PHYSICAL REVIEW A 68, 022310(2003
Optimal conclusive teleportation of quantum states
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Quantum teleportation of qudits is revisited. In particular, we analyze the case where the quantum channel
corresponds to a nonmaximally entangled state and show that the success of the protocol is directly related to
the problem of distinguishing nonorthogonal quantum states. The teleportation channel can be seen as a
coherent superposition of two channels, one of them being a maximally entangled state, thus leading to perfect
teleportation, and the other, corresponding to a nonmaximally entangled state living in a subspace of the
d-dimensional Hilbert space. The second channel leads to a teleported state with reduced fidelity. We calculate
the average fidelity of the process and show its optimality.
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[. INTRODUCTION portation. The other channel corresponds to a superposition
of d—1 product states and leads to the failure of the process.
Entanglement is a fundamental property of quantum meThis interpretation of conclusive quantum teleportation al-
chanical system§1]. It is one of the most interesting and lows us to calculate easily the average fidelity over the entire
puzzling ideas associated with composite syst¢jsThe  Hilbert space. Finally, we demonstrate the optimality of the
postulates of quantum mechanics state that the state spaced@ferage fidelity.
a composite physical system made up of t@o more dis- This paper is organized as follows: In Sec. Il we review
tinct physical systems is a tensor product of the state spacéle standard teleportation protocol considering both maxi-
of the component systems. A consequence of this structure f8ally and nonmaximally entangled states as quantum chan-
that there are states in the composite state space for whidlg!l. In this section we also relate quantum teleportation to
the correlations between the component systems cannot [§ilantum state discrimination. In Sec. Ill we discuss in detail
accounted for classically. By classical we mean here thafhe quantum state discrimination protocol used in this paper.
only local operations and classical communicatidn®CC) The results of this section allows us to calculate in Sec. IV
are considered. the average fidelity of conclusive state teleportation and
Although there is still not a complete theory on entangle-demonstrate its optimality.
ment, it is considered a fundamental resource of nature
whose importance is comparable to energy, information, and Il. QUANTUM STATE TELEPORTATION
entropy[3], among others. Recently, the field of entangle-
ment has become an intense research area due to its key roleIn the process of teleporting a quantum state two parties,
in many applications of quantum information procesgidy ~ Sender and receiver, share a maximally entangled two-qudit
An important example of this is teleportation of quantumpure state. The sender has a third qudit in the state to be
states, where a maximally entangled state shared by two pae€leported. The sender carries out a generalized Bell mea-
ties is used as a channel to transmit an unknown state usirggirement on his two particles and communicates the out-
LOCCs. Teleportation protocols can also be used to transmitome of the measurement to the receiver. Conditional on the
quantum operation§5,6] and to implement protocols for measurement result the receiver applies an unitary transfor-
quantum cryptography7]. mation on his particle. Thereafter, receiver’s particle is in the
In this paper we study the teleportation of a quantum statétate to be teleported.
belonging to ad-dimensional Hilbert spacgudit). Our pro- The teleportation of a quantum statey) of a
tocol considers the use of a nonmaximally entangled puré-dimensional Hilbert space, spanned by the bfsis} with
state of two qudits as quantum channel. We relate quantum=0, ... d—1, can be shortly described by the following
teleportation to the problem of quantum states discriminationdentity:
and show that the success of this scheme has a fundamental
limit determined by how accurately a set of nonorthogonal 1 971
linearly independent quantum states can be unambiguously | Wog1,®|1)s=7 > Z8XN )09 s (D)
distinguished. Thereby, we generalize to arbitrary dimen- Lk=0
sions the result by Mor and Horodedl8] concerning con-
clusive quantum teleportation of qubits. We show that thewhere particles 2 and 3 belong to the sender and particle 1
generalized protocol for conclusive quantum teleportatiorbelong to the receiver. The stateg, ,) with I,k=0, ... d
can be interpreted in terms of the coherent superposition of 1 are a generalization of the Bell basis to the case of two
two guantum channels. One of them allows for perfect teled-dimensional quantum systems,
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1 B |v1), [Eq. (8)] that, in general, these states are nonorthogo-
¥, == >, e™I"d)g|jem), (2)  nal. Infact, the inner product between any two of these states
Vd is given by( v,| vy =S8~ texd (2mi/d)k(n—m)]|AJ2 Only in
. , . the case of a maximally entangled state as quantum channel,
wherej ®m denotes the sum+m modulusd. In this case is, Ac=1/\d Yk=0, ... d—1, the overlap vanishes
the maximally entangled .staﬂelfoy()) has been chosc_en as and the state$y,), are simply the state,|l),, which are
quantum channel. The unitary operatarandZ are defined  mally orthogonal. Thus, in the case of a nonmaximally
by entangled statpy),, the success of the teleportation protocol
d—1 d—1 o is| limited by our capability of distinguishing among the set
_ _ <m {|v)»} of d nonorthogonal quantum states.
X ngo n+1)nl, 2 ngo exp( d n)|n)(n|. ©® This problem has been previously studied by Mor and
Horodecky[8] in the case of two-dimensional quantum sys-
Instead of a direct Bell measurement it is possible to apply aems. They proposed the use of unambiguous state discrimi-
generalized control-not gat&XoR,3) [9] in order to map the nation in combination with the usual quantum teleportation
states| ¥, y)»3 onto the unentangled statds,|l),®|k)s, protocol. In this way, it is possible to distinguish perfectly
whereF denotes the discrete Fourier transform, i.e., among the two statgs/,), and|v), with some probability.
For those events in which the discrimination is successful the
1 47 teleported state has fidelity 1. However, if the discrimination
Flly=—= > €e2mkdk). (4)  fails the postmeasurement states might still allow one to tele-
Jd o port thought with reduced fidelity. The need for state dis-
. . , crimination measurements when teleporting a quantum state
The generalized control-not gate is defined byhas also been considered in RE#4,25.
GXORgp|1)al1)6=11)41]), whereiS| stands for the differ- In the following section we review briefly the problem of
encei —j modulo d; thereby, Eq1) becomes quantum state discrimination. We show the optimal conclu-
d-1 sive state discrimination protocol for the stateg, [Eq. (8)]

