and PZ,z

„CI (g)… in Eq. ~67! are of very different ori-

gin. The projectorP$s%
„CI (g)…(X) describes the action of thesx

measurements on the qubits inCI(g). These measuremen
are part of the procedure to realize some gateg on the cluster
C(g). One has no control over the thereby obtained meas
ment outcomes$s% specifying P$s%

„CI (g)…(X). In contrast, the

projectorPZ,z
„CI (g)… does not correspond to measurements t

are performed in reality. Instead, it is introduced as an a
iliary construction that allows one to relate the processing
quantum inputs to quantum correlations in cluster states.
parametersz specifying the quantum inputuz& and thus the
projectorPZ,z

„CI (g)… in Eq. ~66! can be chosen freely.
The goal is to find for the stateuCout(z)&C(g) an expression

involving the transformationU acting on the inputuz&. To
accomplish this, first observe that for the state on the rh
Eq. ~67! via Eq. ~61!, the following eigenvalue equation
hold:

~Usz
[ i ]U†!(CO)@P$s%

„CI (g)…
~X!PZ,z

„CI (g)…uc&C(g)#

5~21!lz,i1zi@P$s%
„CI (g)…

~X!PZ,z
„CI (g)…uc&C(g)#, ~68!

with i 51, . . . ,n.
To make use of Eqs.~68! we need to prove tha

P$s%
„CI (g)…(X)PZ,z

„CI (g)…uc&C(g)Þ0 for all z under the assumption
of Theorem 1.

For this, we consider the scalarC(g)^cuPZ,z
„CI (g)…uc&C(g) and

write PZ,z
„CI (g)… in the form

PZ,z
„CI (g)…

5
1

2n S 11 (
k51

2n

^
i PI k

~21!zisz
( i )D „CI (g)…

, ~69!

where I k,CIÞB;k51, . . . ,2n. For eachI k we choose an
i PI k and insert the respective eigenvalue equation from
upper line of Eq.~61! into C(g)^cu ^ j PI k

sz
( j )uc&C(g) . Since

^ j PI k
sz

( j ) and sx
„i ,CI (g)…(Usx

( i )U†) „CO(g)… anticommute,

C(g)^cu ^ j PI k
sz

( i )uc&C(g)50 for all I k . Thus, with Eq.~69!,
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one finds C(g)^cuPZ,z
„CI (g)…uc&C(g)51/2n, such that

PZ,z
„CI (g)…uc&C(g)Þ0 and therefore also

P$s%
„CI (g)…

~X!PZ,z
„CI (g)…uc&C(g)Þ0, ~70!

or, in other words,nO8 (z)Þ0 for all z.
Due to the fact that the projectionsPZ,z

„CI (g)… and

P$s%
„CM(g)…(M) are of full rank the above state has the form

P$s%
„CI (g)…

~X!PZ,z
„CI (g)…uc&C(g)

5nO8 ~z!us&x,CI (g) ^ um&CM(g) ^ ucout~z!&CO(g) ,

~71!

where

us&x,CI
5 ^

(CI{ i )51

n

usi&x,i ,

and um&CM(g) is some product state withium&CM(g)i51.
Elaborating the argument that leads to Eq.~70! one finds that
nO8 (z)51/2n andnO(z)51/2n/2, but at this point the precise
values of the normalization factors are not important as lo
as they are nonzero.

In Eq. ~71! only the third factor of the state on the rhs
interesting, and this factor is determined by eigenvalue eq
tions ~68!:

ucout~z!&5eih(z)UUSuz&, ~72!

whereUS is given by Eq.~63!. Now, because of Eq.~67!
with nO8 (z)Þ0 ; z, a solution ~71! with Eq. ~72! for the
stateP$s%

„CI (g)…(X)PZ,z
„CI (g)…uc&C(g) is also a solution for the stat

uCout(z)&C(g) , and one finally obtains

uCout~z!&C(g)5eih(z)us&x,CI (g) ^ um&CM(g) ^ @UUSuz&] CO(g) .
~73!

There appear no additional norm factors in Eq.~73! because
the states on the left-hand side~lhs! and the rhs are both
normalized to unity.

Solution~73! still allows for one free parameter, the pha
factor eih(z). Note that,a priori, the phase factors for differ
ent z can all be different.

This concludes the discussion of Case 1. We have fo
in Eq. ~73! that the realized gate acts as

Ũ5U USD, ~74!

where the gateD is diagonal in the computational basis an
contains all the phaseseih(z). What remains is to show tha
D51 modulo a possible global phase.

Case 2. Now the same procedure is applied for the inp
stateuc in&5u1&ª^ i 51

n u1& i . Then, the stateuCout(1)&C(g)

that results from the gate simulation is

nO~1 ! uCout~1 !&C(g)5P$s%
„CI (g)…

~X!P$s%
„CM(g)…

~M!uf&C(g) ,
~75!
2-12
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MEASUREMENT-BASED QUANTUM COMPUTATION ON . . . PHYSICAL REVIEW A68, 022312 ~2003!
with a nonzero norm factornO(1). Using the upper line of
eigenvalue equations~61!, the stateuCout(1)&C(g) is found to
obey the eigenvalue equations

~Usx
[ i ]U†!„CO(g)…uCout~1 !&C(g)5~21!lx,i1siuCout~1 !&C(g) .

~76!

Eigenvalue equations~76! in combination with Eq.~75! im-
ply that

uCout~1 !&C(g)5eixus&x,CI (g) ^ um&CM(g) ^ @UUSu1&] CO(g) ,
~77!

with x being a free parameter. Therefore, on the input s
u1& the gate simulation acts as

Ũ5eixU US . ~78!

This observation concludes the discussion of Case 2.
The fact that Eqs.~73! and ~77! hold simultaneously im-

poses stringent conditions on the phasesh(z). To see this, let
us evaluate the scalar product

cx5C(g)^Cout~1 !uUUSus&x,CI (g) ^ um&CM(g) ^ u1&CO(g) .
~79!

From Eq.~77! it follows immediately that

cx5e2 ix. ~80!

On the other hand, sinceu1&51/2n/2(zP$0,1%nuz& and, by lin-
earity, uCout(1)&51/2n/2(zP$0,1%nuCout(z)&, from Eq.~73! it
follows that

cx5
1

2n (
zP$0,1%n

e2 ih(z). ~81!

The sum in Eq. ~81! runs over 2n terms. Thus, with
ue2 ih(z)u51 for all z, it follows from the triangle inequality
that ucxu<1. The modulus ofcx can be unity only if all
e2 ih(z) are equal. As Eq.~80! shows,ucxu is indeed equal to
unity. Therefore, the phase factorseih(z) must all be the
same, and with Eqs.~80! and ~81!,

eih(z)5eix, ;z. ~82!

If we now insert Eq.~82! into Eq. ~73!, we find that the gate
simulation acts upon every input state in the computatio
basis, and thus upon every input state, asŨg5eixU US .
Therein, the global phase factoreix has no effect. Thus, we
find that the gate simulation indeed acts as stated in Eqs.~62!
and ~63!. h

We would like to acknowledge that a similar theorem
stricted to gates in the Clifford group has been obtained
Ref. @20#.

Let us conclude this section with some comments on h
to use this theorem. First, note thatTheorem 1 does not impl
anything about the temporal order of measurements with
gate simulation.In particular, it should be understood that
02231
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does not imply that first the measurements on the clu
qubits inCM(g) and thereafter the measurements inCI(g) are
performed.

Instead, first, all those cluster qubitsqPCI(g)øCM(g) are
measured whose measurement basis is the eigenbasis
thersx or sy ~remember that, after the removal of the redu
dant cluster qubits, as described in Sec. II C, we are dea
with clustersCN such that, apart from the readout, no me
surements in thesz eigenbasis occur!. Second, possibly in
several subsequent rounds, the remaining measurement
performed in bases that are chosen according to prev
measurement results.

In subsequent sections we will illustrate in a number
examples how Theorem 1 is used to demonstrate the fu
tioning of quantum gate simulations on the QCC , and how
the strategies for adapting the measurement bases are f

G. Function of the CNOT gate and general one-qubit rotations

In this section, we demonstrate that the measurement
terns that we have introduced do indeed realize the des
quantum logic gates.

The basis for all our considerations is set~1! of eigen-
value equations fulfilled by the cluster states. Therefore,
us, before we turn to the realization of the gates in the u
versal set, describe how the eigenvalue equations can be
nipulated. Equations~1! are not the only eigenvalue equa
tions satisfied by the cluster state. Instead, a vast numbe
other eigenvalue equations can be derived from them.

The operatorsK (a) may, for example, be added, mult
plied by a scalar, and multiplied with each other. In this wa
a large number of eigenvalue equations can be gener
from Eqs.~1!. Note, however, that not all operators genera
in this way are correlation operators. Non-Hermitian ope
tors can be generated, which do not represent observa
yet will prove to be useful for the construction of new co
relation operators.

Furthermore, if quantum correlation operatorK for state
uf& commutes with measured observablerW i•sW ( i ), the
correlation will still apply to the measured state. Mo
specifically, if the state uf& satisfies the eigenvalu
equation Kuf&5luf& and @K,rW i•sW #50, then the state
resulting from the measurement,Psi

( i )uf&, where Psi

( i )

5@11(21)sirW i•sW ( i )#/2, satisfies the same eigenvalue equ
tion sincel@Psi

( i )uf&] 5@Psi

( i )Kuf&] 5K@Psi

( i )uf&]. Thus, the

correlationK is inherited to the resultant statePsi

( i )uf&.
To demonstrate and explain the measurement pattern

alizing certain quantum gates, the program is as follo
First, from the set of eigenvalue equations that define
cluster stateuf&C(g) , we derive a set of eigenvalue equation
which is compatible with the measurement pattern onCM .
Then, we use these to deduce the set of eigenvalue equa
that define the stateuc&C(g) , where the qubits inCM have
been measured. Thus, we demonstrate that the assump
for Theorem 1, that is the set of Eqs.~61!, are satisfied with
the appropriate unitary transformationU. Third, US is ob-
tained from Eq.~63! as a function of the measurement r
sults. The order ofU andUS is then interchanged and, in thi
2-13
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way, the temporal ordering of the measurements beco
apparent.

1. Identity gate

As a simple example, let us first consider a gate, wh
realizes the identity operation1 on a single logical qubit.

For the identity gatesCI , CM, andCO , each consists of a
single qubit, so labeling the qubits 1, 2 and 3, 1PCI , 2
PCM , and 3PCO . The patternM(1) corresponds to a mea
surement of qubit 2 in thesx basis.

