PHYSICAL REVIEW A 68, 022303 (2003
Capacity of a channel assisted by two-mode squeezed states
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The main purpose of this paper is to derive the capacity of attenuated or amplified noisy quantum channel
assisted by two-mode squeezed states. In our previous works, formulas for capacity and reliability function
have been obtained for continuous variable communication channel in the case where the classical information
is conveyed by unentangled quantum Gaussian states. This paper investigates how two-mode squeezed states
can enhance classical communication over quantum Gaussian channel.
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[. INTRODUCTION two-mode squeezed state, which was used in the experiments
on quantum teleportation by Braunstein, Kimble, and Mil-
Classical communication over ideal quantum channel asburn[8,9], is a fundamental entanglement resource in con-
sisted by entangled states, called quantum dense coding, waisuous variable system. In our setting, we assume that the
first proposed by Bennett and Wiesh&l. The dense coding classical information is encoded by applying unitary dis-
scheme has been generalized by several researchers. Bowdacement operators on Alice(ransmittey part of the two-
obtained the capacity of ideal qubit channel assisted bynode squeezed state and B@bceivej employs entangled
shared states that are not maximally entangled, showing thateasurements. In Sec. Il we recall definitions of the
the optimal encoding is again given by the Pauli matrj[@s entanglement-assisted capadily, and the unassisted clas-
Ban and independently Braunstein and Kimble investigatedical capacityC, . In Sec. Ill, we compute the capaci@,
guantum dense coding with continuous varialtpgd]. They  of attenuated or amplified noisy channel assisted by two-
considered transmission through the ideal channel with assisrode squeezed states. In Sec. |V, we estimate the ability of
tance of two-mode squeezed states, employing encodingvo-mode squeezed state to enhance classical communica-
based on phase-space displacement operators and separafda, comparingCs, with C., andC,. We show, in particu-
(unentanglegdmeasurement with homodyne detection. lar, that Cg, approaches the entanglement-assisted capacity
Bennett, Shor, Smolin, and Thapliygs,6] extended the C,, for sufficiently large input energy and that two-mode
dense coding to the general noisy quantum cha#nebhich  squeezed states enhance classical communication well for
is given by a completely positive, trace preserving map omearly ideal channels.
trace class operators, and established important formula for

the entanglement-assisted classical capacity IL. DEFINITIONS OF CAPACITIES

Cea(P)=max (pa; P), @) Let us recall the protocol for the classical information
PA transmission through a quantum chandefrom Alice’s Hil-
wherel (pa;®) is the quantum mutual information, bert spacef{, to Bob's spacefis with assistance of shared_
entanglement. Suppose that Alice and Bob may share unlim-
[(pa;®)=H(pp) +H(P[pa]) —H(pa; D), (2) itedly entangled statepag=|#)ag(#| to enhance classical

communication. Following Refs[6,10] we consider the
with the entropy exchandé(pa;®), andp, is varying over  entanglement-assisted communication for channels with con-
all density operators on the channel input. Calculation of thisstrained inputs. Alice encodes a continuous classical signal
quantity for concrete channels is a nontrivial and importanfrom a finite-dimensional Euclidean space by using the map
problem. Bennetet al. computed it for the amplitude damp- &% to get a statg}s=(E5s®Ig)[pasl, and sends it to Bob
ing channe(6], and Holevo and Werner for the attenuated OTthrough the quantum channeb, yielding the statepX s

amplified noisy channdl7]. _ X .
Our interest is devoted to a more practical case of a noisy (P@1g)(£a216)[pas]. Moreover, the energy constraint

channel assisted by special bipartite entangled states. In p&? the codeword statgs,® - - ®p,p is imposed as
ticular, we compute the capaci€ of attenuated or ampli-

fied channel assisted by two-mode squeezed states, and com- f(X)+ - +F(Xp)=mN,, (3)
pare it with the entanglement-assisted capa€ity. The

wheref is the energy function defined as
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Then the one-shot classical capacity is given by the formula TABLE |. Comparison of capacitiesC{J(Ex,pas . P),
[10,17] C(®), Coo(®), andC (P). Heren andm are numbers used to
describe codeword state @gi®---®p*m with pXie Hy @ Hg"

