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Measurement-based quantum computation on cluster states
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We give a detailed account of the one-way quantum computer, a scheme of quantum computation that
consists entirely of one-qubit measurements on a particular class of entangled states, the cluster states. We
prove its universality, describe why its underlying computational model is different from the network model of
guantum computation, and relate quantum algorithms to mathematical graphs. Further we investigate the
scaling of required resources and give a number of examples for circuits of practical interest such as the circuit
for quantum Fourier transformation and for the quantum adder. Finally, we describe computation with clusters

of finite size.
DOI: 10.1103/PhysRevA.68.022312 PACS nuntber03.67.Lx
[. INTRODUCTION tion. For the examples of gates and subcircuits given in Sec.

IV, this is no longer the case. Generally, we want an analytic

Recently, we introduced the scheme of the one-way quarexplanation for the functioning of the gate simulations on the
tum computer (Q@ [1]. This scheme uses a given en- QC.. This explanation is given in Sec. Il F and applied to
tangled state, the so-called cluster stf2§ as its central the gates of a universal set in Sec. Il G as well as to more
physical resource. The entire quantum computation consisiomplicated examples in Sec. IV.
only of a sequence of one-qubit projective measurements on |n Sec. Il H we discuss the spatial, temporal, and opera-
this entangled state. Thus, it uses measurements as the Cei3nal resources required in Q@omputations in relation to
tral tool to drive a computatiof8—6]. We called this scheme he resources needed for the corresponding quantum logic
the “one-way quantum computer” since the entanglement ietworks. We find that overheads are at most polynomial.
the cluster state is destroyed by the one-qubit measuremenig there does not always need to be overheads. For ex-
and therefore it can only be used once. To emphasize thgmple, as shown in Sec. Il I, all Qircuits in the Clifford
importance of the cluster state for the scheme, we use thgoyp have unit logical depth.
abbreviation Qg for “one-way guantum computer.” ~In Sec. Ill we discuss non-network aspects of the-QI@

The QG is universal since any unitary quantum logic sec, |1 A we state the reasons why the network model is not
network can be simulated on it efficiently. The Q€n thus  gequate to describe the @I every respect. The network

be explained as a simulator of quantum logic networks,gdel is abandoned and replaced by a more appropriate
However, the computational model that emerges for the QCmodel[7]. This model is described very briefly.
[7] makes no reference to the concept of unitary evolution | sec. 11l B we relate algorithms to graphs. We show that
and it shall be pointed out from the beginning that the netfrom every algorithm its Clifford part can be removed. The
work model does not provide the most suitable descriptionequired algorithm-specific nonuniversal quantum resource
for the QG. Nevertheless, the network model is the mostig ryn the remainder of the quantum algorithm on the-@C
widely used form of describing a quantum computer andhen g graph sta@]. All that remains of the Clifford part is
therefore the relation between the network model and thg mathematical graph specifying this graph state.
QCc must be clarified. In Sec. IV we give examples of larger gates and subcir-
The purpose of this paper is threefold. First, it is to givecyits, which may be of practical relevance, among them the
the proof for universality of the Q€ second, to relate quan- Q¢ circuit for quantum Fourier transformation and for the
tum algorithms to graphs; and third, to provide a number Ofn-qubit adder.
examples for Qg circuits, which are characteristic and of | sec. V we discuss the QCcomputations on finite
practical interest. . . _ (smal) clusters and in the presence of decoherence. We de-
In Sec. Il we give the universality proof for the described scribe a variant of the scheme consisting of repeated steps of
scheme of computation in a complete and detailed form. There jentangling a cluster via the Ising interaction, alternating
proof has already been presented to a large part in[Ref.  ith rounds of one-qubit measurements. Using this modified
What was not contained in Reffl] was the explanation of scheme it is possible to split long computations such that
why and how the gate simulations on the Q@ork. This  they fit piecewise on a small cluster.
omission seemed in order since the implementation of the
gates discussed thefeontrolled NOT (CNOT) and arbitrary
rotationd requires only small clusters such that the function-

. . e ) II. UNIVERSALITY OF QUANTUM COMPUTATION
ing of the gates can be easily verified in a computer simula-

VIA ONE-QUBIT MEASUREMENTS

In this section we prove that the @& a universal quan-
*Present address: QOLS, Blackett Laboratory, Imperial Collegetum computer. The technique to accomplish this is to show
London, UK. that any quantum logic network can be simulated efficiently
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information flow preceding measurements. This introduces a temporal order in
> which the measurements have to be performed. The process-
LI S SR SRR AN A A N2 A ing is finished once all qubits except a last one on each wire
o o o tTe o© © o o o o o have been measured. The remaining unmeasured qubits form
the quantum register which is now ready to be read out. At
RN - BN |- R this point, the results of previous measurements determine in
which basis these “output” qubits need to be measured for
o MR - Q[ o o o the final readout, or if the readout measurements are in the
quantum gate N .
©o o o o o o o t]e o o o oy, Ty, Or o, eigenbasis, how the readout measurements
have to be interpreted. Without loss of generality, we assume
A in this paper that the readout measurements are performed in

the o, eigenbasis.
FIG. 1. Simulation of a quantum logic network by measuring
two-state particles on a lattice. Before the measurements the qubits
are in the cluster statiep). of Eq. (1). Circles® symbolize mea-
surements ofr,, vertical arrows are measurementsaf, while Cluster states are pure quantum states of two-level sys-
tilted arrows refer to measurements in thg-plane. tems (qubit9 located on a cluste€. This cluster is a con-
nected subset of a simple cubic lattiZé in d=1 dimen-

on the QG. Before we go into details, let us state the gen-Sions. The cluster statés,)c obey the set of eigenvalue
eral picture. equations
For the one-way quantum computer, the entire resource
for the quantum computation is provided initially in the form
of a specific entangled state—the cluster sfate-of a large
number of qubits. Information is then written onto the clus-
ter, processed, and read out from the cluster by one-particle
measurements only. The entangled state of the cluster K@O=¢ld @ o, 2
thereby serves as a universal “substrate” for any quantum benghb)
computation. It provides in advance all entanglement that is
involved in the subsequent quantum computation. ClusteTherein,{«}:={x,€{0,1}| acC} is a set of binary param-
states can be created efficiently in any system with a quareters that specify the cluster state and nghkié the set of
tum Ising-type interaction(at very low temperatur¢sbe-  all neighboring lattice sites .
tween two-state particles in a lattice configuration. A cluster stat€ ¢;,;)c is completely specified by the ei-
It is important to realize here that information processinggenvalue equationél), sinceK®, aeC, form a complete
is possible even though the result of every measurement iget of |C| independent and commuting observables for the
any direction of the Bloch sphere is completely random. Thesystem of qubits on the clust€: This can most easily be
mathematical expression for the randomness of the measurgeen from the fact thak® is obtained fromo.&a) under
ment results is that the reduced density operator for eachonjugation with a unitary transformation, as shown below
qubit in the cluster state i5l. The individual measurement Eq. (11). For a set of eigenvalues specified ¥} the cor-
results are random but correlated, and these correlations efesponding eigenspace is thus one-dimensional,| )¢
able quantum computation on the QC is determined modulo an irrelevant phase factor. There are
For clarity, let us emphasize that in the scheme of the QC2I¢l different choices for{ k} e{O,l}‘C‘, and sinceK@ are
we distinguish between cluster qubits 6nwhich are mea-  Hermitian operators, the associated common eigenstates, the
sured in the process of computation, and the logical qubitsgjuster states, are mutually orthogonal and form a basis in the
The logical qubits constitute the quantum information beingHilbert space of the cluster.
processed, while the cluster qubits in the initial cluster state The discussion in this paper will be based entirely on
form an entanglement resource. Measurements of their indijgenvalue equatiorid) and we will never need to work out
vidual one-qubit state drive the computation. some cluster state in any specific basis. In fact, to write down
To process quantum information with this cluster, it suf-a cluster state in its explicit form would be quite space con-
fices to measure its particles in a certain order and in a cesuming since the minimum number of required terms scales
tain basis, as depicted in Fig. 1. Quantum information isexponentially with the number of qubif&], and for compu-
thereby propagated through the cluster and processed. Megition we will be going to consider rather large cluster states.
surements ofr, observables effectively remove the respec-Nevertheless, for illustration we give a few examples for
tive lattice qubit from the cluster. Measurements in the  cluster states of a small number of qubits. The cluster states
(and o) eigenbasis are used for “wires,” i.e., to propagateon a chain of 2, 3, and 4 qubits, fulfilling eigenvalue equa-
logical quantum bits through the cluster, and for t%0T  tions (1) with all k,=0, are
gate between two logical qubits. Observables of the form
cos(p)o,=sin(g)oy, are measured to realize arbitrary rota- 1
tions of logical qublts_. For these cluster qubits, the basis in |¢>C2: (|0Yq] + Yot [ 1)1] = )a),
which each of them is measured depends on the results of V2

A. Cluster states and their quantum correlations

K@y 0= (—1)"a e, (1

with the correlation operators
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1 |$)c=S0IS"¢)e, VaeC. )
[b)e,= ?(|+>1|0>2|+>3+|_>1|1>2|_>3), ()

2 To obtain So?S', we use the evolution relations for the
stabilizer of a state under the action of a phase fEg We

6= 5 M0 H)0)a 5 410} ol CPSeTVE el
. . S @G = ;@ g ()
#5102l =)3l0)at 5= )al 2l +)el 1ha SIS = @ ) ®
with the notation and
10)2=|0)a ,= |0} ., SPsT= ) Vcel\{a,b}. 9

Further, the Pauli phase flip operat ) commute with all
|1>a:=|1>a,z:_Uga)|1>a,2! (4) Sab, i.e., P PoP (mrgj

1 S§Po{Isabl= (D vdec. (10
| x >a‘:E(|O>ai | 1>a)-

Now, from Eqgs.(8)—(10) it follows that
The statd ¢) ., is local unitary equivalent to a Bell state and Ses=¢@ ® P (12)
|¢>C3 to the Greenberger-Horne-ZeilingeiGHZ) state. be nghb)

|¢)c, however, is not equivalent to a four-particle GHZ o o statgg) . generated from+ ). via the transforma-

state. In particular, the entanglement|if)c, cannot be de-  {jon S as defined in Eq(5) does indeed obey eigenvalue

stroyed by a single local operati¢g]. equations of form(1), with

Ways to create a cluster state, in principle, are to measure
all the correlation operatork®, aeC of Eq. (2) on an k,=0, VaeC. (12
arbitrary|C|-qubit state or to cool into the ground state of a _ S _
HamiltonianH = — 9=, ok K@, As the eigenvalues are fixed in this case, we drop them in the

Another way—likely to be more suitable for realization Notation for the cluster state). . Cluster states specified by
in the lab—is as follows. First, a product state),  different SetS{K(g; can be obtained by applying Pauli phase
=®acc+)a is prepared. Second, the unitary transformationflip operatorsa;™ . To see this, note that

(C)
ST, FOK O G@TZ (— 1)%abK®), (13)

SO = D S (5)  Therefore,
a,beClb—aeyy

® (a)2% | B o= i+ ng)es (14
is applied to the stateé+). Often we will write S in ace | tral)e | g dglle

short for S©©. In Eq. (5), for the cases of dimensiod
=1,2,3, we havey,;={1}, 7,={(1,0)7,(0,1)"}, and y;  where the addition fok, is modulo 2. Cluster states with
={(1,0,0)",(0,1,0)",(0,0,1)"}, and the two-qubit transfor- different setg{«} are equally suited for QCcomputation.
mationS*" is such that the stafd),®|1), acquires a phase Concerning a physical realization of the transformattn
of 7 under its action, while the remaining statesdefined in Eq.(5), note thatS is generated by the Hamil-
[0).®]0)p, |0),®|1)y, and|1),®|0), acquire no phase. tonian
Thus, S?° has the form

1—0&3) 1-o®

z

H=% . 15
§=[0)o(0] @ 10+ 1) (1] 0.0, ©) D (19

which is a conditional phase gate betweeandb. Note that  Now, S=exp(—in/hgH) may be written in the form
all operationsS*” in S mutually commute and that they can
therefore be carried out at the same time. Initial individual _ i (mla) T () T ()
preparation of the cluster qubits j#), .. can also be done - a,becgaeyd € X170z |81 7oz
in parallel. Thus, the creation of the cluster state is a two-step
process.The temporal resources to create the cluster state . (a) _(b)
are constant in the size of the cluster xexg iy C%,aeyd 9279z

The statg + ). obviously obeys the eigenvalue equations
o@|+)e=|+)¢, YaeC and thus the cluster sta$). gen-  We find that the interaction paH, of the HamiltonianH
erated viaS obeys generatingSis of the Ising form,

16
4 a,be ( )
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g ) the cluster state of Eq1), and graphs. The treatment here
Hi=hy ; c@al, (17)  follows that of Ref.[9], adapted to our notation.
abedbracyg Let us recall the definition of a grapfL6]. A graph
G(V,E) is a setV of vertices connected via edge$érom the
setE. The information of which vertea e V is connected to
which other vertexbeV is contained in a symmetric
[V|x|V| matrix ', the adjacency matrix. The matriX is
such that",,=1 if two verticesa andb are connected via an

angoéoTrizeLr?;iﬁrﬁse{;}tgt;gggfhiﬁfﬁrﬁ?ﬁtﬁgﬂ.ﬁ edgeee E, andI',,=0 otherwise. We identify the clustér
’ P gy, P with the verticesV, of a graph,C=V., and in this way

Eq' (15 has been chqsen n su_ch away tha_t eigenvalue €AU%stablish a connection to the notion introduced earlier.
tions (1) take the particularly simple form witk,=0 for all

acC, imespective of the shape of the cluster. To relate graphs to quantum mechanics, the vertices of a

To create quantum states that are useful as a resource rraph can be identified with local quantum systems, in this

the QG, i.e., cluster- or local unitary equivalent states, all ase qubits, and the edges with two-particle interactions, in

systems with a tunable Ising interaction and a lagatype the present case,o, interactions. If one initially prepares
oo o @)y« i}
Hamiltonian, i.e., with a Hamiltonian each individual qubit in the state ¢;)*a|+), and subse

quently switches on, for an appropriately chosen finite time
span, the interaction

and, since the local paH ., of the Hamiltonian commutes
with the Ising HamiltoniarH,, the interactionS generated
by H is local unitary equivalent to the unitary transformation
generated by a Ising Hamiltonian.

g(t)

" (@ 4 () 5 (b)
: agc AEaO-Z f 4 a,becg—aeyd 92" % (18) 1_0'§a) 1_0'93)

(abyee 2 2

Hov,gy="9 (19

are suitable, provided the coupliggft) can be switched be-
tween zero and at least one nonzero value. with (a,b) e E denoting an edge between qubésand b,

Even this condition can be relaxed. A permanent Isingthen one obtains quantum states that are graph code words as
interaction instead of a globally tunable one is sufficient, ifintroduced in Ref[9]. Henceforth we will refer to these
the measurement process is much faster than the charactgraph code words as graph states and use them in a context
istic time scale for the Ising interaction, i.e., if the measure-different from coding. The graph statgs{«})s are defined
ments are stroboscopic. If it takes the Ising interaction a timéyy a set of eigenvalue equations, which read
Tising to create a cluster statep) from a product state @ (BT
|+)c, then the Ising interaction acting for a timeT g o @ (037) | p{xh)e=(—1)? p{k})g, (20
performs the identity operatiorS9S9=1©. Therefore, beV

starting with a product statet ). at timet=0 evolving un- with «, (0,1}, Yae V. Here we uses instead ofV as an

der permanent Ising interaction, stroboscopic measuremenis, .. for the statée), as the SBEECV XV of edges is now

may be perf(_)r_med at times K(}l)T'Si”Q’kEN.' .. independent and no longer implicitly specified Wdyas was
One possibility to create a cluster state in practice is Vidna case in Eq()

cold controlled collisions in optical lattices, as described in Note that cIusfer stated) are a particular case of graph

Ref.[2]. Cold atoms representing the qubits can be arrangegtates(zo)_ The graphG(C,E,) that describes a cluster state

on a two- or thrge—dlmensmnaﬂBD) Iattlcg and. state- iq that of a square lattice in 2D and that of a simple cubic
dependent interaction phases may be acquired via cold coll

lisions between neighboring atorfisd] or via tunneling 15]. attice in 3D, i.e., the se¢ of edges is given by

For a suitable choice of the collision phases ¢ E.={(a,b)]a,beC,benghka)}. (21)