Let uf&C(1) be the cluster state on these three qubits. T
state is defined by the following set of eigenvalue equatio

sx
(1)sz

(2)sz
(3)uf&C(1)5uf&C(1) , ~83a!

sz
(1)sx

(2)sz
(3)uf&C(1)5uf&C(1) , ~83b!

sz
(1)sz

(2)sx
(3)uf&C(1)5uf&C(1) . ~83c!

Using the stabilizer formalism@10# one obtains that afte
the measurement of qubit 2 in the eigenbasis ofsx with
outcomes2, the resulting state of the cluster,uc&C(1) , obeys
the eigenvalue equations

sz
(1)sz

(3)uc&C(1)5~21!s2uc&C(1) , ~84!

and

sx
(1)sx

(3)uc&C(1)5uc&C(1) . ~85!

Now, since qubits 1 and 3 represent the input and ou
qubits, respectively, the assumption of Theorem 1, Eq.~61!,
is satisfied forU51. The byproduct operatorUS is obtained
from Eq. ~63!, and we find that the full unitary operatio
realized by the gate isŨ51sx

s2sz
s15sx

s2sz
s11.

Also note that a wire with length one (CI(H)51,
CM(H)5B, CO(H)52), i.e., half of the above elementar
wire, implements a Hadamard transformation. As in this c
struction the input and output qubits lie on different subl
tices ofC, one on the even and one on the odd sublattice,
do not use it in the universal set of gates. Nevertheless,
realization of the Hadamard transformation can be a us
tool in gate construction. For example, we will use it in Se
II G 4 to construct the realization of thez rotations out of the
realization ofx rotations.

2. Removing unnecessary measurements

In larger measurement patterns, whenever pairs of a
centsx- qubits in a wire are surrounded above and below
either vacant lattice sites orsz measurements, they can b
removed from the pattern without changing the logical o
eration of the gate. This is simple to show in the case o
linear cluster. Consider six qubits, labeleda to f, which are
part of a longer line of qubits, prepared in a cluster sta
Four of the eigenvalue equations that define the state ar

sz
(a)sx

(b)sz
(c)uc&C5uc&C ,

sz
(b)sx

(c)sz
(d)uc&C5uc&C ,
02231
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sz
(c)sx

(d)sz
(e)uc&C5uc&C , ~86!

sz
(d)sx

(e)sz
( f )uc&C5uc&C .

Suppose, a measurement patternM on these qubits con
tains measurements of the observablesx on qubitsc andd.
Measurements in thesx basis can be made before any oth
measurements inM. If these two measurements alone a
carried out, the new state fulfills the following eigenvalu
equations, derived from Eq.~86! in the usual way,

sz
(a)sx

(b)sz
(e)uc&C5~21!sduc&C ,

~87!
sz

(b)sx
(e)sz

( f )uc&C5~21!scuc&C .

The resulting state is therefore a cluster state from wh
qubitsc andd have been removed, andb ande play the role
of adjacent qubits. Thus, the two measurements have ma
a cluster state onto a cluster state and thus do not contri
to the logical operation realized byM, which, in the case
where bothsc andsd equal 0, is completely equivalent to th
reduced measurement patternM8, from which these adja-
centsx measurements have been removed.

3. One-qubit rotation around x axis

A one-qubit rotation through an anglea about thex axis,
Ux@a#5exp@2ia/2sx#, is realized on the same three qub
layout as the identity gate. Labeling the qubits 1, 2, and 3
in the preceding section, 15CI , 25CM , and 35CO . The
measurement patternM(Ux) consists of a measurement, o
qubit 2, of the observable represented by the vectorrWxy(h)
5„cos(h),sin(h),0…,

rWxy~h!•sW 5cosh sx1sinh sy5Uz@h#sxUz@2h#,
~88!

whose eigenstates lie in thex-y plane of the Bloch sphere a
an angle ofh to thex axis.

The cluster stateuf&C(Ux) is defined by Eqs.~83!. After the

measurement ofM(Ux), the resulting state isuc&C(Ux)

5Pxy(h)
(2) uf&C(Ux) , where Pxy(h)

(2) 5@11(21)s2rWxy(h)•sW #/2.
To generate an eigenvalue equation whose operator c
mutes withrWxy(h)•sW , we manipulate Eq.~83c! in the fol-
lowing way:

sz
(2)sx

(3)uf&C(Ux)5uf&C(Ux) , ~89!

i.e.,

sz
(2)uf&C(Ux)5sx

(3)uf&C(Ux) ,

i.e.,

@sz
(2)2sx

(3)#uf&C(Ux)50,

therefore

exp~2 ih/2@sz
(2)2sx

(3)# !uf&C(Ux)5uf&C(Ux) , ~90!
2-14
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where the last equation is true for allhP@0,2p#. This takes
a more useful form, if we write it in terms of one-qub
rotations,

Uz
(2)@h#Ux

(3)@2h#uf&C(Ux)5uf&C(Ux) . ~91!

We use this, and the equation

sz
(1)sx

(2)sz
(3) uf&C(Ux)5uf&C(Ux) , ~92!

to construct the subsequent eigenvalue equation. Let us
note the operator on the lhs of eigenvalue equation~91! asA,
and the operator on the lhs of Eq.~92! asB. With Eqs.~91!
and ~92! it follows that ABA21uf&C(Ux)5uf&C(Ux) , i.e.,

uf&C(Ux)5sz
(1)Uz

(2)@h#sx
(2)Uz

(2)@2h#Ux
(3)@2h#

3sz
(3)Ux

(3)@h#uf&C(Ux) . ~93!

Note that the operatorsA andB do not commute.
Applying Pxy(h),2 to both sides, we obtain the followin

eigenvalue equation foruc&C(Ux) :

sz
(1)Ux

(3)@2h#sz
(3)Ux

(3)@h#uc&C(Ux)5~21!s2uc&C(Ux) .
~94!

In the same way as for the identity gate we also apply
projector to an eigenvalue equation generated from E
~83a! and ~83c! to obtain

uc&C(Ux)5sx
(1)sx

(3)uc&C(Ux)

5sx
(1) Ux

(3)@2h#sx
(3)Ux

(3)@h#uc&C(Ux) , ~95!

and thus we see that Eq.~61! is satisfied forU5Ux@2h#

andUS5sz
s1sx

s2 . Interchanging the order of these operato
is not as trivial here as for the identity gate. Whensz is
propagated throughUx@h#, the sign of the angle is reverse
so we find that the gate operation realized by thisM(Ux) in
the QCC is

Ug5Ux@~21!s1~2h!#. ~96!

The sign of the rotation realized by this gate is a function
s1, the outcome of the measurement on qubit 1. This
an example of the temporal ordering of measurements
the QCC . In order to realizeUx@a# deterministically, the
angle of the measurement,h, on qubit 2 must beh
5(21)s1(2a), thus this measurement can only be realiz
after the measurement of qubit 1.

4. Rotation around z axis

The measurement pattern for a rotation around thez axis
Uz@b#5exp@2ib/2sz# is illustrated in Fig. 2. It requires five
qubits for its realization.

The measurement layoutM(Uz) is similar to the rotation
about thex axis, except for two additionalsx measurements
on either side of the central qubit. The simplest way to u
derstand this gate is to regard it as the concatena
02231
e-

e
s.

s

f
s
in

d

-
n

Uz@a#5H Ux@a#H. The Hadamard transformations may b
realized as wires of length one, see Sec. II G 1. Thus,
measurement pattern of thez rotation is that of thex rotation
plus one cluster qubit on either side measured in the eig
basis ofsx , as displayed in Fig. 5.

The explanation in terms of eigenvalue equations obe
by cluster states is as follows. Let us label the qubits 1
The cluster stateuf&C(Uz)

is defined by eigenvalue equation

of the usual form. If qubits 2 and 4 are measured in thesx

basis, the resulting stateuf8&C(Uz)
5Px,s2

(2) Px,s4

(4) uf&C(Uz)
fulfills

the following set of eigenvalue equations:

sx
(1)sx

(3)sx
(5)uf8&C(Uz)

5uf8&C(Uz)
, ~97a!

sz
(1)sz

(3)sx
(5)uf8&C(Uz)

5~21!s2uf8&C(Uz)
, ~97b!

sx
(1)sz

(3)sz
(5)uf8&C(Uz)

5~21!s4uf8&C(Uz)
. ~97c!

This set of equations is analogous to Eqs.~83!, except for the
different eigenvalues and that the input and output qubitx
andz bases have been exchanged. From here on the ana
of the measurement pattern runs parallel to the preced
section.

One findsM(Uz) realizes the operationUz(b) if the ba-
sis of the measurement on qubit 3 is chosen to be the ei
basis of rWxy„(21)s2(2b)…•sW , where rWxy(h) is defined in
Eq. ~88!. Qubit 2 must thus be measured prior to qubit 3. T
byproduct operator for this gate isUS,Uz

5sx
s21s4sz

s11s3 .

5. Arbitrary rotation

The arbitrary Euler rotation can be realized by combini
the measurement patterns of rotations aroundx andz axes by
overlaying input and output qubits of adjacent patterns,
described in Sec. II D. This creates a measurement patte
seven qubits plus input and output qubits, labeled as in
6, with measurements ofsx on qubits 3, 4, 6, and 7, an
measurements in thex-y plane at anglesa, b, and g on
qubits 2, 5, and 8, respectively.

The unitary operation realized by these connected m
surement patterns is

FIG. 5. Useful identity for the realization of the rotationUz@a#
as the sequenceH Ux@a#H.

FIG. 6. General rotation composed of twox rotations and az
rotation in between~Euler representation!. In the QCC realization
pairs of adjacent cluster qubits measured in thesx eigenbasis may
be removed from the measurement pattern.
2-15
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USURot@j,h,z#5sz
s7sx

s8Ux@~21!s7~2g!#

3sz
s31s5sx

s41s6Uz@~21!s4~2b!#

3sz
s1sx

s2Ux@~21!s1~2a!#. ~98!

As we have shown above, adjacent pairs ofsx measure-
ments can be removed from the pattern without changing
operation realized by the gate. The operation realized by
reduced measurement pattern is obtained by setting the
surement results from the removed qubits to 0,s3 ,s4 ,s6 ,s7
50. After relabelling the remaining qubits in the measu
ment patterns 1–5, we obtain

USURot@j,h,z#5sx
s4Ux@2g#sz

s3Uz@~2b!#

3sz
s1sx

s2Ux@~21!s1~2a!#. ~99!

