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Capacity of a channel assisted by two-mode squeezed states
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The main purpose of this paper is to derive the capacity of attenuated or amplified noisy quantum channel
assisted by two-mode squeezed states. In our previous works, formulas for capacity and reliability function
have been obtained for continuous variable communication channel in the case where the classical information
is conveyed by unentangled quantum Gaussian states. This paper investigates how two-mode squeezed states
can enhance classical communication over quantum Gaussian channel.

DOI: 10.1103/PhysRevA.68.022303 PACS number~s!: 03.67.2a, 89.70.1c
a
, w

o
b
th

te

s
di
ar

o
f

h
an
-
o

is
p

co

ents
il-
on-
the

is-

he
-

o-
y of
nica-

city
e

l for

n

d
lim-
l

on-
al
ap

t

I. INTRODUCTION

Classical communication over ideal quantum channel
sisted by entangled states, called quantum dense coding
first proposed by Bennett and Wiesner@1#. The dense coding
scheme has been generalized by several researchers. B
obtained the capacity of ideal qubit channel assisted
shared states that are not maximally entangled, showing
the optimal encoding is again given by the Pauli matrices@2#.
Ban and independently Braunstein and Kimble investiga
quantum dense coding with continuous variables@3,4#. They
considered transmission through the ideal channel with as
tance of two-mode squeezed states, employing enco
based on phase-space displacement operators and sep
~unentangled! measurement with homodyne detection.

Bennett, Shor, Smolin, and Thapliyal@5,6# extended the
dense coding to the general noisy quantum channelF, which
is given by a completely positive, trace preserving map
trace class operators, and established important formula
the entanglement-assisted classical capacity

Cea~F!5max
rA

I ~rA ;F!, ~1!

whereI (rA ;F) is the quantum mutual information,

I ~rA ;F!5H~rA!1H~F@rA# !2H~rA ;F!, ~2!

with the entropy exchangeH(rA ;F), andrA is varying over
all density operators on the channel input. Calculation of t
quantity for concrete channels is a nontrivial and import
problem. Bennettet al. computed it for the amplitude damp
ing channel@6#, and Holevo and Werner for the attenuated
amplified noisy channel@7#.

Our interest is devoted to a more practical case of a no
channel assisted by special bipartite entangled states. In
ticular, we compute the capacityCsq of attenuated or ampli-
fied channel assisted by two-mode squeezed states, and
pare it with the entanglement-assisted capacityCea . The
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two-mode squeezed state, which was used in the experim
on quantum teleportation by Braunstein, Kimble, and M
burn @8,9#, is a fundamental entanglement resource in c
tinuous variable system. In our setting, we assume that
classical information is encoded by applying unitary d
placement operators on Alice’s~transmitter! part of the two-
mode squeezed state and Bob~receiver! employs entangled
measurements. In Sec. II we recall definitions of t
entanglement-assisted capacityCea and the unassisted clas
sical capacityCcl . In Sec. III, we compute the capacityCsq
of attenuated or amplified noisy channel assisted by tw
mode squeezed states. In Sec. IV, we estimate the abilit
two-mode squeezed state to enhance classical commu
tion, comparingCsq with Cea andCcl . We show, in particu-
lar, that Csq approaches the entanglement-assisted capa
Cea for sufficiently large input energy and that two-mod
squeezed states enhance classical communication wel
nearly ideal channels.

II. DEFINITIONS OF CAPACITIES

Let us recall the protocol for the classical informatio
transmission through a quantum channelF from Alice’s Hil-
bert spaceHA to Bob’s spaceHB with assistance of share
entanglement. Suppose that Alice and Bob may share un
itedly entangled statesrAB5uc&AB^cu to enhance classica
communication. Following Refs.@6,10# we consider the
entanglement-assisted communication for channels with c
strained inputs. Alice encodes a continuous classical signx
from a finite-dimensional Euclidean space by using the m
EA

x to get a staterAB
x 5(EA

x
^ I B)@rAB#, and sends it to Bob

through the quantum channelF, yielding the stater̃AB
x

5(F ^ I B)(EA
x

^ I B)@rAB#. Moreover, the energy constrain
on the codeword statesrAB

x1 ^ •••^ rAB
xm is imposed as

f ~x1!1•••1 f ~xm!<mNtr , ~3!

wheref is the energy function defined as

f ~x!5TrrAB
x aA

†aA . ~4!
©2003 The American Physical Society03-1
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Then the one-shot classical capacity is given by the form
@10,11#

Cea
(1)~EA

x ,rAB ,F!5 max
pPP1

HHS E r̃AB
x p~dx! D

2E H~ r̃AB
x !p~dx!J , ~5!

whereP1 is the set ofa priori probability distribution satis-
fying the energy constraint,

E f ~x!p~dx!<Ntr . ~6!

