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Optimal conclusive teleportation of quantum states
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Quantum teleportation of qudits is revisited. In particular, we analyze the case where the quantum channel
corresponds to a nonmaximally entangled state and show that the success of the protocol is directly related to
the problem of distinguishing nonorthogonal quantum states. The teleportation channel can be seen as a
coherent superposition of two channels, one of them being a maximally entangled state, thus leading to perfect
teleportation, and the other, corresponding to a nonmaximally entangled state living in a subspace of the
d-dimensional Hilbert space. The second channel leads to a teleported state with reduced fidelity. We calculate
the average fidelity of the process and show its optimality.
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I. INTRODUCTION

Entanglement is a fundamental property of quantum m
chanical systems@1#. It is one of the most interesting an
puzzling ideas associated with composite systems@2#. The
postulates of quantum mechanics state that the state spa
a composite physical system made up of two~or more! dis-
tinct physical systems is a tensor product of the state sp
of the component systems. A consequence of this structu
that there are states in the composite state space for w
the correlations between the component systems canno
accounted for classically. By classical we mean here
only local operations and classical communications~LOCC!
are considered.

Although there is still not a complete theory on entang
ment, it is considered a fundamental resource of na
whose importance is comparable to energy, information,
entropy @3#, among others. Recently, the field of entang
ment has become an intense research area due to its ke
in many applications of quantum information processing@4#.
An important example of this is teleportation of quantu
states, where a maximally entangled state shared by two
ties is used as a channel to transmit an unknown state u
LOCCs. Teleportation protocols can also be used to trans
quantum operations@5,6# and to implement protocols fo
quantum cryptography@7#.

In this paper we study the teleportation of a quantum s
belonging to ad-dimensional Hilbert space~qudit!. Our pro-
tocol considers the use of a nonmaximally entangled p
state of two qudits as quantum channel. We relate quan
teleportation to the problem of quantum states discrimina
and show that the success of this scheme has a fundam
limit determined by how accurately a set of nonorthogo
linearly independent quantum states can be unambiguo
distinguished. Thereby, we generalize to arbitrary dim
sions the result by Mor and Horodecki@8# concerning con-
clusive quantum teleportation of qubits. We show that
generalized protocol for conclusive quantum teleportat
can be interpreted in terms of the coherent superpositio
two quantum channels. One of them allows for perfect te
1050-2947/2003/68~2!/022310~6!/$20.00 68 0223
-

of

es
is

ich
be
at

-
re
d

-
ole

ar-
ng
it

te

re
m
n
tal
l
ly
-

e
n
of
-

portation. The other channel corresponds to a superpos
of d21 product states and leads to the failure of the proce
This interpretation of conclusive quantum teleportation
lows us to calculate easily the average fidelity over the en
Hilbert space. Finally, we demonstrate the optimality of t
average fidelity.

This paper is organized as follows: In Sec. II we revie
the standard teleportation protocol considering both ma
mally and nonmaximally entangled states as quantum ch
nel. In this section we also relate quantum teleportation
quantum state discrimination. In Sec. III we discuss in de
the quantum state discrimination protocol used in this pa
The results of this section allows us to calculate in Sec.
the average fidelity of conclusive state teleportation a
demonstrate its optimality.

II. QUANTUM STATE TELEPORTATION

In the process of teleporting a quantum state two part
sender and receiver, share a maximally entangled two-q
pure state. The sender has a third qudit in the state to
teleported. The sender carries out a generalized Bell m
surement on his two particles and communicates the
come of the measurement to the receiver. Conditional on
measurement result the receiver applies an unitary trans
mation on his particle. Thereafter, receiver’s particle is in
state to be teleported.

The teleportation of a quantum stateuc& of a
d-dimensional Hilbert space, spanned by the basis$un&% with
n50, . . . ,d21, can be shortly described by the followin
identity:

uC0,0&12^ uc&35
1

d (
l ,k50

d21

Z1
d2 lX1

kuc&1^ uC l ,k&23, ~1!

where particles 2 and 3 belong to the sender and partic
belong to the receiver. The statesuC l ,k& with l ,k50, . . . ,d
21 are a generalization of the Bell basis to the case of
d-dimensional quantum systems,
©2003 The American Physical Society10-1
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uCn,m&5
1

Ad
(

j
e2p i jn /du j & ^ u j % m&, ~2!

where j % m denotes the sumj 1m modulusd. In this case
the maximally entangled stateuC0,0& has been chosen a
quantum channel. The unitary operatorsX andZ are defined
by

X5 (
n50

d21

un11&^nu, Z5 (
n50

d21

expS 2p i

d
nD un&^nu. ~3!