Propagating all byproduct operators to the left-hand side,
find that the unitary operation realized by the measurem
pattern is

URot@j,h,z#5Ux@2~21!s11s3g#Uz@2~21!s2b#

3Ux@2~21!s1a#, ~100!

with byproduct operatorUS5sx
s21s4sz

s11s3 . One finds
that, to realize a specific rotationURot@j,h,z#
5Ux@z#Uz@h#Ux@j#, the anglesa, b, g specifying the
measurement bases of the qubits 2, 3, and 4 are again de
dent on the measurement results of other qubits. We see
a5(21)s1(2j), b5(21)s2(2h), g5(21)s11s3(2z).
To realize a specific rotation deterministically, qubit 2 mu
thus be measured before qubits 3 and 4, and qubit 3 be
qubit 4, in the bases specified in Sec. II B.

6. Hadamard andpÕ2-phase gates

The Hadamard and thep/2-phase gates have the prope
that under conjugation with these gates Pauli operators
mapped onto Pauli operators,

HsxH
†5sz ,

~101!
HszH

†5sx ,

and

Uz@p/2#sxUz@p/2#†5sy ,
~102!

Uz@p/2#szUz@p/2#†5sz ,

from which propagation relations~53! follow. Related to this
property is the fact that these two special rotations may
realized viasx and sy measurements. Such measurem
bases need not be adapted to previously obtained mea
ment results and, therefore, while these rotations might
realized in the same way as any other rotation, there
more advantageous way to do so.
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To realize either of the gates we use again a cluster s
of five qubits in a chainC(H). Let the labeling of the qubits
be as in Figs. 2~d! and 2~e!, i.e., qubit 1 is the input and qubi
5 is the output qubit.

A cluster stateuf&C(H) obeys the two eigenvalue equation

uf&C(H)5K (1)K (3)K (4)uf&C(H)5sx
(1)sy

(3)sy
(4)sz

(5)uf&C(H) ,
~103!

uf&C(H)5K (2)K (3)K (5)uf&C(H)5sz
(1)sy

(2)sy
(3)sx

(5)uf&C(H) .

When qubits 2, 3, and 4 of this state are measured in thesy
eigenbasis and thereby the measurement outcomess2 , s3 ,
s4P$0,1% are obtained, the resulting stateuc&C(H) obeys the
eigenvalue equations

sx
(1)sz

(5)uf&C(H)5~21!s31s4uf&C(H) ,
~104!

sz
(1)sx

(5)uf&C(H)5~21!s21s3uf&C(H) .

From Eq.~101! we see that correlations~104! are precisely
those we need to explain the realization of the Hadam
gate. Using Theorem 1 we find that by Procedure 3 w
measurement of the operatorssx

(1) , sy
(2) , sy

(3) , andsy
(4) a

Hadamard gate with a byproduct operator, as given in
~30!, is realized.

Considering the rotationUz@p/2#, a cluster state
uf&C(Uz[p/2]) of a chain of five qubits obeys the eigenvalu
equations

uf&C(Uz[p/2])5K (1)K (3)K (4)K (5)uf&C(Uz[p/2]) ,

52sx
(1)sy

(3)sx
(4)sy

(5)uf&C(Uz[p/2])uf&C(Uz[p/2])

5K (2)K (4)uf&C(Uz[p/2])

5sz
(1)sx

(2)sx
(4)sz

(5)uf&C(Uz[p/2]) . ~105!

When qubits 2 and 4 of this state are measured in thesx
eigenbasis and qubit 3 is measured in thesy eigenbasis, with
the measurement outcomess2 , s3 , s4P$0,1% obtained, the
resulting stateuc&C(Uz[p/2]) obeys the eigenvalue equations

sx
(1)sy

(5)uc&C(Uz[p/2])5~21!s31s411uc&C(Uz[p/2]) ,

~106!
sz

(1)sz
(5)uc&C(Uz[p/2])5~21!s21s4uc&C(Uz[p/2]) .

Using Theorem 1 we find that by Procedure 3 with measu
ment of the operatorssx

(1) , sx
(2) , sy

(3) , andsx
(4) a p/2-phase

gate is realized, where the byproduct operator is given
Eq. ~30!.

7. The CNOT gate

A measurement pattern that realizes aCNOT gate is illus-
trated in Fig. 2. Labeling the qubits as in Fig. 2, we use
same analysis as above to show that this measurement
tern does indeed realize aCNOT gate in the QCC .

Of the clusterC(CNOT) on which the gate is realized, qu
bits 1 and 9 belong toCI , qubits 7 and 15 belong toCO and
2-16
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the remaining qubits belong toCM . Let uf& be a cluster state
on C(CNOT), which obeys the set of eigenvalue equatio
~1!.

From these basic eigenvalue equations there follow
equations

uf&5K (1)K (3)K (4)K (5)K (7)K (8)K (13)K (15)uf&

52sx
(1)sy

(3)sy
(4)sy

(5)sx
(7)sy

(8)sx
(13)sx

(15)uf&,

~107a!

uf&5K (2)K (3)K (5)K (6)uf&5sz
(1)sy

(2)sy
(3)sy

(5)sy
(6)sz

(7)uf&,
~107b!

uf&5K (9)K (11)K (13)K (15)uf&5sx
(9)sx

(11)sx
(13)sx

(15)uf&,
~107c!

uf&5K (5)K (6)K (8)K (10)K (12)K (14)uf&

5sy
(5)sy

(6)sz
(7)sy

(8)sz
(9)sx

(10)sy
(12)sx

(14)sz
(15)uf&.

~107d!

Subsequently, we will often use a graphic representation
eigenvalue equations such as~107a!–~107d!. Each of these
equations is specified by the set of correlation centersq for
which the basic correlation operatorsK (q) ~2! enter the rhs of
the equation. While the information content is the same, i
often more illustrative to display the pattern of correlati
centers than to write down the corresponding cluster s
eigenvalue equation. As an example, the pattern of corr
tion centers, which represents the eigenvalue equation~107a!
is given in Fig. 7.

If the qubits 10, 11, 13, and 14 are measured in thesx
eigenbasis and the qubits 2, 3, 4, 5, 6, 8, and 12 are meas
in the sy eigenbasis, whereby the measurement res
s2–s6 , s8 , s10 – s14 are obtained, then the cluster state
genvalue equations~107a!–~107d! induce the following ei-
genvalue equations for the projected stateuc&:

sx
(1)sx

(7)sx
(15)uc&5~21!11s31s41s51s81s13uc&,

~108a!

sz
(1)sz

(7)uc&5~21!s21s31s51s6uc&, ~108b!

sx
(9)sx

(15)uc&5~21!s111s13uc&, ~108c!

sz
(9)sz

(7)sz
(15)uc&5~21!s51s61s81s101s121s14uc&.

~108d!

FIG. 7. Pattern of correlation centers representing eigenv
equation~107a!.
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Therein, qubits 1 and 7 represent the input and output for
control qubit and qubits 9 and 15 represent the input a
output for the target qubit. Writing theCNOT unitary opera-
tion on control and target qubitsCNOT(c,t), we find

CNOT~c,t !sx
(c)CNOT~c,t !5sx

(c)sx
(t) , ~109a!

CNOT~c,t !sz
(c)CNOT~c,t !5sz

(c) , ~109b!

CNOT~c,t !sx
(t)CNOT~c,t !5sx

(t) , ~109c!

CNOT~c,t !sz
(t)CNOT~c,t !5sz

(c)sz
(t) . ~109d!

Comparing these equations to eigenvalue equations~108a!–
~108d!, one sees thatM does indeed realize aCNOT gate.
Furthermore, after reading off the operatorUS using Eqs.
~61! and ~63! and propagating the byproduct operato
through the output side of theCNOT gate, one finds the ex
pressions for the byproduct operators, reported in Eq.~23!.

H. Upper bounds on resource consumption

Here we discuss the spatial, temporal, and operationa
sources required for the QCC and compare with resource re
quirements of a network quantum computer.

To run a specific quantum algorithm, the QCC requires a
cluster of a certain size. Therefore, the QCC-spatial resources
Sare the number of cluster qubits in the required cluster s
uf&C , i.e., S5uCu. The computation is driven by one-qub
measurement only. Thus, a single one-qubit measureme
one unit of operational resources, and the QCC-operational
resources Oare defined as the total number of one-qu
measurements involved. The operational resourcesO are al-
ways smaller or equal to the spatial resourcesS,

O<S, ~110!

since each cluster qubit is measured at most once. As for
temporal resources, the QCC-logical depth Tis the minimum
number of measurement rounds to which the measurem
can be parallelized.

Let us briefly recall the definition of these resources in
network model. The temporal resources are specified by
network logical depthTqln , which is the minimal number of
steps to which quantum gates and readout measurement
be parallelized. The spatial resourcesSqln count the number
of logical qubits on which an algorithm runs. Finally, th
operational resourcesOqln are the number of elementary op
erations required to carry out an algorithm, i.e., the num
of gates and measurements.

The construction kit for the simulation of quantum log
networks on the QCC shall contain a universal set of gates,
our case theCNOT gate between arbitrary qubits and the o
qubit rotations. Already the next-neighborCNOT with general
rotations is universal since a generalCNOT can be assembled
of a next-neighborCNOT and swap gates, which can them
selves be composed of next-neighborCNOTs. However, in the
following we would like to use for the generalCNOT the less
cumbersome construction described in Sec. IV B. For t
gate, the distance between logical qubits, i.e., between pa

e
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lel qubit wires, is 4. The virtue of this gate is that it ca
always be realized on a vertical slice of width 6 on the cl
ter, no matter how far control and target qubit are separa
A slice of width 6 means that the distance between an in
qubit of the gate and the corresponding input of the conse
tive gate is six lattice spacings. This generalCNOT gate de-
termines the spatial dimensions of a unit cell in the meas
ment patterns. The size of this unit cell is 436. The other
elementary gates, the next-neighborCNOT and the rotations
are smaller than a unit cell and therefore have to be stretc
This is easily accomplished. The next-neighborCNOT, as dis-
played in Fig. 2~a! has a size of 236 and is extended to siz
436 by inserting two adjacent cluster qubits into the verti
bridge connecting the horizontal qubit lines. The general
tation as in Fig. 2~b! has width 4 and is stretched to width
by inserting two cluster qubits just before the output.

Concerning the temporal resources we first observe
we can realize the gates in the same temporal order as in
network model. To realize a generalCNOT on the QCC takes
one step of measurements, to realize a general rotation t
at most three. For the network model we do not assume
a general rotation has to be Euler-decomposed. Rathe
assume that in the network model a rotation can be real
in a single step. Thus, the temporal resources of the QCC and
in the network model are related via

T<3Tqln . ~111!

