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Reduction theorems for optimal unambiguous state discrimination of density matrices
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We present reduction theorems for the problem of optimal unambiguous state discrimination of two general
density matrices. We show that this problem can be reduced to that of two density matrices that have the same
rankn and are described in a Hilbert space of dimensions 2n. We also show how to use the reduction theorems
to discriminate unambiguously betweenN mixed states (N>2).
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I. INTRODUCTION

Discrimination between quantum mechanical states
standard task in quantum communication protocols. Ty
cally, the signals are represented by nonorthogonal quan
states, often even in the form of mixed states due to
effect of noisy transmission channels. It is known that no
orthogonal pure states cannot be discriminated exactly,
means, with full efficiency without any error. However, it
possible to discriminate between them unambiguously i
certain fraction of the cases. This problem was formulated
Dieks @1# and Ivanovic@2# for two pure states with equala
priori probabilities, and was elegantly solved by Peres@3#.
The more general scenario of two pure states with arbitraa
priori probabilities was investigated and solved by Jae
and Shimony@4#. More general scenarios with a higher num
ber of signal states were treated, with analytic results
signal states that satisfy certain symmetries@5,6#.

It is only recently that the problem of generalization
mixed states has been considered. One of the first w
describes the optimal unambiguous discrimination betwee
pure state and a density matrix of rank 2@7#, which has been
generalized for a rankn density matrix@8#. In a more recent
paper, Rudolphet al. @9# solved other special cases, for e
ample, that of two density matrices of rank (n21) in an
n-dimensional subspace. Finally, necessary and suffic
conditions for optimality and some numerical methods
discussed by Fiurasek and Jezek@10# and by Eldar@11#.

In this paper, we present two theorems that allow to
duce the general problem of optimal unambiguous state
crimination of two density matrices to standard forms. T
standard problem can be formulated as optimal unambigu
state discrimination of two density matrices of rankn that are
defined in a minimal Hilbert space of dimension 2n. We
show that the previously given examples involving dens
matrices can be reduced effectively to the optimal unamb
ous state discrimination of two pure states, as solved by
ger and Shimony@4#. The next challenge is, therefore,
discriminate two density matrices with a two-dimension
rank in a four-dimensional Hilbert space.

The paper is organized as follows. In Sec. II, we pres
the mathematical background of the unambiguous state
crimination and introduce some notations. Then, in Secs
1050-2947/2003/68~2!/022308~6!/$20.00 68 0223
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and IV, based on a geometrical approach, we present
theorems to simplify the problem of unambiguous state d
crimination between two arbitrary density matrices. In S
V, we propose a brief discussion on the consequences o
two previous theorems including a generalization to d
crimination between more than two density matrices. Fina
we present our conclusions in Sec. VI.

II. OPTIMAL UNAMBIGUOUS STATE DISCRIMINATION

If quantum states cannot be discriminated exactly, one
search for an optimal distinction between them. The mean
of ‘‘optimal’’ needs to be made precise, and in quantum st
estimation theory@12# this is typically expressed via cos
functions. These cost functions provide a figure of merit
different measurements. Optimal unambiguous state
crimination is an extreme case in that we are looking fo
measurement that either identifies a state uniquely~conclu-
sive result! or fails to identify it ~inconclusive result!. The
goal is to minimize the fraction of the inconclusive resul
For the problem to be properly stated, one needs to fix the
of quantum states$r i% together with the correspondinga
priori probabilities$pi% of their appearance. The measur
ments involved are typically generalized measurements@13#,
which are described by a Positive Operator-Valued Meas
~POVM!. A POVM is a set of positive semidefinite and He
mitian operators$Fk% that satisfies the completeness relati
(kFk51 on the Hilbert space spanned by the signals. T
probability of obtaining outcomek for a given signalr i is
then given byp(ku i )5Tr(r iFk).

Definition 1.A measurement described by a POVM$Fk%
is called an Unambiguous State Discrimination Measurem
~USDM! on a set of states$r i% iff the following conditions
are satisfied:

~1! The POVM contains the elements$F? ,F1 , . . .FN%
whereN is the number of different signals in the signal s
The elementF? is connected to an inconclusive result, whi
the other elementsFi correspond to an identification of sig
nal stater i .

~2! No signals are wrongly identified, that is, Tr(r iFk)
50 ; iÞk i,k51, . . . ,N.

