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Mutually exclusive aspects of information carried by physical systems: Complementarity between
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Complex physical systems contain information which, under some well-defined processes can differentiate
between local and nonlocal information. Both these fundamental aspects of information are definedoperation-
ally. Local information is locally accessible and allows one to perform processes, such as physical work, while
nonlocal information allows one to perform processes such as teleportation. It is shown that these two kinds of
information arecomplementaryin the sense that two parties can either gain access to the nonlocal information
or to the local information but not both. This complementarity has a form similar to that expressed by entropic
uncertainty relations. For pure states, the entanglement plays the role of Planck’s constant. We also find another
class of complementarity relations which applies to operators and is induced when two parties can only
perform local operations and communicate classical~LOCC!. In particular, observables such as the parity and
phase of two qubits commute but under LOCC, they are complementary observables. It is also found this
complementarity is pure in the sense that it can be ‘‘decoupled’’ from the uncertainty principle. It is suggested
that these complementarities represent an essential extension of Bohr’s complementarity to complex~distrib-
uted! systems which are entangled.
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I. INTRODUCTION

The problem of mutually exclusive aspects of quant
phenomena appeared together with the birth of quantum
chanics. Pauli, in his letter to Heisenberg in December 19
wrote: ‘‘One may view the world with thep-eye and one
may view it with theq-eye but if one opens both eyes simu
taneously then one get crazy.’’ Soon after, Heisenberg
covered the uncertainty principle for momentum and posit
@1#. The next year, Bohr introduced the concept of comp
mentarity @2#, which by 1935 acquired its final form@3#.
According to Bohr, there are different aspects of complem
tarity in quantum mechanics. In particular, observables, s
as the position and momentum of the particle, a
complementary—an accurate measurement of momen
will make a subsequent measurement of position yield r
dom results—the position information is destroyed dur
the momentum measurement. This complementarity betw
incompatible observables was inherently connected with
uncertainty principle~for deeper analysis of these notions s
Ref. @4#!.

However, for Bohr, the term ‘‘complementarity’’ mean
something more. Quoting Bohr, ‘‘the impossibility of com
bining phenomena observed under different experimenta
rangements into a single classical picture implies that s
apparently contradictory phenomena must be regarded
complementary in the sense that taken together, they exh
all well defined knowledge about the atomic objects’’@5#.

It is not quite clear what the phrase ‘‘taken together, th
exhaust all well-defined knowledge’’ means in the context
distributed systems which involve entanglement as a ph
cal resource. Does entanglement constitute a physical fea
1050-2947/2003/68~2!/022307~13!/$20.00 68 0223
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of quantum systems which can somehow be incorpora
into the principle of complementarity? Indeed, there is ho
that the fusion of information theory and quantum formalis
will offer a more understandable description of nature@6#.

In quantum information theory, one can view informatio
as having a central role akin to quantities such as energ
classical physics@7#. Given this central role, one therefor
wonders whether information obeys complementarity pr
ciples like other physical observables. Indeed, we will s
that this is the case. This further supports a view that inf
mation plays a fundamental role in quantum mechanics
provides an underlying structure. This is perhaps interes
in light of the fact that long before the discovery of quantu
communication@8,9#, entropic uncertainty relations@10–16#
~which are generalizations of the Heisenberg and Rober
@17# inequalities! had already been introduced. Even in 198
a generic information paradigmwas proposed, according t
which the information is a fundamental concept in the d
scription of physical reality@18–20#. An operationaldefini-
tion of information carried by physical systems has also b
introduced@21–23#.

It is with the goal of incorporating information into ou
description of physical systems that we investigate
complementary relationships that are induced when one c
siders distributed systems jointly held by two parties. W
earlier suggested complementarity between ‘‘classical’’~lo-
cal! information and ‘‘quantum’’~nonlocal! information con-
tained in quantum states@21#. In this paper, we explore two
types of complementarity within the context of quantum
formation theory. The first type leads us to the followin
complementarity principle: complex quantum systems ca
information, which under well-defined mutually exclusiv
processes manifests itself as local information or as nonlo
©2003 The American Physical Society07-1
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information. The second type applies to operators and is
duced when two parties can only perform local operatio
and communicate classically~LOCC!.

In Sec. II we will first demonstrate how to divide info
mation into local and nonlocal parts. The method we u
comes from operational considerations. Local information
locally accessible and can be measured by how many
separable bits can be obtained from a state, while one
obtain nonlocal information by distilling singlets from th
state. In Sec. III we show that the two types of informati
are complementary. One finds that one can exploit the n
local information to perform teleportation but then the abil
to use the local information to perform physical work
completely destroyed. Or, one can obtain local informat
but then the ability to perform teleportation is complete
destroyed. The process of obtaining and using either
tanglement or pure local states is irreversible, and using
resource destroys the possibility of obtaining the other. T
irreversibility is crucial in leading to our complementari
relations. If one distills the state to local form, then one w
no longer be able to teleport. If one uses nonlocal state
perform a task, such as teleportation, then purity is neces
ily destroyed and one can no longer obtain pure local sta
We will show that this complementarity can be expressed
an information-theoretic bound which has the same form
an entropic uncertainty relation. For pure states, the bo
has the feature that the entanglement plays the role
Planck’s constant\.

In Sec. IV we introduce a complementarity principle i
volving individual measurements. For example, if one h
two qubits, one can measure the parity and phase. Howe
when each of the two parties hold one of the qubits in dist
labs, they find that all parity and phase measurements wil
complementary. They can measure the parity of the stat
the phase of the state, but not both. To quantify this,
introduce the idea of a LOCC complementarity inequal
We also argue that two observables can be complemen
without being uncertain, demonstrating that the two conce
can be decoupled. In Sec. V we conclude by considering
complementarities in the context of Bohr’s complementa
and we argue that the complementarity between local
nonlocal information can be viewed as an extension
Bohr’s complementarity to complex~distributed! systems.
Here, information becomes the central concept. Finally, w
raise some open questions.

II. LOCAL AND NONLOCAL INFORMATION

Consider a bipartite staterAB composed ofn qubits which
could be shared between two parties, Alice and Bob@24#. Let
rA andrB be the reduced density matrix for each party a
let nA andnB be the number of qubits that each party hold

The total information encoded in the state is given by

I 5n2S~rAB!, ~1!

whereS(r) is the von Neumann entropy of a stater. The
more we know about the state of a system, the lower is
entropy and greater the informational content of the st
The quantityI has an operational meaning. It is the numb
02230
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of pure qubits which can be obtained from a state, by use
Schumacher compression@25# ~cf. Ref. @26#!. Moreover, it
was shown@22,23# to be theuniquemeasure of information
under some natural assumptions in the asymptotic regi
This information can be divided into local information co
tents I A5nA2S(rA), I B5nB2S(rB), and mutual informa-
tion I M5S(rA)1S(rB)2S(rAB) so that

I 5I A1I B1I M. ~2!