Optimizing the capacityCea
(1)(EA

x ,rAB ,F) with respect toEA
x

andrAB , we obtain one-shot entanglement-assisted capa
Cea

(1)(F). In the same way consideringn uses of the channel
we can define then-shot capacity Cea

(n)(F). The full
entanglement-assisted capacity is then defined as

Cea~F!5 lim
n→`

1

n
Cea

(n)~F!. ~7!

Then it can be proved@10# that formula~1! holds, where
rA varies over all density operators satisfying the constra

TrrAaA
†aA<Ntr . ~8!

The attenuator is described by the transformation

ãA5kaA1A12k2aE , k,1, ~9!

and the amplifier

ãA5kaA1Ak221aE
† , k.1, ~10!

in the Heisenberg picture. HereaA is the annihilation opera
tor of the Alice’s mode, andaE is that of another mode in th
Hilbert spaceHE of ‘‘environment,’’ which is initially in the
vacuum state. We assume also the additive classical com
thermal noise with zero mean and variance\Nc . The capac-
ity Csq(Fk,Nc

) of attenuated or amplified noisy chann

Fk,Nc
assisted by two-mode squeezed states is defined t

capacity ~5! with the encoding mapsEA
x acting asEA

x @rA#
5D(x)rAD(x)†, whereD(x) is the displacement operato
rAB is the two-mode squeezed state, andF5Fk,Nc

.
In the following sections we compute the capac

Csq(Fk,Nc
) and compare it with the entanglement-assis

capacityCea(Fk,Nc
) and the unassisted capacityCcl(Fk,Nc

)

for the attenuated noisy channelFk,Nc
. Let us summarize

results aboutCcl(Fk,Nc
) andCea(Fk,Nc

). The unassisted ca

pacity Ccl(Fk,Nc
) is conjectured@7# to be achieved by the

coherent states with the Gaussian probability density, res
ing in

Ccl~Fk,Nc
!5g„k2Ntr1Nc1m~k!…2g„Nc1m~k!…,

~11!
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where

g~x!5~x11!log~x11!2x logx, ~12!

and

m~k!5max$0,k221%. ~13!

The entanglement-assisted capacityCea(Fk,Nc
) was com-

puted in Ref.@7# as follows:

Cea~Fk,Nc
!5g~Ntr !1g„k2Ntr1Nc1m~k!…2I~k,Nc ,Ntr !,

~14!

where

I~k,Nc ,Ntr !5g~j121/2!1g~j221/2!, ~15!

is the entropy exchange and

j65 1
2 $6@~k221!Ntr1Nc1m~k!#

1A@~k211!Ntr1Nc1m~k!11#224k2Ntr~Ntr11!%.

In Table I we summarize the capacities introduced abo
From the definitions the following inequalities between the
capacities hold:

Ccl~Fk,Nc
!<Csq~Fk,Nc

!<Cea
(1)~Fk,Nc

!<Cea~Fk,Nc
!.
~16!

III. CAPACITY OF ATTENUATED
OR AMPLIFIED NOISY CHANNEL ASSISTED BY

TWO-MODE SQUEEZED STATES

The purpose of this section is to compute the capa
Csq(Fk,Nc

). Consider a two-dimensional real vectorx

5@xq,xp# as a classical signal. Then Alice encodes the cl
sical signalx by applying a displacement unitary operator

D~x!5exp
i

\
~xpqA2xqpA! ~17!

to her part of shared two-mode squeezed stateucsq&AB ,
yielding the quantum state ucsq(x)&AB5@D(x)
^ I B#ucsq&AB . Bob obtains the stater̃sq

x 5(Fk,Nc
^ I B)

TABLE I. Comparison of capacitiesCea
(1)(EA

x ,rAB ,F),
Cea

(1)(F), Cea(F), andCcl(F). Heren andm are numbers used to
describe codeword state asrx1^ •••^ rxm with rxjPHA

^ n
^ HB

^ n

~Only in the case ofCcl(F), whererxjPHA , the value ofn makes
no sense!.