Instead of a direct Bell measurement it is possible to app
generalized control-not gate (GXOR23) @9# in order to map the
states uC l ,k&23 onto the unentangled statesF2u l &2^ uk&3,
whereF denotes the discrete Fourier transform, i.e.,

Fu l &5
1

Ad
(
k50

d21

ei2p lk/duk&. ~4!

The generalized control-not gate is defined
GXORabu i &au j &b5u i &au i * j &, wherei * j stands for the differ-
encei 2 j modulo d; thereby, Eq.~1! becomes

GXOR23uC0,0&12^ uc&35
1

d (
l ,k50

d21

Z1
d2 lX1

kuc&1^ F2u l &2^ uk&3 .

~5!

The protocol for quantum state teleportation can be strai
forwardly read out from this equation. In the case of a no
maximally entangled pure quantum stateuC&12 as quantum
channel, defined by

uC&125 (
m50

d21

Amum&1^ um&2 , ~6!

where $um& i% with i 51,2 are orthonormal basis defined b
the Schmidt decomposition and the coefficientsAm are real
and satisfy the normalization condition, the previous iden
@Eq. ~5!# is replaced by

GXOR23uC&12^ uc&35
1

d (
l ,k50

d21

Z1
d2 lX1

kuc&1^ un l&2^ uk&3 ,

~7!

where the statesun l&2 are given by

un l&25Zl (
k50

d21

Akuk&2 with l 50, . . . ,d21. ~8!

The previous identity@Eq. ~7!# resembles Eq.~5! where now
the statesFu l &2 have been replaced by the statesun l& of Eq.
~8!. Let us now recall that in the teleportation of states it
necessary to measure the state of particle 2. Conditiona
the outcome of this measurement a unitary operator is
plied on particle 1. These operators are in a one-to-one r
tion with the outcomes of the measurements. Therefore,
necessary to distinguish the possible states of particle 2
fectly. However, it is clear from the definition of the stat
02231
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un l&2 @Eq. ~8!# that, in general, these states are nonortho
nal. In fact, the inner product between any two of these sta
is given by^nnunm&5(k50

d21exp@(2pi/d)k(n2m)#uAku2. Only in
the case of a maximally entangled state as quantum chan
that is, Ak51/Ad ;k50, . . . ,d21, the overlap vanishes
and the statesun l&2 are simply the statesF2u l &2, which are
mutually orthogonal. Thus, in the case of a nonmaxima
entangled stateuc&12 the success of the teleportation protoc
is limited by our capability of distinguishing among the s
$un l&2% of d nonorthogonal quantum states.

This problem has been previously studied by Mor a
Horodecky@8# in the case of two-dimensional quantum sy
tems. They proposed the use of unambiguous state discr
nation in combination with the usual quantum teleportat
protocol. In this way, it is possible to distinguish perfect
among the two statesun0&2 and un1&2 with some probability.
For those events in which the discrimination is successful
teleported state has fidelity 1. However, if the discriminati
fails the postmeasurement states might still allow one to t
port thought with reduced fidelity. The need for state d
crimination measurements when teleporting a quantum s
has also been considered in Ref.@24,25#.

In the following section we review briefly the problem o
quantum state discrimination. We show the optimal conc
sive state discrimination protocol for the statesun l&2 @Eq. ~8!#
and obtain the postmeasurement states.