1 .
d—Iyk and obtain the postmeasurement states.
GXORy3g W00 12® | 1/’)325 |§o Z7 Xl 1®F 1)@ [K) 3. P
' (5) I1l. QUANTUM STATE DISCRIMINATION

The protocol for quantum state teleportation can be straight- Thz prob_Igm to)|f quantum state dlspr|m|rf1a;]|on has de-
forwardly read out from this equation. In the case of a non-crved consideranie attention. An overview of the main strat-

. : egies has been given by Chefl&§]. In the later, generalized
maximally entangled pure quantum st&f);, as quantum

h | defined b measurements are used to construct an error-free strategy for
channel, defined by discriminating among a finite number of nonorthogonal

d-1 states with givera priori probabilities. The scheme can oc-
W) o= > Alm)®|m), (6)  casionally lead to inconclusive results. This idea first pro-
=0 ’ posed by Ivanovi¢11] has been studied by Diek42] and

Pereq 13] for two nonorthogonal states generated with equal
where{|m);} with i=1,2 are orthonormal basis defined by g priori probabilities. The result was later generalized by
the Schmidt decomposition and the coefficieAts are real  jaeger and Shimor{yl4] for arbitrarya priori probabilities.
and satisfy the normalization condition, the previous identityThe qudit case was then considered by Chefles and

[Eq. (5)] is replaced by Peres and Ternpl6] where the former showed that results
e for the qudit case simply generalize form those of qubits

_t d—lvk when the states are linearly independent. The linearly depen-

GXORy ¥)128|¥)3 d |,k§;’o Zi X1l 9)18|m)2® k)3, dent case can be considered only when copies of the state are

(7) available[17]. Here we consider a method developed by Sun
et al.[18], which allows the construction of the optimal con-
where the stately), are given by clusive state discrimination scheme for a given set of linearly
dependent states.