The typically, mutual informationI M is used as a measure o
the total correlations betweenrA and rB . It tells us how
much information the two systems have in common.

In classical information theory@27#, a classical system
@28# rcl has a mutual information, which is always small
than the total Shannon entropyH of the state:

I M~rcl!<H~rcl!. ~3!

This means that the correlations are always accompanie
a lack of information about the total system: only mixe
states can have nonzero correlations. Also, for two class
systems composed ofn bits, the correlations cannot excee
n/2.

For quantum system there is no restriction like Eq.~3!.
Therefore, pure states can contain correlations and the
tual information can be twice as much as in the class
case. For a generaln qubit state we have

I M~rqu!<n. ~4!

Thus, two qubits can share two bits of mutual information,
in the case of a maximally entangled state such as the sin

c25
1

A2
~ u01&2u10&). ~5!

There is a basic question: For the singlet, what is the me
ing of the fact that the amount of mutual information istwo?
One possible answer comes from superdense coding@8#. By
using a singlet, one can communicate two bits of informat
through one qubit@29#. It has also been argued that the a
ditional correlations are related to negative conditional en
pies @30#. We will propose a different answer to this fund
mental question. We will argue that 2 is not equal to 111
but rather it is equal toeither1 or 1. In other words, the two
bits of mutual information can be divided into one bit
nonlocal information and one bit of local information, b
these two types of information are complementary—one
retrieve the one bit of local information or the one bit
nonlocal information, but not both. In general, as we will s
below, the correlations of a quantum state consist of t
complementaryparts—one local and the other nonlocal. T
first attempt at quantifying quantum contents of correlatio
other than through entanglement is due to Zurek@31#. Quan-
tifying classical correlations of a quantum state and the d
sion into classical and quantum correlations was propose
Ref. @32#. An operational proposal of quantifying differen
types of correlations was first proposed in Ref.@21#. Another
method, using the entanglement of purification was given
7-2
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Ref. @33#. Here we will follow Ref.@21#, where the division
emerges from thermodynamical considerations.

The idea is to define information operationally—local in-
formationcan be manipulated into a locally accessible for
In other words, it is the information that can be localized
the two parties Alice and Bob and used to perform class
tasks. For example, as discussed in Ref.@21#, it can be used
to extract real physical work from a local heat bath, usin
Szilard engine@34# or ~for quantum states! a von Neumann
engine@35#. Information that is locally accessible is equal
the maximum amount of work which can be drawn from
local heat bath by Alice and Bob under LOCC in units ofkT,
whereT is the temperature of the bath andk is Boltzmann’s
constant. We will henceforth setkT51 so that the amount o
work drawn is measured in bits. One can think of the lo
information as the maximum amount of pure separable st
which can be extracted from a state. We will therefore talk
extracting local information from a state, with the unde
standing that it could refer to extracting physical work fro
the information encoded in the state, or extracting a num
of pure separable states. It should be mentioned here tha
definition of local information is independent of the interpr
tation of quantum mechanics one uses~Copenhagen, Many
Worlds, Bohmian, etc.!.

On the other hand,nonlocal informationis defined to be
the information which can be used to perform tasks wh
have no classical counterpart such as teleportation
double-dense coding. One bit of nonlocal information can
used to teleport one qubit. One can think of teleportat
~sending qubits! as analogous to a form of quantum logic
work @7#. It implies an operational way of understanding
local and nonlocal information. Of course, one could a
simply understand the two quantities as being the numbe
pure local states versus the number of maximally entang
states.

Let us first look at that case where Alice and Bob are o
allowed to perform local operations~LO!. In this case, the
amount of informationI LO they can obtain is

I LO5nA2S~rA!1nB2S~rB!5I A1I B . ~6!

On the other hand, if we allow Alice and Bob to perform a
LO and send qubits to each other through a classical cha
@36#, then they will be able to obtain more information fro
the state by exploiting correlations. Alice and Bob can th
transform staterAB into another staterAB8 such that the
amount of local information is maximized. The amount
obtainable local information is

I l5I A~rA8 !1I B~rB8 !5n2S~rA8 !2S~rB8 !; ~7!

then, the difference

Dc[I l2I LO ~8!

tells us the additional information that can be obtained if
two parties are also able to perform classical communica
~CC!. I.e., they have access to a classical channel. Since
channel is classical, we will refer toDc as theclassical defi-
cit.
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On the other hand, if Alice and Bob had access to a qu
tum channel~QC! rather than to the classical channel, th
would be able to localize all the information~and draw all
the work from the state!. The information they can obtain
under these operations~LOQC! is just

I LOQC5I 5n2S~rAB! , ~9!

since Alice can just send her part of the state to Bob, w
can then perform local operations on it to draw all the info
mation. The quantity

D[I LOQC2I l ~10!

then tells us how much more information can be obtain
when the channel is changed from a classical channel
quantum channel. It is thequantum deficit.

It is easy to verify that the classical deficitDc plus the
quantum deficitD are equal to the total amount of correl
tions contained in the state. I.e.,

I M5D1Dc . ~11!

Remarkably, for pure states, it was found thatD5ED , where
ED is the amount of distillable entanglement contained in
state~i.e., the number of singlets per staterAB that can be
drawn under LOCC from a large number of copies ofrAB)
@21#. This was also conjectured to be true for sets of sta
such as the ‘‘maximally correlated’’ state of Ref.@37#. In
general, the quantum deficitD can be due to entanglemen
as in the case of pure states, but it also appears that sepa
states can have a nonzeroD, as in the case of mixtures o
states which are separable, but indistinguishable@38#. States,
such as Werner states@39#, are believed to haveD.ED .
However, it is not yet clear whetherD.ED in the case of
collective operations on many copies.

Under LOCC,I l is the amount of local information tha
can be extracted from stater and used to perform physica
work. ED has the interpretation of the maximal amount
useful nonlocal information which can be extracted fro
state rAB . Each bit of nonlocal information~singlet! can
then be used for such tasks as the teleportation of one q
or super-dense coding. Here, we will take quantum work
mean teleportation of qubits but it is certainly not exclud
that there are other forms of quantum work@40#.

Generally, Eq.~10! divides the total informational conten
into a local partI l which is locally accessible andD which
represents quantum information destroyed by the comm
cation via classical channel:

I 5I l1D. ~12!

Yet, in this paper we are interested in nonlocal part ofD
which is ED @41#. We will derive complementarity relation
betweenED and I l .