III. QUANTUM STATE DISCRIMINATION

The problem of quantum state discrimination has d
served considerable attention. An overview of the main st
egies has been given by Chefles@10#. In the later, generalized
measurements are used to construct an error-free strateg
discriminating among a finite number of nonorthogon
states with givena priori probabilities. The scheme can oc
casionally lead to inconclusive results. This idea first p
posed by Ivanovic@11# has been studied by Dieks@12# and
Peres@13# for two nonorthogonal states generated with eq
a priori probabilities. The result was later generalized
Jaeger and Shimony@14# for arbitrarya priori probabilities.
The qudit case was then considered by Chefles@15# and
Peres and Terno@16# where the former showed that resul
for the qudit case simply generalize form those of qub
when the states are linearly independent. The linearly dep
dent case can be considered only when copies of the stat
available@17#. Here we consider a method developed by S
et al. @18#, which allows the construction of the optimal con
clusive state discrimination scheme for a given set of linea
dependent states.

According to the quantum operations formalism@19# the
most general transformation of a quantum system can
represented by a completely positive, trace preserving m
thereby, it is possible to perform a predetermined nonunit
transformation with some probability. Furthermore, in ge
eral, it is possible to known whether the desired transform
tion has been successfully implemented or not.

In particular, it is possible to change probabilistically th
inner product between pure states of a quantum system.
is the essence of unambiguous state discrimination am
elements of a setV5$un l&% of nonorthogonal states. Th
stateun l& is mapped probabilistically onto the stateuel& that
0-2
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belongs to a set of orthogonal states. This mapping has
tain probability of failure. In this case, the system is mapp
onto a stateuf l& that does not allow a conclusive identific
tion of the initial state. Thus, the failure probability of th
mapping is identified with the total probability of obtainin
an inconclusive identification of the states. A major proble
consists in finding the optimal mapping, that is, the mapp
with the smallest inconclusive probability.

Necessary and sufficient conditions for the existence o
conclusive discrimination scheme have been found
Chefles@17#, namely, the states inV must be linearly inde-
pendent~LI !. Thus, the state$uf l&% must be linearly indepen
dent. Otherwise, it would be possible to use another mapp
that allows the discrimination among these states. Base
this observation, Sunet al. @18# have developed a method t
find the optimal conclusive discrimination scheme and p
posed a physical implementation in terms of optical mu
ports. In their approach conclusive state discrimination
described in terms of a unitary operatorU and projective
measurements. The states$un l&% generated witha priori
probabilities$h l% are considered to belong to a Hilbert spa
K that can be decomposed as a direct sum of two subspa
i.e., K5U% A. These subspaces are spanned by the b
states$uul&% and $ual&%, respectively. The action of the un
tary transformation is such that

Uun l&5Apl uul&1uf l&, ~9!

where the set of not necessarily normalized, linearly dep
dent states$uf l&% is in A, andpl denotes the probability o
discriminating successfully the stateun l&. The unitary trans-
formation U @Eq. ~9!# is followed by a measurement tha
projects the state of the particle onto one of the basis state
$uul&% or $ual&%. The statesun l& and uul& are in one-to-one
correspondence. This and the orthogonality of the statesuul&
allow one to discriminate among the states of the set$un l&%.
However, in general, each basis state inA has a componen
in all the states$uf l&% and thus it is not possible to assig
them a particular stateun l&.

The optimal average probability of succesS5( l 50
d21h l pl

can be found under the constraint det(Q)50 whereQ is the
positive semidefinite matrix whose matrical elements
given by

Qk,l5^fkuf l&5^nkun l&2pkdk,l . ~10!

The statesuf l& can be defined asuf l&5Aual& with Q
5A†A. Thereby, it is possible to find the form ofU in
Eq. ~9!.

It turns out that the statesun l& are not necessarily wel
suited for conclusive discrimination. In fact, these states
be linearly dependent. The statesun l& are LI under the con-
dition

(
l 50

d21

Cl un l&250 iff Cl50 ; l 50, . . . ,d21, ~11!

or equivalently,
02231
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n50

d21

^cuFun&Anun&50

with

uc&5 (
k50

d21

Ck* uk&. ~12!

In the case that all the amplitudesAn are nonzero, all the
coefficients^cuFun& must be null. SinceFun& form a basis,
the only solution to Eq.~12! is uc&50. Therefore, all the
coefficientsCl must vanish. Thus, if all the amplitudesAm
are different from 0, the statesun l& are LI. Otherwise, when a
subset of the amplitudesAm are 0, Eq.~12! can be satisfied
by taking uc&5($m%amFum& for any amÞ0. Thus, in this
case the statesun l& are LD.