As for the spatial resources, let us consider a rectang
cluster of heighth and widthw on which the qubit wires are
oriented horizontally, with the network register state prop
gating from left to right. As the logical qubits have distan
4, the height of the cluster has to beh54Sqln23, whereSqln
is equal to the numbern of logical qubits. Further, the num
ber of gates in the circuit is at mostSqlnTqln because, in the
network model, in each step at mostSqln gates can be real
ized. On each vertical slice of width 6 on the cluster there
at least one gate such that—taking into account an extra
of width 1 for the readout cluster qubits—for the width hol
w<6SqlnTqln11. With S5h w one finds that

S<24Sqln
2Tqln . ~112!

In a similar way, a bound involving the network oper
tional resources can be obtained. The spatial overheadS and
the operational overheadO per elementary network opera
tion is <24Sqln if this operation is a unitary gate from th
universal set described before, and is equal to 1 if this
eration is a readout measurement. Thus, we also have

S<24OqlnSqln ,

O<24OqlnSqln . ~113!

The purpose of this section was to demonstrate that
scaling of spatial and temporal resources is at worst poly
mial as compared to the network model. In Ref.@7# it has
been shown, as stated in Sec. III A, that the required class
processing increases the computation time only margin
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~logarithmically in the numbern of logical qubits!, and thus
there is no exponential overhead in either classical or qu
tum resources.

The upper bounds in Eqs.~111!–~113! should not be
taken for estimates. For algorithms of practical interest
required resources usually scale much more favorably
there do not even have to be overheads at all. This is il
trated for the temporal complexity of Clifford circuits in Se
II I and in the examples of Sec. IV. A spatial overhead alwa
exists. However, this is compensated by the fact that
operational effort to create a cluster state is independen
the cluster size.

I. Quantum circuits in the Clifford group can be realized
in a single step

The measurement bases to realize the Hadamard and
p/2-phase gates need not be adapted since only operatosx
andsy are measured. The same holds for the realization
the CNOT gate, see Fig. 2. Thus, all the Hadama
p/2-phase, andCNOT gates of a quantum circuit can be rea
ized simultaneously in the first measurement round, rega
less of their location in the network. In particular, quantu
circuits that consist only of such gates, i.e., circuits in t
Clifford group, can be realized in a single time step. As
example, many circuits for coding and decoding are in
Clifford group.

The fact that quantum circuits in the Clifford group can
realized in a single time step has previously not been kno
for networks. The best upper bound on the logical depth t
was known previously scales logarithmically with the num
ber of logical qubits@21#.

Note that, as stated by the Gottesman-Knill theorem@22#,
there is no need for fast Clifford circuits if the quantu
output is measured in a Pauli basis because these circuits
be simulated efficiently classically. However, the purpose
this section is to point out that the whole Clifford part ofany
quantum circuit can be performed in a single time step.
will discuss this point further in Sec. III B.

Here we find a first aspect of QCC computation, which is
not adequately described within the network model, and w
this observation we conclude the discussion of the QCC as a
simulator of quantum logic networks.

III. COMPUTATIONAL MODEL UNDERLYING THE QC C

A. Processing of information

In the network model of quantum computation one us
ally regards a quantum register as the carrier of informati
The quantum register is prepared in some input state
processed to some output state by applying a suitable un
transformation composed of quantum gates. Finally, the o
put state of the quantum register is measured by which
classical readout is obtained.

For the QCC the notions of ‘‘quantum input’’ and ‘‘quan-
tum output’’ have no genuine meaning if we restrict ou
selves to the situation where the input state is known.
stated before, Shor’s factoring algorithm@17# and Grover’s
search algorithm@18# are both examples of such a situatio
2-18
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In these cases the final result of any computation –includ
quantum computations—is a classical number. In a QC
computation this number is extracted from the outcomes
all the one-qubit measurements. The entire computa
amounts to just measurements of the cluster qubits in a
tain order and basis.

We have divided the setC of cluster qubits into subsetsI,
M, andO to describe the QCC in terms of the network model
Such a terminology is not required for the QCC a priori. It is
true that when a quantum logic network is realized on
cluster state there is a subset of cluster qubits that play
role of the output register. However, these qubits are not
final ones to be measured, but among the first~!!. The mea-
surement outcomes from all the cluster qubits contribute
the result of the computation. The qubits ofO,C simulate
the output state of the quantum register and thus contrib
obviously to the computational result. The cluster qubits
the setI ,C simulate the fiducial input state of the quantu
register and their measurement contributes via the accu
lated byproduct operator onO. Finally, the qubits in the sec
tion M,C of the cluster whose measurements simulate
quantum gates also contribute via the byproduct operato

Naturally there arises the question whether there is
difference in the way how measurements of cluster qubit
I, O, or M contribute to the final result of the computatio
As shown in Ref.@7#, it turns out that there is none. This
why we can abandon the notions of quantum input, quan
output, and quantum register, altogether from the descrip
of the QCC .

Furthermore, quantum gates are not constitutive elem
of the QCC ; these are instead one-qubit measurements
formed in a certain temporal order and in a spatial pattern
adaptive measurement bases. In fact, the most efficient
poral order of the measurements does not follow from
temporal order of the simulated gates in the network mo

The general view of a QCC computation is as follows. The
cluster C is divided into disjoint subsetsQt,C with 0<t
<tmax, i.e., t50

tmaxQt5C andQsùQt5B for all s5” t. The cluster
qubits within each setQt can be measured simultaneous
and the sets are measured one after another. The setQ0 con-
sists of all those qubits for which no measurement ba
have to be adjusted, i.e., those of which the operatorsx , sy ,
or sz is measured. In the subsequent measurement ro
only operators of the form coswsx6sinwsy are measured
whereuwu,p/2, wÞ0. The measurement bases are adap
in these rounds, i.e., they are adapted to measurement re
obtained in previous rounds. The measurement outco
from the qubits inQ0 determine the measurement bases
the qubits inQ1, which are measured in the second roun
those fromQ0 andQ1 together determine the bases for t
measurements of the qubits inQ2, which are measured in th
third round, and so on. Finally, the result of the computat
is calculated from the measurement outcomes obtained i
the measurement rounds~Fig. 8!.

Now there arises the question of how complex the
quired classical processing is. In principle, it could be that
the obtained measurement results had to be stored sepa
and the functions to compute the measurement bases we
02231
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complicated that one would gain no advantage over the c
sical algorithm for the considered problem. This is not at
the case. If the network algorithm runs onn qubits, then the
classical data that the QCC has to keep track of is entirely
contained in a 2n-component binary valued vector, which w
have called the information flow vectorI (t) @7#. The update
of I (t) is a classical computation that is needed to adapt
measurement bases of cluster qubits according to prev
measurement outcomes. These updates and the final ide
cation of the computational result fromI (tmax) are all
elementary.

Concerning the resources for the classical processing
the measurement outcomes in a QCC computation, we point
out that this processing increases the total time of comp
tion only marginally@7#.

In summary, the formal description of the QCC is based on
primitive quantities of which the most important ones are
setsQt,C of cluster qubits, defining the temporal orderin
of measurements on the cluster state and the binary-va
information flow vectorI (t), which is the carrier of the al-
gorithmic information. The reader who is interested in ho
this computational model arises and in its detailed desc
tion is referred to Ref.@7#, or, for concepts and summary, t
Ref. @8#.

B. Quantum algorithms and graphs

In this section we relate QCC algorithms to graphs. We do
this by considering non-universal graph states suited for
specific algorithm in question. For the QCC , the Clifford part
of each algorithm can be removed. We show that a ma
ematical graph comprises all the information that needs to
kept of the Clifford part.

While the network formulation of a quantum algorithm
given as a sequence of quantum gates applied to a fidu
input state, the QCC version of a quantum algorithm is spec

FIG. 8. General scheme of the quantum computer via one-q
measurements. The setsQt of lattice qubits are measured one aft
the other. The results of earlier measurements determine the
surement bases of later ones. All classical information from
measurement results needed to steer the QCC is contained in the
information flow vectorI (t). After the last measurement roun
tmax, I (tmax) contains the result of the computation.
2-19
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fied by a measurement pattern on the universal cluster s
plus the structure@7# for the processing of the measureme
outcomes.

To motivate the considerations of this section, note t
the measurement pattern is, in the simplest case, just a
of the network layout to the substrate cluster state, imprin
by the measurements. As such it contains information ab
the precise location of the gate simulations and about
way the ‘‘wires’’ connecting the gates are bent around. Th
are all details of the realization of an algorithm but do n
belong to the description of the algorithm itself. Thus, t
measurement pattern introduces a large amount of re
dancy into the description of a QCC algorithm. This redun-
dancy may be reduced to a large extent by allowing for n
universal, algorithm-specific quantum resources.

Clearly, at this point one has to specify how special
algorithm-specific resource is allowed to be. Obviously
would make no sense to take the quantum output of
entire network as the required quantum resource and to
gard the subsequent readout measurements as the algo
Here, we allow for any graph state@9#, Eq. ~20! as the quan-
tum resource. Graph states are easy to create, e.g., via un
networks or from cluster states via measurements.

To allow for an algorithm-specific graph state as the qu
tum resource of a QCC computation reduces the redundan
of both the description and the realization of a quantum
gorithm. This can easily be seen from the material presen
in Sec. II C. All the cluster qubitsqPC\CN can be get rid of
either by measuring them in thesz eigenbasis or equiva
lently by not placing them initially into their positions at al
The remaining state on the subclusterCN is again a cluster
state. Hence, it is also a graph state. It is less redundant
no longer universal.

But we can go further. Not only the qubits measured
the sz eigenbasis may be removed from the cluster but
stead all those qubits of which one of the Pauli operatorssx ,
sy or sz is measured, i.e., all the qubits which form the s
Q0. The state of the unmeasured qubits that emerges
the measurement of the cluster qubits inQ0 is again~local
equivalent to! a graph state.

This may be seen as follows. First note that the opera
sx

(a)
^ bPV(sz

(b))Gab, which appear in Eq.~20! form a stabi-
lizer of the stateuf$k%&G . The generator of the stabilize
containsuCu elements for a state ofuCu qubits. After all the
qubits qPQ0 have been measured, the resulting st
uC&C\Q0

of the uC\Q0u unmeasured qubits is again describ
by a stabilizer of the form

^
i 51

uC\Q0u

~sx
( i )!Xa,i~sz

( i )!Za,iuC&C\Q0
56uC&C\Q0

;a51, . . . ,uC\Q0u, ~114!

with two uC\Q0u3uC\Q0u matrices X and Z, for which
Xa,i ,Za,iP$0,1%. The uC\Q0u32uC\Q0u-compound matrix
(XuZ) @12# is called the generator matrix of the stabilizer f
uC&C\Q0

. The stateuC&C\Q0
is uniquely determined by the

generator of its stabilizer.
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The state uC&C\Q0
can thus be regarded as

@ uC\Q0u,0,d#-stabilizer code, with the distanced not speci-
fied. This state fulfills the assumptions of Theorem 1 in R
@23#. The cited theorem states that any stabilizer code o
the alphabetA5Fpm is @local unitary# equivalent to a graph
code.