According to the quantum operations formali$ih®] the
most general transformation of a quantum system can be
represented by a completely positive, trace preserving map;
The previous identityEq. (7)] resembles Eq.5) where now  thereby, it is possible to perform a predetermined nonunitary
the states=|1), have been replaced by the stateg of Eq.  transformation with some probability. Furthermore, in gen-
(8). Let us now recall that in the teleportation of states it iseral, it is possible to known whether the desired transforma-
necessary to measure the state of particle 2. Conditional ation has been successfully implemented or not.
the outcome of this measurement a unitary operator is ap- In particular, it is possible to change probabilistically the
plied on particle 1. These operators are in a one-to-one reldaner product between pure states of a quantum system. This
tion with the outcomes of the measurements. Therefore, it iss the essence of unambiguous state discrimination among
necessary to distinguish the possible states of particle 2 peelements of a sef)={|»|)} of nonorthogonal states. The
fectly. However, it is clear from the definition of the states state|v;) is mapped probabilistically onto the stdeg) that

d-1
|V|>2=Z'k20Ak|k>2 with 1=0,...d-1. (8
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belongs to a set of orthogonal states. This mapping has cer- d-1
tain probability of failure. In this case, the system is mapped > (c|F|n)A,n)=0
onto a state¢,) that does not allow a conclusive identifica- n=0
tion of the initial state. Thus, the failure probability of the
mapping is identified with the total probability of obtaining ith
an inconclusive identification of the states. A major problem
consists in finding the optimal mapping, that is, the mapping
with the smallest inconclusive probability. d-1

Necessary and sufficient conditions for the existence of a lcy=> Cr|k). (12
conclusive discrimination scheme have been found by k=0
Chefleg[17], namely, the states i) must be linearly inde-
penden{Ll). Thus, the stat§| ¢,)} must be linearly indepen-
dent. Otherwise, it would be possible to use another mappin . ) )
that allows the discrimination among these states. Based g pefficients(c|F|n) must be null. Sincé|n) form a basis,

this observation, Suat al.[18] have developed a method to t ef?_n_ly ?O(I:ution t:) Eq(lr]Z) 'Irsh |c)ff0.”'[:]1ereforel_,t a(;ll the
find the optimal conclusive discrimination scheme and pro-Coe icientsC; must vanish. Thus, if all the amplitudés,

posed a physical implementation in terms of optical multi_arebdlfferfen; from OI" tr&:tat@%aré Ll.lé)therwtl)se, wh?_ng
ports. In their approach conclusive state discrimination iUPSet of the amplitudes,, are 0, Eq.(12) can be satisfie

described in terms of a unitary operatdrand projective Y takri]ng |€)=2manF|m) for any ay#0. Thus, in this
measurements. The statés)} generated witha priori case the statdsr/],) arlcla hD' litud i ¢
probabilities{ ,} are considered to belong to a Hilbert space Inthe case that a the amplitu A, are different from O,

K that can be decomposed as a direct sum of two subspacéagl, the statesr) are.dlff_ergnt. _Thu§, the only source of error
ie., K=U® A. These subspaces are spanned by the basle the scheme of discrimination, itself. For example, in the

states{|u;)} and{|a,)}, respectively. The action of the uni- Pfoc€ss of conclusive state discrimination, there is a prob-
tary transformation is'such that ability for the failure in the discrimination process. This

event leads to a failure in the teleportation of states because
_ it is not possible to decide which unitary operator must be
Ul) =i )+ ), ©) applied in order to recover the state to be teleported. When

where the set of not necessarily normalized, linearly depen(-)nly one of the amplitudes is different from 0, the stdte}