Each USD measurement gives rise to a failure probabi
©2003 The American Physical Society08-1
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that is, the rate of inconclusive results. This can be calcula
as

Q@$Fk%#ª(
i

piTr~r iF?!. ~1!

Definition 2. A measurement described by a POV
$Fk

opt% is called an Optimal Unambiguous State Discrimin
tion Measurement~optimal USDM! on a set of states$r i%
with the correspondinga priori probabilities$pi% iff the fol-
lowing conditions are satisfied:

~1! The POVM$Fk
opt% is an USD measurement on$r i%.

~2! The probability of inconclusive results is minimal, th
is, Q@$Fk

opt%#5minFPUSDMQ@$Fk%#.
In this paper, we are searching for an optimal USD m

surement to discriminate two arbitrary density matricesr1
andr2 that are prepared witha priori probabilityp1 andp2,
respectively. We find that this general problem can be
duced to a simpler standard situation. Moreover, the red
tion can be applied as well to the case of more than
density matrices, as seen later.

First, let us fix some notations. The reduction theore
make use of the supportSPªsupport(P) of positive
semidefinite and Hermitian operatorP. The support of a
positive semidefinite and Hermitian operator is defined as
subspace spanned by eigenvectors ofP corresponding to
nonzero eigenvalues. We denote alsor Pªrank(P)
5dim(SP), the rank ofP. Next we define, in a Hilbert spac
H, the sum and the intersection of two Hilbert subspacesH1
and H2. The sumH11H2 of the subspacesH1 and H2 is
defined to be the set consisting of all sums of the forma1
1a2, wherea1PH1 anda2PH2 . H11H2 is a Hilbert sub-
space ofH. The intersectionH1ùH2 is defined to be the se
consisting of all the elementsa, whereaPH1 and aPH2 .
H1ùH2 is a Hilbert subspace ofH. The complementary
orthogonal subspace~orthogonal complement! of a subspace
S in H, written S', is the set of all the elements ofH
orthogonal toS. We then haveH5S% S', the direct sum of
the two orthogonal subspaces. Finally, we denote byPS the
orthogonal projection onto the subspaceS.

III. COMMON SUBSPACE OF THE SUPPORTS

In the first theorem, we will consider the situation whe
the supports of the two density matrices have a comm
subspace. This is the case whenever we find that

dim~Sr1
!1dim~Sr2

!.dim~H!. ~2!

HereH is the Hilbert space spanned by the two supports
this case, it can be written as

H5H8% Hù , ~3!

where Hù5Sr1
ùSr2

is the common subspace of the tw
supports, andH8 is its orthogonal complement inH. The
first reduction theorem will eliminate the common subspa
Hù from the problem. The intuitive reason is that in th
subspace no unambiguous discrimination is possible, so
02230
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population of the two density matrices on it will contribu
always only to the failure probability, never to the conclusi
results. This is made precise in the following theorem.

Theorem 1~Reduction Theorem for a Common Su
space!. Suppose we are given two density matricesr1 andr2
on H with a priori probabilitiesp1 and p2 such that their
respective supportsSr1

and Sr2
have a nonempty commo

subspaceHù . We denote byH8 the orthogonal complemen
of Hù in H, while PHù

and PH8 denote, respectively, the

projector ontoHù andH8. Then the optimal USD measure
ment is characterized by POVM elements of the form

F1
opt5F18

opt, ~4!

F2
opt5F28

opt, ~5!

F?
opt5F?8

opt1PHù
, ~6!

where the operatorsF18
opt,F28

opt,F?8
opt form a POVM $Fk8%

with support onH8, describing the optimal USDM of a re
duced problem defined by

r185
1

N1
PH8r1PH8 , p185

N1p1

N
, N15Tr~r1PH8!, ~7!

r285
1

N2
PH8r2PH8 , p285

N2p2

N
, N25Tr~r2PH8!, ~8!

N5N1p11N2p2 . ~9!

And finally, the corresponding failure probability can b
written in terms ofQ8@$F8k

opt%#, the failure probability of the
reduced problem, as

Q@$Fk
opt%#5~12N1!p11~12N2!p21NQ8@$F8k

opt%#.
~10!

Proof. To prove the reduction theorem, we state as a fi
step the following lemma.

Lemma 1.For any positive semidefinite operatorsA and
B, Tr(AB)50 iff the support of the two positive semidefinit
operators are orthogonal:

Tr~AB!50⇔SA'SB . ~11!