In the case that all the amplitudesAm are different from 0,
all the statesun l& are different. Thus, the only source of err
is the scheme of discrimination, itself. For example, in t
process of conclusive state discrimination, there is a pr
ability for the failure in the discrimination process. Th
event leads to a failure in the teleportation of states beca
it is not possible to decide which unitary operator must
applied in order to recover the state to be teleported. W
only one of the amplitudes is different from 0, the statesun l&
are all equal. Henceforth, it is impossible to discrimina
among them at all and both two processes fail complete

Generally, when 1,n,d of thed amplitudesAm are dif-
ferent from 0, then thed statesun l&2 are LD. In this case it
has been shown@17# that a conclusive state discriminatio
protocol can be formulated when copies for each stateun l&2
are available. This adds an extra source of error to the t
portation of states and unitaries. In fact, the no cloning th
rem @20# states that it is not possible to copy perfectly
unknown quantum state due to the linear character of qu
tum mechanics. Thus, besides the success probability o
discrimination protocol itself the success probability of
probabilistic cloning machine must be considered.

Let us now calculate the optimal average failure proba
ity F512S for the states$un l&% under the conditionAm
Þ0 ;m50, . . . ,d21. The calculations can be greatly sim
plified if the matrix Q is Fourier transformed. In fact, th
matrix Q becomes

FQF†5Q̃5 (
m50

d21 F S (
k50

d21
f k

d D 211dAm
2 G um&^mu

1 (
mÞn

d21 S (
k50

d21
f k

d
ek(n2m)D um&^nu, ~13!

where f k denotes the failure probability asociated with t
stateunk&. For d arbitrary, the determinant ofQ̃ has the ge-
neric form
0-3
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det~Q̃!5C0~A0
2 , . . . ,Ad21

2 !1C1~A0
2 , . . . ,Ad21

2 !

3 (
k50

d21

f k1Pk50
d21f k . ~14!

Applying the method of Lagrange multipliers we obtain

]

] f i
@F1l det~Q̃!#5

1

d
1lC1~A0

2 , . . . ,Ad21
2 !1lPkÞ i

d21f k ,

~15!

wherel is the Lagrange multiplier and we have made use
the fact that the states$un l&% are generated with the sam
probability, i.e.,h l51/d ; l 50, . . . ,d21. The derivatives
@Eq. ~15!# are invariant under permutations off i ’s. In par-
ticular, they can be obtained from the derivative with resp
to f 0 by suitably permutingf i ’s. Thereby, the condition

]

] f i
@F1l det~Q̃!#50 ~16!

implies thatf 05 f 15 . . . 5 f d215 f . Thus, the failure prob-
abilities are all equal. Under this condition, matrixQ̃ has the
simpler expression

Q̃5 (
m50

d21

~ f 211dAm
2 !um&^mu, ~17!

which turns out to be diagonal. This simplifies the analy
considerably. In fact, the determinant ofQ̃ is now given by

Det~Q̃!5Det~Q!5Pk50
d21~ f 211dAk

2!. ~18!

Thereby, the condition Det(Q)50 implies f 512dAk
2 for

somek. The conditionf <1 must also hold. This condition
can be satisfied ifAk

2<1/d. This rules out the choice off
512dAd21

2 whereAd21 is the the largest amplitude. Th

matrix Q ~andQ̃) must also be positive semidefinite; this c
be guaranteed if all the principal minors ofQ̃ are non-
negative, that is,

Pk50
n ~ f 211dAk

2!>0 ; n50, . . . ,d21. ~19!

This condition implies that

f >12dAk
2 ;k50, . . . ,d21 ~20!

and can be satisfied ifff 512d min$Ak
2%k50, . . . ,d21. Thus,

the optimal average failure probabilityFmin is given by

Fmin512Smax512dAmin
2 , ~21!

whereAmin is the smallest coefficient in the state@Eq. ~6!#.
The set of states$uf l&% can be readily found. Noting tha
Q5F†Q̃F5F†Ã†ÃF5F†Ã†FF†ÃF, we obtain
02231
f

t

s

uf l&5
1

Ad
(
k50

d21

Ak
l uak&

5
1

Ad
(
k50

d21 F (
m50

d21

expS 2p i

d
m~ l 2k! DAAm

2 2Amin
2 G uak&.