We now specialize to the case of our interest,A5F22. It
follows from the above-mentioned theorem that the st
uC&C\Q0

specified in Eq.~114! is local unitary equivalent to a

graph stateuf$k%&G(C\Q0 ,EC\Q0
) Eq. ~20!. That is, the state

uC&C\Q0
obtained in a QCC computation after the first round

of measurements may as well be obtained from a graph s
uf$k%&G(C\Q0 ,EC\Q0

) via local unitary transformations

and the subsequent measurements may be perfor
as usual. Alternatively, one may use the graph st
uf$k%&G(C\ Q0 ,EC\ Q0

) directly, only modifying the measure

ment bases instead of performing the local rotations prio
the measurements. Thus, in a QCC computation with a spe-
cial graph state as the quantum resource and the first m
surement round omitted, the way of processing the class
information is the same as in a QCC computation with a
universal resource and the first measurement ro
performed.

The graphs associated with states~114! are, in general,
not unique @23#. A constructive way to obtain graphs o
C\Q0 from G(C,EC) and the measurement bases of the q
bits in Q0 has been described in Ref.@24#.

Now note that the measurement of the qubits inQ0 realize
the Clifford part of a quantum circuit. The fact that we ca
reduce the quantum resource by these qubits means thawe
can remove from each quantum algorithm its Clifford pa.
This represents, in a way, an extension to the Kn
Gottesman theorem@22#, stating that a quantum computatio
that consist only of quantum input state preparation in
computational basis, unitary gates in the Clifford grou
measurement of observables in the Pauli group, and gate
the Clifford group conditioned on the outcomes of such m
surements, may be simulated efficiently classically and t
requires no quantum resources at all.

With only a single non-Clifford operation in the circui
such as a one-qubit rotation about most axes and angles
efficient classical formalism on which the Gottesman-Kn
theorem rests can no longer be applied. The QCC construc-
tion, on the other hand, is not affected by this. Each quan
network algorithm in question may be reduced by its Cliffo
part. Only the non-Clifford gates require quantum resourc
The price is that the universal quantum resource, the clu
state, is changed into a nonuniversal, algorithm-spec
resource—a graph state~20!—on fewer qubits. The Clifford
part of the network algorithm specifies the correspond
graph.

In conclusion, instead of describing a quantum algorith
as a network of gates applied to some fiducial input stat
quantum algorithm may~arguably more effectively! be char-
acterized by a graph specifying the quantum resource and
structure @7# for the processing of the measureme
outcomes.
2-20
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IV. EXAMPLES OF PRACTICAL INTEREST

A. Simulating multiqubit Hamiltonians

Here we display a gate that simulates the unitary evo
tion with U5exp(2iH4t) of the quantum input for the mul-
tiparticle Hamiltonian

H45gsz
(1)sz

(2)sz
(3)sz

(4) ~115!

andarbitrary timest. In addition, the gate performs aSWAP-
gate, i.e., the order if the logical qubits is reversed.

The procedure to realize the measurement patternM for
Hamiltonian simulation, as shown in Fig. 9, requires tw
rounds of measurements. In the first round all thesx mea-
surements are performed. In the second measurement ro
of the qubit (3,4) the operator

FIG. 9. Simulation of the HamiltonianH4 as specified in Eq.
~115!. ~a! Measurement pattern.~b! Correlation centers for addi-
tional correlation. Shaded squares@in ~b!# represent cluster qubits
measured in adaptive bases.
02231
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rW (3,4)•sW 5Uz@~21!lM2w#sxUz
†@~21!lM2w# ~116!

is measured, whereUz@a#5exp(2iasz/2). Therein, the
anglew is given by

w5gt, ~117!

andlMP$0,1%, which depends linearly on outcomes of me
surements in the first round, will be specified below.

To understand the functioning of the Hamiltonian simu
tor, let us first discuss the stateuc8& on the clusterC(sim)
after the first round of measurements. By the techniques
stabilizer manipulation described in Ref.@10#, the stateuc8&
obeys the following eigenvalue equations:

sx
(3,4)sx

(I ,1)sx
(O,4)uc8&5~21!lx,1uc8&,

sx
(3,4)sx

(I ,2)sx
(O,3) uc8&5~21!lx,2uc8&,

sx
(3,4)sx

(I ,3)sx
(O,2) uc8&5~21!lx,3uc8&,

sx
(3,4)sx

(I ,4)sx
(O,1) uc8&5~21!lx,4uc8&,

~118!
sz

(I ,1)sz
(O,4) uc8&5~21!lz,1uc8&,

sz
(I ,2)sz

(O,3)uc8&5~21!lz,2uc8&,

sz
(I ,3)sz

(O,2)uc8&5~21!lz,3uc8&,

sz
(I ,4)sz

(O,1)uc8&5~21!lz,4uc8&.

Further, the stateuc8& obeys the eigenvalue equation

sz
(3,4)sz

(O,1)sz
(O,2)sz

(O,3)sz
(O,4)uc8&5~21!luc8&, ~119!

with lP$0,1% linear in the measurement outcomes of t
first round. Equation~119! can be easily verified with the
pattern of correlation centers displayed in Fig. 9~b!. From
~119! it follows that

exp~ iusz
(3,4)!U4@~21!lu#uc8&5uc8& ~120!

for arbitrary anglesu, with

U4@a#5exp~2 iasz
(O,1)sz

(O,2)sz
(O,3)sz

(O,4)!. ~121!

Equation~120! is now inserted in both the lhs and the rhs
Eqs. ~118!. For example, with the first equation from Eq
~118!, one obtains

~21!lx,1uc8&5~Uz@2u#sxUz
†@2u#!(3,4)sx

(I ,1)

3~U4@2~21!lu#sx
[4]

3U4
†@2~21!lu#!(O)uc8&. ~122!

In the second measurement round the qubit (3,4) is the o
one left to be measured. As can be seen from Eq.~122!, if the
operatorUz@2u#sxUz

†@2u# of qubit ~3,4! is measured, then
2-21
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the stateuc&, into which the cluster qubits are projected aft
the second measurement round, obeys the eigenvalue e
tion

~21!lx,11s(3,4)uc&5sx
(I ,1)~U4@2~21!lu#sx

[4]

3U4
†@2~21!lu#!(O)uc&. ~123!

If we carry out this procedure for all equations in Eq.~118!,
we find that the stateuc& that emerges after the second me
surement round obeys the eigenvalue equations

sx
(I ,i )~U4Uswapsx

[ i ]Uswap
†U4

†!(O)uc&5~21!lx,i1s(3,4) uc&,
~124!

sz
(I ,i )~U4Uswapsz

[ i ]Uswap
†U4

†!(O)uc&5~21!lz,iuc&,

for i 51, . . . ,4 and with U4 written in short for
U4@2(21)lu#.

With the set of Eqs.~124! assumptions~61! of Theorem 1
are fulfilled. With Theorem 1 it follows that the measureme
pattern displayed in Fig. 9 realizes a unitary transformati

Usim5U4@2~21!lu#UswapUS , ~125!

where the byproduct operator is given by

US5 ^
i 51

4~sz
[ i ] !s(I ,i )1lx,i1s(3,4)~sx

[ i ] !lz,i. ~126!

Finally, the order of the operators has to be exchanged. N
that Uswap andU4 commute. From Eq.~125! one finds

Usim5US8 UswapU4F2~21!l1(
i 51

4

lz,iuG , ~127!

with

US8 5UswapUSUswap
† . ~128!

Thus, in order to realizeU4@w# with w specified in Eq.~117!
we must choose

u5~21!11l1(
i 51

4

lz,iw. ~129!

That is, in the second measurement round we measure o
qubit (3,4) the operator given in Eq.~116!, where

lM5S 11l1(
i 51

4

lz,i Dmod 2. ~130!

$lx,i%, $lz,i%, and l depend linearly on the measureme
outcomes$s( i • j )% obtained in the first measurement round

The subcircuit we have described in this section simula
the unitary evolution according to a particular four-partic
Hamiltonian in a two-step process of measurements.
time for which the simulated Hamiltonian acts is encoded
the basis of the measurement in the second round.

The generalization of the simulation of the four-partic
HamiltonianH4, shown in Fig. 9, to an arbitrary numbern of
02231
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qubits, i.e., the simulation of the HamiltonianHn

5 ^ i 51
n sz

[ i ] , is straightforward.
If the ‘‘interaction time’’ is set to zero,w50, i.e., when

the qubit (3,4) is measured in thesx eigenbasis as well, then
one obtains a multiqubitSWAP gate, which reverses the orde
of the logical qubits, In this case, only a single measurem
round is required. The multiqubitSWAP gate is displayed in
Fig. 10.

B. CNOT between non-neighboring qubits

The CNOT gate described in Sec. II G 7 operates on tw
logical qubits whose input qubits are adjacent to each o
on the cluster. However, for universal quantum computati
one must be able to realize aCNOT gate between any two
logical qubits. While this could be achieved using a com
nation of theCNOT gate, introduced above, and theSWAP

gate, the width of the measurement pattern needed to re
this would grow linearly with the separation of the two log
cal qubits. There is, however, an alternative measurem
pattern, which, at the cost of doubling the spacing betw
the input qubits on the cluster, has a fixed width.

The measurement pattern is illustrated in Fig. 11 for q
bits separated by an odd and even number of logical qub
respectively.

This layout can be understood within the quantum lo
network model. The ‘‘wires’’ for the logical qubits in be
tween the target and the control qubits are crossed, using
measurement subpattern, illustrated in Fig. 12~a!. However,
as well as swapping the qubits, this pattern also realize
controlledp-phase gate, also known as a controlledsz gate,
illustrated in Fig. 12~b!.

The quantum logic circuit realized by the whole measu
ment pattern, illustrated on the left-hand side of Fig. 13 u
these subpatterns to swap the positions of adjacent qu
This brings non-neighboring qubits together so that aCNOT

operation may be performed on them.

FIG. 10. Measurement pattern that realizes the multiqubitSWAP

gate.
2-22
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The networks on the left and on the right of Fig. 13 a
identically, and thus the measurement pattern displaye
Fig. 11 realizes a distantCNOT gate.