Encoding Entangled n Entangled m
State Measurement

Cea
(1)(EA

x ,rAB ,F) Fixed Fixed 1 Optimized `

Csq

Cea
(1)(F) Optimized Optimized 1 Optimized `

Cea(F) Optimized Optimized ` Optimized `

Ccl(F) Optimized Optimized `
3-2
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3@ucsq(x)&AB̂ csq(x)u# by receiving Alice’s part ofucsq(x)&AB
through the attenuated or amplified noisy channelFk,Nc

.
We explain the two-mode squeezed state and attenua

or amplification for it in Secs. III A and III B, respectively
and compute the capacityCsq in Sec. III C. Our computation
is based on the general formula of von Neumann entropy
a general Gaussian state@12#

H~r!5
1

2
SpgS abs~Ds

21a!2
I 2s

2 D , ~18!

where Sp denotes trace of matrices as distinct from trac
operators Tr, andDs , a are correspondingly the commuta
tion and correlation matrices of the canonical quadrature
servables

qj5A \

2v j
~aj1aj

†!, pj5 iA\v j

2
~aj

†2aj !,

j 51, . . . ,s, ~19!

and abs(•) is defined as follows: for a diagonalizable matr
M5Tdiag(t j )T

21 with a non-singular matrixT and t jPC,
we put absM5Tdiag(ut j u)T21. In the following calculation
we use formula~18! with s52, where we putv15v251
for simplicity.

A. Two-mode squeezed state

Let aA and aB be the annihilation operators for the sy
tems of Alice and Bob, respectively. Ignoring an unimporta
phase factor, we can represent the two-mode squeezed
as

ucsq&AB5S~r !u0&AB . ~20!

Here u0&AB is the two-mode vacuum stateu0&A^ u0&B and

S~r !5exp@2r ~aA
†aB

†2aAaB!# ~21!

is the squeezing operator, which transforms annihilation
eratorsaA andaB according to the relations

aA85S~r !†aAS~r !5aAcoshr 2aB
†sinhr , ~22!

aB85S~r !†aBS~r !52aA
†sinhr 1aBcoshr .

In order to apply formula~18!, we must obtain the correla
tion matrix a of the two-mode squeezed state. Introduci
vector representationsR5@qA ,pA ;qB ,pB#T, we define the
unitary operators for four-dimensional real vectorsz,

V~z!5exp@ iRTz#, ~23!

by which the characteristic function is defined~see Refs.
@12,13#!. Using the vector representationsR and R8
5@qA8 ,pA8 ;qB8 ,pB8 #T with qj85S(r )†qjS(r ) and pj8
5S(r )†pjS(r ) ( j 5A,B), we can rewrite Eq.~22! in a real
setting as

R85LR, ~24!
02230
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L5FcoshrI 2 sinhrJ2

sinhrJ2 coshrI 2
G , ~25!

with the 232 diagonal matrices

I 25F1 0

0 1G , J25F21 0

0 1G . ~26!

It follows from Eq. ~24! that

S~r !†V~z!S~r !5exp@ i ~R8!Tz#5exp@ iRT~LTz!#5V~LTz!.
~27!

Thus, the characteristic function ofucsq&AB is given by

Trucsq&AB^csquV~z!5Tru0&AB^0uS~r !†V~z!S~r !

5expF2
1

2

\

2
zTLLTzG , ~28!

which means the correlation matrix of two-mode squee
state is

a5
\

2
LLT5

\

2 Fcosh 2rI 2 sinh 2rJ2

sinh 2rJ2 cosh 2rI 2
G . ~29!

B. Attenuation and amplification for Gaussian states

Bob gets states (Fk,Nc
^ I B)@ ucsq(x)&AB^csq(x)u# when

Alice’s part of encoded two-mode squeezed states are tr
mitted through the attenuated or amplified noisy chan
Fk,Nc

. These are Gaussian states with mean vectorskx and

the same correlation matrixã.
In this subsection, we obtain the correlation matrixã.