= mod 2, the state resulting from a product state),

after interaction is a cluster state obeying eigenvalue equa-

tions (1), with the set{x,,a e C} specified by the filling pat-

tern of the lattice. To provide something definite to discuss right from the
Let us, at the end of this section, briefly state which tech-beginning, we now give the procedures of how to realize a

niques will be used for the explanation of measurementCNOT gate and a general one-qubit rotation via one-qubit

based quantum computation on cluster states. First, note th&teasurements on a cluster state. The explanation of why and

the operators+ 1)*aK @ in Eq. (1) generate the stabilizer of how these gates work will be given in Sec. Il G.

the statd ¢y,,)c. The stabilizer formalism, as developed by A CNOT gate can be realized on a cluster state of 15 qu-

Gottesmar| 10,11 and by Calderbanlet al. [12] (see also bits, as shown in Fig. 2. All measurements can be performed

Ref.[13]), provides a compact characterization of the clustesSimultaneously. The procedure to realizeoT gate on a

state. It is also useful in understanding some of the workingluster with 15 qubits, as displayed in Fig. 2, is the follow-

principles of the Q. In the subsequent sections, we fre- INg.

quently perform stabilizer manipulations. Procedure 1Realization of a&cNOT gate acting on a two-
Further, some basic notions of graph theory will be usefulqubit state] g;,).

later when we discuss the relation between quantum algo- (1) Prepare the state

rithms and graphs in Sec. lll B. Therefore, let us, at this

point, establish a connection between quantum states such as |\I’in>015: | wi“>1’9®(iec® |+>i)'
15.{1,9

B. A universal set of quantum gates
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s 23 Urof & 7,{]1=Ux[ {]U L 7]U,[ €], (24
(a) where the rotations about thxeandz axes are
. Oy
Ux[a]=eXL{ —Ia? ,
CNOT-gate (25
. Oz
(b) (©) U, a]= exp{ =i a?) .
1 23435 12345 Initially, the first qubit is prepared in some statg,), which
XEEEO XxExKQ is to be rotated, and the other qubits are prepareftin
After the five qubits are entangled by the unitary transforma-
general rotation z-rotation tion S the state|y;,) can be rotated by measuring qubits
1-4. At the same time, the state is also swapped to site 5.
(d) (e) The qubits 1-4 are measured in appropriately chosen bases

12345 12345 |0); +e'#i|1); |0);—e'¢i[1);

XEEE0 XXEX0 |

Hadamard-gate  7/2-phase gate

whereby the measurement outcomese{0,1} for |

FIG. 2. Realization of elementary quantum gates on the QC 1,...,4 areobtained. Heres;=0 means that qubif is

Each square represents a lattice qubit. The squares in the extrerﬂéojeCtefd ilrllto th(?b];irSt state ‘ﬂj(‘»"i)'bln qu'.(26) tf;]e basis f
left column marked with white circles denote the input qubits, thosesrt]atesl’ Oha F?]OSS' e measrlljre_ment ases 'fe r?n t Ie iquargor Y
in the rightmost column denote the output qubits. the Bloch sphere, i.e., on the intersection of the Bloch sphere

with the x-y plane. Therefore, the measurement basis for
qubitj can be specified by a single parameter, the measure-
ment anglep; . The measurement direction of qubits the
vector on the Bloch sphere that corresponds to the first state
. IS =T in the measurement bass(¢;). Thus, the measurement
7, 15 (following the_labellng in Fig. 2 'I_'he measurements ngleg; is the angle betw%enjthe measurement direction at
can be performed simultaneously. Qubits 1, 9, 10, 11, 13, 14, it "and the positivex axis. In summary, the procedure to

are measured in the, eigenbasis and qubits 2-6, 8, 12 in (a3jize an arbitrary rotatiotro{ ¢, 7,¢], specified by its

(2) Entangle the 15 qubits of the clustgy via the unitary
operationS(©19.
(3) Measure all qubits of;5 except for the output qubits

the o, eigenbasis. _ Euler anglest, ,¢, is the following.
Dependent on the measurement results, the following gate procedure 2.Realization of general one-qubit rotations
is thereby realized: Ugore SU(2).
, (1) Prepare the state
Ucenor=Us,cnoteNOT(C, ), (22 5
. =\ +). 1.
where the byproduct operatbrs cnor has the form [Win)es=[tin)1® 5’2' )i
#9 O #V (2) Entangle the five qubits of the clusté via the uni-
Us,onor= 0™ o0 ol o™, tary operatiorS(‘s).

(3) Measure qubits 1-4 in the following order and basis:

with

E(C):SZ+S3+SS+S61 (3.1) measure qubit 1 inB,(0),

(3.2 measure qubit 2 inB,(— & (—1)%1t), (27
')/S(t) = Sz+ S3+ SSJF Slo+ 512+ 514‘
(23) (3.3) measure qubit 3 inB3(— 7(—1)%2),
(c) —
V2 =SSt Sat S5t St St syt (3.4) measure qubit 4 inB,(— {(—1)%17%3),

YV =sg+ 8,1+ 5;3. Via Procedure 2 the rotatiod,, is realized:

Therein, thes; represent the measurement outcosjem the Urol & 7,{1=Us rotURrol & 1,1 (28)

qubitsi. Expression(23) is modified if redundant cluster qu-
bits are present and/or if the cluster state on whichatheT
gate is realized is specified by a $&t,} different from Eq.
(12); see Sec. Il C. This concludes the presentation of the
CNOT gate, the proof of its functioning is given in Sec. Il G. It can be corrected for at the end of the computation, as will
An arbitrary rotationUgye SU(2) can be realized on a be explained in Sec. Il E.
chain of five qubits. Consider a rotation in its Euler repre- There is a subgroup of rotations for which the realization
sentation procedure is somewhat simpler than Procedure 2. These ro-

Therein, the random byproduct operator has the form

+ +
Us po=02 ot . (29)
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tations form the subgroup of local operations in the Clifford computation, nor is there a need. The scheme works with
group. The Clifford group is the normalizer of the Pauli unit efficiency despite the randomness of the individual mea-

group. surement results, as will be discussed in Sec. Il E.
Among these rotations are, for example, the Hadamard . )
gate and ther/2-phase gate. These gates can be realized on C. Removing the redundant cluster qubits
a chain of five qubits in the following way. A cluster state on a two-dimensional cluster of rectangular
Procedure 3. Realization of the Hadamard and the shape, say, is a resource that allows for any computation that
m/2-phase gates. fits on the cluster. If one realizes a certain quantum circuit on

this cluster state, there will always be qubits on the cluster,
which are not needed for its realization. Such cluster qubits
we call redundant for this particular circuit.
) In the description of the QCas a quantum logic network,
the first step of each computation will be to remove these
, : ) . redundant cluster qubits. Fortunately, the situation is not such
(2) Entangle the five qubits of the clustég via the uni- 3¢ \ve have to remove the qubitsr, more precisely, the

H Ci
tary operatiors(®. carriers of the qubitsphysically from the lattice. To make

(3) Measure qubits 1-4. This can be done simultaneously e, ineffective to the realized circuit, it suffices to measure
For the Hadamard gate, measure individually the observables, -, of them in ther eigenbasis. In this way, one is left
z . )

(1) (2) (3) (4) ;i
oy’ oy, oy, oy’. For the m/2-phase gate measure it an entangled quantum state on the clugtgrof the
(Tff), 0§2), 053), 0§4)- unmeasured qubits and a product stateCo6y,,

(1) Prepare the state

5
[Wineg=|¥in)1® _@?2|+>i

The difference with respect to Procedure 2 for general rota- | —|z ®| by o0 (31
tions is that in Procedure 2 no measurement bases need to be e >C\CN f }>CN
adjusted according to previous measurement results angith |Z>C\CN=(®ieC\CN|Si>i,z) and s; the results of ther,

therefore, the measurements can all be performed at the samg,asurements. The resulting entangled #W?’QC on the
’ N

time. ubclustelCy is again a cluster state obeying the set of Egs
As in the cases before, the Hadamard and-tii&-phase subclustely 1s ag cluster s obeying Ihe set ot qs.
}), and the measurement outcomes determine the sign fac-

g;gztgrrewﬁﬁéﬁ)rg%%tgpxnrgg dblyoth?a f;gsggnuen?éagﬁ;ﬁg% rs therein. This can be easily seen with stabilizer methods
' 0,13. Nevertheless, for completeness we give the argu-

outcomessi, ment here. First, by definition, we have
UE,H:Ui1+53+S4U§2+531 1+(_1)Si0'g)
U _ Sptsy Sytsptsztl (30) |Z>C\CN®|¢{K'}>CN: ie%?c 2 |¢{K}>C'
S.U(nl2)T 0y 0y : N a2

Before we explain the functioning of the above gates, WeUsing eigenvalue equatiori4), we now insert a correlation

would like to address the following questions: First,“How operatorK @ with a e Cy into the right-hand sidéhs) of Eq.

does one manage to occupy only tho;e Iatticg sit_es with CIU%?Z) between the projector and the state, and obtain
ter qubits that are required for a particular circuit but leave '

the remaining ones empty?” The answer to this question is |7 ® ). =(—1)%aK' @]z ® )
that redundant qubits will not have to be removed physically. | >C\CN |9 pe,=(1) | >C\CN | }>CN’

It is sufficient to measure each of them in thgeigenbasis, (33
as will be described in Sec. Il C. with the correlation operators
Second, “How can the described procedures for gate (@) (a) ©
simulation be concatenated such that they represent a K=oy E’ e 0z (34
measurement-based simulation of an entire circuit?” It seems ¢ nghb@)N e
at first sight that the described buildirjg_ blocks would only gnd the sef«x.} specifying the eigenvalues
lead to a computational scheme consisting of repeated steps
of entangling operations and measurements. This is not the p ot 2 s, |mod 2. (35)

case. As will be.shown in Sec. Il D, the three procedqres a %" benghb@n(c\cy)

stated are precisely of such a form that the described

measurement-based scheme of quantum computation can A& the new correlation operatoks' ® in Eq. (33) only act

decomposed into them. on the cluster qubits i€y, the state$¢{K,}>CN again obey
The third question is “How does one deal with the ran- eigenvalue equations of tydé), i.e.,

domness of the measurement results that leads to the byprod- )

uct operators(23), (29), and (30)?” The appearance of K @ $pede,=(— 1| i), Yaely. (36)

byproduct operators may suggest that there is a need for

local correction operations to counteract these unwanted ex-here ar€Cy| such eigenvalue equations for a state @ff

tra operators. However, there is neither a possibility for suciiubits. Thus, the staieb,,)c, is specified by Eq(36) up to

counter rotations within the described model of quantuma global phase.

022312-6



MEASUREMENT-BASED QUANTUM COMPUTATION ON.. .. PHYSICAL REVIEW A68, 022312 (2003

From Eq. (35 we find that the redundant qubits have @) )
some remaining influence on the process of computation. S =ab c r[La s, (40
After they have been measured, the random measurement bedg)bacyg
results enter into the eigenvalues that specify the residug,.p,
cluster state ¢y, on the clusteCy . However, from Eq.
dbrcyey N — SO e

(14) it follows that|(.y)c, is equivalent td ¢), modulo (3) Measure the cluster qubits if,(g)UCw(g), i.e.,
local o, rotations. These can be accounted for by absorbingpoose measurement bases specified ﬁAE R k
them into the subsequent measurements. eC(9)UCy(g) and obtain the random measurement results

In this way, a Q@ computation with arbitrarf «,} may s, such that the projector
always be traced back to the case{ef =0|VaeCy}, and

that the resulting quantum state i|sP£>CN

we therefore adopt the following two rules to simplify the 1+(—1)%r, - a®
. . k
further discussion: pC(@Utu(9) = ® 5 (41)
) ) keC(9)UCu(9)
(1) The redundant cluster qubits are discarded. We only
consider the subclustety . is applied; thereby the statd@ ;)4 is obtained.
(37 Putting all three steps of Scheme 1 together, the relation
(2) We assume thaic,=0 forall aeCy. between| Wiy)¢(g) and|Voupc(q) i
= p@GAUC(9) gL
D. Concatenation of gate simulations |\P0Ut>c(9) p™ WS |\P'n>C(9)' (42)

A quantum circuit on the Qgis a spatial and temporal As we will show later, the statgV )¢ (4 has the form
pattern of measurements on individual qubits, which have
previously been entangled to form a cluster state. To better |V oud cg)= ® |sk>k,;k ®|¢out>co(g)! (43
understand its functioning we would like—as in the network \keC(9)Ulu(9)
model of quantum computation—to decompose the circuit _
into basic building blocks. These building blocks should beWhere|si s, denotes the state of the qubitafter the ob-
such that out of them any circuit can be assembled. In exservabler,- *¥) has been measured and the measurement
plaining the QG in a network language, we can relate the outcome was,, and
building blocks of a quantum logic network—the quantum
gates—to building blocks of QCircuits. To do so, we need | hou =Us gUgl tin)- (44)
to prove that, in a Qgcomputation, measurement patterns
representing the gates can be patched together like the quahberein,U, is the desired unitary operation, and the byprod-
tum gates themselves. This proof is given in the following. uct operatolJs ¢ is an extra multilocal rotation that depends
To realize a gatg on the QG, consider a clustef(g).  on the measurement resul{s,|keC (g)UCu(9)}. The
This cluster has an input sectigh(g), a bodyCy(g), and  byproduct operator is always in the Pauli group, i.e.,
an output sectioi€o(g), with

n
T [z

€/(9)UCu(9) UCo(9)=C(g), Us,g= @ () (o2))? (49

G(9)NCu(9)=9J, modulo a possible global phase, ami the number of logi-
(38)  cal qubits. In Eq(45) ¢!l denote Pauli operators acting on
G(9)NCo(9)=3, the logical qubit i, not cluster qubit. The valueg;,z
e{0,1} are computed from the outcomes of the measure-

Cm(9)NCo(g)=G. ments by which the respective gate is realized.

As will be proved in Sec. Il F, each gate may be realized
only modulo a subsequent byproduct operatby ;. The
byproduct operator is random, but known from the outcomes
of the measurements that realize the gate. This knowledge is
sufficient to drive the Qgcomputation deterministically, as
we will demonstrate in Sec. Il E.

Given a quantum circuit implemented on a clusigrof
qubits, which is divided into two consecutive circuits, sup-
pose that circuig, is implemented on the subclustéfg,)
and the subsequent circgs is implemented on the subclus-
ter C(g,), such thatCy=C(g1)UC(g,). There is an overlap

The measurement bases of the qubit€j{g), the body of
the gateg, encodeg. The general scheme for procedures to
realize a gate on a clusteiC(g), for which examples have
been given with Procedures 1-3 for th®OT gate and the
rotations, is the following.

Scheme 1Simulation of the gatg on C(g), acting on the
input state] )i, .

(1) Prepare the input staté;,) onC,(g) and the qubits in
Cm(9)UCo(g) individually in the statd +)=|0), such that
the quantum state of all qubits #(g) becomes

s —1. ® ® +Y, . 39 betweenC(g,) andC(g,), which consists of the output qu-
[Wineto) =¥y keCM(g)UCo(g)| Jk 39 bits of circuit 1 (identical to the input qubits of circuit)?
Co(91)=C(92)=C(g1)NC(g,). The location of the readout
(2) Entangle|¥,)¢() by the interaction quantum register i€5(g,) CC(g,).
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| Preparing an input statet ), and entangling it vieS©
with the rest of the cluste€\| is the same as creating a
cluster statd ). on the entire cluste€=1UC\I, SO|+),
®|+)e =59 |+)e=|¢)c. Therefore, the entire procedure
of realizing a quantum computation on the Q&nounts to
the following scheme.