S 2. are all equal. Henceforth, it is impossible to discriminate
dgnt .stgtes{.|¢>|>} is in A, andp, denotes the pr.obab|I|ty of among them at all and both two processes fail completely.
d|scr|m|nat|ng successfully the statg). The unitary trans- Generally, when £n<d of thed amplitudesA,, are dif-
formatlon U [Eq. (9] is follpwed by a measuremgnt that ft?rent from 0O, then thel states|v,), are LD. In this case it
projects the state of the particle onto one of t.he basis states BEs been showfil7] that a conclusive state discrimination
{lup} or {a)}. The.stateé,v,> and|u) are in one-to-one protocol can be formulated when copies for each dtate
correspondenqe. Th!s and the orthogonality of the sfatgs are available. This adds an extra source of error to the tele-
allow one to discriminate among the states of the{sgb}.

H . I h basis statedrh N portation of states and unitaries. In fact, the no cloning theo-
FIOWEVET, In generaj, each basis sta as a component o, [20] states that it is not possible to copy perfectly an
in all the stateq|¢,)} and thus it is not possible to assign

‘ unknown guantum state due to the linear character of quan-
them a particular state)).

: o d-1 tum mechanics. Thus, besides the success probability of the
The optimal average probability of succ8s-2_g 7P giscrimination protocol itself the success probability of a
can be found under the constraint d@}=0 whereQis the  yropapilistic cloning machine must be considered.

ppsitive semidefinite matrix whose matrical elements are | ot us now calculate the optimal average failure probabil-
given by ity F=1—S for the states{|»)} under the conditiomA,
#0 Vm=0, ... d—1. The calculations can be greatly sim-
Qi1 = bl 1) = (vid 1) — Pidi - (10) plified if the matrix Q is Fourier transformed. In fact, the
matrix Q becomes

{ the case that all the amplitudés, are nonzero, all the

The states|#,) can be defined as$¢)=A|a;) with Q

=A'A. Thereby, it is possible to find the form df in

Eqg. (9). - d-17[/d-1 o )
It turns out that the statels,) are not necessarily well FQF ZQZmZO ;;—“o o) " 1tdAn [m)(m|
suited for conclusive discrimination. In fact, these states can N B
be linearly dependent. The staies) are LI under the con- d-1 /d-1y
it K _k(n—m)

dition +> | > e |m)(n], (13)

m#n \ k=0 d
d-1

;o Clw)2=0 iff C=0 VI=0,...d-1, (1) where f,. denotes the failure probability asociated with the

state|»,). Ford arbitrary, the determinant d@ has the ge-
or equivalently, neric form
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de(Q)=Cy(A3, ... AZ_)+Cy(A3, ... AZ)
d-1
X > f A2, (14
k=0

Applying the method of Lagrange multipliers we obtain

J Yo 1 2 2 d-1
I [FHAdetQ)]=5+ACo(AG, ... AT+ NI,
(19

PHYSICAL REVIEW A68, 022310(2003

1 41
|¢I>:ﬁ go Allay
1 d-1rd-1 2 i
== [E exr{—m(l—k))JAé—Aéin |ay).
d k=0 | m=o0 d
(22

IV. FIDELITY OF CONCLUSIVE
STATE TELEPORTATION

where\ is the Lagrange multiplier and we have made use of With the results of the precedin_g section we can now state
the fact that the state§»)} are generated with the same precisely the protocol for conclusive quantum state telepor-

probability, i.e., zy=21/d VI=0, ... d—1. The derivatives
[Eqg. (15)] are invariant under permutations &fs. In par-

tation. Our starting point is the identity in E¢5) and the
definition of statesv;) of Eq. (8). The standard teleportation

ticular, they can be obtained from the derivative with respecProtocol consists in measuring the states of particles 2 and 3

to fo by suitably permuting;’s. Thereby, the condition

J ~
E[FH‘ de{Q)]=0 (16)

i
implies thatfo=f,= ...=f4_,=f. Thus, the failure prob-

abilities are all equal. Under this condition, matéhas the
simpler expression

d—1
6=m20 (f=1+dAZ)|m)(m|, (17)

which turns out to be diagonal. This simplifies the analysis

considerably. In fact, the determinant @fis now given by
Det(Q) =Det(Q)=TI{_3(f— 1+ dA). (18)