III. COMPLEMENTARITY BETWEEN LOCAL AND
NONLOCAL INFORMATION

We will now show that local information and nonloca
information are complementary—one can use the local in
7-3
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OPPENHEIMet al. PHYSICAL REVIEW A 68, 022307 ~2003!
mation, or the nonlocal information, but not both. The use
each type of information is an irreversible process and
information is destroyed. Before discussing the general c
it may be useful to first show how this complementarity pr
ciple plays out with a simple state such as the singlet~5!. In
Sec. III B we will show how this can be extended to oth
states. It is expressed mathematically as a basic inequalit
Sec. III C we will discuss this complementarity in more ge
erality and show two different and useful ways that it can
expressed. Furthermore, for pure states, one can expres
relationship in a particularly simple form, where the e
tanglement plays the role of Planck’s constant\. In Sec.
III D we show that these complementarities are of the sa
form as the more familiar ones encountered in quantum
chanics between conjugate observables such as position
momentum. Finally, in Sec. III E we give an example
information extraction, which illustrates our complement
ity principle and shows that pure states can be thought o
the counterpart to coherent states~i.e., minimum uncertainty
wave packets!.

A. An example

Although the mutual information of the singlet is two bit
initially, neither Alice nor Bob can obtain any informatio
since their local-density matrices are maximally mixe
However, in Ref.@21# we showed that one bit of informatio
can be obtained by the two parties. This can be done u
the following process, which was proven to be optimal.

Alice simply sends her qubit down the classical chann
Since the channel is classical, her qubit is dephased@36#.
~Alice can take the dephasing to be in the computatio
basis.! I.e., the channel causes the singlet to become the c
sically correlated state:

r5
1

2
~ u01&^10u1u10&^01u!. ~13!

This step is irreversible and one bit of information gets l
@initially, the state had two bits of information and now, o
can easily check via Eq.~1! that it finally has one bit of
information#. This information is now locally held by Bob
and by performing a cnot@42#, he will hold one qubit in a
pure state~the other is maximally mixed!. They have thus
extracted one bit of local information~i.e., one local qubit!.

Alice and Bob can also use measurements to distill one
of local information. One of course must include the state
the measuring device in the calculation. The procedure i
follows.

~a! Alice uses a measuring device represented by a q
prepared in the standard stateu0& @43#. She performs aCNOT

@42# using her original state as the control qubit and
measuring qubit as the target.

~b! The measurement qubit is now in the same state as
original bit and can be dephased~i.e., decohered! in the
u0&,u1& basis so that the information is purely ‘‘classica
~dephasing simply brings the off-diagonal elements of
density matrix to zero, destroying all quantum coherenc!.
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Again, during the dephasing process, one bit of informat
is irreversibly transferred into the environment and is
longer available.

~c! The measuring qubit can now be sent to Bob.
~d! Bob performs aCNOT using the measuring qubit as th

control. His original qubit is now in the standard stateu0&.
~e! Bob sends the measuring qubit back to Alice.
~f! Alice resets the measuring device by performing

CNOT using her original bit as the control. Alice’s state
now maximally mixed, while Bob’s state is known. The
have obtained one bit of information. This information c
be used to extract one bit of physical work from a heat b
using a Szilard heat engine.

This process, though optimal, only extracts one bit of
cal information, even though two bits of information cou
be extracted by someone who is not constrained by LOC
However, the singlet also has one bit of nonlocal inform
tion, which can be used to teleport a single qubit. In t
case, the ability to obtain local information will be lost.
Alice wishes to teleport statecA8 using a singlet, the tota
initial state is

cA8^ cAB
2 . ~14!

The final state~after Alice resets her measuring device! is

1

4
I A8A^ cB . ~15!

Thus, the state~excluding the teleported statecA8) is now
maximally mixed, containing no local information. On
might think that there could be some other, more sophi
cated protocol that allows one to teleport a qubit in suc
way that the final state will not be maximally mixed. How
ever, this is not the case. All perfect fidelity teleportati
schemes were considered by Werner@39#, who showed that
essentially the standard teleportation protocol is unique.

We, therefore, see that for the singlet, there appears t
a complementarity between teleportation and lo
information—one must choose which one to obtain, and o
bit of information gets destroyed. The example of the sing
leads to the following general procedure and result.

B. The basic inequality

For a given state, one can use a particular process to d
singlets~nonlocal information!. For this process, the amoun
of singlets need not be optimal~i.e., can be less thanED).
Similarly, the classical correlations can be exploited to obt
local information under a process which need not be optim
~i.e., can be less thanI l). After distilling singlets from a
state, one can then use the rest of the state to gain l
information and vice versa. More generally, consider st
r ^ n and processP, according to which one extractsnIl bits
of local information and teleports some amount of qub
nQD . It turns out that each such processP satisfies the fol-
lowing inequality:

QD~P!1I l~P!<I l , ~16!
7-4
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where nowQD and I l denote number of qubits and bits p
input pair, respectively.

We know from quantum channel theory@44# that QD is
equivalent to the number of singlets (ED5QD) that must be
used to transmit qubits faithfully. Then, the above inequa
implies that the amount of local informationI l plus nonlocal
informationED , which can be drawn from stater ^ n in the
asymptotic limit under any processP, cannot exceed the
optimal amount of local information that can be drawn und
LOCC.

To see this, we will demonstrate that if there is a proc
P such that the bound of Eq.~16! is violated, then there mus
exist a processP8 that would enable us to draw a great
amount of classical work than the optimal amountI l . Pro-
cessP8 is as follows: we first apply processP to draw an
amountI l(P) of nonlocal information~pure separable states!
and ED(P) of singlets from staterAB ~we don’t perform
teleportations yet!.

Alice and Bob can then obtain more local information
converting theED(P) singlets intoED(P) pure separable
states using the optimal procedure described above to
vert each singlet into one local pure state. Using this proc
Alice and Bob can drawI l(P)1ED(P) bits of local infor-
mation from staterAB . Since I l is the optimal amount of
information, the bound given by Eq.~16! follows.

Equation~16! shows that there is atrade offbetween two
different processes: if we define goal~i! as having one bit of
local information on either site and goal~ii ! as sending one
bit of nonlocal information from one site to another, th
only one of the goals can be reached. This represents
trade off. However, there is more going on here than a tr
off. Namely, reaching~i! irreversibly destroysthe possibility
of access to~ii !. This is what corresponds tocomplementar-
ity. All this can be seen easily in the scenario before
teleportation process: Alice and Bob share a singlet and A
has an unknown qubit. The latter does not change the
ance because as an additional resource, it must be count
both the input and the output. Then, to achieve~i! we can
only spend the singlet which can finally lead to one class
bit according to the result of Ref.@21#. This destroysall the
quantum correlations and consequently, the possibility
reach goal~ii !. If, on the other hand, Alice and Bob decide
teleport, then goal~ii ! is reached, but finally Alice’s state i
completely mixed~Bob’s qubit is in anunknownpure qubit
that does not enter the balance!, so local information has
been irreversibly destroyed to enable us to obtain~i!.

