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Reduction theorems for optimal unambiguous state discrimination of density matrices
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We present reduction theorems for the problem of optimal unambiguous state discrimination of two general
density matrices. We show that this problem can be reduced to that of two density matrices that have the same
rankn and are described in a Hilbert space of dimensiams\®e also show how to use the reduction theorems
to discriminate unambiguously betweBnmixed statesl=2).
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[. INTRODUCTION and IV, based on a geometrical approach, we present two
theorems to simplify the problem of unambiguous state dis-
Discrimination between quantum mechanical states is arimination between two arbitrary density matrices. In Sec.
standard task in quantum communication protocols. TypiV, we propose a brief discussion on the consequences of the
cally, the signals are represented by nonorthogonal quantutwo previous theorems including a generalization to dis-
states, often even in the form of mixed states due to therimination between more than two density matrices. Finally,
effect of noisy transmission channels. It is known that nonwe present our conclusions in Sec. VI.
orthogonal pure states cannot be discriminated exactly, that
means, with full efficiency without any error. However, it is
possible to discriminate between them unambiguously in a; opTIMAL UNAMBIGUOUS STATE DISCRIMINATION
certain fraction of the cases. This problem was formulated by
Dieks [1] and Ivanovic[2] for two pure states with equal If quantum states cannot be discriminated exactly, one can
priori probabilities, and was elegantly solved by Pei@s  search for an optimal distinction between them. The meaning
The more general scenario of two pure states with arbimary Of “optimal” needs to be made precise, and in quantum state
priori probabilities was investigated and solved by Jaegefstimation theory[12] this is typically expressed via cost
and Shimony4]. More general scenarios with a higher num- functions. These cost functions provide a figure of merit for
ber of signal states were treated, with analytic results foglifferent measurements. Optimal unambiguous state dis-
signal states that satisfy certain symmetfie$]. crimination is an extreme case in that we are looking for a
It is only recently that the problem of generalization to measurement that either identifies a state uniquetyclu-
mixed states has been considered. One of the first workgive result or fails to identify it (inconclusive result The
describes the optimal unambiguous discrimination between @0al is to minimize the fraction of the inconclusive results.
pure state and a density matrix of ranl{'@’ which has been For the problem to be properly stated, one needs to fix the set
generalized for a rank density matrix8]. In a more recent Of quantum stategp;} together with the corresponding
paper, Rudolptet al. [9] solved other special cases, for ex- priori probabilities{p;} of their appearance. The measure-
ample, that of two density matrices of rank{1) in an  ments involved are typically generalized measuremgi&k
n-dimensional subspace. Finally, necessary and sufficienwhich are described by a Positive Operator-Valued Measure
conditions for optimality and some numerical methods ardPOVM). APOVM is a set of positive semidefinite and Her-
discussed by Fiurasek and Je&R] and by Eldaf11]. mitian operatorgF,} that satisfies the completeness relation
In this paper, we present two theorems that allow to re=xF=1 on the Hilbert space spanned by the signals. The
duce the general problem of optimal unambiguous state digerobability of obtaining outcomé for a given signalp; is
crimination of two density matrices to standard forms. Thisthen given byp(k|i)=Tr(p;F).
standard problem can be formulated as optimal unambiguous Definition 1.A measurement described by a POV{M,}
state discrimination of two density matrices of ranthat are  is called an Unambiguous State Discrimination Measurement
defined in a minimal Hilbert space of dimensiom.2We (USDM) on a set of statefp;} iff the following conditions
show that the previously given examples involving densityare satisfied:
matrices can be reduced effectively to the optimal unambigu- (1) The POVM contains the elemen{&,,Fq, .. .F\}
ous state discrimination of two pure states, as solved by JaghereN is the number of different signals in the signal set.
ger and Shimony4]. The next challenge is, therefore, to The element, is connected to an inconclusive result, while
discriminate two density matrices with a two-dimensionalthe other elementE; correspond to an identification of sig-
rank in a four-dimensional Hilbert space. nal statep; .
The paper is organized as follows. In Sec. Il, we present (2) No signals are wrongly identified, that is, BfE,)
the mathematical background of the unambiguous state dis=0 Vi#k i,k=1,... N.
crimination and introduce some notations. Then, in Secs. Il Each USD measurement gives rise to a failure probability,
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that is, the rate of inconclusive results. This can be calculatedopulation of the two density matrices on it will contribute
as always only to the failure probability, never to the conclusive
results. This is made precise in the following theorem.
Theorem 1(Reduction Theorem for a Common Sub-
space. Suppose we are given two density matripggndp,
on H with a priori probabilitiesp, and p, such that their
Definition 2. A measurement described by a POVM respective support§ andS have a nonempty common
FOp[} is called an Optlmal Unamblguous State DISCYImIna-Subspan-[m We denote b)?‘[ the Orthogona| Comp|ement
tion Measurementoptimal USDM on a set of state$pi}  of H,, in ¥, while IT;, andII;, denote, respectively, the
with the corresponding priori probabilities{p;} iff the fol- projector ontaH,, and’H’. Then the optimal USD measure-