C. Controlled phase gate

Here, we give an example of another two-qubit ga
which can be realized without decomposing it intoCNOTs
and rotations, the controlled phase gateUCPG(u). This gate
realizes the unitary operation

UCPG@u#51(ab)1~eiu21!u11&ab^11u ~131!

applied to the two qubitsa andb.

FIG. 11. Measurement pattern for aCNOT gate between two
logical qubits whose input and output qubits are not neighb
Squares in light gray denote cluster qubits measured in the ei
basis ofsx , in dark gray ofsy . Pattern~a! is for the case where the
two qubits are separated by an odd number of logical qubits. Pa
~b! is for an even-numbered separation. The patterns can be ad
to any separation by repeating the section enclosed by the da
line. The width of the pattern remains the same for all separati

FIG. 12. This measurement pattern is one of the key com
nents of the measurement pattern in Fig. 11. It performs a co
tional p-phase gate and aSWAP gate.
02231
t
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We can write this in terms of the following one- and tw
qubit rotations:

UCPG@u#5ei (u/4)Uzz
(ab)@2u/2#Uz

(a)@u/2#Uz
(b)@u/2#,

~132!

where the two-qubit rotation is

Uzz
(ab)@u#5exp~2 iu/2sz

(a)sz
(b)!. ~133!

This representation is particularly convenient for findi
the measurement pattern that realizes the gate, since rota
Uz@u/2# andUzz@2u/2# are realized on the QCC in a simple
natural way. The measurement pattern is illustrated in F
14, in which the labelling of the qubits is also defined.

We follow the same method as above, beginning with
eigenvalue equations of the cluster stateuf&C on the qubits
shown. Thesx measurements can be considered first, us
the methods already illustrated in this paper. The resul
state of the remaining qubits,uc8&, after this subset of the
measurements has been carried out, is defined by the fol
ing set of eigenvalue equations:

sx
(I ,a)sx

(1,2)sx
(2,3)sx

(O,b)uc8&5uc8&, ~134a!

sx
(I ,b)sx

(1,2)sx
(2,1)sx

(O,a)uc8&5uc8&, ~134b!

s.
n-

rn
ted
ed
s.

-
i-

FIG. 13. The measurement pattern in Fig. 11 realizes the qu
tum logic circuit on the left-hand side of this figure. This network
equivalent to that on the right-hand side, where the only gate r
ized is theCNOT between the two desired nonadjacent qubits.

FIG. 14. Controlled phase gate with additional swap.
2-23
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sz
(I ,a)sz

(O,b)uc8&5~21!s(1,1)1s(2,2)1s(3,3)uc8&, ~134c!

sz
(I ,b)sz

(O,a)uc8&5~21!s(1,3)1s(2,2)1s(3,1)uc8&, ~134d!

and

sz
(2,1)sz

(O,a)uc8&5~21!s(3,1)uc8&, ~135a!

sz
(2,3)sz

(O,b)uc8&5~21!s(3,3)uc8&, ~135b!

sz
(1,2)sz

(O,a)sz
(O,b)uc8&5~21!s(3,1)1s(2,2)1s(3,3)uc8&.

~135c!

As in Sec. II G 3, eigenvalue equations are now gen
ated, which commute with the remaining measurement
M, namely the measurements ofsxy

( i )(a i) on qubits i
P$(2,1),(1,2),(2,3)%. First, we manipulate Eqs.~135! such
that, for example, eigenvalue equation~135c! attains the
form

Uz
(1,2)@j#Uzz

„(O,a),(O,b)…@2~21!s(3,1)1s(2,2)1s(3,3)j#uc8&5uc8&.
~136!

Similar equations containing one-qubit rotations on qub
(2,1) and (O,a), and (2,3) and (O,b) are derived from the
other equations of Eqs.~135! in the same way. These equ
tions are inserted into both sides of eigenvalue equat
~134! so that, using the method introduced above, we ob
a set of four eigenvalue equations foruc8&, which induce a
set of four eigenvalue equations for the stateuc& that one
obtains after the remaining measurements have been ca
out.

Specifically, in the second measurement round the qu
(1,2), (2,1), and (2,3) are measured. Of these qubits
measures the observables

rWa•sW (a)5~Uz@aa#sxUz@aa#†!(a), ~137!

for aP$(1,2),(2,1),(2,3)% and$aa% specified below.
The induced eigenvalue equations for the stateuc& are of

the form of Eq.~61!, and the unitary operation realized b
the gate can be read off from them, using Theorem 1.
full unitary operation realized by the measurement patter

U8US8 5Uzz
(a,b)@2~21!s(3,1)1s(2,2)1s(3,3)a (1,2)#

3Uz
(a)@2~21!s(3,1)a (2,1)#Uz

(b)@2~21!s(3,3)a (2,3)#

3Uswap
(a,b)~sx

(a)!s(1,1)1s(2,2)1s(3,3)

3~sx
(b)!s(1,3)1s(2,2)1s(3,1)~sz

(a)!s(I ,a)1s(1,2)1s(2,3)

3~sz
(b)!s(I ,b)1s(2,1)1s(1,2), ~138!

such that after the order of the gate and the byproduct op
tor is reversed,U8US8 5USU, one obtains

USU5~sx
(a)!s(1,3)1s(2,2)1s(3,1)~sx

(b)!s(1,1)1s(2,2)1s(3,3)

3~sz
(a)!s(2,1)1s(1,2)1s(I ,b)~sz

(b)!s(I ,a)1s(1,2)1s(2,3)

3Uzz
(a,b)@2~21!s(1,1)1s(2,2)1s(1,3)a (1,2)#
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3Uz
(a)@2~21!s(2,2)1s(1,3)a (2,1)#

3Uz
(b)@2~21!s(1,1)1s(2,2)a (2,3)#USWAP

(a,b) . ~139!

Using Eq.~139! one finds the following result: To realiz
the controlled phase gate~131! together with aSWAP gate,
observables~137! measured in the second round have to
chosen with the anglesa (2,1)5(21)11s(2,2)1s(1,3)u/2, a (1,2)
5(21)s(1,1)1s(2,2)1s(1,3)u/2 anda (2,3)5(21)s(1,1)1s(2,2)11u/2.
This realizes the gateUSUCPG@u#, where the byproduct op
eratorUS generated by the measurements may be read
from Eq. ~139!.

D. Quantum Fourier transformation

To realize the quantum Fourier transform we simulate
quantum logic network given in Fig. 15~a!. The arrangemen
of the gates in this network is taken from Ref.@25#. Note that
in Ref. @25# it was demonstrated that the setup to perform
quantum Fourier transformation simplifies considerably in
situation where the output state is measured right after
transformation. Here, however, the quantum Fourier trans
mation may constitute part of a larger quantum circuit a
we do not measure its output state.

As can be seen from Fig. 15, the quantum Fourier tra
form consists of the Hadamard gates and combined gates
perform a conditional phase shift and a swap. These g
have been discussed in Secs. II B and IV C. All that rema
to do is to put the measurement patterns simulating th
gates together, using the networklike composition princi
described in Sec. II D.

In this way we obtain a measurement pattern in wh
there are adjacent cluster qubits in ‘‘wires’’ that are measu
in the sx eigenbasis. As described in Sec. II G 2, such pa
of cluster qubits may be removed from the measurement
tern. Note that by removing adjacent pairs ofsx-measured
cluster qubits, we have moved thesy measurements of the
Hadamard transformations ‘‘into’’ the subsequent conditio
phase gates, i.e., we removed a cluster qubit that was
from a wire. It can be easily verified that this is an allow

FIG. 15. Quantum Fourier transformation.~a! Network for
quantum Fourier transformation on four qubits, taken from R
@25#. ~b! Component of the network shown in~a!, which performs a
conditional phase and aSWAP gate. Specifically, the gate shown

UCPG@2p/2m#, i.e., Um5u0&^0u1ei2p/2m
u1&^1u.
2-24
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MEASUREMENT-BASED QUANTUM COMPUTATION ON . . . PHYSICAL REVIEW A68, 022312 ~2003!
extension of the method described in Sec. II G 2. Finally, o
obtains the QCC circuit displayed in Fig. 16.

In this circuit, as in all the others, the adaptive measu
ments are of observables

Uz@6h#sxUz@6h#†, ~140!

with h5p/4 for cluster qubits marked with ‘‘2’’ in Fig. 16,
h5p/8 for qubits marked with ‘‘3,’’ andh5p/16 for the
qubits marked with ‘‘4.’’ The sign factors of the angles in E
~140! depend on the results of previous measurements.

The QCC circuit, shown in Fig. 16 for the case of fou
qubits, is straightforwardly generalized to an arbitrary nu
ber n of logical qubits. The temporal spatial and operation
resourcesT, S, andO are, to leading order

T5n, S,O52n2. ~141!

The corresponding network resources areTqln52n, Sqln
5n, and Oqln5n2/2. Thus, the scaling of the QCC spatial
resources is worse than in the network model, but the t
poral and operational resources scale in the same way a
corresponding resources for the network. The QCC simula-
tion of the network displayed in Fig. 15 requires half
many time steps and four times as many operations, a
only one-qubit operations.

E. Multiqubit controlled gates

In this section we describe the realization of the Toff
phase gate and the three-qubit controlled gateCARRY, which
we will both need for the construction of the QCC-adder cir-
cuit described in Sec. IV F.

FIG. 17. A measurement layout to realize a Toffoli phase g
with phasef. The qubits marked by black boxes are simul
neously measured in adapted bases, depending on previous
surement outcomes.

FIG. 16. QCC realization of a quantum Fourier transformatio
on four qubits. The cluster qubits displayed as framed squares
measured in adapted bases. For the labels see text.
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The Toffoli phase gate is a three-qubit generalization
the two-qubit controlled phase gate. If all three qubits are
the stateu1&, the state gains a phase of exp(if), while all
other logical basis states remain unchanged by the gate

UToffoli
(c1 ,c2 ,t)

@f#51(c1 ,c2 ,t)1~eif21!u111&c1 ,c2 ,t^111u.
~142!