Indeed, if A and B are positive semidefinite operator
they are diagonalizable with eigenvaluesa i.0 (i
51, . . . ,r A) andb j.0 ( j 51, . . . ,r B). Thus

Tr~AB!5TrS (
i

a i uC i&^C i u(
j

b j uF i&^F i u D
5(

i j
a ib j^C i uF j&u2 ~12!

vanishes iff$uF i&% i and$uC j&% j span orthogonal subspace
An USD measurement described by$Fk% satisfies

Tr(F1r2)50 and Tr(F2r1)50 by definition. It means, as a
consequence of Lemma 1, thatSF1

'Sr2
andSF2

'Sr1
. Since
8-2
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Hù is a subspace ofSr1
and Sr2

, it follows that SF1
'Hù

and SF2
'Hù . Therefore, by writing the block matrices i

H5Hù % H8, we have

F15S 0 0

0 F18
D , ~13!

F25S 0 0

0 F28
D . ~14!

The completeness relation onH implies, first,

F?5S 1Hù
0

0 F?8
D 5PHù

1F?8 ~15!

and, second, by the completeness relation on the red
subspaceH8,

(
k

Fk851H8 . ~16!

It follows also thatFk8 (k51,2,?) are positive semidefinit
and Hermitian operators. Therefore, by definition,$Fk8% is a
POVM on H8. The fact thatF? is equal to identity in the
subspaceHù is here a direct consequence of the property
an USDM onH. Next we will see that$Fk8% is a POVM of an
USD in H8.

We definePHù
and PH8 as the projector ontoHù and

H8, respectively. ThusPHù
% PH851H . For any USDM, be-

cause of the diagonal block form of the POVM, we find f
Q,

Q5p1Tr~r1F?!1p2Tr~r2F?!

5~12N1!p11~12N2!p2

1~N1p11N2p2!@p18Tr~r18F?8!

1p28Tr~r28F?8!#, ~17!

with

r185
1

Tr~r1PH8!
PH8r1PH8 , ~18!

r285
1

Tr~r2PH8!
PH8r2PH8 . ~19!

Herepi8 ( i 51,2) is thea priori probability corresponding to
the new density matrixr i8 (p181p2851):

p185
N1p1

N1p11N2p2
, N15Tr~r1PH8!, ~20!

p285
N2p2

N1p11N2p2
, N25Tr~r2PH8!. ~21!
02230
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We notice thatSr
18
ùSr

28
50. Moreover, Tr(r1F2)50 im-

plies Tr(r18F28)50 and Tr(r2F1)50 implies Tr(r28F18)50.
Then$Fk8% defines a POVM describing an USDM on$r i8% in
H8. The problem is now reduced to the subspaceH8 and it
remains to consider the optimality of the reduced USDM

We can writeQ such as

Q5~12N1!p11~12N2!p21~N1p11N2p2!Q8, ~22!

where Q85p18Tr(r18F?8)1p28Tr(r28F?8) is, by definition, the
failure probability of discriminating unambiguouslyr18 and
r28 in H8.

The previous equality implies that the failure probabili
Q is minimal iff the failure probabilityQ8 is minimal. Thus
we have that$Fk% describes an optimal USDM on$r i% ⇔ Q
is minimal ⇔ Q8 is minimal ⇔ $Fk8% describes an optima
USDM on $r i8%. This completes the proof.

IV. ORTHOGONAL SUBSPACES OF THE SUPPORTS

We now consider the case where the supports of the
density matrices have no common subspace. That can alw
be reached thanks to the previous reduction theorem
common subspace. If there is a part ofSr2

orthogonal toSr1
,

we can decomposeSr2
into this orthogonal subspace an

another one.~See Fig. 1.! It turns out that this subspace o
Sr2

orthogonal toSr1
can be split off and leads to an unam

biguous discrimination without error. The same is true
Sr1

.
Theorem 2~reduction theorem for orthogonal subspace!.

Suppose we are given two density matricesr1 andr2 in H
with rank r 1 andr 2, respectively, and with their associateda
priori probabilitiesp1 and p2. Assuming that their support
Sr1

andSr2
have no common subspace, one can constru

decomposition

H5H8% H 8' ~23!

with H 8'5S1
'

% S2
' , S 1

'5Sr1

' ùSr2
, andS 2

'5Sr2

' ùSr1
.