lowing conditions are satisfied: ment is characterized by POVM elements of the form
(1) The POVM{FpP} is an USD measurement dp;}.

Q[{Fk}»]:Ei piTr(piF-). (1)

(2) The probability of inconclusive results is minimal, that ngt: FiOPt, (4
is, Q[{FP"}H]=mine _yspnQU{Fi}].

In this paper, we are searching for an optimal USD mea- ngt: Féopt, (5)
surement to discriminate two arbitrary density matriges
andp, that are prepared wita priori probability p; andp,, FOPI=F,°PLt Iy, (6)

respectively. We find that this general problem can be re-
duced to a simpler standard situation. Moreover, the reduGyhere the operatorB ;°P', F,°PY F1OP! form a POVM{F;}

tion can be applied as well to the case of more than twqyjth support ont’, descrlbmg the optimal USDM of a re-

density matrices, as seen later. duced problem defined by
First, let us fix some notations. The reduction theorems
make use of the supporSp:=supportf) of positive , 1 1p1
semidefinite and Hermitian operat®. The support of a P1:N—1HH'P1HH': pr=— Ne=Tr(pslls), (7)
positive semidefinite and Hermitian operator is defined as the
subspace spanned by eigenvectorsPotorresponding to 1 sz
nonzero eigenvalues. We denote alsg.:=rank(P) N —TpoIly, Py= N No=Tr(psl14), (8)
=dim(Sp), the rank ofP. Next we define, in a Hilbert space
‘H, the sum and the intersection of two Hilbert subspdges N=Nyp;+N,p, 9)

and H,. The sumH;+H, of the subspace®(, and H, is

defined to be the set consisting of all sums of the fam And finally, the corresponding failure probability can be

+ay, wherea, € 1, anday e H,. Hy+7, is a Hilbert sub- —ien in terms ofQ'[{F'P4], the failure probability of the
space ofH. The intersectiort{;NH, is defined to be the set reduced problem, as

consisting of all the elemenis whereae H; andae H,.
HiNH, is a Hilbert subspace of{. The complementary QI{FP4]=(1—Ny)ps+(1—N,)p,+NQ'[{F'2PY].

orthogonal subspad@rthogonal complemepbf a subspace (10)
S in H, written S*, is the set of all the elements 6f
orthogonal taS. We then havé{=S® S, the direct sum of Proof. To prove the reduction theorem, we state as a first
the two orthogonal subspaces. Finally, we denotdlythe  step the following lemma.
orthogonal projection onto the subspage Lemma 1.For any positive semidefinite operatoksand
B, Tr(AB) =0 iff the support of the two positive semidefinite
Il. COMMON SUBSPACE OF THE SUPPORTS operators are orthogonal:
In the first theorem, we will consider the situation where Tr(AB)=0<S,L Sg. (11
the supports of the two density matrices have a common
subspace. This is the case whenever we find that Indeed, if A and B are positive semidefinite operators,
they are diagonalizable with eigenvalueg;>0 (i
dim(Spl)+dim(8p2)>dim(H). (2 =1,...ra) andB;>0 (j=1,... rg). Thus