Scheme 2Performing a computation on the QC

(1) Prepare a cluster statgp;,,)c of sufficient size.
(2) Perform a sequence of measurementg ®ny)c and
o é 6 obtain the result of the computation from all the measure-

(o)
f T T T f ment outcomes.
1 2 3 4 5 6 7 X

For practical realization of a QCGomputation, Scheme 2 is
FIG. 3. Here the exchange of the order of the measurements angijyantageous over the mathematically equivalent sequence
the entanglement operations is shown. The crossesdenote the ¢ gate simulations according to Scheme 1. This sequence, in

one-qubit measurements and the horizontal lines between adjacepl}m may be used to explain the functioning of the QE
cluster qubits denote the unitary transformatiGig . neMork terminology

Now compare the following two strategies. Strategy
consists of the following stepg1) write input and entangle E. Randomness of the measurement results
all qubits ofCy; (2) measure qubits iG\\Cn(g,), to imple- We will now show that the described scheme of quantum
ment the circuit except the readout measurements. Strate@mputation with the Q€works with unit efficiency despite
(i) consists of stepgl) write input and entangle the qubits the randomness of the individual measurement results.
on C(g1); (2) measure the qubits i6(g;)\Co(g1). This First note that a byproduct operatdk that acts after the
implements the first subcircuit and writes the intermediatefinal unitary gateUg| y does not jeopardize the scheme. Its

output t0Co(g1) =Ci(92); (3) entangle the qubits 0f(92); iy effect is that the results of the readout measurements
(4) measure all qubits i(92)\Co(9z). Steps 3 and 4imple-  5ye 1o pe reinterpreted. The byproduct operbtorthat acts
ment the second subcircug on the subclustef(g,). The upon the logical output qubits, 1. . ,n has the form
measurements of¥(g1)\Co(g1), represented by the projec-

tor P, commute with the entanglement operation restricted n _ _

to C(g,), S92 =S, P,S,=S,P;, because these two op- Us=1I1 (allyri(alya, 47)
erations act on different subsets of particles. Wathrepre- =1

senting the measurements o6 C and S . .
:S(c(g%)  follows  that st(fj)s\(c,f)(gzgnd Pzpi wherex; ,z; €{0,1} for 1<i=<n. Let the qubits on the cluster,

— pCn\Co(92)8. Therefore which are left unmeasured, be labeled in the same way as the
' ’ readout qubits of the quantum logic network.
P,S,P;S,=P,P;S,S, = PCn\Co(@2)g(N) (46) The qubits on the cluster, which take the role of the read-

out qubits are, at this point, in a stae |out), where|out) is

Thus, the two strategies are mathematically equivalent. Ththe output state of the corresponding quantum logic network.
above argument can be iterated. It follows that entangling théhe computation is completed by measuring each qubit in
whole cluster once and subsequently performing all the medhe o, eigenbasis, thereby obtaining the measurement results
surements is equivalent to simulating a quantum logic net{s/}, say. In the Qg scheme, one measures the state
work gate by gate. The exchange of the order of operations igy|out) directly, whereby outcomess;} are obtained and
illustrated in Fig. 3. the readout qubits are projected into the statef)

Now, we want to specialize to the case where the quanture-[17_ {[1+ (- 1)Sagg)]/2}uz|out>_ Depending on the
input is knownand where the quantum output is measuredbyproduct operatotly , the set of measurement resuls,
This is the situation that interests us most in this paper. Exin general, has a different interpretation from what the net-

amples of such a situation are Shor’s factoring algorithmyork readoufs/} would have. The measurement basis is the
[17] and Grover’s search algorithpd8]. In both cases, the same. From Eq(47) one obtains

quantum input i i) =" 4| +);.
Let us denote the input section of the whole clusier " 14+(—1)SoM
comprising the input qubits of the network simulation,las |IM)= H -
and the output section, comprising the qubits of the read- =1 2
out quantum register, a®. As long as the quantum
input is known, it is sufficient to consider the stdte ),
=®;|+);. For different but known input statess;,), ,
one can always find a transformatidh, such that|;,),
=U;,|+), and instead of realizing some unitary transforma-
tion U on |#;,), one realizes) U;, on |+),.

U2|0Ut>

n o
1+(-1)%a)
UE U§|1;[1 %UE |0Ut>

N1 (—1)STNig)
UEHleMUt). (48)
=
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From Eg.(48) we see that ar, measurement on the state Pauli group when being propagated. Further note that there is
Us|out) with results{s} represents the same algorithmic out- a difference between the relations for propagation through
put as ao, measurement of the stateuf) with the results gates that are in the Clifford group and through those that are

{s/}, where the setfs} and{s/} are related by not. ForcNoT, the Hadamard, and thg/2-phase gates, the
byproduct operator changes under propagation, while the
s/ =s;+x; mod 2. (49)  gate remains unchanged. This holds for all gates in the Clif-

ford group because the propagation relations for the Clifford
The set{s/} represents the result of the computation. It cangates are of the form_ngE:(UgUELjal)Ug as Egs.(51)
be calculated from the resul{s;} of the o, measurements and(53), i.e., the byproduct operattts is conjugated under
on the “readout” cluster qubits and the valups} that are  the gate, and the Clifford group by its definition as the nor-
determined by the byproduct operatds . malizer of the Pauli group maps the Pauli operators onto
Let us now discuss the sequence of the individual gatauli operators under conjugation. Propagation relatishs
simulations. Because of E(#4) and the argument presented and (53) are identical to the propagation relations for Pauli
in Sec. Il D, the quantum outplit’,p of a whole sequence errors given in Ref[19]. For the gates that are not in the
of unitary gates is related to the respective input via Clifford group, conjugation of the byproduct operator under
the gate would, in general, not work and therefore, for the
_ rotations that are not in the Clifford group, the propagation
|oup = ( |H1 Us g, Ugi) | in) (50 relations are different. There, the gate is conjugated under the
byproduct operator, and thus the byproduct operator remains
where the gateg; e NV are labeled corresponding to the order unchanged in propagation while the gate is modified. In both
of their action. cases, the forward propagation leaves the byproduct opera-
Thus, we find that one can cope with the randomness dfors in the Pauli group. In particular, their tensor product
the measurement results provided the byproduct operatogtructure is maintained.
Us g in Eg. (50) can be propagated forward through the Let us now discuss how byproduct operator propagation
subsequent gates such that they act on the cluster qubits reffects the scheme of computation with the Q@sing the
resenting the output register. This can be done. To propagafPove propagation relations, H&0) can be rewritten in the
the byproduct operators we use the propagation relations following way:

Y V]
cnoT(e,t) o= oPenoT(c,t),
= Us 4 U in) - 54
© © 0 |wout> |:l—[1 E,g,|Q iljl gj |‘//|n> ( )
CNOT(C,t) oy’ =0y’ 0y CNOT(C, 1),

IV

(51 Therein,UE,gi|Q are forward propagated byproduct opera-
tors, resulting from the byproduct operatadss ¢ of the

gatesg; . They accumulate to the total byproduct operator
Us whose effect on the result of the computation is con-

for the cNOT gate, tained in Eq.(49),
UROI[&V U:g]ax: O-XURot[gi - 7]15]7

Urot & 7.{lo, =0 Urod — &, m,— (],

for general rotationt) g &, 7,{] as defined in Eg(24), and

cnoT(c,t) o=@ ¢PenoT(c,t),

cnoT(c,t) ol = ¢{DcnoT(c, 1),

W
(52 Us=11 Usglo- (55)

Further,Uéi are the gates modified under the propagation of
the byproduct operators. As discussed above, for gates in the

Hoy=0,H, Clifford group we have
Ho,=oH, Ug=Ug, VgeClifford group, (56)
(53
U, [7/2]oy=0o,U[ /2], as can be seen from Eq&1) and (53).
The gates that are not in the Clifford group are modified
U, [ 7l2]o,= U, 7/2], by byproduct operator propagation. Specifically, general ro-

i . tations(24) are conjugated, as can be seen from &J).
for the Hadamard anda/2-phase gates propagation relations o m the structure of Eq50) we see that only the byproduct

(52)_ appl_y to general rotations realized via Pr_ocedureoperators of gates, earlier tharg; in the network may have
2—including the Hadamard and/2-phase gates—while the 5 effect onU, i.e., those withk<i. To give an explicit

propagation relations(53) apply to the Hadamard and . ) .
w/2-phase gates as realized via Procedure 3. expression, let us defings q [0, which are byproduct op-

Note that propagation relatiois1)—(53) are such thatthe €ratorsUy g propagated forward by propagation relations
Pauli operators are mapped onto the Pauli operators undés1)—(53) to the vertical cut); through the network, see Fig.
propagation and thus the byproduct operators remain in thé. A vertical cut through a network is a cut that intersects
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IN : ouT will be determined by the temporal ordering of these mea-
o : () O surements, unlike in quantum logic networks, where it de-
o——@ - - 7 @—o pends on the ordering of gates. The most effigient ordering of
A ] ~ f measurements that simulates a quantum logic network is not
°“‘|§}‘ a XU | e N RN l @_0 predescribed by the temporal ordering of the gates in this
o , @—0 network.
A | A temporal ordering among the measurements is inferred
g U . 9 from the requirement to keep the computation on the, QC

O; O; Q@ Q deterministic in spite of the randomness introduced by the
measurements. This randomness is accounted for by the
FIG. 4. Vertical cuts. The vertical cuts intersect each qubit |inebypr0duct operators. The key to obtain the temporal ordering
exactly once, but do not intersect gates. Thds, O;, and€) are  of measurements is E¢57). There, the byproduct operators
vertical cuts, but) is not. The cut); intersects the rotatiod, just UE,gk|(’)i may modify Euler angles of the one-qubit rotations

before its input. For two of the rotations in the displayed network,.
P id the network and, consequently, change measurement

the subclusters on which these gates are realized are symbolical Th | orderi h . d he f h
displayed in gray underlay. Via the measurement of the cluster qu= ases. The temporal ordering thus arises due to the fact that

bits a andb (displayed as black dots with white borglethe rotation bases for one-qubit measur'ements must be chosen in accor-
angles of the respective rotatiob andU, are set. dance with outcomes obtained from the measurements of
other qubits.
each qubit line exactly once and does not intersect gates. The FOr each cluster qubi that needs to be measured in a
vertical cutO; has the additional property that it intersects hontrivial basis, i.e., not in the eigenbasisaf, o, or o,
the network just before the input of gatg. The relation @ Set of cluster qubitp; can be identified, whose measure-
between a rotatiotJ;, modified by the byproduct operators ment outcomes influence the choice of the measurement ba-
and the nonmodifiedl rotatiod . is sis for qubitq. We say thag is in the forward cong7] of p;,
9i ge FC(p;). Each cluster qubit has a forward cone, and in no
+ forward cone there appears a qubit that is measured in a
Uéi:(k&' U2*9k|0i Ugi( I[ U2,9k|0i trivial basis. _
i klk<i The rule is that a cluster qubgt can only be measured
once all cluster qubitg; for which qefc(p;) have been
VUg e SU(2). (57) measured earlier. The forward cones thereby generate an an-
Now that we have investigated the effect of byproducttireflexive partial ordering among the measurements from
operator propagation on the individual gates let us return tavhich the most efficient measurement strategy can be in-
Eq. (54). There, we find that the operations that act on theferred; see Ref.7]. Gates in the Clifford group do not con-
input state ¢;,) group into two factors. The first is composed tribute to the temporal complexity of a Q@Igorithm, see
of the modified gate operations, and the second is com- Sec. Il .
posed of the forward propagated byproduct operators. The
second factor gives the accumulated byproduct opetagor F. Using quantum correlations for quantum computation
and is absorbed into the result o.f th_e computation via Ed. | this section we give a criterion that allows us to dem-
(49). It does not cause any complication. _ onstrate the functioning of the QGimulations of unitary
So what remains is the first factor, and we find that theyates in a compact way. Specifically, Theorem 1 given below
unitary evolution of the input stati)) that is realized is  ggtablishes a correspondence between general quantum gates
composed of the modified gatek, . The gates we will re- g quantum correlations of states. Using this correspon-
alize are thusuéi, not Uy . However, the standard proce- Qence, the exp_Ianation of Q@ates can be reduced to stabi-
dures(Procedures 1-3in Sec. |1 B are for the operations lizér manipulations. _
Ug. Thus, we have to read E57) in reverse. We need to _ Before wetstattet the theorem, let USI mak%éhe ”?t't(_)” of a
| ) : measurement pattern more precise. In mputation
deduceugi from Ugi' Once the gategy for all k<i have one can only choose the measurement b:ées, while the mea-
been realized, this can be done for each gatsince the  surement outcomes are random. This is sufficient for deter-
byproduct operatort)s \ are then known for alk<i. Fi-  ministic computation. Thus, one can perform measurements
nally, with Uy determined fromJ, , Procedure 2 gives the specified by a spatial and temporal pattern of measurement
measurement bases required for the realization of the gak@ses, but one cannot control into which of the two eigen-
g;. Note that it is a sufficient criterion for the realization of states the qubits are projected.

the gateg; that all gatesy, with k<<i must have been real- Definition 1.A measurement pattert () on a clusterC
ized before, but not a necessary one. is a set of vectors

Let us, at this point, address the question of temporal .
ordering more explicitly. For proper discussion of the tem- MO={r,eSlaec}, (58

poral ordering we have to step out of the network frame for
a moment. First, note that in the case of the Qi basic defining the measurement bases of the one-qubit measure-
primitive are measurements. Thus, the temporal complexitynents onC.
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If this patternM (© of measurements is applied on an initial tum correlations required to explain the functioning of the
state| ¥ ). and thereby the set of measurement outcomes gates are derived from the basic correlati@®)srather easily,
and thus the use of Theorem 1 makes the explanation of the
{s}c={sae{0,1]aeC} (59 gates more transparent and compact.
In the simulation of an individual quantum gate according

is obtained, then the resulting stdte ;)¢ is, modulo norm  , geheme 1, after reading of the input state and the entan-

B _pl(C
factor, given bYW o) c=P{(M)| W), where gling operationS9), but before the measurements that re-
- e alize the gates are performed, the resulting state carries the
© 1+(=1)%ry- ol uantum input in an encoded form. This state is, in general
PA(M)=® : 60 9 P . ; Late 1S, in g *
isi KeC 2 not a cluster state. It is therefore not clegpriori that cluster

state correlations alone are sufficient to explain the function-
Additionally, let us introduce some conventions for label-ing of the gate. However, this is what Theorem 1 states. To
ing. Let C,(g) and Co(g) be such that/C,(g)|=|Co(g)|  prove the functioning of a gatgon the QG it is sufficient to
=n, wheren is the number of logical qubits processeddy demonstrate that a cluster state 6(g) exhibits certain
Operators acting on qubitse C,(g) andqeCo(g) are la- quantum correlations.
beled by upper indicesC((g),i) and Co(9),i’), 1<i,i’ Before we turn to the proof of Theorem 1 let us note that
<n, respectively. The qubitpe C;(g) and qeCp(g) are the measurements described B‘f(i}M(g))(M(g)), as they
ordered from 1 ta in the same way as the logical qubits that have full rank, project the initial cluster stalih) (g iNto a
they represent. tensor product state,|#)eg) =M ()@ | %)
S . J (9) Cm(9) (@) UCh(9) -
we make_: a d|§t|n0t|qn between the gatand the unl'gary Thereof only the second factd)¢ g)uc (g » 1S Of interest.
transformationU it realizes. The gat® e\ does, besides . - . : o . .
This state alone satisfies eigenvalue equati@is and is

specifying the unitary transformatiod, also comprise the . ; X X .
information about the location of the gate within the uniquely determined by these equations. To see this, consider
the stately')¢, . :UT|¢>C|(9)UC . It satisfies the A
0(g) O(g)

network.
After these definitions and conventions we can now stateigenvalue equations
the following theorem.

Theorem 1. Let C(g)=C,(9)UCwu(9)UCo(g) with a8 A 1.Col@D) yry = (— 1)y,
(9 NCw(9) =C(9)NCo(9)=Cu(9)NCo(9) =L be a _ _ (64)
cluster for the simulation of a gaig realizing the unitary U-(I’Cl(g))o-(l‘co(g))|¢’>:(—1)7\z,i|l’//’>,
transformatiorlJ, and| ¢).(q) the cluster state on the cluster z z
c(9). where we have written in shor’) for [/')¢,q)uc(q) - The

_ pCm(9)
Suppose the stateh)cq)= P (M) |¢)c(q) Obeys the state| ¢/’ )¢, gucy(g IS Uniquely defined by the above set of

2n eigenvalue equations commuting observables, it is a product of the Bell states.

0_(C|(g),i)(UO_(i)UT)(CO(g))|w)(j( = (=DM g Therefore | )¢ g)ucy(g) IS Uniquely defined as well.
X X g 9 (61) Proof of Theorem 1We will discuss the functioning of
the gates for two cases of inputs. First, for all input states in
@D FD T Col@) =(—1)zi the computational basis. This leaves relative phases open,
7z (Uoz’U0) |¢/>C(9) =1 |l’//>c(g)’ which have to be determined. Second, to fix them, we dis-
with Ay ;A\, €{0,1} and 1<i<n. cuss the input state with all qubits individually|ift ). As we

will see, from these two cases it can be concluded that the
gate simulation works for all input states of the computa-
tional basis. This is sufficient because of the linearity of the
applied operations; if the gate simulations work for states of
{he computational basis, then they work for superpositions of
such inputs as well.