It is worthwhile to compare Eq.~16! with Eq. ~12! since
in a number of cases@21#, D5ED . In this case, Eq.~12!
gives ED1I l<I . One can see that the optimal amount
distillable nonlocal information plus the amount of distillab
local information is in general much greater than the amo
that is actually extracted because of the complementarity
tween the two. There is an irreversible process which
stroys our ability to obtain one kind of information, if th
other kind is obtained.

C. Complementarity between local and nonlocal information
expressed in terms of entropies

Although Eq.~16! essentially expresses the compleme
tarity between local and nonlocal information, it is not in
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form usually associated with uncertainty relations. We w
therefore re-express our bound in two different ways. Fi
we will rewrite it as an informational bound, where the righ
hand side is a constant, as opposed to something which
pends on the state. We will also re-express it as a bound
entropies. In this case, the right-hand side is related to
entanglement of a state. Both these bounds have a form
those associated with complementary observables.

Let us first reexpress Eq.~16! so that the right-hand side i
independent of the particular state chosen. To do this,
write it in terms of the local information which is extractab
from correlations~as opposed to the local informational co
tent!. Defining the information which can be extracted fro
correlations asI cor(P,rAB)[I l(P,rAB)2I LO , we can sub-
tract I LO from both sides of Eq.~16! and use Eq.~8! to give

ED~P,rAB!1I cor~P,rAB!<Dc . ~17!

Under some assumptions in Ref.@21#, we have proved tha
I l<n2SX , X5A,B. We believe that this is true in genera
Since Dc5n2SA2SB2I l , we then would obtainDc
<min(SA ,SB)<n/2, so that Eq.~17! would take the form

ED~P,rAB!1I cor~P,rAB!<n/2. ~18!

This bound is the tightest bound one can have, which is s
independent, as it is saturated by maximally entangled sta
since for two qubit states we haveED(P,rAB)
1I cor(P,rAB)<1.

We can also reexpress the complementarity relation
terms of entropies, which will also be useful in relating o
complementarity to the ones usually encountered in quan
mechanics. We, therefore, rewrite Eq.~16! in the following
form:

HLOCC~P!1HB~P!>n1Ef2I l , ~19!

whereHLOCC(P) is defined, in analogy with Eq.~1!, through

I LOCC~P![n2HLOCC~P!. ~20!

Quantity HLOCC(P) can be thought of as the Shannon e
tropy, as Alice and Bob would perceive it during the loc
information localizing procedure@45#. In fact, it has been
advocated@46# that entropy should always be defined wi
respect to one’s measuring apparatus and how they ca
used. For example, the coarse-grained entropy is defi
with respect to detectors that can only probe with a fin
resolution. Here, the measuring devices of Alice and Bob
restricted to LOCC operations.

Also in analogy with Eq.~1!, HB(P) is defined through

ED~P![Ef2HB~P!. ~21!

Instead ofn which is the number of qubits needed to crea
state rAB , one ought to defineHB(P) with respect to
Ef—the number of singlets needed to create the state u
LOCC ~called the entanglement of formation!. The definition
of HB(P) simply reflects the fact that not all the entangl
ment can be distilled to perform teleportations—there
‘‘bound entanglement’’@47#. Here, since the process is n
7-5
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necessarily optimal,HB(P) can be less than the bound e
tanglement. The relationship between bound entanglem
and entropy~or heat! was discussed in Ref.@48#.

Our definitions help elucidate the strong parallels betw
entanglement and local information.n separable pure state
enable one to performn bits of physical work, whileEf
singlets allow one to performEf bits of quantum work such
as teleportation. To create a staterAB , Alice and Bob will
also need to usen pure separable states but they will al
needEf singlets. The entropyHLOCC(P) prevents Alice and
Bob from extracting the fulln bits of local information,
while the bound entanglementHB(P) prevents them from
extracting the fullEf bits of nonlocal information.

The information-theoretic version of our complementar
relation takes a particularly simple form for pure states. F
pure states, it was shown in@21# that I l5n2ED5n2Ef .
We therefore have

HLOCC~P,c!1HB~P,c!>2ED~c!. ~22!

D. Informational complementarity compared with entropic
uncertainty relations

Although the relations given above may seem unfamil
they actually have a logical structure similar to the us
complementarity principle between noncommuting obse
ables such asx andp.

The reason that Eqs.~16!, ~19!, and~22! do not immedi-
ately strike one as being like the usual complementarity
lationship, is because we are used to seeing them written
a Heisenberg uncertainty principle, such as

DxDp>\, ~23!

or for general operatorsM, N, the Robertson inequality@17#

DMDN>^c@M ,N#c&. ~24!

However, it is now recognized that these inequalities can
better expressed as relationships between entropies. Thi
proach to the uncertainty principle was begun by Białynic
Birula and Mycielski@10# and later advocated by Deutsc
@11#, who was dissatisfied with the fact that the bound on
right-hand side of Eq.~24! is not a constant but instead
depends on the state. His bound was improved by Par
@12#, Kraus @13#, and Maassen and Uffink@14#. The latter
bound can be written as

HM̂~c!1HN̂~c!>22 ln~supu^mun&u!, ~25!

wherem andn are the eigenstates of two operatorsM̂ andN̂,
and entropiesHM̂ andHN̂ of statec are the usual Shanno
entropies defined, for example, by

HM̂~c!52(
m

u^muc&u2 lnu^muc&u2. ~26!

That an uncertainty principle can be written in such a fo
makes intuitive sense because having a larger Shannon
tropy in a certain basis corresponds to a larger uncertaint
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measurements in that basis. The entropic uncertainty bo
therefore, expresses the trade off between the spread of
surement results in one basis~as given by the Shannon en
tropy in that basis!, versus the spread of measurements
another basis. We, therefore, see that our complement
principle is closely related to the more familiar one encou
tered in quantum mechanics.

For position and momentum, the Partovi bound takes
form

Hx~c!1Hp~c!>2 ln@2/~11dxdp/2p\!# ~27!

for small values ofdxdp/2p\, where dx and dp are the
resolution of the detector~i.e., phase space is divided int
cells!.

Comparing this to Eq.~22!, we see that for pure states, th
entanglement plays a role analogous to Planck’s constan\.
The difference of course is that\ is a constant that is inde
pendent of the state. In our case, fixing the amount of
tanglement in the allowable states is equivalent to fixing\
and the detector resolution. The right-hand side only depe
on the amount of entanglement of the state and not on
other properties. It is the addition of entanglement into
system, which acts like\ and creates this complementarit

Our informational complementarity principle, express
by Eq. ~18!, does have the appealing feature that the rig
hand side is completely independent of the state. It has
form of the informational bound derived by Hall@15# for
complementary observables, which is given by

I M̂1I N̂< log2 d, ~28!

whereI M̂ andI N̂ gives the amount of information obtainab
from a measurement of complementary observablesM̂ and
M̂ , andd is the dimension of the Hilbert space. The simila
ity between this equation and Eq.~18! is striking.