~ (Only in the case o€(®), wherep®ie H,, the value ol makes
C(ela)(gx !pABiq)): max{ H f pXBW(dX) no Sensb ¢ A
mePy
. Encoding Entangled n  Entangled m
—f H(pag) w(dx)], 5 State Measurement
(1) X . . . .
whereP; is the set ofa priori probability distribution satis- Ceal(farpae, @) Fixed Fixed 1 Optimized
ing the energy constraint, o7 - -~ -
fying 9y c(@) Optimized Optimized 1  Optimized o
Cea(P) Optimized Optimized «©  Optimized o
f fOX) m(dX)<Ny, . 6  c (@) Optimized Optimized

Optimizing the capacitf{Y(EX ,pag, @) with respect taX
andp,g, we obtain one-shot entanglement-assisted capacity/N€"e

Cgla)(d>). In the same way considerimguses of the channel, 9(x)=(x+1)log(x+1)—x logx (12)
we can define then-shot capacity C{)(®). The full '
entanglement-assisted capacity is then defined as and
1 m(k) =max0k>—1}. (13
Ceo( @)= lim ZCEY(®). (7) ok
n—o The entanglement-assisted capaﬂgé(dbk‘,\lc) was com-

Then it can be proveftL0] that formula(1) holds, where ~Puted in Ref{7] as follows:

pa Varies over all density operators satisfying the constraintcea((I)I(’NC):g(|\|tr)+g(k2,\lter N.+m(k))—Z(k,Ng Ny, ),
Trpaanaa<Ny . (8) (14)

The attenuator is described by the transformation where

Z(k,N¢, Ny ) =9(£+ — 112 +9(£-—1/2), (15

ap=kap+V1—-k%ag, k<1, (9)

» is the entropy exchange and
and the amplifier

- gt:%{i[(kz_l)Ntr"_Nc_"m(k)]

ap=kay+k’—1al, k>1, (10)

+ V(K24 1)Ng + N+ m(k) + 112 — 4k®Ny, (N + 1)}

in the Heisenberg picture. Hegg, is the annihilation opera- . o

tor of the Alice’s mode, andg is that of another mode in the In Table | we summarize the capacities introduced above.
Hilbert spaceH, of “environment,” which is initially in the From the definitions the following inequalities between these
vacuum state. We assume also the additive classical compl&@pacities hold:

thermal noise with zero mean and variadé,. The capac-
ity qu(cbk,Nc) of attenuated or amplified noisy channel

q’k,Nc assisted by two-mode squeezed states is defined to be

capacity (5) Wiih the encoding mapgﬁ acting as&x[pal Il. CAPACITY OF ATTENUATED
=D(x)pAD(x) , WhereD(x) is the displacement operator, OR AMPLIFIED NOISY CHANNEL ASSISTED BY
pag 1S the two-mode squeezed state, ahe (I)k,Nc- TWO-MODE SQUEEZED STATES

In the following sections we compute the capacity ] o )
Cs(Pin,) and compare it with the entanglement-assisted The purpose of this section is to compute the capacity
CapacityCea((I)k,NC) and the unassisted CapaC(%(q’k,Nc) qu(CDk,NC). Consider a two-dimensional real vector

—[x9 xP i i i -
for the attenuated noisy chann@l, \ . Let us summarize .[X X Jasa classmal 3'9”*’?"- Then Alice e_ncodes the clas
e ) sical signalx by applying a displacement unitary operator
results aboqu((bk'NC) andCea(QDK,NC). The unassisted ca-

pacity Ce(Py ) is conjectured 7] to be achieved by the

coherent states with the Gaussian probability density, result-
ing in

Coi(Pyn)=Cosq( Pin) <CLAPin ) =Cea Picn,)-
(16)

i
D(x)=exp. (x°qa—xpa) (17)
to her part of shared two-mode squeezed s{gig)ag,
CC,(<I>k,NC)=g(k2N"+Nc+m(k))—g(Nc+m(k)), yielding  the guantum state |¢Sq(x)>AB=[D(x)
(1)  ®lg]|¢sg)as- Bob obtains the statepl,=(Pyn ®!e)
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X[|ihsX))a{thsqX)[] by receiving Alice’s part of s(X))ag ~ Where
through the attenuated or amplified noisy chanh;—gl,\,c.