Here’ is the Hilbert space spanned by the two supports. In _ RISV IS
this case, it can be written as THAB)=Tr Z | V)T 2 5@ )@

H=H &%n, ® :; @i Bi(Pi|®))|? (12
where =S, NS, is the common subspace of the two

supports, and’-l’ is |ts orthogonal complement if{. The  vanishes iff{|®;)}; and{|¥;)}; span orthogonal subspaces.
first reduction theorem will eliminate the common subspace An USD measurement described bjF,} satisfies
H~ from the problem. The intuitive reason is that in this Tr(F1p,)=0 and TrF,p,) =0 by definition. It means, as a
subspace no unambiguous discrimination is possible, so theonsequence of Lemma 1, gt 1 S, andSg LS, . Since
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Hn~ is a subspace oﬁspl and S " it follows that Se L Hn
and Se,LHn. Therefore, by writing the block matrices in
H=H~®H', we have

0 O
Fi= 13
1 0 Fi ’ ( )

0 O
Fo= 0 Fyl° (14

The completeness relation @i implies, first,
Iy, ©

F,= =11, +F; 15
=l o gy Tt P (15
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FIG. 1. Elimination of the subspace 6)‘,2 orthogonal taS, - p1
denotes the orthogonal projection @f onto sz.

We notice thatS‘piﬂSpfO. Moreover, Trp,F,)=0 im-

and, second, by the completeness relation on the reducgflies Tr(p;F5)=0 and Trp,F,)=0 implies Tr(p;F})=0.

subspacé’,
2k Fr=1y. (16)

It follows also thatF, (k=1,2,?) are positive semidefinite
and Hermitian operators. Therefore, by definiti¢R,} is a

Then{F,} defines a POVM describing an USDM ¢p/} in

H'. The problem is now reduced to the subspateand it

remains to consider the optimality of the reduced USDM.
We can writeQ such as

Q=(1-Nyp)p1+(1—Nz)po+(N1p;+N2p,)Q", (22)

POVM on #'. The fact thatF, is equal to identity in the WhereQ'=piTr(piF>)+p,Tr(psFs) is, by definition, the
subspacé, is here a direct consequence of the property off@ilure probability of discriminating unambiguoushy and

an USDM onH. Next we will see thafF,} is a POVM of an
USD inH'.

We definell;, andlIl; as the projector ontd{, and
H', respectively. Thusl,, @11, =1;,. For any USDM, be-
cause of the diagonal block form of the POVM, we find for

Q
Q=p1Tr(psF2) +p2Tr(p2F-)
=(1=Ng)p;+(1=N2)p;
+(N1p1+N2po)[p1Tr(psF)

+paTr(paFa)], 17)
with
1 ! I1 I1 (18)
p1=———1lyypallyy,
" Tr(pallyy)
1
H’H’pZHH’ . (19)

Po=_———
Tr(poIly)

Herep/ (i=1,2) is thea priori probability corresponding to
the new density matrip; (p;+p;=1):

p':£ Ny=Tr(p.I15,) (20)
LUNgps+Nop,t Pty

N2p,
=———————  No=Tr(p,I1,,). 21
p2 Nlpl+ sz2 2 (p2 H ) ( )

pyin H'.

The previous equality implies that the failure probability
Q is minimal iff the failure probabilityQ’ is minimal. Thus
we have thafF,} describes an optimal USDM dmw;} & Q
is minimal & Q' is minimal & {F,} describes an optimal
USDM on{p;}. This completes the proof.

IV. ORTHOGONAL SUBSPACES OF THE SUPPORTS

We now consider the case where the supports of the two
density matrices have no common subspace. That can always
be reached thanks to the previous reduction theorem for
common subspace. If there is a part&gg orthogonal taS, ,

we can decompossp2 into this orthogonal subspace and

another one(See Fig. 1. It turns out that this subspace of
sz orthogonal tu‘Spl can be split off and leads to an unam-
biguous discrimination without error. The same is true for
Sy,
Theorem 2Areduction theorem for orthogonal subspaces
Suppose we are given two density matriggsand p, in H
with rankr, andr,, respectively, and with their associated
priori probabilitiesp; and p,. Assuming that their supports
Spl andSp2 have no common subspace, one can construct a

decomposition

H=H'&H'" (23

with H'' =S1@S;, §1=5, NS,,, ands; =8, NS, .