Case 1The input|#;,) is one of the states of the compu-

Then, on the clustef(g) the gate g acting on an arbitrary
quantum input statdy;,) can be realized according to
Scheme 1 with the measurement directionsCijp(g) de-
scribed by M ©m(9) and the measurements of the qubits in
C,(g) beingo, measurements. Thereby, the input and outpu
state in the simulation af are related via

| houd=UUs|¥in), (62) tational basis, i.e.|yin)=12)=®_4|z),; with z,€{0,1},i
=1,...n. Then the stat¢¥,,(2))¢q) Of the qubits inC
whereUy is a byproduct operator given by [after performing a procedure according to Scheme 1, using a
. measurement patterm m(9) on the bodyCy(g) of the
Us= ® (O_[Zi])si+)\xvi(0_£(i]))\zvi_ (63) gateg, and applyingo, measurements of}(g)] is
€(g)>i)=1

No(D|¥ o 2)) ()= P P (X) PP (M) SCD) | 7).,
The significance of the above theorem is that it provides a

comparably simple criterion for the functioning of gate simu- ®|+ >CM(g)UCO(g) , (65

lations on the QE. We can now base the explanation of the

gates directly on eigenvalue equatiail, which were also  with norm factorsnp(z) that are nonzero for alt, as we

used to define the cluster states in a compact way. The quaghall show later.
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The input|z) in Eq. (65) satisfies the equation

n(2)2=P5 P ®|+), (66)
i=1

with PO = @ 11+ (-1)%6l1)/2, andn,(2) = 1/2"2 for
all z. Now note thatS“@ and PSP as well as
PEM@(Aq) and P(ZC'Z(Q)), commute. Thus|¥ ,(2) )¢ can

{st .
be written as

62V 0l 2)) ey = Pl @ (X) PEED MO M) [ ) )

{s} {s}
= P(cl(g))(x) P(chlz(g))| l/f>C(g) ' (67)

{s

where [ )¢ is specified by eigenvalue equatiofl) in
Theorem 1.

Let us, at this point, emphasize that the projections

Pg'}(g))(X) and P(ZC'Z(Q)) in Eq. (67) are of very different ori-

gin. The projecto;Pgi'}(g))(X) describes the action of the,

measurements on the qubits Gi(g). These measurements

are part of the procedure to realize some gata the cluster

PHYSICAL REVIEW &8, 022312 (2003

C

one finds (¥l P(z,'z(g))W)ag):l/Z", such  that
P(Z(?lz(g))llﬁ'>c(g)7é0 and therefore also
¢ c
PP O0PS W) #O. (70

or, in other wordsn;(z) #0 for all z.
Due to the fact that the projection?‘zc'z(g)) and

Pg}“"(g))(/\/l) are of full rank the above state has the form

€(9) €(9)
P{S'}g (X)PLY [ eq)

=Nn0(2)|9x.¢,0)® My, (0) @ Yol 2))eo(a) »
(71
where
n
|5>x,c|: & [sidxis

(@si)=1

and |m)¢, ) is some product state with|m)e, ql=1.
Elaborating the argument that leads to E&)) one finds that

C(g). One has no control over the thereby obtained measurdlo(?) =1/2" andng(2) = 1/2"2, but at this point the precise

ment outcomegs} specifying pg(g))

projector P(Zf;(g))

(X). In contrast, the

does not correspond to measurements that

values of the normalization factors are not important as long
as they are nonzero.
In Eq. (71) only the third factor of the state on the rhs is

are performed in reality. Instead, it is introduced as an auxinteresting, and this factor is determined by eigenvalue equa-
iliary construction that allows one to relate the processing ofjons (68):

guantum inputs to quantum correlations in cluster states. The

parameterg specifying the quantum inpug) and thus the

projectorP(ZC"Z(g)) in Eq. (66) can be chosen freely.
The goal is to find for the stateV ,,(2)) (g an expression

involving the transformatiorJ acting on the inputz). To

|ou(2))=€'"DUUs|2), (72)

whereUs is given by Eq.(63). Now, because of Eq67)
with n5(z)#0 V z, a solution(71) with Eq. (72) for the

C C . .
accomplish this, first observe that for the state on the rhs &tatePESi(g”(X) P(z,'z(g))W)ag) is also a solution for the state
Eq. (67) via Eq. (61), the following eigenvalue equations |¥u(2))c) . and one finally obtains

hold:
(UaTUN PO ) PT h) )]
2@ c
= ( — l))\z,|+Z,[ Pgsl}(g))(X)P(zylz(g)” ‘//>C(g)]7 (68)
withi=1,...n.

To make use of Eqs(68) we need to prove that
ng'}(g))(x) P(Zé;(g))|¢>c(g)¢0 for all z under the assumptions
of Theorem 1.

For this, we consider the scal@(rg)<<//|P(C'(g))w)ag) and

7,z
write P(Z(’j'z(g)) in the form
1 on €(9))
P(ZC'Z(Q’):—n( 1+ ® (—1)%9’) ., (69
' 2 k=1 iely
where |, CC,#Vk=1,...,2. For eachl, we choose an

i el and insert the respective eigenvalue equation from th

upper line of Eq.(61) into @ (¥1®j 1,09 ¥)e(q) - Since
®jci, 09 and US'C'(Q))(Ucr(x')UT)(CO(g)) anticommute,
c@)(¥1®;c1, 0¥ eg=0 for all I, Thus, with Eq.(69),

V0l 2) (@)= 87?1950, @ IMe,, 0@ [UUs[ D] e ) -
(73

There appear no additional norm factors in EZB) because
the states on the left-hand sidihs) and the rhs are both
normalized to unity.

Solution(73) still allows for one free parameter, the phase
factore' 7?. Note that,a priori, the phase factors for differ-
entz can all be different.

This concludes the discussion of Case 1. We have found
in Eq. (73) that the realized gate acts as

U=U UsD, (74)
where the gat® is diagonal in the computational basis and
contains all the phases”(?. What remains is to show that
D=1 modulo a possible global phase.

Case 2 Now the same procedure is applied for the input

state|yip)=|+):=®{_,|+);. Then, the stat¢¥ o (+))c(q)

that results from the gate simulation is

No(+) [Woul +)eig = Pig P P V(M) )i
(75)
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with a nonzero norm factang(+). Using the upper line of does not imply that first the measurements on the cluster
eigenvalue equation$l), the state}\[fom(+))c(g) isfoundto  qubitsinCy(g) and thereafter the measurementsifg) are

obey the eigenvalue equations performed.
. Instead, first, all those cluster qubie C,(g) UCw(g) are
(UalIuT)Co@ W (+)) = (=)™ * ST (+))e.  measured whose measurement basis is the eigenbasis of ei-

(76)  thero, or oy (remember that, after the removal of the redun-

] ) ] o ] ] dant cluster qubits, as described in Sec. Il C, we are dealing
Eigenvalue equationg’6) in combination with Eq(75) im- it clustersCy such that, apart from the readout, no mea-

ply that surements in ther, eigenbasis occir Second, possibly in
- several subsequent rounds, the remaining measurements are
= IX . ! . .
¥ oul +))cg) =€ |S>X'C|(9)®|m>CM(9)®[UUE|+>]Co(9)' performed in bases that are chosen according to previous

(77 measurement results.

In subsequent sections we will illustrate in a number of
amples how Theorem 1 is used to demonstrate the func-
tioning of quantum gate simulations on the QGnd how

the strategies for adapting the measurement bases are foun.

with xy being a free parameter. Therefore, on the input statg,
|+) the gate simulation acts as

U=e'YU Usg. (79
This observation concludes the discussion of Case 2. G. Function of the cNOT gate and general one-qubit rotations
The fact that Eqs(73) and (77) hold simultaneously im- In this section, we demonstrate that the measurement pat-
poses stringent conditions on the phasés). To see this, let terns that we have introduced do indeed realize the desired
us evaluate the scalar product quantum logic gates.
The basis for all our considerations is $&j of eigen-
¢x=c(@{Poul +)IUUs[9)xc,()® M)e, )@+ )en(o) - value equations fulfilled by the cluster states. Therefore, let

(79 us, before we turn to the realization of the gates in the uni-
versal set, describe how the eigenvalue equations can be ma-

From Eq.(77) it follows immediately that nipulated. Equation$l) are not the only eigenvalue equa-
_ tions satisfied by the cluster state. Instead, a vast number of
c,=e X, (80)  other eigenvalue equations can be derived from them.

The operatorK(® may, for example, be added, multi-
On the other hand, sinde- )= 1/2"’2226{0'1}n|z> and, by lin-  plied by a scalar, and multiplied with each other. In this way,
earity, | W o, +)) = 112725, 1o 30| Vou(2)), from Eq.(73) it a large number of eigenvalue equations can be generated
follows that from Egs.(1). Note, however, that not all operators generated
in this way are correlation operators. Non-Hermitian opera-
1 in tors can be generated, which do not represent observables,
CX_E E | e : (81) yet will prove to be useful for the construction of new cor-
ze{03 relation operators.
The sum in Eq.(81) runs over 2 terms. Thus, with Furthermore, if quantum correlation operatérfor state

le" 7| =1 for all z, it follows from the triangle inequality |#) commutes with measured observabig oV, the
that |c,|<1. The modulus ofc, can be unity only if all correlation will still apply to the measured state. More
e—irz(z)Xare equal. As Eq(80) ShéWSv|C | is indeed equal to specifically, if the state|¢) satisfies the eigenvalue
unity. Therefore, the phase factoes”? must all be the equation K|¢)=\|¢) and [K,r;-o]=0, then the state
same, and with Eq$80) and (81), resulting from the measuremenl?g'i)|¢), where Pg'i)

=[1+(—1)%r;-0(]/2, satisfies the same eigenvalue equa-
tion sincex[Pg'i>|¢>]=[Pg'i>K|¢>]=K[P<S'i>|¢>]. Thus, the

If we now insert Eq(82) into Eq.(73), we find that the gate correlationK is inherited to the resultant staré‘i)|¢>).

simulation acts upon every input state in the computational To demonstrate and explain the measurement patterns re-
basis, and thus upon every input state,fb;e‘XU Us . alizing certain quantum gates, the program is as follows.
Therein, the global phase factet has no effect. Thus, we First, from the set of eigenvalue equations that define the
find that the gate simulation indeed acts as stated in@®@s. cluster stat¢d).q , We derive a set of eigenvalue equations,
and (63). O which is compatible with the measurement patternCgn
We would like to acknowledge that a similar theorem re-Then, we use these to deduce the set of eigenvalue equations
stricted to gates in the Clifford group has been obtained irthat define the stat@))c), where the qubits irCy have
Ref.[20]. been measured. Thus, we demonstrate that the assumptions
Let us conclude this section with some comments on howor Theorem 1, that is the set of Eq$.1), are satisfied with
to use this theorem. First, note thidieorem 1 does not imply the appropriate unitary transformatidéh Third, Uy is ob-
anything about the temporal order of measurements within dained from Eq.(63) as a function of the measurement re-
gate simulationln particular, it should be understood that it sults. The order o) andUy is then interchanged and, in this

e"@=¢lx  Vz (82
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way, the temporal ordering of the measurements becomes oD ) o=|v)c, (86)
apparent.

d f _
1. Identity gate Dol PDlp)e=|9)e.

As a simple example, let us first consider a gate, which Suppose, a measurement pattérhon these qubits con-

realizes the identity operatiohon a single logical qubit. tains measurements of the observadleon qubitsc andd.
For the identity gates, , Cy, andCq, each consists of a Measurements in the, basis can be made before any other

single qubit, so labeling the qubits 1, 2 and 3@, 2  mMeasurements M. If these two measurements alone are
ECM, and 3ECO The pattern/\/l(]) Corresponds to a mea- carried out, the new state fulfills the fOIIOWing eigenvalue

surement of qubit 2 in the-, basis. equations, derived from E@86) in the usual way,
Let |¢)¢qy be the cluster state on these three qubits. The (@) (b) (&) /\ _ s
state is defined by the following set of eigenvalue equations. 070 07 [ e=(— 1)), -
o NoPa®b)ey=d)eq) (833 oo |y)e= (=1 y)c.
aDoPa®| b)ey=d)cq) (83p  The resulting state is therefore a cluster state from which
gubitsc andd have been removed, atdande play the role
U§1)0§2)0§3)| Bey=|d)eq - (830 of adjacent qubits. Thus, the two measurements have mapped

a cluster state onto a cluster state and thus do not contribute
Using the stabilizer formalisrfiL0] one obtains that after to the logical operation realized by, which, in the case
the measurement of qubit 2 in the eigenbasisogfwith ~ Where boths; andsy equal 0, is completely equivalent to the
outcomes,, the resulting state of the clust¢y)q.y, obeys reduced measurement pattekd’, from which these adja-

the eigenvalue equations cento, measurements have been removed.
o Mol3)] Pyey=(—1)2[P)cqy (84 3. One-qubit rotation around x axis
and A one-qubit rotation through an angteabout thex axis,

U, a]=exd —ial20y], is realized on the same three qubit
(1) ,(3) — layout as the identity gate. Labeling the qubits 1, 2, and 3, as
oy o . 85
o e =19 @9 in the preceding section,=1C,, 2=Cy, and 3=Cq. The

Now, since qubits 1 and 3 represent the input and outpuineasurement patted(U,) consists of a measurement, on
qubits, respectively, the assumption of Theorem 1, (Edj), qubit 2, of the observable represented by the vectgiz)
is satisfied fold =1. The byproduct operatddy is obtained = (cos(y),sin(y),0),
from Eq. (63), and we find that the full unitary operation R R
realized by the gate i =10%0>'= o 2011. () o=cosnaytsinnpoy,=U,[n]oU,[— 7],

Also note that a wire with length oneC(H)=1, (88)
Cu(H) =3, Co(H)=2), i.e., half of the above elementary g6 eigenstates lie in they plane of the Bloch sphere at
wire, implements a Hadamard transformation. As in this con-, .

ion the i q bits i i bl an angle ofy to thex axis.
struction the input and output qubits lie on different sublat-" 1, =" ;ster statfp)c., is defined by Eqs(83). After the
tices ofC, one on the even and one on the odd sublattice, we X h " .
do not use it in the universal set of gates. Nevertheless, thifi€asurement ofM(U,), the resulting state i§¢)c,)

realization of the Hadamard transformation can be a usefut P3) )1 d)ew,y, where PG =[1+(—1)%r,(n)-o]/2.

tool in gate construction. For example, we will use it in Sec.To generate an eigenvalue equation whose operator com-
Il G 4 to construct the realization of therotations out of the .. Withf,,,(7)- &, we manipulate Eq(83¢ in the fol-

realization ofx rotations. lowing way:

2. Removing unnecessary measurements 2) (3 _
g Y oPo )|¢>C(UX)_|¢>C(UX)1 (89

In larger measurement patterns, whenever pairs of adja-
centoy- qubits in a wire are surrounded above and below byi.e.,
either vacant lattice sites ar, measurements, they can be @) @)
removed from the pattern without changing the logical op- gz |¢>C(ux)=ffx |¢’>C(UX)1
eration of the gate. This is simple to show in the case of a
linear cluster. Consider six qubits, labelado f, which are i.e.,
part of a longer line of qubits, prepared in a cluster state.

Four of the eigenvalue equations that define the state are [ng)_ 0>(<3)]|¢>C(UX):O’
o@D aP Oy e=|w)e, therefore
a® @y o= ), exp—in/2L o)~ oD )owy=Idewy. (90
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where the last equation is true for ajle [0,27]. This takes M(U,) = [MEGH)

a more useful form, if we write it in terms of one-qubit
rotations, FIG. 5. Useful identity for the realization of the rotatith| « |

as the sequendd U,[ a]H.
UL n]u - 7] ®)euy= | ®)e,) - (91 X

We use this, and the equation U,[a]=H U,[ a]H. The Hadamard transformations may be

realized as wires of length one, see Sec. Il G 1. Thus, the
(1) 4(2) .(3) - measurement pattern of theotation is that of thex rotation

oy oo = , 92 ) i ) . .
Lo |¢>C(Ux) |¢>C(Ux) 2 plus one cluster qubit on either side measured in the eigen-

to construct the subsequent eigenvalue equation. Let us dQEiSiS ofoy, as c.iispllayed in Fig. .5' .
note the operator on the Ihs of eigenvalue equai@in asA The explanation in terms of eigenvalue equations obeyed
and the operator on the Ihs of E@2) asB. With Eqs.(91)7 by cluster states is as follows. Let us label the qubits 1-5.

and (92) it follows thatABA*1|qb)C(U =)oy, e The cluster statw)c(uz) is defined by eigenvalue equations
g X of the usual form. If qubits 2 and 4 are measured indhe
| Bewy= UL e PUPL - UPL - 7] basis, the resulting stale')c, =P PL2 [d)cu, fulfills
3 (3 the following set of eigenvalue equations:
XU 71l e, - (93)
W ®eO) ") r=| "
ooy o cu)y=1d" e, (973
Note that the operatord andB do not commute. . 2 (L2
Applying Py, . to both sides, we obtain the following 1) (3) (5 4/ )
eigenvalue equation fdu) e »: ePaP Pl ewy=(—1%¢ )y,  (97H
Ugl)US(:g)[_ 77]0-§3)U>((3)[ n]|¢>C(UX):(_1)52|¢>C(UX) . 0;1)0£3)0-§5)|¢’>C(UZ):(_1)S4|¢’>C(Uz) . (97C)

94

In the same way as for the identity gate we also apply theThis set of equations is analogous to E@S), except for the

projector to an eigenvalue equation generated from Eqsc!ifferent eigenvalues and that the input and output qubits

(839 and (830 to obtain andz bases have been exchanged. From here on the analysis
of the measurement pattern runs parallel to the preceding
ey = oMol Pew,) section.