E. Example: Drawing local and nonlocal information
from pure states

We will now consider a protocolP on pure state, where
both local and nonlocal information is extracted optimally.
will be used to show the balance between local and nonlo
information. We will also see that pure states can be thou
of as being analogous to coherent states.

Essentially, the procedure is that Alice will perform
measurement which determines how much entanglemen
available. Depending on the result of the measurement,
parties can choose whether they want to extract nonlo
information or local information. For example, they ma
choose to extract nonlocal information when they find a
of entanglement~i.e., more than the average optimal amou
ED) and extract local information when there is a sm
amount of entanglement~since in this case, they can extra
more local information than the optimal amountI l).

The scenario is similar to the concentration of entang
ment scheme of Ref.@49#. Alice and Bob sharen pairs of a
pure statecAB5au00&1bu11&. Alice performs a measure
ment withn11 outcomes. As a result, Alice and Bob share
maximally entangled state with Schmidt rankdk5(k

n) with
7-6
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probability pk5(k
n)a2kb2(n2k), k50, . . . ,n. The singlet is

‘‘diluted’’ into all 2n qubits. However, it is not a maximally
entangled state of those 2n qubits, so that it can be swappe
into a smaller number lndk of qubit pairs. Then, the remain
ing pairs will be in product states.

Each processr→$pk ,rk%, after which informationI k is
extracted fromrk with probability pk , providesI l5(kpkI k
2H($p%) of information. The Shannon entropyH($p%) of
distribution $pk% equals the cost of erasure of informatio
which allows Alice and Bob to work with an ensemble
rk’s @50#. Thus, in our example, Alice and Bob have to p
I er5H($p%) of erasure to pay for the next part of the sche
in which they draw the(kpkI k amount of information.

In our protocol, Alice and Bob will decide whether t
extract entanglement or local information based on the re
of Alice’s measurement~i.e., what value ofk she measures!.
They divide the outcomes ofk into two setsKq andKl .

If they obtain outcomekeKq , they ~i! concentrate the
diluted singlet, obtaining on average

ED~P!5 (
keKq

pk log2 dk ~29!

singlets;~ii ! draw local information from the rest of qubits
obtaining, on an average,

I l 1
~P!5 (

keKq

pk~2n22 log2 dk!. ~30!

If instead, they obtained the outcomes withkeKl , they ~iii !
draw local information directly from the state with the ave
age result

I l 2
~P!5 (

keKl

pk~2n2 log2 dk!. ~31!

Summing up all the information drawn from the syste
we have

I ~P!5ED~P!1I l 1
~P!1I l 2

~P!2I er , ~32!

which gives

I ~P!52n2 (
k50

n

pk log2 dk2H~p!. ~33!

Passing to intensive quantitiesĩ [I (P)/n is asymptotically
equal to the maximum possible amount of local informat
per pair, which can be obtained starting withucAB&^cABu ^ n,
namely, ĩ '22SA , whereSA is the entropy of reduction o
cAB . Indeed, the last term in Eq.~33! is of order of lnn, so
that its contribution vanishes in the asymptotic limit. Thu
the complementarity inequality~16! is saturated. It follows
that for pure states, it is possible to obtain partially quant
and partially local information without any loss. Howeve
for mixed states, it is rather unlikely that an optimal protoc
which saturates the inequality would exist.
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Since the bound is saturated and Alice and Bob may
tain any amount of eitherI l(P) or ED(P) ~up to their maxi-
mal value!, we can therefore think of pure states as be
analogous to coherent states, i.e., minimally uncertain sta
Maximally entangled states are also the only ones which a
saturate the constant bound of Eq.~18!.

IV. COMPLEMENTARITY OF OBSERVABLES INDUCED
BY LOCC

In the preceding sections, we introduced a compleme
rity principle between local and nonlocal information. Phy
cally, it referred to general processes, rather than any par
lar implementation. It would therefore be useful to see
there is a complementarity principle which just refers to ge
eral measurements or operations. Indeed, we will find t
when the implementation of a measurement is restricted
LOCC, it induces a type set of complementarities. One
generalize this further and consider complementarities w
one is restricted to other classes of operations.

In Sec. IV A we will demonstrate that the parity and pha
operator, which normally commute in quantum mechan
no longer commute under LOCC. In Sec. IV B we will loo
at measurements that distinguish between the orthog
states of Ref.@38#.

A. The parity and phase observable

Consider two observablesSx5sx
(A)

^ sx
(B) and Sz5sz

(A)

^ sz
(B) , wheresx and sz are the usual Pauli spin matrice

and the superscript refers to which subsystem it acts up
They commute:

@Sx ,Sz#50 , ~34!

and their eigenbasis is the Bell basis

c65u01&6u10& ,

F65u00&6u11&. ~35!

Sz measures the parity bit and will therefore, distingui
between thec and F eigenstates, whileSx measures the
phase bit and will distinguish between the eigenstates
have a1 as the relative phase or a2. E.g., if one finds
Sz50 andSx50, then we have a singlet.

However, if Alice and Bob are restricted to LOCC oper
tions and want to measure such observables on their sh
system, it is impossible. Indeed, to measureSx , Alice and
Bob must separately measuresx , while to measureSz they
have to measure separatelysz . Clearly, sincesx does not
commute withsz , they cannot measure both the parity a
the phase. One might suspect that there could exist s
complicated LOCC protocol that measures them join
somehow avoiding measuring directly local noncommut
observables. Later, we will show by a simple argument t
this is impossible in general by any LOCC operation. Ho
ever, here we would like to grasp the rough idea of the d
ference between the global and LOCC measurement.
7-7
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To this end, note that in the distant labs case, Alice a
Bob measure too much. Indeed, measuringSx globally gives
one bit of information~phase bit! becauseSx has only two
eigenvalues. In contrast, measuring the phase locally~by
having Alice and Bob measuresx on their subsystem!, the
two parties will acquire two bits of information. Thus, i
local measurements, the measurement is nondegen
while Sx and Sz are degenerate. In fact, a local determin
tion of parity and phasemustacquire two bits of information.

We can simulate a global measurement of parity or ph
by using the local operators

Sz
LOCC5sz

(A)1azsz
(B) , ~36!