~22!

IV. FIDELITY OF CONCLUSIVE
STATE TELEPORTATION

With the results of the preceding section we can now s
precisely the protocol for conclusive quantum state telep
tation. Our starting point is the identity in Eq.~5! and the
definition of statesun l& of Eq. ~8!. The standard teleportatio
protocol consists in measuring the states of particles 2 an
and communicating the outcomes (l ,k) of these measure
ments to the receiver. This projects particle 1 to the st
Zd2 lXkuc& from which the stateuc& to be teleported can be
obtained via applying the operatorXd2kZl . However, the
statesun l& cannot be distinguished with certainty, affectin
the overall performance of the process, in this stage en
optimal conclusive quantum state discrimination. Befo
measuring particles 2 and 3, the unitary transformationU in
Eq. ~9! is applied onto particle 2. This leads to the join sta

U2 GXOR23uC&12^ uc&35
1

d (
l ,k50

d21

Z1
d2 lX1

kuc&1^ ~ASmaxuel&2

1uf l&2) ^ uk&3 . ~23!

Measurements on particles 2 and 3 project the particle on
the state

uC l ,k
U &5

1

d
Zd2 lXkuc& ~24!

with probability Smax and to the state

uCs,k
A &5

1

dAd
S (

l 50

d21

As
l Zd2 lXkD uc& ~25!

with probabilities 12Smax. The stateuC l ,k
U & @Eq. ~24!# is

associated with the conclusive events in the discrimination
states and clearly leads to the perfect teleportation of
state uc&. However, the stateuCs,k

A & @Eq. ~25!# leads to a
failure of the process. Nevertheless, this state has som
delity with respect to the stateuc& to be teleported. The
average fidelityF of teleportation is given by

F5dAmin
2 1 (

s,k50

d21 E dcu^cuCs,k&u2, ~26!

where the statesuC&s,k are the states of particle 1 after th
teleportation protocol has been carried out for the particu
pair of outcomes (s,k) and the integral is performed over th
entire Hilbert space. In the case that the teleportation pro
0-4
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col is interrupted after the measurement of particles 2 an
that is,uC&s,k5uC&s,k

A , we obtain for the average fidelity

F5dAmin
2 1 (

n,k50

d21

~An1k
2 2Amin

2 !E dcu^n1kuf&u2u^nuf&u2,

~27!

where the states$un&% for n50, . . . ,d21 for a basis for the
Hilbert space of particle one. The integral entering in E
~27! is equal to (dn,k11)/d(d11). Thereby, the averag
fidelity of teleportation becomes

F05
1

d
1~d21!Amin

2 . ~28!

The fidelity can be increased by using the information av
able about the outcomes of the measurements carried ou
particles 2 and 3. The state of Eq.~25! can be cast in the
form

uCs,k
A &5

1

Ad
F (

l 50

d21

As
l expS 2

2p i

d
lk DZd2 l G uc& ~29!

by appliying onto particle 1 the operatorXd2k conditional on
the outcomek of the measurement of particle 3. This sta
leads to the following fidelity:

F15
21d~d21!Amin

2

d11
, ~30!

which is clearly larger thanF0. A further increase in the
average fidelity can be achieved by observing that the di
bution (As

l )2 has its maximum ats5 l . This suggests to com
plete the protocol for unambiguous state teleportation by
plying the operatorZs onto particle 1 conditional on the
outcomes of the measurement carried out on particle 3.
this case the average fidelity becomes

F25
1

d11
@21d~d21!Amin

2 #

1
1

d11 (
nÞr

AAn
22Amin

2 AAr
22Amin

2 . ~31!

Clearly, F0<F1<F2 for all Amin P@0,1/Ad#. In what fol-
lows we will show this result to be optimal. This can be do
by noting that the statesuf l& can be cast in the form

F̃uf l&5Z̃l (
n50

d21

AAn
22Amin

2 uan&, ~32!

where the operatorsF̃ and Z̃ act now on the subspaceA.
Thereby, the transformationU is replaced byF̃U. This re-
sembles the definition of the statesun l& and suggests that th
statesFuf l& originates in a quantum channeluch&12 of the
form
02231
3,

.

l-
on

i-

p-

uch&125 (
n50

d21 AAn
22Amin

2

12dAmin
2

uan&1^ uan&2 . ~33!