One findsM(U,) realizes the operatiod,(B) if the ba-
=M U - 51ePUP 9] e, (99 sis of theﬁmeasurement onaqubit 3 isachosen to be the eigen-
basis ofr,,((—1)%(—))-o, wherer,,(7) is defined in
and thus we see that E¢1) is satisfied forU=U,[ — 7] Eq. (88). Qubit 2 must thus be measured prior to qubit 3. The

andUy =002, Interchanging the order of these operatorsbyproduct operator for this gate iy y =032 ot "%,

is not as trivial here as for the identity gate. Whem is
propagated througb,[ %], the sign of the angle is reversed, 5. Arbitrary rotation

so we find that the gate operation realized by thigU,) in The arbitrary Euler rotation can be realized by combining

the QG is the measurement patterns of rotations aroxiaddz axes by
_ S — )] overla}ylng'lnput and output qubits of adjacent patterns, as

Ug= Ul (=D (=n)] (96) described in Sec. Il D. This creates a measurement pattern of
The sign of the rotation realized by this gate is a function ofS€Ven qubits plus input and output qubits, labeled as in Fig.
s, the outcome of the measurement on qubit 1. This i$> With measurements af, on qubits 3, 4, 6, and 7, and
an example of the temporal ordering of measurements if’éasurements in the-y plane at anglesr, 8, andy on
the QG. In order to realizeU,[a] deterministically, the dubits 2, 5, and 8, respectively.
angle of the measurementy, on qubit 2 must bey The unitary operation realized by these connected mea-
=(—1)%(~ a), thus this measurement can only be realizedSUrement pattems is

after the measurement of qubit 1.
oldlabels 1 2 34 5 6 78 9

4. Rotation around z axis m m D
The measurement pattern for a rotation aroundzthgis 3 45
In removed Out

U,[ B]l=exd —iBl2a,] is illustrated in Fig. 2. It requires five newlabels 12
qubits for its realization.
The measurement layout((U,) is similar to the rotation FIG. 6. General rotation composed of twarotations and &
about thex axis, except for two additionat, measurements rotation in betweer(Euler representationin the QG realization
on either side of the central qubit. The simplest way to un-pairs of adjacent cluster qubits measured in dheeigenbasis may

derstand this gate is to regard it as the concatenatiobe removed from the measurement pattern.
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UsUrol & 7,¢]1= 008U, [(—1)5(— 9)] To realize either of the gates we use again a cluster state

sUrol &7 z o X of five qubits in a chair®(H). Let the labeling of the qubits

X g2 %5g%TsY [(—1)%(—B)] be as in Figs. @) and Ze), i.e., qubit 1 is the input and qubit
‘ ) 5 is the output qubit.
X oo ?U[(—1)%(—a)l. (98) A cluster staté ).y obeys the two eigenvalue equations
— _ 1 3 4 5
As we have shown above, adjacent pairssgfmeasure- |¢>C(H)—K(l)K(S)K(4)|¢>C(H)—‘T§< )‘T§ )U§ )Ug )|¢>C(H) ,
ments can be removed from the pattern without changing the (103

operation realized by the gate. The operation realized by this |¢>C(H):K(Z)K(g)K(5)|¢>C(H)=U§1)0§/2)0§3)U§<5)|¢>C(H)-
reduced measurement pattern is obtained by setting the mea-

surement results from the removed qub|ts t(BQ,S4,SG,S7 When qultS 2, 3, and 4 of this state are measured |n1’;h€
=0. After relabelling the remaining qubits in the measure-€igenbasis and thereby the measurement outcaness,

ment patterns 1-5, we obtain s,€{0,1} are obtained, the resulting stgig), obeys the
eigenvalue equations

UEU Rot[gy 7, g] = 0-)5(4UX[ - 7] 0-§3U Z[( - B)] 0_(1)0_(5)| ¢>C(H) — ( _ 1)S3+S4| ¢>C(H) ,
XotoPU[(—1)%(—a)]. (99 (104

Do @) ey= (=175 $) ey -
Propagating all byproduct operators to the left-hand side, we . .
find that the unitary operation realized by the measuremerff"™®M EQ.(101) we see that correlationd04) are precisely

pattern is those we need to explain the realization of the Hadamard
gate. Using Theorem 1 we find that by Procedure 3 with
Urol &7, ]=U,[ — (= 151y ]U [ — (— 1)%28] measurement of the operatar§?, o'?, ol¥, and_a§4’ a
Hadamard gate with a byproduct operator, as given in Eq.
XU [ = (=1)%a], (100 (30, is realized.

Considering the rotationU,[ /2], a cluster state

with byproduct operatorUs =032 *a3t"%. One finds  |¢)c, 2 Of a chain of five qubits obeys the eigenvalue

that, to realize a specific rotationUgy{ &, 7,{] equations

=U,[{]U,[ n]U,[&], the anglesa, B, 7y specifying the

measurement bases of the qubits 2, 3, and 4 are again depeni®)c(u /2= K(l)K(s)K(4)K(5)|¢>c<uz[77/z]) ,
dent on the measurement results of other qubits. We see that

a=(—1)%(—&), B=(—1)2(—7n), y=(—1)%*%(—7). ==aPoPaPo®| Yo izl B fmi)
To realize a specific rotation deterministically, qubit 2 must D (4)
thus be measured before qubits 3 and 4, and qubit 3 before =K¥K |¢>C(Uz[77/2])

qubit 4, in the bases specified in Sec. Il B.
=oMoPoPol)| ®)e(u g2y - (105

6. Hadamard andw/2-phase gates ) ] )
When qubits 2 and 4 of this state are measured indthe

The Hadamard and the/2-phase gates have the property eigenbasis and qubit 3 is measured in dfjeeigenbasis, with
that under conjugation with these gates Pauli operators aige measurement outcomes, Ss, S, {0,1} obtained, the

mapped onto Pauli operators, resulting staté )¢y ;-12) Obeys the eigenvalue equations

HoH =0,
I (101) NN e a2y = (= DS e g2y
HoH =0, (106)
’ g oMol ¢>C(uz[w/2]): (—1)%27% ¢>C(uz[ﬁ/2]) .
and - . .
Using Theorem 1 we find that by Procedure 3 with measure-
U ml2]oU [ ml2] =ay, ment of the operators(”, ¢'?), 0¥, ando (") a w/2-phase
(102  9gate is realized, where the byproduct operator is given by
U 7l2]lo U wI2]"=a,, Eq. (30).

from which propagation relation$3) follow. Related to this 7. Thecnor gate

property is the fact that these two special rotations may be A measurement pattern that realizesnoT gate is illus-
realized viao, and o, measurements. Such measurementrated in Fig. 2. Labeling the qubits as in Fig. 2, we use the
bases need not be adapted to previously obtained measusame analysis as above to show that this measurement pat-
ment results and, therefore, while these rotations might bé&rn does indeed realize@oT gate in the Qg.

realized in the same way as any other rotation, there is a Of the clusterC(cNOT) on which the gate is realized, qu-
more advantageous way to do so. bits 1 and 9 belong t@,, qubits 7 and 15 belong 16, and
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1 2 3 4 5 6 7 Therein, qubits 1 and 7 represent the input and output for the
, control qubit and qubits 9 and 15 represent the input and
Cn E D E E IZ’ D E Cou output for the target qubit. Writing theNOT unitary opera-
E 8 tion on control and target qubitsnoT(c,t), we find

t [ JCJL T [o][ ] [@] tu cnoT(e,t)oldcenot(c,t) =@l (109a

9 10 11 12 13 14 15

cnoT(c,t)olcenoT(c,t) = l® (109hH
FIG. 7. Pattern of correlation centers representing eigenvalue
equation(1073. cnoT(e,t)aPenot(c,t) = ol (1099
the remaining qubits belong @, . Let|¢) be a cluster state cnoT(e,t)oPenot(c,t) = oDl (1099
on C(cNoT), which obeys the set of eigenvalue equations
2). Comparing these equations to eigenvalue equatibf8a—
From these basic eigenvalue equations there follow th¢108d, one sees that{ does indeed realize anoOT gate.
equations Furthermore, after reading off the operatdg using Egs.
(61 and (63) and propagating the byproduct operators
| ) =KOKEOKHKOK DK EK 3K (19) 4) through the output side of thenoT gate, one finds the ex-

ressions for the byproduct operators, reported in(E28§).
- _051)053)U§/4)U(ys)a(x7)U§B)U§13)U(X15)|¢>' p yp p p (E8)

(1073 H. Upper bounds on resource consumption

k@B B (6)] 4\ — (1) (2) (3) (5),(6), (7) Here we discuss the spatial, temporal, and operational re-
|#)=KTKEKEKP ¢) = 0370y 0y 0y 0y oy (|1%>7,b sources required for the Q@nd compare with resource re-
quirements of a network quantum computer.
— 1 (9 (1)1 (131 (15)] 4\ — (9) (11) (13) (15) To run a specific quantum algorithm, the @Qf@quires a
)= KEKEPKEIKEP] ) = on o Ronc o |((ﬁ1>67© cluster of a certain size. Therefore, the patial resources
Sare the number of cluster qubits in the required cluster state

| )= KOKOK K 10K (12K (14) ) |p)e, ie., S=]|C|. The compu'tation is driven by one-qubit _
measurement only. Thus, a single one-qubit measurement is
=Moo (Ng® e g(196125N5(19)] ¢). one unit of operational resources, and the @@erational

resources Oare defined as the total number of one-qubit
measurements involved. The operational resouzese al-

Subsequently, we will often use a graphic representation offays smaller or equal to the spatial resourBes
eigenvalue equations such @€979—-(107d. Each of these o=<s, (110
equations is specified by the set of correlation centefier
which the basic correlation operatdté? (2) enter the rhs of  since each cluster qubit is measured at most once. As for the
the equation. While the information content is the same, it iQemporaJ resources, the Q®g|ca| depth Tis the minimum
often more illustrative to display the pattern of correlationnymber of measurement rounds to which the measurements
centers than to write down the corresponding cluster statgan pe parallelized.
eigenvalue equation. As an example, the pattern of correla- | et ys briefly recall the definition of these resources in the
tion centers, which represents the eigenvalue equétiofd  network model. The temporal resources are specified by the
is given in Fig. 7. _ network logical deptfT,, which is the minimal number of
_If the qubits 10, 11, 13, and 14 are measured indhe  steps to which quantum gates and readout measurements can
eigenbasis and the qubits 2, 3, 4, 5, 6, 8, and 12 are measurgd parallelized. The spatial resourcgg, count the number
in the oy eigenbasis, whereby the measurement resultgf |ogical qubits on which an algorithm runs. Finally, the
S2—Sg, Sg, S0 — S14 r€ obtained, then the cluster state ei-gperational resource, are the number of elementary op-
genvalue equation§l073—(107d induce the following ei-  erations required to carry out an algorithm, i.e., the number
genvalue equations for the projected stagg: of gates and measurements.
The construction kit for the simulation of quantum logic

networks on the Qgshall contain a universal set of gates, in
(1083 oyr case thenoT gate between arbitrary qubits and the one
qubit rotations. Already the next-neighboroT with general

(1079

0'&1)0'5(7)0')((154 'r//>: ( _ 1)1+s3+s4+55+58+sl3| l/l),

oMall|yy=(—1)%"sstsstSe| ), (108D [otations is universal since a genecaloT can be assembled
). (15) . of a next-neighbocNoT and swap gates, which can them-
oy oy ) = (— 1)t e, (1089  selves be composed of next-neighbaoTs. However, in the
following we would like to use for the generaNoT the less
oD {Na(9)| )= (—1)%"Se ™ Se+s10¥ S127 514 ), cumbersome construction described in Sec. IV B. For this

(1080 gate, the distance between logical qubits, i.e., between paral-
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lel qubit wires, is 4. The virtue of this gate is that it can (logarithmically in the numben of logical qubit3, and thus
always be realized on a vertical slice of width 6 on the clus-there is no exponential overhead in either classical or quan-
ter, no matter how far control and target qubit are separatedum resources.
A slice of width 6 means that the distance between an input The upper bounds in Eqg111)—(113 should not be
qubit of the gate and the corresponding input of the consecuaken for estimates. For algorithms of practical interest the
tive gate is six lattice spacings. This genecaloT gate de- required resources usually scale much more favorably and
termines the spatial dimensions of a unit cell in the measurethere do not even have to be overheads at all. This is illus-
ment patterns. The size of this unit cell is<#. The other trated for the temporal complexity of Clifford circuits in Sec.
elementary gates, the next-neighliovoT and the rotations Il | and in the examples of Sec. IV. A spatial overhead always
are smaller than a unit cell and therefore have to be stretchedxists. However, this is compensated by the fact that the
This is easily accomplished. The next-neighbsioT, as dis-  operational effort to create a cluster state is independent of
played in Fig. 2a) has a size of X6 and is extended to size the cluster size.
4X 6 by inserting two adjacent cluster qubits into the vertical
bridge connecting the horizontal qubit lines. The general ro- o ) _
tation as in Fig. #) has width 4 and is stretched to width 6 |- Quantum circuits in the Clifford group can be realized
by inserting two cluster qubits just before the output. in a single step

Concerning the temporal resources we first observe that The measurement bases to realize the Hadamard and the
we can realize the gates in the same temporal order as in thg/2-phase gates need not be adapted since only opetators
network model. To realize a genex@lioT on the QG takes  and ¢, are measured. The same holds for the realization of
one step of measurements, to realize a general rotation tak@fe cNoT gate, see Fig. 2. Thus, all the Hadamard,
at most three. For the network model we do not assume that/2-phase, andNoT gates of a quantum circuit can be real-
a general rotation has to be Euler-decomposed. Rather Weed simultaneously in the first measurement round, regard-
assume that in the network model a rotation can be realizegss of their location in the network. In particular, quantum

in a single step. Thus, the temporal resources of the&@@  circuits that consist only of such gates, i.e., circuits in the

in the network model are related via Clifford group, can be realized in a single time step. As an
example, many circuits for coding and decoding are in the
T<3Tgn. (111 clifford group.

The fact that quantum circuits in the Clifford group can be

As for the spatial resources, let us consider a rectangulaealized in a single time step has previously not been known
cluster of heightr and widthw on which the qubit wires are  for networks. The best upper bound on the logical depth that
oriented horizontally, with the network register state propawas known previously scales logarithmically with the num-
gating from left to right. As the logical qubits have distanceper of logical qubitg21].
4, the height of the cluster has to be-4S;,— 3, whereS, Note that, as stated by the Gottesman-Knill theof&g,
is equal to the number of logical qubits. Further, the num- there is no need for fast Clifford circuits if the quantum
ber of gates in the circuit is at moS Ty, because, in the  output is measured in a Pauli basis because these circuits can
network model, in each step at md&j,, gates can be real- pe simulated efficiently classically. However, the purpose of
ized. On each vertical slice of width 6 on the cluster there fitshis section is to point out that the whole Clifford partaofy

at least one gate such that—taking into account an extra slicguantum circuit can be performed in a single time step. We
of width 1 for the readout cluster qubits—for the width holds will discuss this point further in Sec. Ill B.

W=<6SynTgnt 1. With S=h w one finds that Here we find a first aspect of Q@omputation, which is
) not adequately described within the network model, and with
S=<24Sqn" Tqin- (112 this observation we conclude the discussion of the: @€a

simulator of quantum logic networks.
In a similar way, a bound involving the network opera-

tional resources can be obtained. The spatial overSeatt IIl. COMPUTATIONAL MODEL UNDERLYING THE QC
the operational overhea@ per elementary network opera- _ _ _
tion is <24Sy, if this operation is a unitary gate from the A. Processing of information

universal set described before, and is equal to 1 if this op- | the network model of quantum computation one usu-
eration is a readout measurement. Thus, we also have  a|ly regards a quantum register as the carrier of information.
The quantum register is prepared in some input state and

S<240inSyin. processed to some output state by applying a suitable unitary
transformation composed of quantum gates. Finally, the out-
O=<240,Syin - (113 put state of the quantum register is measured by which the

classical readout is obtained.