Sx
LOCC5sx

(A)1axsx
(B) , ~37!

where parametersa act to break the degeneracy in operato
Sx and Sz . Then, these local measurements of parity a
phase no longer commute:

@Sx
LOCC ,Sz

LOCC#52 i ~sy
(A)1asy

(B)!, ~38!

where we have redefined constantsa. Thus, this measure
ment of parity and phase cannot be jointly measured un
LOCC.

Here, we have only given one possible local realization
the parity and phase measurement. It therefore may be
sible that one can find a clever procedure, perhaps involv
positive operator valued measured~POVM’s!, such that the
parity and phase measurements commute. This, howe
cannot be the case.

Let us imagine that there exists local implementations
Sz and Sx , which are jointly measurable~i.e., commute!.
Then, we would be able to use these locally implementa
operators to distinguish between the four Bell states. This
however, impossible, as shown in Ref.@51#. Naively, this is
because if one could distinguish between the Bell states,
one can produce entanglement from the identity state~which
is separable!. This would contradict the fact that entangl
ment cannot be created under LOCC. In fact, the problem
more subtle. One could, in principle, be able to distingu
the Bell states but in so doing, the entanglement could
destroyed. Indeed, in the case of two entangled states,
can distinguish them by LOCC@52#. For this case, the en
tanglement is necessarily destroyed during the measurem
However, distinguishing between the four Bell states wo
lead to entanglement creation under LOCC@51#. We there-
fore see that the parity and phase cannot be jointly mea
able. In fact, parity and phase must be complementary, s
if one were able to measure the parity and get even pa
knowledge of the phase, then one would be able to cre
entanglement.

It is also interesting to ask how much entanglement
needed in order to implement the parity and phase opera
in such a way that they commute. The answer is one bi
entanglement. To see this, we note that one bit of entan
ment is clearly sufficient since Alice can use a singlet
teleport her qubit to Bob, who can then measure the pa
and phase. One bit of entanglement must also be neces
since measuring parity and phase under LOCC allows on
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create one bit of entanglement@51#. Since one cannot creat
entanglement under LOCC, one must use up at least on
of entanglement to make the measurement. It is there
rather interesting that if we act the commutator of Eq.~38!
on a separable state then we can get an entangled s
which is maximally entangled fora51.

Finally, it is worth asking whether one can find other e
amples for 2̂ 2 systems. In other words, are there oth
observables that commute globally but do not commute
der LOCC. It appears that the number of examples is v
limited. For pairs of product observables of the formA
^ B, there is~up to local unitary transformations! only one
other pair of operators which commute globally, name
Sx

LOCC andSz
LOCC .

The proof of this result is contained in the Appendix
this paper. For now, we simply state the result.

Proposition. If for some products of two qubit observ
ables@A^ B,C^ D#50 then up to unitary product transfor
mationU1^ U2 and constant factor, one has

A5B5ŝz , ~39!

C5D5ŝx . ~40!

B. Distinguishing separable states

In Ref. @38#, a set of nine states which are orthogonal a
separable were presented. It was then proven, that altho
they are orthogonal, they cannot be distinguished un
LOCC. These states~often referred to as ‘‘sausage states!
therefore exhibit a form of nonlocality without entangleme
One can however distinguish between some of the sta
There are therefore operators which can be constructed u
the sausage states as basis states. As an example, we
construct two such operators, which although they comm
globally, and are implementable locally, do not commute u
der LOCC.

The nine sausage states are~using a different numbering
scheme from Ref.@38# for convenience!

A B

c15 u011& u2&

c25 u021& u2&

c35 u0& u011&

c45 u0& u021&

c55 u112& u0&

c65 u122& u0&

c75 u1& u1&

c85 u2& u112&

c95 u2& u122&.

~41!

Now we can construct an operatorO1 which has as its
eigenstates, the first seven states with seven different,
zero eigenvalues and remaining two eigenstates with z
eigenvalues. We can also construct an operatorO2 which has
c8 andc9 as eigenstates with two different, nonzero eige
7-8
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MUTUALLY EXCLUSIVE ASPECTS OF INFORMATION . . . PHYSICAL REVIEW A68, 022307 ~2003!
values and remaining seven eigenstates with zero eigen
ues. These operators clearly commute globally since all
c i are orthogonal. However, under LOCC, they clearly ca
not commute. If they did, one could measureO1 and O2
simultaneously, and therefore, distinguish between all n
sausage states, in violation of the indistinguishability pro
given in Ref.@38#.

Now, O2 can easily be implemented under LOCC. B
can simply use projectorsu112& and u122& to implement
O2. These projectors distinguish betweenc8 andc9 . O1 can
also be implemented under LOCC, although some effor
needed. Consider, for example, an implementationO18 which
instead, has the following orthogonal eigenbasis.

A B

c15 u011& u2&

c25 u021& u2&

c35 u0& u011&

c45 u0& u021&

c55 u112& u0&

c65 u122& u0&

c75 u1& u1&

c105 u2& u2&

c115 u2& u1&.

~42!

The first seven eigenstates are identical to the eigens
of O1, and soO18 is an implementation ofO1. Furthermore,
O18 can be implemented under LOCC using a sequence
von Neumann projection measurements, which was give
Ref. @38#. The detailed procedure is contained in Append
B.

The difficulty is that while eigenvectorsc1–c7 commute
with O28 , the projectors ontoc10 andc11 do not. If we write
O18 andO28 as

O185O11u2&^2u ^ sz
(B) , O285u2&^2u ^ sx

(B) , ~43!

where we once again use the Pauli matrices, this time wri
in the u1&, u2& basis, then we find that while@O1 ,O2#50,
we have

@O18 ,O28#52 i u2&^2u ^ sy
(B) . ~44!

Unlike the case of the parity-phase commutator, this comm
tator, operating on a separable state, cannot create enta
ment. This may be related to the fact that for parity a
phase, the eigenstates are entangled, while forO1 and O2,
the eigenstates are separable.

C. LOCC complementarity inequalities

Although we have calculated the commutator for t
LOCC implementation of some observables, it would be
sirable to have a general expression for the LOCC com
tator. However, the commutation relations have a disadv
tage in that they also depend on the spectrum of eigenva
02230
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and therefore, do not capture the essence of complement
For a measurement, the eigenvalues are merely labels an
complementarity relation should not depend on them. T
entropic inequalitieswhich we discussed in Sec. III D ar
thus more appropriate. We will, therefore, quantify the ext
to which LOCC induces complementarity by use of su
inequalities. Recall the entropic uncertainty relation of E
~25!:

HM~c!1HN~c!>22 ln~supu^mun&u!. ~45!

We can then define the LOCC entropic inequality as

@HM~c!1HN~c!#LOCC5min@HM8~c!1HN8~c!#

>22 ln~supu^m8un8&u!, ~46!

where the minimum is taken over all LOCC implementatio
N8 and M 8 of operatorsN andM. For the parity and phase
implementations of Eqs.~36! and ~37!, the right-hand side
gives 2 and is independent ofa ~i.e., the eigenvalues!.