Like the controlled phase gate it can be represented a
product of multiqubit rotations,

UToffoli
(c1 ,c2 ,t)

@f#5Uzzz
(c1 ,c2 ,t)Ff4 GUzz

(c1 ,c2)F2
f

4 GUzz
(c1 ,t)F2

f

4 G
3Uzz

(c2 ,t)F2
f

4 GUz
(c1)Ff4 GUz

(c2)Ff4 GUz
(t)Ff4 G ,

~143!

where we have dropped the global phase, andUzzz
(c1 ,c2 ,t)

@a#

5exp(2ia/2sz
(c1)

sz
(c2)

sz
(t)) is a three-qubit generalized rota

tion. The two-qubit rotationsUzz are as defined in Eq.~133!.
The way to convert sequence~143! of generalized rota-

tions into a measurement pattern is as in the examples

e

ea-

FIG. 18. Cluster state quantum correlations for the realization
Uzz

(c1 ,c2)
@f/4#, used in the Toffoli phase gate.

FIG. 19. The three-qubit controlled gate. Qubits displayed
squares in light gray are measured in thesx eigenbasis, the qubi
displayed in dark gray is measured in thesy eigenbasis, and the
measurement bases of the qubits displayed as framed square
adaptive.

re
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fore. The measurement layout for the Toffoli phase g
is illustrated in Fig. 17. Each of the generalized rotatio
that make up the gate is directly associated with o
of the measurements made in the eigenbasis
Uz@6f/4#sxUz@6f/4#†. An initial cluster-state correlation
which is used for the realization of a generalized rotation
shown in Fig. 18; the rotationUzz

(c1 ,c2)
@f/4# is realized via

the measurement of the cluster qubit at the lattice site (3
in the appropriate basis.

The sign factors of the angles that specify the meas
ment bases depend on the outcome ofsx measurements only
Thus, after allsx measurements have been performed,
measurement bases for the remaining qubits can be ded
and the Toffoli phase gate is realized in a single further ti
step. The measurement pattern realizes the generalized
o

n
te

t
-

us
s
th
t

er
q

ith
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tions directly and is not derived from a quantum log
network.

Now we describe the realization of a four-qubit ga
CARRY, which has one target and three control qubits. It p
forms a phase-flipsz on the target if at least two of the
control qubits are in stateu1& and otherwise does nothing
i.e.,

UCARRY5expS 2 ip (
i 5000duw( i )>2

111d

u i &c1c2c3
^ i u ^ u1& t^1u D ,

~144!

Expanding the projectors on the control qubits into produ
of the Pauli operators one obtains
~145!
ent
f

ent
as

med

bits

may
be

in
The global phase is henceforth discarded.
The unitary transformation is now subdivided into tw

parts:

UCARRY5Uh,iUa2g , ~146!

with Ua2g5UgU fUeUdUcUbUa and Uh,i5UiUh . Corre-
spondingly, the cluster on whichUCARRY is realized is di-
vided into two subclusters. On the first subcluster the tra
formationsUa to Ug are realized, on the second subclus
Uh,i . The measurement pattern to realizeUCARRY is dis-
played in Fig. 19. The first subcluster stretches fromx50 to
x58, with the input atx50 and the intermediate output a
x58. The qubits with 8<x<16 belong to the second sub
cluster.

Let us now explain the subgateUa2g . The conversion of
sequence~145! of generalized rotations is as in the previo
examples. For each generalized rotation there is one clu
qubit in CM(Ua2g) whose measurement basis specifies
respective rotation angle. Specifically, the measuremen
the cluster qubit (3,4) sets the rotation angle ofUa , the
measurement of qubit (4,3) sets the angle forUb , (5,6) sets
Uc , (6,7) setsUd , (6,5) setsUe , (6,3) setsU f , and qubit
(6,1) setsUg . The quantum correlations of the initial clust
state, which induce via the measurements of the cluster
bits in CM(Ua2g) the quantum correlations associated w
the generalized rotations are displayed in Fig. 20.
s-
r

ter
e
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u-

The realization of the gate requires two measurem
rounds. In the first round the standard measurements osx
andsy are performed. Note that the rotation angle ofUd is
twice as big as for the other rotations. To realizeUd of the
cluster qubit (6,7) the observable

UzF6
p

2 GsxUzF7
p

2 G56sy ~147!

is measured. Thus, the realization ofUd belongs to the first
round of measurements. Strictly speaking, this measurem
round does not belong to the gate but to the circuit
a whole since all standard measurements are perfor
simultaneously.

In the second measurement round, of the remaining qu
in CM(Ua2g) one measures the observables

UzF6
p

4 GsxUzF7
p

4 G . ~148!

The procedure to infer the sign factors in Eqs.~148! and
~147! is explained in Sec. II F.

The reason why the measurements in the tilted bases
all be performed simultaneously in the second round can
seen as follows. LetQ↗ be the set of qubits measured
tilted bases. The contributionUS,Q↗ of the cluster qubits
2-26
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FIG. 20. Quantum correlations of the initial cluster stateuf&C(Ua2g) on the clusterC(Ua2g). These correlations induce, via thesx

measurements, the quantum correlations for the stateuc8&, which act only on the output qubits and one cluster qubit inCM(Ua2g). The
pattern of correlation centers in~a! displays the correlation required to realizeUa ; ~b!, ~c!, and~d! display the correlations forUb , Uc , and
Ue , respectively. The correlations used for the realization ofUd , U f , andUg are not shown. They are analogous to that in~d! used for the
realization ofUe .
ng

ed,
is,

-

e-
of
measured in tilted bases to the byproduct operatorUS in Eq.
~63! contains only az part but nox part. That is, it has the
form

US,Q↗5 ^
i PI ,$t,c1 ,c2 ,c3%

sz
[ i ] . ~149!

In Eq. ~62! the byproduct operator appears ‘‘on the wro
side’’ of Ua2g as does the contributionUS,Q↗. When the
02231
order of the gate and the byproduct operator is exchang
the byproduct operator may modify the gate. While this
not surprisingly, indeed the case for the wholeUS , it is not
so for the contributionUS,Q↗ coming from the measure

ments in the tilted bases. BecauseUS,Q↗ has only az part, it

commutes withUa2g . Therefore, the results of measur
ments in a tilted basis do not mutually affect the choice
their measurement bases.
The

FIG. 21. Quantum correlations of the initial cluster states onC(Uh) andC(Ui). These correlations induce, via thesx measurements, the

quantum correlations for the statesuc8&C(Uh) anduc8&C(Ui )
that involve only the respective output qubits and one qubit in the gate body.

pattern of correlation centers in~a! displays the correlation required to realizeUh and ~b! the correlation forUi .
2-27
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The fact that the byproduct operatorUS,Q↗ is indeed of
form ~149!, we do not show here explicitly. For the bypro
uct operator created in the measurement of qubit (3,4), r
izing the transformationUa it may be verified from Eq.~126!
in Sec. IV A.

The explanation of the second subgateUh,i is analogous.
Figure 21 displays the quantum correlations of the ini
cluster state, which, via the measurements inCM(Uh,i), in-
duce the required quantum correlations associated withUh
andUi .

Two further points we would like to address in this se
tion. The first is to note that the whole gateUCARRY can be
performed on the QCC in two measurement rounds. The fir
measurement round is that of thesx , sy , andsz measure-
ments, which, strictly speaking, does not belong to the g
but to the circuit as a whole. The second measurement ro
is that of the simultaneous measurements in tilted meas
ment bases.

We have already seen that the measurements that re
the unitary transformationsUa , . . . ,Ug may be realized si-
multaneously, and this argument may be extended to the
tire gateUCARRY. All the byproduct operators created wit
the measurements in tilted bases have only az but nox part.
Therefore, they all commute withUCARRY. Thus, to choose
the right measurement bases neither of the measuremen
a tilted basis that realizes one of the rotationsUa , . . . ,Ui
needs to wait for another measurement in a tilted basis.

Second, note that forUCARRY the target input and the
target output can be interchanged, see Fig. 22. This h

FIG. 22. In the three-qubit controlled gateCARRY, the target
qubit may travel either back or forth.
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because the~conditional! phase flip on the target qubit is it
own inverse. Thus, the target qubit may travel through
gate backwards. This property also holds for the Toff
phase gate. We will make use of it in the construction of
quantum adder in the following section.

F. Circuit for addition

The QCC version of the quantum adder corresponds to
quantum logic network as given in Ref.@26#, see Fig. 23. In
this paper we use the three-qubit controlled phase g
CARRY together with a prior and subsequent Hadamard g
on the target qubit while in Ref.@26# the equivalent three-
qubit controlled spin-flip gate is used directly.

At first sight it appears as if the horizontal dimension
the cluster to realize the adder circuit would grow linea
with the number of logical qubitsn. This is, however, not the
case. The QCC circuit may be formed in such a way that th
horizontal size of the required cluster is constant such
the cluster size increases only linearly with the numbern of
logical qubits. To see what the QCC realization of the quan-
tum adder will look like, the network displayed in Fig. 2
may be bent in a way displayed in Fig. 24.

To ‘‘bend a network’’ is a rather informal notion. We
therefore now specify what we mean by this. If a quantu
circuit is displayed as a quantum logic network, the verti
axis usually denotes some spatial dimension, i.e., the lo
tion of the qubit carriers, and the horizontal axis correspo
to the sequence of steps of a quantum computation, i.e
logical time. As the basic blocks of quantum computation
the network model, the universal gates, are unitary trans
mations generated by suitably chosen Hamiltonians, the l
cal time becomes associated with physical time. This
however, a peculiarity of the network model. If on the QCC a
quantum logic network is simulated, the temporal axis
converted into an additional spatial axis. The temporal a
in a QCC computation emerges anew. It has no counterpar
the network model. If we modify a quantum logic network
such a way that qubits travel from right to left, as done
Fig. 24, it does not mean that we propose to use particles
the QC
y a linear
FIG. 23. Quantum logic network for four-qubit adder,c5a1b mod 24. The adder network is taken from Ref.@26#. The two-qubit
controlled gate in this network is the Tofolli phase gate, as discussed in Sec. IV E. A straightforward simulation of this network onC
would result in a quadratic scaling of spatial resources. However, the more compact realization discussed below requires onl
overhead.
2-28
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MEASUREMENT-BASED QUANTUM COMPUTATION ON . . . PHYSICAL REVIEW A68, 022312 ~2003!
travel backwards in time because we do not need to res
the temporal axis implied by the network model. If on
wants a seminetwork picture that accounts for this, one m
imagine the logical qubits as traveling through pipes on
two-dimensional surface.

The reason why we may let the auxiliary qubits trav
‘‘backwards’’ is the identity displayed in Fig. 22. This a
rangement of gates makes the circuit more compact. To c
plete the description of components from which the QC
version of the quantum adder is built, a compact meas
ment pattern for the two combinedCNOT gates is displayed
in Fig. 25.

The realization of the quantum adder in the network la
out of Fig. 24 directly leads to the QCC circuit for the quan-
tum adder displayed in Fig. 26. Note that the displayed QC
adder is for eight qubits, while the networks in Figs. 23 a
24 are only for four qubits.