The purpose of this section was to demonstrate that the For the QG the notions of “quantum input” and “quan-
scaling of spatial and temporal resources is at worst polynotum output” have no genuine meaning if we restrict our-
mial as compared to the network model. In Rgf] it has  selves to the situation where the input state is known. As
been shown, as stated in Sec. Il A, that the required classicatated before, Shor’s factoring algoritHh7] and Grover’s
processing increases the computation time only marginallgearch algorithni18] are both examples of such a situation.

022312-18



MEASUREMENT-BASED QUANTUM COMPUTATION ON. .. PHYSICAL REVIEW A68, 022312 (2003

In these cases the final result of any computation —includingly,,— I(0) I(1) 1(2) I3) =1

guantum computations—is a classical number. In a,QC N / A" / R / measurement
computation this number is extracted from the outcomes of apparatus
I ] ]

all the one-qubit measurements. The entire computatior

amounts to just measurements of the cluster qubitsinacer ([ QO QO QOO0 000000 ;
. . | qubit

tain order anq pa3|s. o o Xo) 0000000 0| Ilaice
We have divided the sét of cluster qubits into subsets

M, andO to describe the Qg@in terms of the network model. o )e) 000000 o

Such a terminology is not required for the Q& priori. It is (oo O0O000OKKO

true that when a quantum logic network is realized on a |Q Q 0O000000O0

cluster state there is a subset of cluster qubits that play the

role of the output register. However, these qubits are not the 00000000000

final ones to be measured, but among the firstThe mea- Oi ®) |O oo O| 00O |O 0)

surement outcomes from all the cluster qubits contribute to Q @ Q Q,
the result of the computation. The qubits ©fCC simulate o ?

the output state of the quantum register and thus contribute FG. 8. General scheme of the quantum computer via one-qubit
obviously to the computational result. The cluster qubits inmeasurements. The se@s of lattice qubits are measured one after
the setl CC simulate the fiducial input state of the quantum the other. The results of earlier measurements determine the mea-
register and their measurement contributes via the accumgurement bases of later ones. All classical information from the
lated byproduct operator d@. Finally, the qubits in the sec- measurement results needed to steer the @Contained in the

tion M CC of the cluster whose measurements simulate thénformation flow vectorl(t). After the last measurement round
quantum gates also contribute via the byproduct operator. tmax |(tmad contains the result of the computation.

Naturally there arises the question whether there is any . ,
difference in the way how measurements of cluster qubits iff®mPplicated that one would gain no advantage over the clas-

I, O, or M contribute to the final result of the computation. sical algorithm for the considered problem. This is not at all
As shown in Ref[7], it turns out that there is none. This is the case. If the network algorithm runs omubits, then the
why we can abandon the notions of quantum input, quanturfilassical data that the Q(as to keep track of is entirely
output, and quantum register, altogether from the descriptiofontained in a 8-component binary valued vector, which we
of the QG.. have called the information flow vectéft) [7]. The update
Furthermore, quantum gates are not constitutive elemen®f |(t) is a classical computation that is needed to adapt the
of the QG these are instead one-qubit measurements pefh€asurement bases of cluster qubits according to previous
formed in a certain temporal order and in a spatial pattern omeasurement outcomes.'These updates and the final identifi-
adaptive measurement bases. In fact, the most efficient ter§ation of the computational result from(ty,) are all
poral order of the measurements does not follow from thelementary. _ _
temporal order of the simulated gates in the network model. Conceming the resources for the classical processing of
The general view of a QCtomputation is as follows. The theé measurement outcomes in a QBmputation, we point
cluster C is divided into disjoint subset®,CC with 0<t  Out that this processing increases the total time of computa-

<tmax i.e.,:T’th:C andQsN Q= for all s#t. The cluster tion only marginally[7].

qubits within each se, can be measured simultaneously In summary, the fc;rmﬁl ﬂeicrlptlon of the @8 based on i
and the sets are measured one after another. Th@,seon- primitive quantities of which the most important ones are the

sists of all those qubits for which no measurement basesetSQtCC of cluster qubits, defining the temporal ordering
have to be ad'usteg e those of which the operator 3f measurements on the cluster state and the binary-valued
) T perajoroy , information flow vectorl (t), which is the carrier of the al-

) i
or o, is measured. In the subseque_nt measurement rOun(g;%rithmic information. The reader who is interested in how
only operators of the form ce#,*sinpo, are measured

here|¢| < m/2, 90, Th b daoti this computational model arises and in its detailed descrip-
Wherejp|=mlz, 71. 1€ measurément bases are atapliVei,, is referred to Ref[7], or, for concepts and summary, to
in these rounds, i.e., they are adapted to measurement res

es€ 1o . Bf.[8].
obtained in previous rounds. The measurement outcomes (8]

from the qubits inQ, determine the measurement bases for
the qubits inQ,, which are measured in the second round,
those fromQ, and Q; together determine the bases for the In this section we relate QGlgorithms to graphs. We do
measurements of the qubits@y,, which are measured in the this by considering non-universal graph states suited for the
third round, and so on. Finally, the result of the computationspecific algorithm in question. For the @Cthe Clifford part

is calculated from the measurement outcomes obtained in afif each algorithm can be removed. We show that a math-
the measurement roundBig. 8). ematical graph comprises all the information that needs to be

Now there arises the question of how complex the rekept of the Clifford part.

quired classical processing is. In principle, it could be that all While the network formulation of a quantum algorithm is
the obtained measurement results had to be stored separatgiyen as a sequence of quantum gates applied to a fiducial
and the functions to compute the measurement bases were isput state, the Qgversion of a quantum algorithm is speci-

B. Quantum algorithms and graphs
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fied by a measurement pattern on the universal cluster state The state |\If>C\Q0 can thus be regarded as a
plus the structur¢7] for the processing of the measurement[|c\ Q,|,0d]-stabilizer code, with the distan@knot speci-

outcomes. fied. This state fulfills the assumptions of Theorem 1 in Ref.

o To motivate the consid'era'tior;s of thils section, note thats3) The cited theorem states that any stabilizer code over
the measurement pattern is, in the simplest case, just a copy, alphabeA=1I",n is [local unitary] equivalent to a graph
of the network layout to the substrate cluster state, imprinte ode

by the measurements. As such it contains information abou . . .

. . : . We now specialize to the case of our interést )2, It
the precise location of the gate simulations and about th I f the above-mentioned theorem that the state
way the “wires” connecting the gates are bent around. Thes%ljOWS rom.f. di EV(114) . II | unit valent t
are all details of the realization of an algorithm but do not )evq, Specified in Eq IS local unitary equ"’a enttoa
belong to the description of the algorithm itself. Thus, thegraph state ¢{K}>G(C\QO,EC\Q0) Eq. (20). That is, the state
measurement pattern introduces a large amount of reduq}q;>c\Q0 obtained in a Qg computation after the first round

dancy into the description of a QGigorithm. Th'$ redun- of measurements may as well be obtained from a graph state
da_ncy may be r_educed toa large extent by allowing for nonM{K})G o via local unitary transformations;
universal, algorithm-specific quantum resources. (€\Qo-Eciqy)

Clearly, at this point one has to specify how special thednd the subsequent measurements may be performed
algorithm-specific resource is allowed to be. Obviously itas usual. Alternatively, one may use the graph state
would make no sense to take the quantum output of the?{x})e(c. g, £, o) directly, only modifying the measure-

entire network as the required quantum resource and to renent bases instead of performing the local rotations prior to
gard the subsequent readout measurements as the algorithiile measurements. Thus, in a QEmputation with a spe-
Here, we allow for any graph sta], Eq.(20) as the quan- cjal graph state as the quantum resource and the first mea-
tum resource. Graph states are easy to create, e.g., via unitafijrement round omitted, the way of processing the classical
networks or from cluster states via measurements. information is the same as in a @@omputation with a
To allow for an algorithm-specific graph state as the quanynjyversal resource and the first measurement round
tum resource of a QCcomputation reduces the redundancyperformed_
of both the description and the realization of a quantum al- The graphs associated with statdd4) are, in general,
gorithm. This can easily be seen from the material presentefot unique[23]. A constructive way to obtain graphs on
in Sec. Il C. All the cluster qubthEC\CN can be get rid of C\QO from G(C,EC) and the measurement bases of the qu-
either by measuring them in the, eigenbasis or equiva- pijts in Q, has been described in R¢24].
lently by not placing them initially into their positions at all. Now note that the measurement of the qubitQrealize
The remaining state on the subclustky is again a cluster the Clifford part of a quantum circuit. The fact that we can
state. Hence_, it is also a graph state. It is less redundant angqyce the quantum resource by these qubits meansvthat
no longer universal. can remove from each quantum algorithm its Clifford part
But we can go further. Not only the qubits measured inThjg represents, in a way, an extension to the Knill-
the o, eigenbasis may be removed from the cluster but inGottesman theoreii22], stating that a quantum computation
stead all those qubits of which one of the Pauli operatgrs  that consist only of quantum input state preparation in the
oy 0r o, is measured, i.e., all the QUbitS which form the Setcomputationa| basis, unitary gates in the Clifford group,
Qo- The state of the unmeasured qubits that emerges aftefieasurement of observables in the Pauli group, and gates in
the measurement of the cluster qubitsQg is again(local  the Clifford group conditioned on the outcomes of such mea-

equivalent to a graph state. surements, may be simulated efficiently classically and thus
This may be seen as follows. First note that the operatorfequires no quantum resources at all.
P, (o) v, which appear in Eq(20) form a stabi- With only a single non-Clifford operation in the circuit,

lizer of the statel¢{«})s. The generator of the stabilizer such as a one-qubit rotation about most axes and angles, the
contains|C| elements for a state 9€| qubits. After all the efficient classical formalism on which the Gottesman-Knill
qubits qe Q, have been measured, the resulting stateheorem rests can no longer be applied. The, @@hstruc-
|\P>C\QO of the|C\ Q| unmeasured qubits is again describedtion, on the other hand, is not affected by this. Each quantum
by a stabilizer of the form network algorithm in question may be reduced by its Clifford
part. Only the non-Clifford gates require quantum resources.

[\ Qol oy (inz The price is that the universal quantum resource, the cluster
® (o) Xai(a) [ W)eg,= =1 W)eg, state, is changed into a nonuniversal, algorithm-specific
=1 resource—a graph staf@0)—on fewer qubits. The Clifford

Va=1,...|C\Qql, (114 part of the network algorithm specifies the corresponding

graph.

. ) ] In conclusion, instead of describing a quantum algorithm
with two |C\Qo| X |C\Qo| matrices X and Z, for which a5 a network of gates applied to some fiducial input state, a
Xai Zaie{0,2}. The |C\Qq|X2|C\Qo|-compound matrix qguantum algorithm magarguably more effectivelybe char-
(X|2) [12] is called the generator matrix of the stabilizer for acterized by a graph specifying the quantum resource and the
|¥)eiq, The statgW)e o, is uniquely determined by the structure [7] for the processing of the measurement
generator of its stabilizer. outcomes.
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FIG. 9. Simulation of the Hamiltoniai, as specified in Eq.
(115. (a) Measurement patterrib) Correlation centers for addi-
tional correlation. Shaded squarés (b)] represent cluster qubits
measured in adaptive bases.

IV. EXAMPLES OF PRACTICAL INTEREST

A. Simulating multiqubit Hamiltonians

PHYSICAL REVIEW A68, 022312 (2003

Faay 0=UL(—1) 20l Ul[(—1)*M2¢] (116

is measured, wherdJ,[a]=exp(—iao,/2). Therein, the
angle¢ is given by

(117

and\y €{0,1, which depends linearly on outcomes of mea-
surements in the first round, will be specified below.

To understand the functioning of the Hamiltonian simula-
tor, let us first discuss the states’) on the clusterC(sim)
after the first round of measurements. By the techniques for
stabilizer manipulation described in RgL0], the statd ')
obeys the following eigenvalue equations:

=gt

05(3’4)05(' ,1)0_;0,4)| wr> — ( _ ]_)7‘x,1| ¢r>’
o@ Vol A |y = (- 1) y),
o Pl IalO2 |y )= (= 1)l y),
U§3,4)U§(| ,4)0)((0,1) |’y =(— 1)"x,4| o',
1,1 0,4 (118)
o Vo> V)= (=1 ly'),
0'9 ,2)0_§O,3)| l//') — ( _ 1)}\12' l[l'),
0'9 ,3)U§O,Z)| $r> — ( _ 1)}\2,3| ¢r>,
0'9 ,4)0_20,1)| ¢/> — ( _ 1))‘2,4| ¢/>
Further, the statéy)’) obeys the eigenvalue equation
o000 OIG O )= (~ 1N y), (119
with A €{0,1} linear in the measurement outcomes of the
first round. Equation(119 can be easily verified with the

pattern of correlation centers displayed in Figb)9 From
(119 it follows that

exp(i 9o >N UL (-1 0lly)=[y') (120
for arbitrary angles, with
Uya]=exp —i aogo'l)ago'z)ago‘s)a'go’4)) . (121

Here we display a gate that simulates the unitary evolu-

tion with U= exp(—iHt) of the quantum input for the mul-
tiparticle Hamiltonian

(115

Hy=goMoPo ol

andarbitrary timest. In addition, the gate performsswap-
gate, i.e., the order if the logical qubits is reversed.
The procedure to realize the measurement pattrifior

Equation(120 is now inserted in both the Ihs and the rhs of
Egs. (118. For example, with the first equation from Eq.
(118), one obtains

(— )™y’ )= (U [26]0,Ul[26]) Do (D
X(Ug[—(—1)* 0]l

XU —(=D)*D©@)y"y. (122

Hamiltonian simulation, as shown in Fig. 9, requires two

rounds of measurements. In the first round all themea- In the second measurement round the qubit (3,4) is the only
surements are performed. In the second measurement rourahe left to be measured. As can be seen from(E2p), if the

of the qubit (3,4) the operator operatorUZ[Ze]oxUZ[Za] of qubit (3,4) is measured, then
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the statd ), into which the cluster qubits are projected after
the second measurement round, obeys the eigenvalue equ '

tion 1-an X
(— 1)1 564 )= o DU, — (- 1) 6]l 2

XU —(—1)*0D©)y). (123

_.
-
W
S
(9]
- o
~

3-a2 X

If we carry out this procedure for all equations in Ef18),
we find that the statpy) that emerges after the second mea-

XX X X X X X

XX X X X X X

XX X X X X X

XX X X X X X

XX X X X X X

XX X X X X X
>

surement round obeys the eigenvalue equations 5+ a3 X X D 03
o8 (U aU sua i U suag UD O] 9) = (= Mo ), 6 X
_ _ (1249
0'9’I)(U4Uswapg[zl]uswapTUj1)(o)|w>:(_1))\Z’i|'p>’ 704 X X O Ot
for i=1,...,4 and with U, written in short for In Out
Us[—(—1)"a]. _ .
With the set of Egqs(124) assumption$61) of Theorem 1 FIG. 10. Measurement pattern that realizes the multiggiuitr

are fulfilled. With Theorem 1 it follows that the measurementdate.
pattern displayed in Fig. 9 realizes a unitary transformation

qubits, i.e., the simulation of the HamiltoniaH,

—— —_( — A .
Usin=Ual = (= 1)*]Usuad)s , (125 =o" ,ol!, is straightforward.
where the byproduct operator is given by If thg “interqction time” i§ set to .zero;p=.0, i.e., when
_ ' the qubit (3,4) is measured in tlag, eigenbasis as well, then
Us=® ,(al)sn it seagllra, (126)  one obtains a multiqub&wap gate, which reverses the order
i=1 of the logical qubits, In this case, only a single measurement

round is required. The multiqub&wAP gate is displayed in
Finally, the order of the operators has to be exchanged. Not'gig 10 d q g Pay

that Ug,,pandU, commute. From Eq(125) one finds

4

Ugr= U'EUswa;U4 (- 1)>\+Z‘1 Aaig). (127) B. cnoT betwee-n non.-nelghborlng qubits
The cNOT gate described in Sec. Il G 7 operates on two
with logical qubits whose input qubits are adjacent to each other
on the cluster. However, for universal quantum computation,
U§=Uswa;U2U;rwap- (128  one must be able to realize@loT gate between any two

logical qubits. While this could be achieved using a combi-
Thus, in order to realiz8l 5[ ¢] with ¢ specified in Eq(117) nation of thecNOT gate, introduced above, and tisgvap
we must choose gate, the width of the measurement pattern needed to realize
this would grow linearly with the separation of the two logi-
1t Sy, cal qubits. There is, however, an alternative measurement
6=(—1) ~ . (129 pattern, which, at the cost of doubling the spacing between
the input qubits on the cluster, has a fixed width.
That is, in the second measurement round we measure on the The measurement pattern is illustrated in Fig. 11 for qu-