The solution of the optimal USDM problem can be give
with help ofPS

1
' andPS

2
', the projection ontoS 1

' andS 2
' ,

respectively, inH5H8% H 8', by

FIG. 1. Elimination of the subspace ofSr2
orthogonal toSr1

- r19

denotes the orthogonal projection ofr1 onto Sr2
.

8-3
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F1
opt5F18

opt1PS
2
', ~24!

F2
opt5F28

opt1PS
1
', ~25!

F?
opt5F?8

opt. ~26!

The operatorsF18
opt,F28

opt,F?8
opt form a POVM $Fk8% with

support onH8, describing the Optimal USDM of a reduce
problem defined by

r185
1

N1
PH8r1PH8 , p185

N1p1

N
, N15Tr~r1PH8!, ~27!

r285
1

N2
PH8r2PH8 , p285

N2p2

N
, N25Tr~r2PH8!, ~28!

N5N1p11N2p2 . ~29!

And finally, the corresponding failure probability can b
written in terms ofQ8@$F8k

opt%#, the failure probability of the
reduced problem as

Q@$Fk
opt%#5NQ8@$F8k

opt%#. ~30!

Proof. We translate the problem using a Naimark’s exte
sion and projection-valued measure~PVM!. This idea is in-
spired by the first work of Sunet al. @7# where an extended
Hilbert space has been used. Let us repeat the Naimark t
rem: Given$Fk% as a POVM on a Hilbert spaceH, it exists
an embedding ofH into a larger Hilbert spaceK such that
the measure can be described by projections onto orthog
subspaces inK. More precisely, there exist a Hilbert spa
K, an embeddingE such thatEH5K, and a PVM$Ek% in K
such that withP, the projection defined byPK5H, Fk
5PEkP, ;k.

To the three POVM elementsFk in H correspond three
PVM elementsEk in K. The subspaces defined by$Ek% re-
sult in a decomposition into orthogonal subspaces

K5SE1
% SE2

% SE?
, ~31!

which give raise to nonorthogonal subspaces inH as SFk

5PSEk
P. We can, therefore, translate properties of the U

POVM to the embedding ofH into K.
Next we take a look at the embedding ofSr1

andSr2
into

K and we translate the conditions for an USDM into t
embedded language. We denote embedded subspacesK
by the same symbol as the original subspace ofH. Then
Tr(r1E2)50 implies thatSr1

is orthogonal toSE2
. Similarly,

we find thatSr2
is orthogonal toSE1

. Therefore, we can
write

Sr1
,SE1

% SE?1
, ~32!

Sr2
,SE2

% SE?2
, ~33!
02230
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whereSE?1
and SE?2

are defined as subspaces ofSE?
with

minimal dimension fullfiling the above decompositions
the sense thatSE?i

5support(PSE?
Sr i

PSE?
) for i 51,2.

The optimality condition means, in particular, that no i
formation should be obtained from the conditional states
lowing an inconclusive result. If the two failure spacesSE?1

and SE?2
are different, it will be possible to distinguish th

conditional states that arise from a projection ontoSE?
@7#.

Therefore, the optimality condition implies thatSE?1
5SE?2

and then

SE?
5SE?1

5SE?2
. ~34!

In the framework of the Naimark extension, this conditio
translates as follows: the equality ofSE?1

and SE?2
implies

that a subspaceS 1
'5Sr1

' ùSr2
satisfiesS 1

',SE2
in order to

assure that the overlap between any state inS 1
' and any state

in Sr1
will be 0. Similarly, S 2

',SE1
.

Then it exists a subspaceH2 in SE2
such that we can write

SE2
5S 1

'
% H2. In the same way,SE1

5S 2
'

% H1 with H1 in

SE1
. It follows that

Sr1
,S 2

'
% H1% SE?1

, ~35!

Sr2
,S 1

'
% H2% SE?2

. ~36!

The fact thatS 2
',Sr1

implies that

Sr1
5S 2

'
% H18 , ~37!

with H18,H1% SE?1
. In the same way, withH28,H2

% SE?2
,

Sr2
5S 1

'
% H28 . ~38!

The orthogonal projectionE1 then can be decompose
into a sum of orthogonal projectors asPS

2
'1PH

18
and the

orthogonal projectionE2 asPS
1
'1PH

28
. These projectors are

mapped intoH via the projectionP as PPS
i
'P5PS

i
'. We

defineFi85PPHi
P ; i 51,2, so that

F15F181PS
2
', ~39!