As a first step, let us consider an attenuated channel w
out thermal noise,Fk,0 (k,1). From Eqs.~22! and ~9!,
we deduce that the transformationu0&AB^0u→(Fk,Nc

^ I B)@ ucsq(x)&AB^csq(x)u# is described in the Heisenber
picture by the relation

ãA5kaAcoshr 2kaB
†sinhr 1A12k2aE , ~30!

ãB52aA
†sinhr 1aBcoshr .

Put q̃ j5A\/2(ã j1ã j
†), p̃ j5 iA\/2(ã j

†2ã j ), qj5A\/2(aj

1aj
†), pj5 iA\/2(aj

†2aj ) for j 5A,B,E and introduce

vector representations R̃5@ q̃A ,p̃A ,q̃B ,p̃B#T, R0
5@qA ,pA ,qB ,pB ,qE ,pE#T. Then Eq.~30! can be rewritten
in a real setting as

R̃5MR0 , ~31!

where

M5Fk coshrI 2 k sinhrJ2 A12k2I 2

sinhrJ2 coshrI 2 0
G . ~32!
3-3
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Like in Sec. III A we can find that the correlation matrix i
this case is

\

2
MMT5

\

2 F ~k2cosh 2r 1u12k2u!I 2 k sinh 2rJ2

k sinh 2rJ2 cosh 2rI 2
G .

~33!

It is easy to see that the correlation matrix in the case
the amplification (k.1) is also given by Eq.~33!. Moreover,
in the Gaussian case, we can separately deal with the e
of attenuation or amplification and that of thermal noise@14#.
Hence, considering the effect of thermal noise with ze
mean and variance\Nc , we obtain the correlation matrix o
the state (Fk,Nc

^ I B)@ ucsq(x)&AB^csq(x)u# in the form

ã5
\

2
MMT1\FNcI 2 0

0 0G , ~34!

for any value ofk.

C. Computation of capacity assisted by
two-mode squeezed states

Here we compute the capacityCsq(Fk,Nc
). Energy func-

tion ~4! for the two-mode squeezed stateucsq(x)&AB^csq(x)u
is

f ~x!5
xTx

2\
1Nsq , ~35!

with a squeezing energyNsq5(cosh 2r21)/2. First, let us
mention that we can restrict ana priori probability distribu-
tion to Gaussian one without loss of generality. To show
validity of this restriction, we first point out that the secon
term in the right-hand side of Eq.~5! can be ignored becaus
it takes the same value for anya priori distribution. Thus, it
suffices to show that the first term is maximized by ana

priori Gaussian distribution. For arbitrary distributionp̂
PP1, there exists such Gaussian distributionp̃ that r̃AB

5*r̃(x)p̃(dx) has the same first and second moment
r̂AB5*r̃(x)p̂(dx). Then it is known @12# that H( r̃AB)
>H( r̂AB) holds. This means that an optimala priori distri-
bution is given by Gaussian one. In the following, we den
the correlation matrix of ana priori Gaussian distributionp̃
by

b̃5F b O

O OG , ~36!

whereO is the 232 zero matrix andb is a 232 real sym-
metric matrix

\Fbqq bqp

bqp bppG , ~37!

satisfying the positivity condition

bqqbpp2~bqp!2>0. ~38!
02230
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Then correlation matrix of Gaussian stater̃AB is

ã1k2b̃, ~39!

whereã is given by Eq.~34!. Now we can rewrite Eq.~5! as
follows.

Csq~Fk,Nc
!5

1

2
max
bPB1

gS abs@D21~ ã1k2b̃ !#2
I 4

2 D
2

1

2
gS abs~D21ã !2

I 4

2 D , ~40!

whereI 4 is the 434 identity matrix andB1 is a set of real
positive 232 matrices, satisfying condition~38! and

bqq1bpp

2
1Nsq<Ntr , ~41!

which is derived from Eqs.~6! and ~35!.
In order to compute Eq.~40!, we first obtain the eigenval

ues of D21(ã1k2b̃). From a general discussion@13#, we
find that these eigenvalues can be represented as6 ig1 ,
6 ig2 with g1 ,g2>1/2. The characteristic polynomial is ca
culated as

det@l2D21~ ã1k2b̃ !#

5l41l2@h22~bqp!222z21~j1k2bqq!~j1k2bpp!#

2~bqp!2h21~j1bqq!~j1bpp!h2

2z2h~2j1k2bqq1k2bpp!1z4, ~42!