4

qubit (3,4) the operator given in E¢L16), where bits separated by an odd and even number of logical qubits,
. respectively.
B . This layout can be understood within the quantum logic
A= 1+A+i§1 )\Z")mOd 2 (130 network model. The “wires” for the logical qubits in be-

tween the target and the control qubits are crossed, using the
{\xits {A2i}, and X depend linearly on the measurementmeasurement subpattern, illustrated in Fig(al2However,
outcomes{s;.j)} obtained in the first measurement round. as well as swapping the qubits, this pattern also realizes a
The subcircuit we have described in this section simulatesontrolled-phase gate, also known as a controldedgate,
the unitary evolution according to a particular four-particleillustrated in Fig. 12b).
Hamiltonian in a two-step process of measurements. The The quantum logic circuit realized by the whole measure-
time for which the simulated Hamiltonian acts is encoded inment pattern, illustrated on the left-hand side of Fig. 13 uses
the basis of the measurement in the second round. these subpatterns to swap the positions of adjacent qubits.
The generalization of the simulation of the four-particle This brings non-neighboring qubits together so thaneT
HamiltonianH 4, shown in Fig. 9, to an arbitrary numbenof  operation may be performed on them.
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(a) (b) ] -

e B SEEORCS
c I= =I @ @ —( ) =
| | | | . n
| | | | /T\
: : ! ! N 1/
| | | [
i :D | :D FIG. 13. The measurement pattern in Fig. 11 realizes the quan-
i | g : tum logic circuit on the left-hand side of this figure. This network is
N | | e | B equivalent to that on the right-hand side, where the only gate real-
. . ized is thecNOT between the two desired nonadjacent qubits.
t I @ t [] a We can write this in terms of the following one- and two-
In Out In Out  qubit rotations:
FIG. 11. Measurement pattern for @oT gate between two Ucpd g]zei(0/4)u(zib)[_ 0/2]u§a’[9/2]u<zb’[a/2],
logical qubits whose input and output qubits are not neighbors. (132

Squares in light gray denote cluster qubits measured in the eigen-

basis ofoy , in dark gray ofo, . Pattern(a) is for the case where the where the two-qubit rotation is

two qubits are separated by an odd number of logical qubits. Pattern

(b) is for an even-numbered separation. The patterns can be adapted UEP g]=exp(—i 626 D). (133

to any separation by repeating the section enclosed by the dashed

line. The width of the pattern remains the same for all separations. This representation is particularly convenient for finding

the measurement pattern that realizes the gate, since rotations

The networks on the left and on the right of Fig. 13 actU,[ 6/2] andU,] — 6/2] are realized on the QGn a simple

identically, and thus the measurement pattern displayed inatural way. The measurement pattern is illustrated in Fig.

Fig. 11 realizes a dista@NOT gate. 14, in which the labelling of the qubits is also defined.
We follow the same method as above, beginning with the
C. Controlled phase gate eigenvalue equations of the cluster sthte. on the qubits

shown. Theo, measurements can be considered first, using
the methods already illustrated in this paper. The resultant
state of the remaining qubitéy’), after this subset of the
measurements has been carried out, is defined by the follow-
ing set of eigenvalue equations:

Here, we give an example of another two-qubit gate
which can be realized without decomposing it irtaoTs
and rotations, the controlled phase ghtero 6). This gate
realizes the unitary operation

Ucpd 0]=1C"+ (€'~ 1)[11),,(11 (131

o VoA IOy )=[y'), (1343
applied to the two qubita andb. Ug(l,b)U§1,2)0§2,1)0§0,a)|¢/>:|¢/>' (134b
b 01234 X
bin a'out
T T T
a
0 3w _ 1 ta O Qoo
ain
0 2 D
ain bout 3 —(I,b) D D (O;b)
Bou
FIG. 12. This measurement pattern is one of the key compo- y |n Ou'l‘
nents of the measurement pattern in Fig. 11. It performs a condi-
tional w-phase gate and swap gate. FIG. 14. Controlled phase gate with additional swap.
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ol VolOP |y ) =(~1)*unTeaey’), (1349 @
o DalODy) = (—1)%a e @0 y), (1349

and

oDl yr)=(- 1%y, (1353

20D gy = (—1)563)| '), (135b

(b)
0_g1,2)0_§0,a) o_go,b)l ¢/> — ( _ 1)5(3’1)4— S(2,2)" 5(3'3)| w/ >(_l350 ﬁi — }v
I /\

As in Sec. Il G 3, eigenvalue equations are now gener-
ated, which commute with the remaining measurements in FI|G. 15. Quantum Fourier transformatiofe) Network for
M, namely the measurements Off('g(ai) on qubits i quantum Fourier transformation on four qubits, taken from Ref.
€{(2,1),(1,2),(2,3). First, we manipulate Eq$135 such [25]. (b) Component of the network shown (a), which performs a
that, for example, eigenvalue equati¢h359 attains the conditional phase and swar gate. Specifically, the gate shown is
form Ucpd 27/2™, i.e.,Uyn=|0)0|+e2™2"|1)(1].

(1,2) (0,a),(0,b))y _(_ + + N
U711V, [—(—1)%enTSea™S6a¢]|y >—|(l/13>é) XUP[—(—1)%2"Sa3a, )]
XUP[—(—1)%av*sea uGhs. (139
Similar equations containing one-qubit rotations on qubits 2 -7 ¢ealUswar- (139
(2,1) and QO,a), and (2,3) and©,b) are derived from the

h s ¢ Eq€135 in th h Using Eq.(139 one finds the following result: To realize
other equations of £ G¢139) in the same way. These equa- e conrolled phase gatd31) together with aswap gate,
tions are inserted into both sides of eigenvalue equat'°”8bservables§137) measured in the second round have to be
(134) so that, using the method introduced above, we obtain, J<on with the angles )= (— 1) 52" 5090/2, a1,

a set of four eigenvalue equations fa¥'), which induce a _ (—1)%0*Se2*Swag/2 and a23=(— 1)5antseatg/2,

set of four eigenvalue equations for the sthte that one This realizes the gatels Ucpd 6], Where the byproduct op-

obtains after the remaining measurements have been Cam%qatoruz generated by the measurements may be read off

out.
Specifically, in the second measurement round the qubit];,rom Ea. (139,

(1,2), (2,1), and (2,3) are measured. Of these qubits one

measures the observables D. Quantum Fourier transformation
. To realize the quantum Fourier transform we simulate the
ra0@=(U a]oU [a,]hH®, (137)  quantum logic network given in Fig. 18. The arrangement
- of the gates in this network is taken from RE#5]. Note that
for a€{(1,2),(2,1),(2,3) and{a,} specified below. in Ref.[25] it was demonstrated that the setup to perform a

The induced eigenvalue equations for the st&t)ea're of  quantum Fourier transformation simplifies considerably in a
the form of Eq.(61), and the unitary operation realized by sjtyation where the output state is measured right after the
the gate can be read off from them, using Theorem 1. Theansformation. Here, however, the quantum Fourier transfor-
full unitary operation realized by the measurement pattern igyation may constitute part of a larger quantum circuit and
we do not measure its output state.

r/=(a,b)__sv+sv+s' - .
UTUs=Ug, 7T = (= 1)7e02ea 7569 )] As can be seen from Fig. 15, the quantum Fourier trans-

XU@[—(— 1)%Dag, 1)]U§b)[ —(—1)%Caa ) form consists of the Hadamard gates and combined gates that
’ ’ perform a conditional phase shift and a swap. These gates
XUGE(o@)santseatsey have been discussed in Secs. 11 B and IV C. All that remains

to do is to put the measurement patterns simulating these
gates together, using the networklike composition principle
described in Sec. Il D.

In this way we obtain a measurement pattern in which
éhere are adjacent cluster qubits in “wires” that are measured
in the o eigenbasis. As described in Sec. Il G 2, such pairs
of cluster qubits may be removed from the measurement pat-

X (0P)saa*t et sy ol®)s0.a a2t ey
X (a®))sum*Sentsaa), (139

such that after the order of the gate and the byproduct oper
tor is reversedU’Us=UsU, one obtains

UsU=(o@)s0aseatse(ol?)santseatses) tern. Note that by removing adjacent pairs @f-measured
cluster qubits, we have moved tleg, measurements of the
X (o@)sentsaatsen (o)t suat ey Hadamard transformations “into” the subsequent conditional
(@b) o e ts phase gates, i.e., we removed a cluster qubit that was not
XU V[ (= 1)Pan2eam 13 )] from a wire. It can be easily verified that this is an allowed

022312-24



MEASUREMENT-BASED QUANTUM COMPUTATION ON.. .. PHYSICAL REVIEW A68, 022312 (2003

@3 CHNNECINNEECINEECIEERQO ©3 r 3 5 7 9 1

1,2)

O 02

((8))

O a o.n

(N N I
1,0) O ©0 B DE DDDED

In out 3 ¢ LIDEIEEEL] [o)z] ¢

- OOEL] CIeJOeE]

S N [ Y [ Y [ A e

FIG. 16. QG realization of a quantum Fourier transformation N
on four qubits. The cluster qubits displayed as framed squares aré
measured in adapted bases. For the labels see text. Y

extension of the method described in Sec. Il G 2. Finally, one FIG. 18. Cluster state quantum correlations for the realization of
obtains the Qgcircuit displayed in Fig. 16. U1 ¢/4], used in the Toffoli phase gate.

In this circuit, as in all the others, the adaptive measure-
ments are of observables

UlEn]oU [+ 77]Tv

with »= /4 for cluster qubits marked with “2” in Fig. 16,
n= /8 for qubits marked with “3,” and»= #/16 for the
qubits marked with “4.” The sign factors of the angles in Eq.
(140 depend on the results of previous measurements.
The QG circuit, shown in Fig. 16 for the case of four
qubits, is straightforwardly generalized to an arbitrary num-_jke the controlled phase gate it can be represented as a
bern of logical qubits. The temporal spatial and operationalproduct of multiqubit rotations,
resourced, S, andO are, to leading order

The Toffoli phase gate is a three-qubit generalization of
the two-qubit controlled phase gate. If all three qubits are in
the state|1), the state gains a phase of exf)( while all
other logical basis states remain unchanged by the gate:

(140

U2 gl =112 04+ (10— 1)]111) o, (111,
(142

T=n, S,0=2n2 (141 U(Tzif,ocnz,t)[gb]:Uiczt,cz,t)[ﬂuiczl,cz)[_ ﬂuiczl,t){_ %}
The corresponding network resources dig,=2n, Sy
=n, and Og= n?/2. Thus, the scaling of the QGspatial 0| | ol 2] a2 ol ¢
resources is worse than in the network model, but the tem- XU~ 4 U, 4 U, 4 Uz 4\
poral and operational resources scale in the same way as the
corresponding resources for the network. The Qnula- (143

tion of the network displayed in Fig. 15 requires half as

many time steps and four times as many operations, albejfnare we have dropped the global phase, Hé@z‘cz’t)[a]

only one-qubit operations. B - (c1) (C2) () : . .
=exp(—ial2o, 0, % c;’) is a three-qubit generalized rota-

tion. The two-qubit rotation§),, are as defined in Eq133).

The way to convert sequenc¢&43 of generalized rota-

In this section we describe the realization of the Toffoli tions into a measurement pattern is as in the examples be-
phase gate and the three-qubit controlled gatery, which

we will both need for the construction of the @@&dder cir-

E. Multiqubit controlled gates

cuit described in Sec. IV F. 1 3 5 7 9 11 13 15 *
] 3 5 7 9 1 T T T T T T T T T T T T T 11
T T T T 1T 1T 1T 1T T T T T ™ 1t ] at
| t O Q¢ 3¢ |:|I:I 0 O d <
O 5-C I:||:| O a c,
3 C ¢ i

1 DDD D D 1 7_ 03 . D C3

5 %) O a e y INn Out

FIG. 19. The three-qubit controlled gate. Qubits displayed as
FIG. 17. A measurement layout to realize a Toffoli phase gatesquares in light gray are measured in thgeigenbasis, the qubit
with phase. The qubits marked by black boxes are simulta- displayed in dark gray is measured in the eigenbasis, and the
neously measured in adapted bases, depending on previous meaeasurement bases of the qubits displayed as framed squares are
surement outcomes. adaptive.
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fore. The measurement layout for the Toffoli phase gatdions directly and is not derived from a quantum logic

is illustrated in Fig. 17. Each of the generalized rotationsnetwork.

that make up the gate is directly associated with one Now we describe the realization of a four-qubit gate

of the measurements made in the eigenbasis ofARRY, which has one target and three control qubits. It per-

U, + ¢l4]o,U,[ = ¢/4]". Aninitial cluster-state correlation, forms a phase-flipr, on the target if at least two of the

which is used for the realization of a generalized rotation, iscontrol qubits are in statEl) and otherwise does nothing,

shown in Fig. 18; the rotatiots'"**?[ ¢/4] is realized via i.e.,

the measurement of the cluster qubit at the lattice site (3,1)

in the appropriate basis. 111
The sign factors of the angles that specify the measure- Ucagry= exp( —i [Deye,e,i®[1)(2] ],

ment bases depend on the outcome pimeasurements only.

Thus, after alloy, measurements have been performed, the (144

measurement bases for the remaining qubits can be deduced

and the Toffoli phase gate is realized in a single further timeExpanding the projectors on the control qubits into products

step. The measurement pattern realizes the generalized rotaf-the Pauli operators one obtains

i=00G,[w(i)=2

. a ar ar ar ar
Ucarry=¢ (™exp —i—a’E’)a'EC3)>exp —i—a’E’)a'Ecz)>exp i—a’EC3)>exp i—a'Ecz))exp i—a’ECl)>
\ 8 z z ’ \ 8 z z ’ \ 8 z ’ \ 8 z ’ \ 8 z ’
U; U, U, Uy U,
ar ar ar ar
X exp i—(rg’)>exp —ig(rg’)(ricl)>exp —i—(ricl)(ricz)(ric3)>exp igag’)aicl)(ricz)aic3)>.
Ud Uc Ub Ua
(145
|
The global phase is henceforth discarded. The realization of the gate requires two measurement
The unitary transformation is now subdivided into two rounds. In the first round the standard measurements, of
parts: and o, are performed. Note that the rotation anglelhf is
twice as big as for the other rotations. To realizg of the
Ucarry=UniUa—g. (146 cluster qubit (6,7) the observable
with Ua—g:UgUerUdUCUbUa and Uh,i:UiUh' Corre- -
spondingly, the cluster on whicb carry is realized is di- U iE oyU, IE =*o, (147
vided into two subclusters. On the first subcluster the trans-

formationsU, to Uq are realized, on the second subcluster. L i
U, ;. The measurement pattern to realideargy is dis- 1S measured. Thus, the realizationf belongs to the first
pld)lled in Fig. 19. The first subcluster stretches foom0 to round of measurements. Strictly speaking, this measurement

x=8, with the input ax=0 and the intermediate output at round doe; not belong to the gate but to the circuit as
x=8. The qubits with 8x=<16 belong to the second sub- a whole since all standard measurements are performed
cluster. simultaneously.

Let us now explain the subgaté, . The conversion of In the second measurement round, of the remaining qubits
sequencé145) of generalized rotations is as in the previousn ¢m(Ua-g) One measures the observables
examples. For each generalized rotation there is one cluster
qubit in Cy(U,-g) whose measurement basis specifies the
respective rotation angle. Specifically, the measurement of
the cluster qubit (3,4) sets the rotation angleWwf, the
measurement of qubit (4,3) sets the angleUgr, (5,6) sets The procedure to infer the sign factors in Eq$48 and
U., (6,7) setdly, (6,5) setdl,, (6,3) setdJ;, and qubit  (147) is explained in Sec. Il F.