The solution of the optimal USDM problem can be given,
with help of I1s: andII:, the projection ont&7 andSy ,
respectively, inH=H'&H'*, by
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FOPI=F /%P4 [Tg1, (24) whereSg and Sg ) are defined as subspaces&f, with
? minimal d|men5|on fullfiling the above decomposmons in
ngt: FLoPty Hsi: (25) the sense thafE?i—support(ISE?S iHSE?) fori=1,2.

The optimality condition means, in particular, that no in-
formation should be obtained from the conditional states fol-
lowing an inconclusive result. If the two failure spacﬁé)l

The operators=|°P, F4°PL F1P! form a POVM {F{} with and S, are different, it will be possible to distinguish the
support onH’, descrlbmg the Optimal USDM of a reduced conditional states that arise from a projection ostg [7].

Fopt F/Opt (26)

problem defined by Therefore, the optimality condition implies th5E91= SE?2
and then
=, NaPs N = Tr(p,TT 2
pl_N_l H PR pl N 1_Tr(pl H’)’ ( 7) SE?:SEM:SE?Z' (34)

1 N,p In the framework of the Naimark extension, this condition
PEZN—HH'MHH': p§=%, N,=Tr(p,Il,,), (28) translates as follows: the equality 6, and Sg,, implies
2 that a subspacs; =S, NS,, satisfiesS CSg, in order to

N=N;p;+Nyp,. (29 assure that the overlap between any statg;irand any state
in S, will be 0. Similarly, S5 C S .

And finally, the corresponding failure probability can be Then it exists a subspaéé, in SE such that we can write

written in terms ofQ’ [{F’Opt}] the failure probability of the Se _3 ®H,. In the same WaySE —Sl@Hl with H; in
reduced problem as Sg,. It follows that

QUFEPHI=NQ'[{F'&"}. (30 S, CSsoH©Ss,, (35)

Proof. We translate the problem using a Naimark’s exten-
sion and projection-valued measuRVM). This idea is in-
spired by the first work of Suet al.[7] where an extended n .
Hilbert space has been used. Let us repeat the Naimark the-(l)_he fact thais; .5, |mpI|es that
rem: Given{F,} as a POVM on a Hilbert spack, it exists S =Stan 37)
an embedding of{ into a larger Hilbert spacé such that 27
the measure can be described by projections onto orthogo
subspaces iiC. More precisely, there exist a Hilbert space n\%)lth HlCH1®SE
K, an embedding such thattH=X, and a PVM{E,} in K ®Se,,
such that withP, the projection defined byK=H, F,
=PEP, Vk.

To the three POVM elements, in H correspond three
PVM elementsE, in K. The subspaces defined bk, } re-
sult in a decomposition into orthogonal subspaces

S,,CS1@H® e, (36)

In the same way, withH,CH,

S,,=S10H;. (38)

The orthogonal projectiorE; then can be decomposed
into a sum of orthogonal projectors ﬁsé“"HHi and the

orthogonal projectioit, asllI st HHé. These projectors are
K=S8g,®Se,® Sk, (31)  mapped intgH via the projectionP as PIls:P=Ils:. We

_ ) ) defineF{ =PI, P Vi=1,2, so that
which give raise to nonorthogonal subspacesHnas SFk '

=PSg, P. We can, therefore, translate properties of the USD Fi=Fi+Is1, (39
POVM to the embedding of{ into K.
Next we take a look at the embedding&f, ands,, into Fo=Fy+1lsL (40)