Thereby, the condition De)=0 implies f=1—dA? for

somek. The conditionf<1 must also hold. This condition

can be satisfied iA2<1/d. This rules out the choice df

=1—dA§_1 where Ay_, is the the largest amplitude. The
matrix Q (andQ) must also be positive semidefinite; this can

be guaranteed if all the principal minors € are non-
negative, that is,

Fo(f-1+dA)=0 V n=0,...d-1. (19

This condition implies that
f=1-dA? Vk=0,...d-1 (20)
and can be satisfied iff=1—dmin{AZ,_o .. 4_1. Thus,

the optimal average failure probabiligy,,;, is given by
mezl_SMle_dA%ni (21

whereA,;,, is the smallest coefficient in the stdteq. (6)].

The set of state$|#,)} can be readily found. Noting that

Q=F'QF=F"ATAF=FTATFFTAF, we obtain

and communicating the outcomekk) of these measure-
ments to the receiver. This projects particle 1 to the state
797X 4) from which the statéy) to be teleported can be
obtained via applying the operatot®*Z'. However, the
states|»;) cannot be distinguished with certainty, affecting
the overall performance of the process, in this stage enters
optimal conclusive quantum state discrimination. Before
measuring particles 2 and 3, the unitary transformatioim

Eq. (9) is applied onto particle 2. This leads to the join state

=
U, GXOR23|‘I’>12®|1/’>326 léo Z28 X )1 (VShade)2
+]d1)2)®K)3. (23

Measurements on particles 2 and 3 project the particle one to
the state

1
[P0 =5Z" X9 (24)
with probability S,,,, and to the state
1 (92
|‘Pék>=m( h) A'szd'xk) ) (25

with probabilities 1-Syax. The state|Wi\) [Eq. (24)] is
associated with the conclusive events in the discrimination of
states and clearly leads to the perfect teleportation of the
state|). However, the stat¢¥Z,) [Eq. (25)] leads to a
failure of the process. Nevertheless, this state has some fi-
delity with respect to the statpy) to be teleported. The
average fidelityF of teleportation is given by

d-1
I::dArznin'i_ 2 Jd¢|<¢|q,s,k>|21 (26)
s,k=0

where the statefV) are the states of particle 1 after the
teleportation protocol has been carried out for the particular
pair of outcomesg,k) and the integral is performed over the
entire Hilbert space. In the case that the teleportation proto-
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col is interrupted after the measurement of particles 2 and 3, d-1 2_p2
that is, | W), =| V)2, we obtain for the average fidelity lch) = 2 TA’;”‘|an>l®|an>2_ (33
min

F= dAfn,n+nkzo (A% fnin)f dyl(n+k|)|?[(n|#)|?, Thus, conclusive state teleportation can be described as start-

@7 ing with a coherent superposition of two quantum channels,
ie.,

where the state§n)} for n=0, ... ,d—1 for a basis for the
Hilbert space of particle one. The integral entering in Eq.  |¢)1o= \/dAmmE |en>1®|en>2
(27) is equal to ¢, +1)/d(d+1). Thereby, the average

fidelity of teleportation becomes N AZ
1 V1= dAﬁﬂnz ﬁ|an>l®|an>2-
:—+(d 1)AZ,. (28 min

(39

The fidelity can be increased by using the information avail-The first term at the right-hand sidens) of Eq. (34) corre-
able about the outcomes of the measurements carried out @ponds to a perfectly entangled state in the subspacEhis
particles 2 and 3. The state of E@®5 can be cast in the part of the channel is responsible for the events in which
form teleportation success occurs with unity fidelity. The second

term at the rhs of Eq(34) describes the ambiguous events

that lead to a failure of the teleportation. This term corre-
[y (29 sponds to a nonmaximally entangled state in the subsgace
and is formed by the superposition of ordy- 1 states. The
protocol for conclusive quantum state teleportation is easily
obtained from

| v

d-1
z AIGX4—T|k)Zd !