Such a definition is still not ideal, as the entropic inequa
ties suffer from a problem which also plagues the Robert
inequality. Namely, two observables which share a comm
eigenvector will be said to ‘‘commute’’ even though they d
not commute on a subspace of the total Hilbert space. Th
an issue which is not particular to defining LOCC impleme
tations, but exists, in general, with both the ordinary comm
tator and entropic inequalities. A solution exists, using
variation of the information theoretic bounds of Ref.@15#
and we hope to address this point in the future.

Leaving such issues aside, the LOCC inequality can a
be generalized to any class of operations. If we consider
set of all allowable operationsA and a restricted subset o
theseR#A, then we can define a restricted inequality mu
in the way we have done here.

There is, however, one key difference between the in
pretation of this inequality and the type of complementar
we are familiar with. Usually, complementarity and unce
tainty are linked together. If two observables cannot both
measured on the same state~complementarity!, then one nec-
essarily finds uncertainty. Namely, if one measures one
servable on half of an identically prepared ensemble and
measures the other observable on the other half of the
semble, then one necessarily finds a dispersion in the re
of the two measurements. One can now ask: does LO
complementarity imply the uncertainty principle? It seem
that the answer isno. Recall that a singlet, for example, ha
definite parity and phase. If Alice and Bob are given an e
semble of singlets and measure the phase on half the
semble, they will always get the same result (2). If they
measure the parity on the other half of the ensemble, t
also they will always get a definite result~0!. There is noth-
ing uncertain about what the outcome of a measuremen
parity or phase will be. However, if Alice and Bob are give
an unknown state~perhaps a singlet! then their measuremen
of phase will completely destroy their ability to determin
what the parity is, and vice versa.

Thus, one may conclude that here, complementarity
decoupled from uncertainty. The main reason would be t
7-9



ig
, t

t
w
in

in
th

ow
llo
n

ar
o

ee

ill
e
ty
ie
th

r
pl

h
ei

le
en
re
s
o
e

ry
a
p

y
o

ar
e
l

ul

l-
un

i
is
t

he

t of
-
to-

of

ng
to

se
ne
tes

h
f a

e

an
ing

r-
cal
l-
he

nd
at
CC.
op-
are
pic
rv-
in

n
ws
rin-
nse

ity
ute,

ter-
uch

ing
er

rity
ocal
wo

es
n-
cal
of

OPPENHEIMet al. PHYSICAL REVIEW A 68, 022307 ~2003!
the measurement does not prepare the system in the e
state of the observable we are trying to measure. Usually
von Neumann postulate holds—after a measurement,
state is in an eigenstate of the observable. Therefore, it
hard to distinguish between complementarity and uncerta
~see Ref.@4#!.

Note, however, that one can also phrase the uncerta
principle as meaning that one cannot prepare a state
would have a definite value of both parity and phase. N
one can observe some asymmetry in our argument: we a
Alice and Bob to use only a restricted class of operatio
~LOCC!, hence they cannot measure both phase and p
and complementarity emerges. Yet, we say uncertainty d
not emerge because uncertainty-free states~e.g., the singlet!
can be prepared. However, to prepare a singlet, one n
global unitary operations~or entanglement!. Thus, in this
case we allow for unrestricted operations. Now, if we w
insist that the preparation of the state should also be don
LOCC, then there will not exist a state that is uncertain
free and we will have uncertainty. Of course, the inequalit
expressing this uncertainty will be obeyed only by states
can be prepared by LOCC~i.e., by separable states!. We
therefore have that for some states, one can decouple
uncertainty principle from complementarity while fo
LOCC-prepared states, the uncertainty principle and com
mentarity are linked.

V. DISCUSSION AND CONCLUSION

The concept of complementarity was introduced by Bo
before the discovery of quantum entanglement by Einst
Podolsky, and Rosen@53# and Schro¨dinger @54#, which is at
the root of quantum communication. In fact, Bohr’s comp
mentarity concerns mutually exclusive quantum phenom
associated with a single system and observed under diffe
experimental arrangements@55#. One can argue that this doe
not exhaust all complementary aspects of quantum phen
ena as we often deal with complex systems that involve
tanglement.

As noted in the Introduction, for Bohr, complementa
observables ‘‘taken together’’ necessarily ‘‘exhausted
well-defined knowledge’’ of the system. It is natural to su
pose that the best defined ‘‘knowledge’’~information! is the
one definedoperationally. Then, information is necessaril
either nonlocal or local. Having so defined the notions
local and nonlocal information, we have found that they
complementary under apparently contradictory well-defin
processes:~i! extract local information to perform physica
work, and~ii ! extract nonlocal information to perform usef
logical quantum work~teleportation!. This complementarity
is mathematically expressed by Eq.~16! or ~18!. However, it
can be formulated in the spirit for Bohr’s principle as fo
lows: Complex quantum systems carry information that
der well-defined mutually exclusive processes manifests
self as a local information or as nonlocal information. In th
sense, the above principle can be viewed as a consisten
tension of Bohr complementarity to complex~distributed!
systems.

In particular, for the singlet state, it follows that under t
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above mutually exclusive process we can extract one bi
nonlocal informationor one bit of locally accessible infor
mation. They are complementary in a sense that ‘‘taken
gether’’ they exhaust all well-defined mutual information
the singlet, which amounts to two bits.

In our approach, it is natural to view information as bei
a fundamental physical quantity. It is more convenient
think of information unfettered from the subject who
knowledge is usually represented by the information. If o
maintains that the information encoded in quantum sta
represents ‘‘states of belief’’~e.g., Ref.@56# in relation to the
Copenhagen interpretation!, then describing operations, suc
as our complementarity or teleportation or the workings o
quantum computer, becomes more uncomfortable.

There is a natural interpretation of information within th
generic information paradigm~GIP! @18,19#. This was intro-
duced for two basic reasons:~i! to overcome Bohr’s
quantum-classical dichotomy and~ii ! to provide an ontologi-
cal basis for quantum formalism. It implies, in particular,
informational interpretation of the quantum states, accord
to which their information content isisomorphicto informa-
tion carried by real partial information fields. It is the info
mation accessible, in principle, under well-defined physi
situations. Then, the basic features ‘‘nonlocality’’ and ‘‘loca
ity’’ of information encoded in quantum states reflects t
double ~hylemorphic! nature ofpartial fields, which inher-
ently links two fundamental levels of reality:logical due to
potential fields of alternatives andphysical due to field of
activities ~events!.