K and we translate the conditions for an USDM into the

embedded language. We denote embedded subspadés ofWith SeC(S1 O andSg; C(S8z)*. MoreoverSg LS, then
by the same symbol as the original subspace&HofThen SFlLSl and, 5|m|IarIySF2lSL ThenF; andF; have sup-
Tr(p1E2) =0 implies thatS, is orthogonal taSe,. Similarly,  hort on a subspack’, which is the complementary orthogo-
we find thatS,, is orthogonal toSg . Therefore, we can nal subspace off'* =St ® 575 .

write Therefore, iNH=H'®S1®S;=H' ®H'*, we find
8, CSe, &S, (32) Fp 0 0
F,=| 0 st 0, (41)
8,,CSe, 8¢, (33 o o0 o
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F, 0 0 And again, we have thafF,} describes an optimal
0 0 o USDM on {p;} =Q is minimal ©Q’ is minimal &{F.}
Fo= : (42 gescribes an optimal USDM ofp;}. This completes the
0 0 ls proof.
From here, we will follow the same argumentation as we V. CONSEQUENCES AND GENERALIZATION
used in the proof of theorem 1. The completeness relation on ) o ) ,
H implies, first At this point, it is useful to introduce a notation to sum-
’ ’ marize our knowledge about the USD of two density matri-
F, 0 0 ces_. We haye H=Sp1+8p2,_ thgn diin)z_dim(Spl)_
e=l 0 o o 43 +d|m.(8p2)—d|m(8,71ﬂ S,,). Itimplies, by denoting the g|-
' mension of the Hilbert spacg/ as d, that the respective
0 00 ranks of the density matrices satisfy
and, second, the completeness relation on the reduced sub- ri+ro=d. (52)
spaceH’,

For example, the case of two density matrices of the same
, rank (n—1) in an Hilbert space of dimensiondescribed by
> Fi=ln (44) Rudolphet al. [9] can be written as “0—1)+(n—1)>n"
while the USD between one pure state and a mixed state
described by Bergowet al. [8] can be characterized as the
“1+n=(n+1)" case.

Now we discuss interesting consequences to the two
above theorems. First of all, the first theorem corresponds to
the elimination of the common subspace. A common sub-
_ _ / ' space is present when+r,>d holds. Its dimension isl
Q=p1Tr(piF2)+p2Tr(paF4) =(N1p1+Nopo) [Py Tr(psFs) =r,+r,—d. Therefore, after elimination of that subspace,

+p5Tr(psF o)1, (450  weendupinthe casg +r,=d" withr;=r;—dn and simi-
larly for r5 andd’. Then, we can reduce the Rudolph’s case
with of discriminating unambiguously two density matrices of the
same rankii—1) in an Hilbert space of dimensianto the
1 “1 +1=2" case of two pure states because the common sub-
P1=WHWP1HH', (46)  space is i —2)-dimensional. Rudolpkt al. [9] already no-
P1lin ticed it in their paper. The reduction is constructive giygn
and p,.
1 The second theorem corresponds to the elimination of the
Pz:WHH’PZHH’ : (47) orthogonal part of one support with respect to the other, i.e.,
p2lly S, NS,, and S, NS, . The nonempty subspacey NS,

Herep/ (i=1,2) is thea priori probability corresponding to and S, NS, can be found systematically. For example,

k

It follows also thatF, (k=1,2,?) are positive semidefinite
operators. Therefore, by definitioff,} is a POVM onH'.

For any USDM, because of the diagonal block form of the
POVM, we find forQ,

the new density matrip; (p;+p;=1): Sﬁlﬂ S, can be found by projecting, ontoS, and then
N by taking the complementary orthogonal subspacs,inof
pi:ﬁ, N;=Tr(p,I15), (48  that projection. As a matter of fact, this assures that we can
1P1 1T N2pP2 reduce the general USD problem always to that of two den-
sity matrices of the same ramkr=<min(r{,r,), in a Hilbert
, N,p, space of 2 dimensions. Indeed, if after the reduction the
P2= v No=Tr(pallyy). (49

rank of p5 is bigger than the rank gf;, then the subspace

 Nips+Nop,
S;,mspé is at least of dimension,—r; and can be elimi-
1

Moreover, ~TrpiF2)=0 implies Tr(piF3)=0 and  paieq with the help of the above two theorems, we can
Tr(p2F1)=0 implies Tr(p;F;)=0. Then{F,} defines an requce any problem of discriminating unambiguously two

POVM describing an USDM offp;'} in H'. density matricesp; and p,, with rankr; andr,, respec-

We can rewrite the failure probabilit® as tively, in a Hilbert spacé+, into a problem of discriminating
unambiguously two density matriceg and p; with rankr

Q=(Ngp;+N2p2)Q’, (50 [r<min(r,,r,)]in H'CH, a 2r-dimensional Hilbert space.