where

j5k2Nsq1Nc1m~k!1 1
2 ,

h5Nsq1
1
2 ,

z5k@Nsq~Nsq11!#1/2, ~43!

wherem(k) is given by Eq.~13!. Here let us pay attention to
the fact that when the coefficients ofl in Eq. ~42! take larger
values, the capacityCsq becomes larger. This can be eas
shown from the fact thatg(x) is a monotonously increasin
concave function, and tells us that the optimal values ofbqq,
bpp, and bqp should satisfybqp50 and bpp5bqq when
2t5bqq1bpp is fixed. This simplifies Eq.~42! as

det@l2D21~ ã1k2b̃ !#

5@l21h~j1k2t !2z2#21l2~j1k2t2h!2.

~44!

Solving det@l2D21(ã1k2b̃)#50, we obtain the solutions
6 ig1(t) and6 ig2(t), with

g1~ t !5
j1k2t2h

2
1A2z21

~j1k2t1h!2

4
, ~45!

g2~ t !52
j1k2t2h

2
1A2z21

~j1k2t1h!2

4
.

3-4
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On the other hand, the eigenvalues ofD21(ã1k2b̃) can be
obtained as6 ig1(0), 6 ig2(0). Thus, the capacity of at
tenuated or amplified noisy channelFk,Nc

assisted by two-
mode squeezed states is given by

Csq~Fk,Nc
!5 max

0,t<Ntr2Nsq

g„g1~ t !21/2…1g„g2~ t !21/2…

2g„g~0!21/2…1g„g~0!21/2…, ~46!

5g„g1~Ntr2Nsq!21/2…1g„g2~Ntr2Nsq!

21/2…2g„g1~0!21/2…2g„g2~0!21/2….

IV. ABILITY OF TWO-MODE SQUEEZED STATE TO
ENHANCE A CLASSICAL COMMUNICATION

In order to evaluate the ability of two-mode squeez
state to enhance classical communication, we compare
ratio of Csq to the unassisted capacityCcl with that of the
entanglement-assisted capacityCea to Ccl , where Csq
5Csq(Fk,Nc

), Ccl5Ccl(Fk,Nc
), and Cea5Cea(Fk,Nc

) are
given by Eqs.~46!, ~11!, and~14!, respectively. In what fol-
lows we assume thatCsq is optimized with respect to a
squeezing energyNsq . In Fig. 1,Csq /Ccl are plotted versus
Nsq for the ideal channel withk51, Nc50, andNtr510,
the noisy channel withk51, Nc50.1, andNtr510, the at-
tenuated channel withk50.5, Nc50, andNtr510, and the
amplified channel withk52, Nc50, andNtr510. The op-
timized value ofCsq /Ccl is given as the peak value of eac
graph in Fig. 1. In Fig. 2, for the ideal channel withk51 and
Nc50, Csq /Ccl , and Cea /Ccl are plotted versusNtr by
spots and by a solid line, respectively. This figure shows
two-mode squeezed states enhance classical communic
well when input energyNtr is sufficiently large. In particular
we conjecture thatCsq'Cea

(1) holds for Ntr@1, whereCea
(1)

denotes the one-shot entanglement-assisted capacity. Fo
ficiently largeNtr , we have

FIG. 1. Dependence ofCsq /Ccl on the squeezing energyNsq for
the ideal channel withk51, Nc50, andNtr510, the noisy channe
with k51, Nc50.1, andNtr510, the attenuated channel withk
50.5, Nc50, andNtr510, and the amplified channel withk52,
Nc50, andNtr510. Here squeezing energyNsq is measured by
average photon number.
02230
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Csq'22 ln 21 ln@112NtrA~12g!~113g!

14g~12g!Ntr
2 #~[C̃sq!, ~47!

with a ratio of squeezing energyNsq to Ntr , g5Nsq /Ntr
(0<g<1). As the coefficient 4g(12g) dominates the
value ofCsq for sufficiently largeNtr , we can find that the
optimal squeezing energyNsq is equal to Ntr /2 approxi-
mately. In Fig. 2, the dotted line shows the values ofCsq /Ccl
with Nsq5Ntr /2, which seem to give a good approximatio
of values ofCsq /Ccl with the optimized squeezing energ
From Eq.~47!, we get

lim
Ntr→`

Csq

Ccl
52, ~48!