F25F281PS
1
' ~40!

with SF
18
,(S 1

')' andSF
28
,(S 2

')'. Moreover,SF1
'Sr2

then

SF1
'S 1

' and, similarly,SF2
'S 2

' . ThenF18 andF28 have sup-

port on a subspaceH8, which is the complementary orthogo
nal subspace ofH 8'5S 1

'
% S 2

' .
Therefore, inH5H8% S 1

'
% S 2

'5H8% H 8', we find

F15S F18 0 0

0 1S
1
' 0

0 0 0
D , ~41!
8-4
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F25S F28 0 0

0 0 0

0 0 1S
2
'

D . ~42!

From here, we will follow the same argumentation as
used in the proof of theorem 1. The completeness relation
H implies, first,

F?5S F?8 0 0

0 0 0

0 0 0
D ~43!

and, second, the completeness relation on the reduced
spaceH8,

(
k

Fk851H8 . ~44!

It follows also thatFk8 (k51,2,?) are positive semidefinit
operators. Therefore, by definition,$Fk8% is a POVM onH8.

For any USDM, because of the diagonal block form of t
POVM, we find forQ,

Q5p1Tr~r1F?!1p2Tr~r2F?!5~N1p11N2p2!@p18Tr~r18F?8!

1p28Tr~r28F?8!#, ~45!

with

r185
1

Tr~r1PH8 !
PH8r1PH8 , ~46!

r285
1

Tr~r2PH8!
PH8r2PH8 . ~47!

Herepi8 ( i 51,2) is thea priori probability corresponding to
the new density matrixr i8 (p181p2851):

p185
N1p1

N1p11N2p2
, N15Tr~r1PH8!, ~48!

p285
N2p2

N1p11N2p2
, N25Tr~r2PH8!. ~49!

Moreover, Tr(r1F2)50 implies Tr(r18F28)50 and
Tr(r2F1)50 implies Tr(r28F18)50. Then $Fk8% defines an
POVM describing an USDM on$r i8% in H8.

We can rewrite the failure probabilityQ as

Q5~N1p11N2p2!Q8, ~50!

where Q85p18Tr(r18F?8)1p28Tr(r28F?8) is, by definition, the
failure probability of discriminating unambiguouslyr18 and
r28 in H8 with a priori probabilitiesp18 andp28 , respectively.
02230
e
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And again, we have that$Fk% describes an optima
USDM on $r i% ⇔Q is minimal ⇔Q8 is minimal ⇔$Fk8%
describes an optimal USDM on$r i8%. This completes the
proof.

V. CONSEQUENCES AND GENERALIZATION

At this point, it is useful to introduce a notation to sum
marize our knowledge about the USD of two density ma
ces. We have H5Sr1

1Sr2
, then dim(H)5dim(Sr1

)

1dim(Sr2
)2dim(Sr1

ùSr2
). It implies, by denoting the di-

mension of the Hilbert spaceH as d, that the respective
ranks of the density matrices satisfy

r 11r 2>d. ~51!

For example, the case of two density matrices of the sa
rank (n21) in an Hilbert space of dimensionn described by
Rudolphet al. @9# can be written as ‘‘(n21)1(n21).n’’
while the USD between one pure state and a mixed s
described by Bergouet al. @8# can be characterized as th
‘‘1 1n5(n11)’’ case.

Now we discuss interesting consequences to the
above theorems. First of all, the first theorem correspond
the elimination of the common subspace. A common s
space is present whenr 11r 2.d holds. Its dimension isdù

5r 11r 22d. Therefore, after elimination of that subspac
we end up in the caser 181r 285d8 with r 185r 12dù and simi-
larly for r 28 andd8. Then, we can reduce the Rudolph’s ca
of discriminating unambiguously two density matrices of t
same rank (n21) in an Hilbert space of dimensionn to the
‘‘1 1152’’ case of two pure states because the common s
space is (n22)-dimensional. Rudolphet al. @9# already no-
ticed it in their paper. The reduction is constructive givenr1
andr2.