k> \/—

by appliying onto particle 1 the operatéf ¥ conditional on
the outcomek of the measurement of particle 3. This state
leads to the following fidelity: d-1

GXORR ) 120 | h)3= d, 2 Zd 'X1|<//)1®(\/dAmm|e|>2
+y1- dA§1|n|VI>2)®|k>3! (35

2+d(d—1)A2,

Fl_Ta (30

which is clearly larger thariy. A further increase in the where
average fidelity can be achieved by observing that the distri-

bution (AL)? has its maximum a=1. This suggests to com- | Z_p2.
plete the protocol for unambiguous state teleportation by ap- lv)=2 2 W'a n)- (36)

plying the operatorZ® onto particle 1 conditional on the min

outcomes of the measurement carried out on particle 3. In

. o Now we can recall Banaszek’s res concerning the
this case the average fidelity becomes L] g

maximal average fidelity of teleportation
2

d+1 > JAZ-AZ JAZ-AZ. . (3)) through a quantum channﬁth)lzziﬂ;étdk)l@|k)2. In-
nzr serting the coefficients of the quantum chanfigd. (34)]

into the previous definitiofEq. (37)], the fidelity for this

Clearly, Fo<F;=<F for all A, €[0,1A/d]. In what fol-  channel is given by, [Eq. (31)]. Therefore, the protocol for

lows we will show this result to be optimal. This can be do”eunamb|guous state teleportation achieves the maximal pos-
by noting that the states;) can be cast in the form sible fidelity.

Fo=——+[2+d(d— l)A in]
2 d+1 F d_|_1 (37)

d-1
~ =, V. CONCLUSIONS
Fl(ﬁl):zlgo VAn_Amin|an>1 (32)

The problem of teleporting the state ofdadimensional
~ ~ guantum system through a quantum channel corresponding
where the operators and Z act now on the subspacé.  to a nonmaximally entangled state is directly related to that
Thereby, the transformatiod is replaced byFU. This re-  of distinguishing between a set dfnonorthogonal states. In
sembles the definition of the states) and suggests that the the teleportation process, a generalized control-not gate is
statesF|¢,) originates in a quantum channgh),, of the  used to map the entangled state of the sender into an unen-
form tangled state. The sender then measures the state, which is, in
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general, nonorthogonal, and transmits the outcome to the reliscrimination scheme itself. The dependent states cause fur-
ceiver. The receiver then proceeds to use this information tther errors in the scheme because these states cannot be dis-
choose among a set of transformations that must be appligthguished. Obviously, when all the states are linearly depen-
to his state in order to recover the teleported state. The statedent, the scheme fails completely. In the protocol proposed
fidelity depends on the discrimination scheme used by th&ere, the average fidelity when all the nonorthogonal states
sender to distinguish its state. The optimal conclusive disare linearly independent is optimal, i.e., it achieves the maxi-
crimination protocol proposed by Suet al. [18] is at the mal average fidelity possible for a teleportation procedure.
center of the teleportation procedure presented here. Therefore, we know with certainty that any further local op-
The optimal conclusive discrimination scheme is based orration would only decrease its performaf2g—24.
the idea of mapping the non-orthogonal state onto a set of We are currently investigating other possible applications
orthogonal states in a probabilistic fashion. When the map isf the quantum channdB4) including the teleportation of
successful, the state can then be distinguished with certaintynitary evolutions, which allow for the remote implementa-
thus leading to a perfect teleportation. The failure probabilitytion of quantum gates. We are also interested in extending
of the mapping procedure is responsible for a reduction irthe scheme to continuous variables.
the fidelity of the teleported state. We conclude that this can
be visualized in the followlng way: the nonmaxw_n_ally en- ACKNOWLEDGMENTS
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