In addition to the complementarity between local a
nonlocal information, we also found a complementarity th
gets induced between operators implemented under LO
For example, we have shown that the parity and phase
erators which normally commute in quantum mechanics
complementary under LOCC. We suggested using entro
uncertainty relations to quantify the degree to which obse
ables are LOCC complementary. Such a relation is given
Eq. ~46!. How to interpret this quantity is an interesting ope
question. We further saw that this complementarity allo
one to conceptually distinguish between the uncertainty p
ciple and complementarity. It was argued that there is a se
in which the two concepts become decoupled.

It is also interesting that in order to implement both par
and phase measurements in such a way that they comm
we need one bit of entanglement. It therefore might be in
esting to ask how much entanglement would be needed, s
that one can jointly measure two observables. Quantify
this ‘‘entanglement assisted commutator’’ might help answ
some of the questions raised here.

It also would be interesting to relate the complementa
principle between operators and between local and nonl
information. The latter involves comparisons between t
types of restricted operations~LO and LOCC!, while the
complementarity principle between operators only involv
LOCC. However, both seem to involve the notion of e
tanglement. One possible direction is to note that the lo
information is believed to be equal to the right-hand side
the LOCC complementarity relation Eq.~46! for the optimal
complete set of LOCC implementable observables@22#.
7-10
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In this paper, the part of nonlocal quantum informati
which was discussed was entanglement. However, the q
tum deficitD is also nonzero for unentangled states~at least
for a finite number of copies!. It would, therefore, be of
interest to also consider the case of date hiding@57#, where
Alice and Bob are essentially unable to obtain the local
formation encoded in a state. We believe this is related to
complementarity discussed here. Indeed, it appears that t
notions of complementarity have many wide ranging ap
cations.

Finally, the above results support the view that quant
states carry two complementary kinds of information, t
local information which is locally accessible and nonloc
information which can be used for such tasks as teleporta
~see, in this context, Ref.@7#!. This complementarity lies a
the foundations of quantum mechanics more deeply tha
might seem. We believe that complementarity, in genera
a fundamental and intrinsic feature of information carried
physical systems which cannot be derived from any pro
bilistic models.
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APPENDIX A: PROOF OF PROPOSITION 1

Let us provide a simple lemma first.
Lemma. If X^ Y5R^ S for some operatorsX,Y,R,S then

X5aR, Y5a21S for some nonzero numbera.
Proof of the above lemma is immediate. Without loss

generality we can considerX,Y to be of full rank and utilize
their inverses~otherwise they are pseudoinverses! getting I
^ I 5X21R^ Y21S. Comparing the eigenvectors of bo
sides of the latter formula givesY21S5aI , X21R5a21I ,
concluding the proof of the lemma.

Now we shall provide the simple proof of the following
Proposition. If for some products of two qubit observ

ables@A^ B,C^ D#50 holds and one excludes trivial cas
(AC50, BD50 or @A,C#5@B,D#50) then up to unitary
product transformationsU1^ U2 and constant factor, one ha

A5B5ŝz , ~A1!

C5D5ŝx . ~A2!

Proof. By adding and subtracting termCA^ BD, it is
immediate that vanishing of the commutator from the Pro
sition is equivalent to
02230
n-

-
e
se

-
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-
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f
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.

.
-
t
t

f

-

@A,C# ^ BD5CA^ @D,B#. ~A3!

Applying the lemma to the above, we get

@A,C#5aCA, @D,B#5aBD. ~A4!

Now, for two qubits we putA5aI1aW sW , B5bI1bW sW , C

5cI1dW sW , andD5dI1dW sW . We then perform a simple cal
culation, taking into account the fact that~because of linear
independence ofI, sx , sy , andsz) absence ofI on one side
implies the same for the other side. This gives two equatio

a@aW sW ,bW sW #5~aaW 1ccW !sW 1 iaW 3cWsW ,

a@bW sW ,dW sW #5~bbW 1ddW !sW 1 ibW 3dW sW . ~A5!

Calculating the left-hand side~LHS! for both sides and using
the linear independence of Pauli matrices, we finally get

aaW 1ccW1 i ~122a!aW 3cW50W ,

bbW 1ddW 1 i ~122a!bW 3dW 50W . ~A6!

Now, let us observe that~i! aW 3cWÞ0W and hence, also~ii !
aW Þ0W , cWÞ0W . Indeed, ifaW 3cW50W then @A,C#50 and conse-
quently @see Eq.~A3!# either AC50 ~which is trivial be-
cause then,A5A†, C5C† and alsoCA50 and @A^ B,C
^ D# vanishes automatically! or ACÞ0 but then@again be-
cause of Eq.~A3!# also @B,D#50, which would be trivial
again.

Because of~i! and ~ii !, the LHS of the first line of Eq.
~A6! is a linear combination of threenonzeroand linearly

independentvectorsaW , cW , aW 3cW , so all the coefficients in the
combination must vanish, giving, in particular,a5c50. In a
similar way we getb5d50. This simplifies our observ-
ables:A5aW sW , B5bW sW , C5dW sW , and D5dW sW . Putting them
again into Eq.~A4!, we immediately get

~aW 3cWsW ! ^ ~bW dW I 1 ibW 3dW sW !5~aW cW I 1 icW3aW sW ! ^ ~bW 3dW sW ! ,
~A7!

which, for nonzeroaW 3cW and bW 3dW is satisfied iff aW cW5bW dW

50. We can putaW 5bW 5 ẑ since we can always choose such
local basis for Alice and Bob. We then havecW5dW 5 x̂ ~again
using our choice of label for the direction orthogonal toẑ).
This concludes the proof of the Proposition.

APPENDIX B: MEASUREMENT OF SEVEN SAUSAGE
STATES UNDER LOCC

Here we show how to implementO18 using aping-pong
process between Alice and Bob. Essentially, the procedur

~b1! Bob first does a projection onu2& and communicates
his result to Alice.

~a1! If his result is positive, then Alice can project ont
the three statesu011&, u021& which will distinguish be-
tweenc1 andc2. However, if she finds neitherc1 or c2, she
will know that the state isc10, which is, in some sense
7-11
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superfluous information which she would not get if she w
measuringO1 globally.

(a18) If Bob’s first projection yielded a negative resu
then Alice, instead, projects onto theu0& state and commu
nicates her result to Bob.

~b2! If her projection found stateu0& then Bob projects
onto u011& and u021&, which distinguishes betweenc4
andc5.
n

. A

, a

.

n

n

k

J.

.

sis
W

t a

02230
e (b28) If her result was negative, Bob projects ontou0&
and u1& and communicates the result to Alice.

~a2! Alice can then make the final orthogonal projectio
either ontou112& andu122&, or ontou1& andu2&, depend-
ing on Bob’s result. This distinguishes betweenc5 , c6,
and c7, as desired, but it also singles outc11, which is
again, surplus information which is not required to impl
mentO1.
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