The second theorem corresponds to the elimination of
orthogonal part of one support with respect to the other,
Sr1

' ùSr2
and Sr2

' ùSr1
. The nonempty subspacesSr1

' ùSr2

and Sr2

' ùSr1
can be found systematically. For examp

Sr1

' ùSr2
can be found by projectingSr1

onto Sr2
and then

by taking the complementary orthogonal subspace inSr2
of

that projection. As a matter of fact, this assures that we
reduce the general USD problem always to that of two d
sity matrices of the same rankr, r<min(r1,r2), in a Hilbert
space of 2r dimensions. Indeed, if after the reduction th
rank of r28 is bigger than the rank ofr18 , then the subspace
Sr

18
'

ùSr
28

is at least of dimensionr 282r 18 and can be elimi-

nated. With the help of the above two theorems, we c
reduce any problem of discriminating unambiguously tw
density matricesr1 and r2, with rank r 1 and r 2, respec-
tively, in a Hilbert spaceH, into a problem of discriminating
unambiguously two density matricesr18 andr28 with rank r
@r<min(r1,r2)# in H8,H, a 2r -dimensional Hilbert space
The reduction is constructive. The first theorem allows us
split off the common subspace and the second theorem l
to reduce the problem of discriminating unambiguously t
density matrices of the same rank.
8-5
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As a consequence, we can reduce, for example, the p
lem of USD between a pure state and a density matrix,
‘‘1 1n5(n11)’’ case, to the problem of discriminating un
ambiguously two pure states, that is to say the ‘‘11152’’
case, by splitting offSr1

' ùSr2
of dimension (n21). The two

states are the original pure stater1 and the unit vector cor-
responding to the projection of the original pure state o
the support of the mixed stater2.

It implies that the only two exact solutions of optim
USD between mixed states that are known so far, on
hand, Bergouet al. @8# and, on the other hand, Rudolphet al.
@9#, can be derived from the ‘‘11152’’ case of Jaeger and
Shimony@4#.

It is also interesting to note that the dimension of t
failure space cannot be greater than the lowest rank of
involved density matrices. First, we haveF?5PE?P so that
dim(SF?

)<dim(SE?
). Second, the dimension ofSE?i

cannot

be greater thanr i becauseSE?i
5support(PSE?

Sr i
PSE?

), for

i 51,2, andSE?
5SE?1

5SE?2
. Therefore

dimSE?
<min

i
dimSr i

. ~52!

This result looks natural considering that we can finally
duce any problem of discriminating two density matric
with rank r 1 andr 2, respectively, to the problem of discrim
nating two density matrices of the same rankr, r<miniri .

Finally, a generalization to more than two density ma
ces can be achieved. ConsideringN density matricesrk(k
51, . . . ,N) with a priori probabilitiespk , we can construct
N pairs of density matricesr̃15r i , i P@1, . . . ,N# and r̃2

5(( j 51,j Þ i
N pjr j )/(12pi), with p̃15pi , p̃2512pi , and ap-

ply the two reduction theorems to these two density matri
in the following sense. We notice thatr̃2 has no physical
meaning. Actually, as soon as a common subspace betw
any Sr̃1

andSr̃2
exists, we can split it off from all theSr i ’s

because if we cannot discriminate unambiguously this par
the support ofr̃1 andr̃2, then we cannot discriminate unam
t

02230
b-
e

o

e

e

-

-

s

en

of

biguously between this part of the support of allr j . The
second theorem must be used more carefully. As soon
subspace ofSr̃1

is orthogonal toSr̃2
(Sr̃2

'
ùSr̃1

Þ$0%), we

can eliminate it from the problem because it is orthogona
the supports of allr j , j Þ i . However, we cannot eliminate
subspace ofSr̃2

orthogonal toSr̃1
(Sr̃1

'
ùSr̃2

Þ$0%) because

we know nothing about the orthogonality of this subspace
all the states inr̃2. In other words, we can only reduce th
density matrixr i corresponding tor̃1.

VI. CONCLUSION

We have shown that the problem of discriminating una
biguously any two density matrices can be reduced to
problem of discriminating unambiguously two density mat
ces of the same rankr in a Hilbert space of 2r dimensions.
First, we can split off any common subspace of the supp
and, second, we can eliminate the part of the support ofr2,
which is orthogonal to the support ofr1 andvice versa.

Finally, all the previous exact solutions of USD betwe
two mixed states can be reduced to the ‘‘11152’’ case, that
is to say, the unambiguous discrimination of two pure sta

To conclude, given any two density matrices, we can
plicitly reduce the problem ‘‘r 11r 2>d’’ to a problem ‘‘r
1r 52r , ’’ where r<r 1<r 2, which is the discrimination be-
tween two density matrices sharing the same rank. For
theoretical side, it implies that the only relevant cases
study are the ‘‘r 1r 52r ’’ cases,;r . The next step should be
to solve analytically the general ‘‘21254’’ case.
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