FIG. 2. For the ideal channel withk51 andNc50, Csq /Ccl

andCea /Ccl are plotted vs the input energyNtr by dots and a solid
line, respectively, where input energyNtr is measured by averag

photon number. The dotted line showsC̃sq /Ccl , whereC̃sq is an
approximation ofCsq given by assuming the suboptimal squeezi
energyNsq5Ntr /2.

FIG. 3. For the attenuated channel withk50.9 andNc50, val-
ues ofCsq /Ccl andCea /Ccl are plotted vs the input energyNtr by
dots and solid line, respectively, where input energyNtr is measured
by average photon number. Note that those values for chan
suffering from amplification or small thermal noise show simil
behavior.
3-5
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while Cea /Ccl is equal to 2 for any value ofNtr . Note that
Eq. ~48! holds not only forg51/2 but also for any value o
0,g<1.

In Fig. 3, values ofCsq /Ccl andCea /Ccl are plotted ver-
sus Ntr by spots and by a solid line, respectively, for t
attenuated channel withk50.9 andNc50. In addition, it is
found that those values for the channel with a small ther
noise also have similar behavior. These show that the t
mode squeezed states enhance classical communication
when the channel with a large input energy does not su
strongly from attenuation or thermal noise.

In Fig. 4, values ofCsq /Ccl andCea /Ccl are plotted ver-
sus Ntr by spots and by a solid line, respectively, for t
attenuated channel withk50.5 and Nc50. This figure
shows that two-mode squeezed states are useless whe
effect of attenuation is large. The behavior ofCsq /Ccl and
Cea /Ccl for the nonideal attenuated noisy channel is diff
ent from that for the ideal channel. In fact, we have

lim
Ntr→`

Csq

Ccl
5 lim

Ntr→`

Cea

Ccl
51, ~49!

for any nonideal attenuated noisy channel. Like for the id
channel,Csq achievesCea approximately when input energ

FIG. 4. For the attenuated channel withk50.5 and Nc50,
Csq /Ccl and Cea /Ccl are plotted vs the input energyNtr by dots
and solid line, respectively, where input energyNtr is measured by
average photon number.
l,

l,

02230
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Ntr is sufficiently large, but the gain of entanglemen
assisted capacity in itself vanishes in the limit ofNtr→` in
the nonideal case. On the other hand, in the amplified c
where Eq. ~49! also holds, the speed of convergence
Cea /Ccl andCsq /Ccl asNtr→` is very slow for any value
of k.1, and the gain of entanglement-assisted capacity d
not vanish.

In order to estimate the effect of two-mode squeezed s
analytically, let us consider the caseNc→`. It is known that

lim
Nc→`

Cea

Ccl
5~Ntr11!lnS 11

1

Ntr
D , ~50!

which tends to infinity whenNtr tends to zero. Note that Eq
~50! is stated in Ref.@6# using the valueCshan5 ln(1
1k2Ntr /Nc) instead ofCcl ; these two statements are equiv
lent becauseCcl /Cshan→1 asNc→`. On the other hand
we can show by straightforward calculation

lim
Nc→`

Csq

Ccl
5

Ntr2Nsq

Ntr
<1, ~51!

which means that two-mode squeezed state is useless in
case. Note that Eqs.~50! and ~51! hold for any value ofk.

V. DISCUSSION

We have obtained the capacity of attenuated or ampli
noisy channel assisted by two-mode squeezed state. A
result, we have found thatCsq approaches the entanglemen
assisted capacityCea for sufficiently large input energy, and
that two-mode squeezed states enhance classical comm
cation well for nearly ideal channels. On the other hand,Csq
does not achieveCea at all for small input energies. This i
because the two-mode squeezed state necessarily needs
energy in order to be entangled well. Unfortunately, for t
channel suffering strong attenuation or thermal noise,
gain of entanglement assistance takes large values only w
the input energy is small. This means that any entangled s
with large input energy is useless in this case. Thus,
conclude that two-mode squeezed state cannot enhance
sical communication through such a channel. The problem
finding a good two-mode entangled state for a small in
energy will be the subject of further investigation.
t
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