(6,1) setdJ,. The quantum correlations of the initial cluster ~ The reason why the measurements in the tilted bases may
state, which induce via the measurements of the cluster qull be performed simultaneously in the second round can be
bits in Cy(U,-g) the quantum correlations associated withseen as follows. LeQ . be the set of qubits measured in
the generalized rotations are displayed in Fig. 20. tilted bases. The contributioblE,Q/ of the cluster qubits

™

a
F—|. (148

u, + Z

*7 oyU,
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FIG. 20. Quantum correlations of the initial cluster Stb‘ﬁ?aua,g) on the clusterC(U,_4). These correlations induce, via tlg
measurements, the quantum correlations for the $teltg which act only on the output qubits and one cluster qubi€jfU,—g). The
pattern of correlation centers (a) displays the correlation required to realidg; (b), (c), and(d) display the correlations fdd,,, U., and
U, respectively. The correlations used for the realizatio gf U, andU4 are not shown. They are analogous to thafdnused for the
realization ofU,.

measured in tilted bases to the byproduct operdtoin Eq.  order of the gate and the byproduct operator is exchanged,
(63) contains only a part but nox part. That is, it has the the byproduct operator may modify the gate. While this is,

form not surprisingly, indeed the case for the whble, it is not
. so for the contributionUy o . coming from the measure-
UE'Q/: ® U[ZI]' (149 ments in the tilted bases. Be/cau.s!; has only az part, it
ielc{t,cy,cp,c3} gQ/ yap

commutes withU,_4. Therefore, the results of measure-
In Eq. (62) the byproduct operator appears “on the wrongments in a tilted basis do not mutually affect the choice of
side” of U, 4 as does the contributiob s Q. . When the  their measurement bases.

(@) 8 9 10 11 12 13 14 15 16 (b) 8 9 1011 12 13 14 15 16
o LI Jelfz] ¢ St ez e
- LI e[ ] - LCICIE I el ]

e L ILIC o] [ e ral LI ] [ ]e
L ] [e][ ] - L] [
Fol | [Ele]l Jle][ Je]z]c Fol | I el T Je

- e )] - EDWHWEW
e LD ]I I T e

FIG. 21. Quantum correlations of the initial cluster state€£@d,) andC(U;). These correlations induce, via thg measurements, the
quantum correlations for the stalje[s’}c(uh) and| z//’)c(ui) that involve only the respective output qubits and one qubit in the gate body. The

pattern of correlation centers {ia) displays the correlation required to realidg and(b) the correlation folJ; .

N O R W N

N N R W =
T
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t t because théconditiona) phase flip on the target qubit is its
own inverse. Thus, the target qubit may travel through the
gate backwards. This property also holds for the Toffoli

C C . o .
! — ! phase gate. We will make use of it in the construction of the
C, c, guantum adder in the following section.
Cs Cs F. Circuit for addition
FIG. 22. In the three-qubit controlled gatarRy, the target The QG version of the quantum adder corresponds to the
qubit may travel either back or forth. guantum logic network as given in R¢R6], see Fig. 23. In

o this paper we use the three-qubit controlled phase gate
The fact that the byproduct operatdr o , is indeed of  carry together with a prior and subsequent Hadamard gate
form (149, we do not show here explicitly. For the byprod- on the target qubit while in Ref26] the equivalent three-
uct operator created in the measurement of qubit (3,4), reabubit controlled spin-flip gate is used directly.
izing the transformatiobl , it may be verified from Eq(126) At first sight it appears as if the horizontal dimension of
in Sec. IV A. the cluster to realize the adder circuit would grow linearly
The explanation of the second subgblkg; is analogous. with the number of logical qubits. This is, however, not the
Figure 21 displays the quantum correlations of the initialcase. The Qgcircuit may be formed in such a way that the

cluster state, which, via the measurement€j{Uy,;), in-  horizontal size of the required cluster is constant such that
duce the required quantum correlations associated Wjth the cluster size increases only linearly with the numbef
andU;. logical qubits. To see what the Q@ealization of the quan-

Two further points we would like to address in this sec-tum adder will look like, the network displayed in Fig. 23
tion. The first is to note that the whole gdtk-arry Can be  may be bent in a way displayed in Fig. 24.
performed on the Q&in two measurement rounds. The first  To “bend a network” is a rather informal notion. We
measurement round is that of thg, o, ando, measure- therefore now specify what we mean by this. If a quantum
ments, which, strictly speaking, does not belong to the gateircuit is displayed as a quantum logic network, the vertical
but to the circuit as a whole. The second measurement rourakis usually denotes some spatial dimension, i.e., the loca-
is that of the simultaneous measurements in tilted measurdion of the qubit carriers, and the horizontal axis corresponds

ment bases. to the sequence of steps of a quantum computation, i.e., a
We have already seen that the measurements that realifmgical time. As the basic blocks of quantum computation in
the unitary transformationd,, ... ,Ug may be realized si- the network model, the universal gates, are unitary transfor-

multaneously, and this argument may be extended to the emaations generated by suitably chosen Hamiltonians, the logi-
tire gateUcarry. All the byproduct operators created with cal time becomes associated with physical time. This is,
the measurements in tilted bases have ortybat nox part.  however, a peculiarity of the network model. If on the QC
Therefore, they all commute with carry. Thus, to choose quantum logic network is simulated, the temporal axis is
the right measurement bases neither of the measurementsdnnverted into an additional spatial axis. The temporal axis
a tilted basis that realizes one of the rotatidsg, . . . ,U; in a QG computation emerges anew. It has no counterpart in
needs to wait for another measurement in a tilted basis. the network model. If we modify a quantum logic network in
Second, note that fold agry the target input and the such a way that qubits travel from right to left, as done in
target output can be interchanged, see Fig. 22. This holdsig. 24, it does not mean that we propose to use particles that

b > SPASY s>
25> s>
10> 10>
b, > e, >
22> |a2>
10> H 10>

b, >
|, >
0>
[bo>
20>

FIG. 23. Quantum logic network for four-qubit adder=a+b mod 2*. The adder network is taken from R¢R6]. The two-qubit
controlled gate in this network is the Tofolli phase gate, as discussed in Sec. IV E. A straightforward simulation of this network gn the QC
would result in a quadratic scaling of spatial resources. However, the more compact realization discussed below requires only a linear
overhead.
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FIG. 24. Quantum logic network for four-qubit adder, bent. a, O O EEEEEEEO a,

travel backwards in time because we do not need to respect Out
the temporal axis implied by the network model. If one FIG. 26. Quantum adding circuit for two eight-qubit states. As
wants a seminetwork picture that accounts for this, one maip all figures displaying Qgcircuits, squares in light and dark gray
imagine the logical qubits as traveling through pipes on depresent cluster qubits measured in theand o, eigenbasis, re-
two-dimensional surface. spectively. The measurement bases of qubits displayed as framed
The reason why we may let the auxiliary qubits travelSauares are adaptive.
“backwards” is the identity displayed in Fig. 22. This ar-
rangement of gates makes the circuit more compact. To com- For the quantum adder circuit in Fig. 26 we have made
plete the description of components from which the ,QC two further minor simplifications. The first concerns the an-
version of the quantum adder is built, a compact measuresilla preparation. To prepare an ancilla qubit on the cluster in
ment pattern for the two combinezhNoT gates is displayed the statel +) means to measure the respective cluster qubit
in Fig. 25. in the o, eigenbasisthe randomness of the measurement
The realization of the quantum adder in the network lay-outcome does not jeopardize the deterministic character of
out of Fig. 24 directly leads to the Qircuit for the quan- the circui). As can be seen from the Toffoli gate and the
tum adder displayed in Fig. 26. Note that the displayeg QCthree-qubit controlled gate, displayed in Figs. 17 and 19, the
adder is for eight qubits, while the networks in Figs. 23 andancilla qubits are located on cluster qubits that have only one
24 are only for four qubits. next neighbor. As can be verified from eigenvalue equations
(1), to measure a qubit of a cluster state that only has one
next neighbor in the eigenbasis af also has the effect of

a) b) projecting this neighboring cluster qubit into an eigenstate of
0. Such cluster qubits may be removed from the cluster as
an <> EEEEEERC explained in Sec. Il C. With these neighboring qubits re-
Y [l moved, the cluster qubits on which the initial ancilla qubits
BER O were located become disconnected from the remaining clus-
H B ter and may thus be removed as well. With the same argu-
® T TR T le ment, the cluster qub|t§ carrying the ancillas in their output
state, and their next neighbors may also be removed.
FIG. 25. Combination of twaNoT gates(a) and its QG real- Second, between the QCealization of theCARRY gates
ization (b). on the left and the subsequent blockscaoT gates we have
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removed pairs of adjacent cluster qubits that would be medective uniform interaction only while for quantum logic net-
sured in the eigenbasis of, . Why this can be done has been works one generally requires a system with selective inter-
explained for adjacent qubits in wires in Sec. Il G 2. Here theactions among the qubits. Concerning the operational and
situation is little more involved since, like in the case of thetemporal resources, the @©@nly uses one-qubit measure-
circuit for the Fourier transformation displayed in Sec. IV D, ments, while the corresponding network uses two- and three-
one of the removed qubits in each pair has more than twgubit gates as elementary operations.
neighbors. But the method still works as can be easily
verified.

Let us now briefly discuss the resources required for the
QC, realization of am-qubit adder. As can be seen directly ~ We would like to add two remarks, one with regard to the
from the circuit displayed in Fig. 26 and the underlying net-elementary constituents of the @@nd the other with regard
work shown in Fig. 24 with its repeating sub-structure, theto their composition principle.
adder requires a cluster of heighh85 and of constant For the particular set of gate simulations used in the, QC
width 38. Thus, the spatial and operational resources are, taniversality proof in Sec. Il, theeNoT gate and arbitrary
leading order, one-qubit rotations, there is only a single instance where one

of these gates has been used as part of a more complicated
S=0=304n. (150  gate in all examples of this section. Namely, the next-

. h | h h pai eighbor cNOT gate has been used as part of the long-
Concerning the temporal resources note that each pair Qfisiancecnor, described in Sec. IV B. Of universal gate

three-qubit controlled phase gates using the same control Ajmations one might expect that any circuit is composed of
bits and the pair of the Toffoli phase gates may be completeg, o, rather that they occur almost not at all. One could say,

a]tctone tm;]e ms;[]ant but thathonﬁ pair of gates is por?]ple_tle ough, that the used set of gates is not a good choice for the
after another. The reason why the measurements in the tiltegh; ersal set. In fact, in realizations of network quantum

bases that complete each pair of gates may be performed, o ters it is often the physics of the specific implementa-

simultaneously is the same as that given previously for thei, that determines which gates are elementary. For the QC

measurements in tilted bgses of a single three-qupit COMis is not so. The Qg£may simulate, for example, general
trolled gate. The propagation of byproduct operators is mos(t)ne-qubit rotations and the Toffoli gates alike. Any gate

ea3|!y followed in thg network of F.'g' 23. The temporal com- simulation may be called “elementary” with the same right
plexity T of an n-qubit QG adder is as any other, but they cannot be all elementary. The elemen-
T=n (151) tary constituents of the QGare not gate simulations.
’ As a consequence, the composition principle for these el-

plus one step of,, o, ando, measurements for the entire ements will be different from gate cor_npositipn. At firs_t sight,
circuit. if we go through the examples of this section, we find that

The corresponding network resources are, to leading ofthis is not yet reflected in the larger and more complicated
der, Syn=3n and Og,=Ty,=8n. For the counting of the constructions. For the quantum Fourier trgnsform an_d the
operational and temporal network resources, we have a@ddition circuit we have, though playing with some tricks,
sumed that the three-qubit controlled spin-flip gate used iltimately imitated network composition.
the addition circuit is composed of two Toffoli gates and one  However, in the smaller gates and subcircuits, such as the
CNOT gate, as described in RR6], and that thecnoT and  controlled p_hase gate,_the Toffoll_ phas_e gate and the gate
the Toffoli gates are regarded as elementary. CARRY we find som_e_thlng _thgt mlg_ht give rise to a more

Thus, we find for both the network and the Q@aliza- @Ppropriate composition principle. First, for the Qi€is not
tion of the quantum adder that the spatial, temporal, andh€ one-qubit and two-qubit operations that are particularly
operational resources scale linearly with Therefore, the Simple. In the Hamiltonian simulation circuit of Sec. IV A
resource overheads in one realization as compared to t#e found that it is easy to realize generalized rotations
other one are only constants. For the Qs is much better exp(ea®) wheres™ is a composite Pauli operatar”) =
than what is indicated by bound$11)—(113), in particular, ®aeJo-k2)a ka=X,y,z. Furthermore, in the subsequent ex-
for the spatial and operational resources. Equatibh?) ~ amples of the multiqubit gates in Secs. IV C and IV E we
yields an upper bound 08, which is ~n3, and Eq.(113  have decomposed the gates into such generalized rotations
gives bounds o® andS, which are~n2. Thus, the quantum rather than into known standard gates on fewer qubits.
adder is an example for which these bounds are very loose. Any unitary transformation may be decomposed into a
In general, they should not be mistaken as estimates. unitary transformation in the Clifford group followed by gen-

If the prefactors are compared, one finds that for the realeralized rotations. So, is this a new composition principle?
ization of a quantum adder the @€&quires about 100 times With our present state of knowledge, the answer must be
more spatial and 38 times more operational resources, whil&Not yet.” First, though any transformation may be rewritten
it is eight times faster. However, since we compare differenin this form, it is presently not clear how to design quantum
objects, these ratios do not mean much apart from the faalgorithms with these elements directly. Second, the con-
that they are constants. It may be argued that in the case sfruction uses the very concept of applying unitary transfor-
the QG spatial resources are not as precious as they usuallyations to the state of a quantum register. However, as we
are, to create cluster states one needs a system with nondgeve explained in Ref7] and also briefly sketched in Sec.

G. Remarks
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Il A, the QC, has no quantum register. So, the generalizedstruction is that in this way a basic requirement to make the
rotations and their concatenation at least have to be reformi@C fault tolerant can be fulfilled. Namely, decoherence can
lated to fit the description of the QC In particular, they be controlled. If a single large cluster is used, the computa-
have to be made compatible with the graph states identifieion might reach certain cluster qubits only after a long time
in Sec. Il B as characteristic quantum resource to represer@uch that the cluster would have already decohered signifi-
algorithms. Nevertheless, it appears that the generalized rgantly and it is not clear how error correction could help in
tations should be reflected in what may emerge as elemesuch a situation. This might, for any error rate, limit the

tary constituents and composition principle for the QC duration of a computation. On the contrary, if the computa-
tion is split then the size of the subcircuits may be adjusted
V. COMPUTATION WITH LIMITED SPATIAL such that each of them can be performed within a fixed time
RESOURCES AND IN THE PRESENCE T and in this way, each cluster qubit is, before being mea-

OF DECOHERENCE sured, exposed to a bounded amount of decoherence speci-

fied by T. Thus, “fresh” qubits for computation are always
In this section we describe how to perform QEmpu-  provided.
tation on finite and possibly small clusters. If the cluster that
may be provided by a specific device is too small for a cer-
tain measurement pattern, it does not mean that the respec-
tive QG algorithm cannot be run on this device. Instead, the In this paper we have given a detailed account of the
QC. computation may be split into several parts such thabne-way quantum computer. We have shown that the QC
each of those parts fits on the cluster. can be regarded as a simulator of quantum logic networks.
To see this, consider Scheme 1 for the realization of gatesthis way, we clarified the relation of the Q@ the network
Scheme 1 is applicable to any gate or subcircuit. It is thusnodel of quantum computation and gave the universality
possible to divide the circuit into subcircuits, each of whichproof.
fits onto the cluster. The adapted scheme is a process of We have based our description on the correlations exhib-
repetitive reentangling steps alternating with rounds ofited by cluster states and states that can be created from them
measurements. under one-qubit measurements. For this purpose, Theorem 1
Specifically, one starts with the realization of the first sub-of Sec. Il F is an important tool. It relates unitary transfor-
circuit acting on the fiducial input state located aCC. The  mations to quantum correlations exhibited by certain pure
fiducial input is, while being processed, teleported to somestates.
subsetO; of the clusterC. The setO; of qubits forms the In Sec. IV we have presented a number of example cir-
intermediate output of the first subcircuit. These qubits re<uits such as the circuit for quantum Fourier transformation
main unmeasured, while all the other qubits are measured tand for addition. In this way, hopefully, we also have ac-
realize the first subcircuit. Now the realization of the secondquainted the reader with a number of construction principles
subcircuit begins. Its input state has already been preparefhr QC; circuits. Note that the simulations of the universal
I,=0;. The cluster qubite.e C\O4, which have been mea- gates required in the universality proof are hardly used. In-
sured in the realization of the first subcircuit, are now pre-stead, more compact measurement patterns have been found.
pared individually in the statet+),. This completes Step 1 The main purpose of this paper is to provide a compre-
of Scheme 1 to realize the second subcircuit. Step 2 is thensive description of the Q@om the network perspective.
entangle the whole cluster via the Ising interaction. In theBeyond that, we have pointed out the non-network aspects of
third step all cluster qubits except those of the intermediat¢he QG, such as the different nature of information process-
outputO, are measured whereby the realization of the secing [7,8], and the connection to mathematical graphs.
ond subcircuit is completed. The intermediate output is now
located atO,. For the realization of the subsequent subcir- ACKNOWLEDGMENTS
cuits one proceeds accordingly.
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VI. CONCLUSION
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