Thus, conclusive state teleportation can be described as s
ing with a coherent superposition of two quantum chann
i.e.,

uc&125AdAmin
2 (

n50

d21
1

Ad
uen&1^ uen&2

1A12dAmin
2 (

n50

d21 AAn
22Amin

2

12dAmin
2

uan&1^ uan&2 .

~34!

The first term at the right-hand side~rhs! of Eq. ~34! corre-
sponds to a perfectly entangled state in the subspaceH. This
part of the channel is responsible for the events in wh
teleportation success occurs with unity fidelity. The seco
term at the rhs of Eq.~34! describes the ambiguous even
that lead to a failure of the teleportation. This term cor
sponds to a nonmaximally entangled state in the subspacA
and is formed by the superposition of onlyd21 states. The
protocol for conclusive quantum state teleportation is ea
obtained from

GXOR2,3uc&12^ uc&35
1

d (
l ,k50

d21

Z1
d2 lX1

kuc&1^ ~AdAmin
2 uel&2

1A12dAmin
2 un l&2) ^ uk&3 , ~35!

where

un l&5Z̃l (
n50

d21 AAn
22Amin

2

12dAmin
2

uan&. ~36!

Now we can recall Banaszek’s result@21# concerning the
maximal average fidelity of teleportation

FB<
1

d11 F12S (
k50

d21

tkD 2G ~37!

through a quantum channeluch&125(k50
d21tkuk&1^ uk&2. In-

serting the coefficients of the quantum channel@Eq. ~34!#
into the previous definition@Eq. ~37!#, the fidelity for this
channel is given byF2 @Eq. ~31!#. Therefore, the protocol for
unambiguous state teleportation achieves the maximal
sible fidelity.

V. CONCLUSIONS

The problem of teleporting the state of ad-dimensional
quantum system through a quantum channel correspon
to a nonmaximally entangled state is directly related to t
of distinguishing between a set ofd nonorthogonal states. In
the teleportation process, a generalized control-not gat
used to map the entangled state of the sender into an u
tangled state. The sender then measures the state, which
0-5
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general, nonorthogonal, and transmits the outcome to the
ceiver. The receiver then proceeds to use this informatio
choose among a set of transformations that must be app
to his state in order to recover the teleported state. The st
fidelity depends on the discrimination scheme used by
sender to distinguish its state. The optimal conclusive d
crimination protocol proposed by Sunet al. @18# is at the
center of the teleportation procedure presented here.

The optimal conclusive discrimination scheme is based
the idea of mapping the non-orthogonal state onto a se
orthogonal states in a probabilistic fashion. When the ma
successful, the state can then be distinguished with certa
thus leading to a perfect teleportation. The failure probabi
of the mapping procedure is responsible for a reduction
the fidelity of the teleported state. We conclude that this
be visualized in the following way: the nonmaximally e
tangled quantum channel is a coherent superposition of
channels, one allowing for perfect teleportation because
channel corresponds to a maximally entangled state rel
to a successful map in the discrimination procedure an
nonmaximally entangled channel living in a subspace of
Hilbert space. The truncated channel is generated by the
ure probability of the map and teleportation through t
channel leads to a state with reduced fidelity. Linear indep
dence of the set of non-orthogonal states is a crucial facto
the scheme. The success of the procedure depends str
on the number of states that are linearly independent. If
states are dependent, then the only source of error is
-
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-
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discrimination scheme itself. The dependent states cause
ther errors in the scheme because these states cannot b
tinguished. Obviously, when all the states are linearly dep
dent, the scheme fails completely. In the protocol propo
here, the average fidelity when all the nonorthogonal sta
are linearly independent is optimal, i.e., it achieves the ma
mal average fidelity possible for a teleportation procedu
Therefore, we know with certainty that any further local o
eration would only decrease its performance@22–24#.

We are currently investigating other possible applicatio
of the quantum channel~34! including the teleportation of
unitary evolutions, which allow for the remote implement
tion of quantum gates. We are also interested in extend
the scheme to continuous variables.
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