The reduction is constructive. The first theorem allows us to
where Q" =p;Tr(p1F5) +p;Tr(psF5) is, by definition, the  gplit off the common subspace and the second theorem leads
failure probability of discriminating unambiguousp; and  to reduce the problem of discriminating unambiguously two
p, in H' with a priori probabilitiesp; andp,, respectively.  density matrices of the same rank.
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As a consequence, we can reduce, for example, the prolbiguously between this part of the support of aJl. The
lem of USD between a pure state and a density matrix, theecond theorem must be used more carefully. As soon as a

“l +n=(n+1)" case, to the problem of discriminating un- subspace 0’S~ is orthogonal t08~ ($~L (']S~ ¢{O}) we

ambiguously two pure states, that is to say thet1E=2"
b litting ofS- NS of dimension 1). The tw can eliminate |t from the problem because it is orthogonal to
case, by spiiting 016, 1o, 0 ension i—1). The two the supports of alp;, j #i. However, we cannot eliminate a

states are the original pure staie and the unit vector cor- subspace 08~ orthogonal toS;, (Sf ns; 7&{0}) because
responding to the projection of the original pure state onto

the support of the mixed stajs. we know nothlng about the orthogonallty of this subspace for
It implies that the only two exact solutions of optimal all the states irp,. In other words, we can only reduce the
USD between mixed states that are known so far, on onéensity matrixp; corresponding t@;.
hand, Bergowet al.[8] and, on the other hand, Rudolphal.
[9], can be derived from the “¢1=2" case of Jaeger and
Shimony[4]. VI. CONCLUSION
It is also interesting to note that the dimension of the

failure space cannot be greater than the lowest rank of the, W€ have shown that the problem of discriminating unam-
involved density matrices. First, we hafe=PE,P so that biguously any two density matrices can be reduced to the

dim(Se.)<dim(Se.). Second, the dimension &&_ cannot problem of discriminating unambiguously two density matri-

b ham b . — ST ‘ ces of the same rankin a Hilbert space of 2 dimensions.
e greater tham; becauseSg, =support{ls, S,1ls. ). or  pigt e can split off any common subspace of the supports

i=1,2, andSEostn: Se,, Therefore and, second, we can eliminate the part of the suppopt, pf
' ' ' which is orthogonal to the support pf andvice versa
dimSg_<mindims, . (52 Finally, all the previous exact solutions of USD between

i two mixed states can be reduced to thet'l=2" case, that

is to say, the unambiguous discrimination of two pure states.
To conclude, given any two density matrices, we can ex-

plicitly reduce the problem ¢;+r,=d” to a problem “r

+r=2r," wherer=<r,;=<r,, which is the discrimination be-

tween two density matrices sharing the same rank. For the

theoretical side, it implies that the only relevant cases to

study are the I +r=2r" cases,Vr. The next step should be

to solve analytically the general “22=4" case.

This result looks natural considering that we can finally re-
duce any problem of discriminating two density matrices
with rankr, andr,, respectively, to the problem of discrimi-
nating two density matrices of the same rapk=<minyr; .
Finally, a generalization to more than two density matri-
ces can be achieved. ConsideriNgdensity matrices(k
=1,... N) with a priori probabilitiespk, we can construct

N pairs of density matrlce$1 Pi s |e[1 . N] and p,

_(EJ 1]#:|pjp])/(1 pi), with pl Pi, pZ 1 p;, and ap-
ply the two reduction theorems to these two density matrices ACKNOWLEDGMENTS
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