FIG. 24. Quantum logic network for four-qubit adder, bent.

FIG. 25. Combination of twoCNOT gates~a! and its QCC real-
ization ~b!.
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For the quantum adder circuit in Fig. 26 we have ma
two further minor simplifications. The first concerns the a
cilla preparation. To prepare an ancilla qubit on the cluste
the stateu1& means to measure the respective cluster qu
in the sx eigenbasis~the randomness of the measureme
outcome does not jeopardize the deterministic characte
the circuit!. As can be seen from the Toffoli gate and th
three-qubit controlled gate, displayed in Figs. 17 and 19,
ancilla qubits are located on cluster qubits that have only
next neighbor. As can be verified from eigenvalue equati
~1!, to measure a qubit of a cluster state that only has
next neighbor in the eigenbasis ofsx also has the effect o
projecting this neighboring cluster qubit into an eigenstate
sz . Such cluster qubits may be removed from the cluste
explained in Sec. II C. With these neighboring qubits
moved, the cluster qubits on which the initial ancilla qub
were located become disconnected from the remaining c
ter and may thus be removed as well. With the same a
ment, the cluster qubits carrying the ancillas in their outp
state, and their next neighbors may also be removed.

Second, between the QCC realization of theCARRY gates
on the left and the subsequent blocks ofCNOT gates we have

FIG. 26. Quantum adding circuit for two eight-qubit states.
in all figures displaying QCC circuits, squares in light and dark gra
represent cluster qubits measured in thesx andsy eigenbasis, re-
spectively. The measurement bases of qubits displayed as fra
squares are adaptive.
2-29
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removed pairs of adjacent cluster qubits that would be m
sured in the eigenbasis ofsx . Why this can be done has bee
explained for adjacent qubits in wires in Sec. II G 2. Here
situation is little more involved since, like in the case of t
circuit for the Fourier transformation displayed in Sec. IV
one of the removed qubits in each pair has more than
neighbors. But the method still works as can be ea
verified.

Let us now briefly discuss the resources required for
QCC realization of ann-qubit adder. As can be seen direct
from the circuit displayed in Fig. 26 and the underlying n
work shown in Fig. 24 with its repeating sub-structure, t
adder requires a cluster of height 8n25 and of constant
width 38. Thus, the spatial and operational resources are
leading order,

S5O5304n. ~150!

Concerning the temporal resources note that each pa
three-qubit controlled phase gates using the same contro
bits and the pair of the Toffoli phase gates may be comple
at one time instant but that one pair of gates is comple
after another. The reason why the measurements in the t
bases that complete each pair of gates may be perfor
simultaneously is the same as that given previously for
measurements in tilted bases of a single three-qubit c
trolled gate. The propagation of byproduct operators is m
easily followed in the network of Fig. 23. The temporal com
plexity T of an n-qubit QCC adder is

T5n, ~151!

plus one step ofsx , sy , andsz measurements for the entir
circuit.

The corresponding network resources are, to leading
der, Sqln53n and Oqln5Tqln58n. For the counting of the
operational and temporal network resources, we have
sumed that the three-qubit controlled spin-flip gate used
the addition circuit is composed of two Toffoli gates and o
CNOT gate, as described in Ref.@26#, and that theCNOT and
the Toffoli gates are regarded as elementary.

Thus, we find for both the network and the QCC realiza-
tion of the quantum adder that the spatial, temporal,
operational resources scale linearly withn. Therefore, the
resource overheads in one realization as compared to
other one are only constants. For the QCC this is much better
than what is indicated by bounds~111!–~113!, in particular,
for the spatial and operational resources. Equation~112!
yields an upper bound onS, which is ;n3, and Eq.~113!
gives bounds onO andS, which are;n2. Thus, the quantum
adder is an example for which these bounds are very lo
In general, they should not be mistaken as estimates.

If the prefactors are compared, one finds that for the re
ization of a quantum adder the QCC requires about 100 time
more spatial and 38 times more operational resources, w
it is eight times faster. However, since we compare differ
objects, these ratios do not mean much apart from the
that they are constants. It may be argued that in the cas
the QCC spatial resources are not as precious as they usu
are, to create cluster states one needs a system with no
02231
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lective uniform interaction only while for quantum logic ne
works one generally requires a system with selective in
actions among the qubits. Concerning the operational
temporal resources, the QCC only uses one-qubit measure
ments, while the corresponding network uses two- and th
qubit gates as elementary operations.

G. Remarks

We would like to add two remarks, one with regard to t
elementary constituents of the QCC and the other with regard
to their composition principle.

For the particular set of gate simulations used in the QC
universality proof in Sec. II, theCNOT gate and arbitrary
one-qubit rotations, there is only a single instance where
of these gates has been used as part of a more complic
gate in all examples of this section. Namely, the ne
neighbor CNOT gate has been used as part of the lon
distanceCNOT, described in Sec. IV B. Of universal gat
simulations one might expect that any circuit is composed
them rather that they occur almost not at all. One could s
though, that the used set of gates is not a good choice for
universal set. In fact, in realizations of network quantu
computers it is often the physics of the specific implemen
tion that determines which gates are elementary. For theC
this is not so. The QCC may simulate, for example, gener
one-qubit rotations and the Toffoli gates alike. Any ga
simulation may be called ‘‘elementary’’ with the same rig
as any other, but they cannot be all elementary. The elem
tary constituents of the QCC are not gate simulations.

As a consequence, the composition principle for these
ements will be different from gate composition. At first sigh
if we go through the examples of this section, we find th
this is not yet reflected in the larger and more complica
constructions. For the quantum Fourier transform and
addition circuit we have, though playing with some trick
ultimately imitated network composition.

However, in the smaller gates and subcircuits, such as
controlled phase gate, the Toffoli phase gate and the g
CARRY we find something that might give rise to a mo
appropriate composition principle. First, for the QCC it is not
the one-qubit and two-qubit operations that are particula
simple. In the Hamiltonian simulation circuit of Sec. IV
we found that it is easy to realize generalized rotatio
exp(iws(J)) wheres (J) is a composite Pauli operator,s (J)5
^ aPJska

(a) , ka5x,y,z. Furthermore, in the subsequent e

amples of the multiqubit gates in Secs. IV C and IV E w
have decomposed the gates into such generalized rota
rather than into known standard gates on fewer qubits.

Any unitary transformation may be decomposed into
unitary transformation in the Clifford group followed by gen
eralized rotations. So, is this a new composition princip
With our present state of knowledge, the answer must
‘‘Not yet.’’ First, though any transformation may be rewritte
in this form, it is presently not clear how to design quantu
algorithms with these elements directly. Second, the c
struction uses the very concept of applying unitary transf
mations to the state of a quantum register. However, as
have explained in Ref.@7# and also briefly sketched in Sec
2-30
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III A, the QCC has no quantum register. So, the generaliz
rotations and their concatenation at least have to be refor
lated to fit the description of the QCC . In particular, they
have to be made compatible with the graph states ident
in Sec. III B as characteristic quantum resource to repre
algorithms. Nevertheless, it appears that the generalized
tations should be reflected in what may emerge as elem
tary constituents and composition principle for the QCC .

V. COMPUTATION WITH LIMITED SPATIAL
RESOURCES AND IN THE PRESENCE

OF DECOHERENCE

In this section we describe how to perform QCC compu-
tation on finite and possibly small clusters. If the cluster t
may be provided by a specific device is too small for a c
tain measurement pattern, it does not mean that the res
tive QCC algorithm cannot be run on this device. Instead,
QCC computation may be split into several parts such t
each of those parts fits on the cluster.

To see this, consider Scheme 1 for the realization of ga
Scheme 1 is applicable to any gate or subcircuit. It is th
possible to divide the circuit into subcircuits, each of whi
fits onto the cluster. The adapted scheme is a proces
repetitive reentangling steps alternating with rounds
measurements.

Specifically, one starts with the realization of the first su
circuit acting on the fiducial input state located atI 1,C. The
fiducial input is, while being processed, teleported to so
subsetO1 of the clusterC. The setO1 of qubits forms the
intermediate output of the first subcircuit. These qubits
main unmeasured, while all the other qubits are measure
realize the first subcircuit. Now the realization of the seco
subcircuit begins. Its input state has already been prepa
I 25O1. The cluster qubitsaPC\O1, which have been mea
sured in the realization of the first subcircuit, are now p
pared individually in the stateu1&a . This completes Step 1
of Scheme 1 to realize the second subcircuit. Step 2 i
entangle the whole cluster via the Ising interaction. In
third step all cluster qubits except those of the intermed
outputO2 are measured whereby the realization of the s
ond subcircuit is completed. The intermediate output is n
located atO2. For the realization of the subsequent subc
cuits one proceeds accordingly.

An advantage of this modified procedure is that one g
with smaller clusters. A disadvantage is that the Clifford p
of the circuit may no longer be performed in a single tim
step.

Perhaps the most important advantage of the above
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struction is that in this way a basic requirement to make
QCC fault tolerant can be fulfilled. Namely, decoherence c
be controlled. If a single large cluster is used, the compu
tion might reach certain cluster qubits only after a long tim
such that the cluster would have already decohered sig
cantly and it is not clear how error correction could help
such a situation. This might, for any error rate, limit th
duration of a computation. On the contrary, if the compu
tion is split then the size of the subcircuits may be adjus
such that each of them can be performed within a fixed ti
T and in this way, each cluster qubit is, before being m
sured, exposed to a bounded amount of decoherence s
fied by T. Thus, ‘‘fresh’’ qubits for computation are alway
provided.

VI. CONCLUSION

In this paper we have given a detailed account of
one-way quantum computer. We have shown that the QC
can be regarded as a simulator of quantum logic netwo
This way, we clarified the relation of the QCC to the network
model of quantum computation and gave the universa
proof.

We have based our description on the correlations ex
ited by cluster states and states that can be created from
under one-qubit measurements. For this purpose, Theore
of Sec. II F is an important tool. It relates unitary transfo
mations to quantum correlations exhibited by certain p
states.

In Sec. IV we have presented a number of example
cuits such as the circuit for quantum Fourier transformat
and for addition. In this way, hopefully, we also have a
quainted the reader with a number of construction princip
for QCC circuits. Note that the simulations of the univers
gates required in the universality proof are hardly used.
stead, more compact measurement patterns have been f

The main purpose of this paper is to provide a comp
hensive description of the QCC from the network perspective
Beyond that, we have pointed out the non-network aspect
the QCC , such as the different nature of information proce
ing @7,8#, and the connection to mathematical graphs.
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