We explain the two-mode squeezed state and attenuation _ costrl,  sinhrJ, (25)
or amplification for it in Secs. Ill A and Ill B, respectively, sinhrJ, coshrl,|’
and compute the capacifg in Sec. Il C. Our computation ) )
is based on the general formula of von Neumann entropy fowith the 2x2 diagonal matrices
a general Gaussian stgtE2] 1 0 1 0
I,= 0 1/ J,= 0o 1l (26)

1 1 o
H(p)=5Spy| absAgta)— 57, (18)
It follows from Eq. (24) that
where Sp denotes trace of matrices as distinct from trace of

operators Tr, and\g, « are correspondingly the commuta- S(N™V(2)S(r)=exfi(R")z]=exdiRT(LT2)]=V(L2).

tion and correlation matrices of the canonical quadrature ob- (27)
servables Thus, the characteristic function pfsq)ag is given by
h o ho; — T
4=\ lg(aﬁafl Pj=i\ /Tj(aj’r_aj), Tr| sq) an Yo V(2) = Tr|0) ap(0[S(r) "V(2) S(r)
J 1h T T
i=1,...5 (19 —exp - 552 LL'z|, (28

and abs() is defined as follows: for a diagonalizable matriX \yhich means the correlation matrix of two-mode squeezed
M =Tdiag(tj)T‘l with a non-singular matrix” andt; e C, state is

we put abM =Tdiag(t;[)T~*. In the following calculation

we use formula(18) with s=2, where we puw;=w,=1 % 5

T

for simplicity. a= ECE =3 (29

cosh2l, sinh2J,
sinh2rJ, coshzl,|

A. Two-mode squeezed state ) o )
B. Attenuation and amplification for Gaussian states

Let a, andag be the annihilation operators for the sys-
tems of Alice and Bob, respectively. Ignoring an unimportant BOb gets statesdt n @ Ie)[[#sq(X))ar(#sq(X)|] when

phase factor, we can represent the two-mode squeezed stétice’s part of encoded two-mode squeezed states are trans-
as mitted through the attenuated or amplified noisy channel

@y - These are Gaussian states with mean vedtrrand

[¥59)a=S(1)[0)ae- @O the same correlation matr.
Here|0) g is the two-mode vacuum stal@),®|0)g and In this subsection, we obtain the correlation mataix
- As a first step, let us consider an attenuated channel with-
S(r)=exd —r(asag—asdp)] (21)  out thermal noise®, o (k<1). From Egs.(22) and (9),

we deduce that the transformatimf())AB(0|—>(<I>kYNC

1) #so(X) ) as¥sq(X)|1 is described in the Heisenberg
picture by the relation

is the squeezing operator, which transforms annihilation op
eratorsa, andag according to the relations

et _ atei B
3= S(r) anS(r) =acoshr —agsinhr, (22) ap=kaacoshr —kajsinhr +\1—k?ag, (30)

r_ + I R
ag=9S(r) 'agS(r) a,sinhr +agcoshr. EBz—aI\sinhr+choshr.
In order to apply formulg18), we must obtain the correla- ~ o _ .
tion matrix a of the two-mode squeezed state. IntroducingPut 0;=4/2(a;+a)), p;=iVhi2@@/-3)), a;=\h/2(a
vector representation® =[da,Pa;ds.Ps]’, we define the +al), pj=iVhi2(aj-a;) for j=AB,E and introduce
unitary operators for four-dimensional real vectars vector representations R=[Ja.Pa.ds.Psls R

V(2) = exdi Rz] 23) =[da,Pa.Gs.Ps.0e.Pe]’. Then Eq.(30) can be rewritten
' in a real setting as

by which the characteristic function is definésee Refs. -

[12,13). Using the vector representationr® and R’ R=MRo, 3D

=[ga.Pa:gs.Pe]"  Wwith q/=S(r)'q;S(r) and p|

=S(r)Tp]-S(r) (j=A,B), we can rewrite Eq(22) in a real

setting as kcoshrl, ksinhrd, 1—K2,

= . 32
R' =LR, (29 M sinhrJ,  coshrl, 0 (32

where
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Like in Sec. Ill A we can find that the correlation matrix in Then correlation matrix of Gaussian statgs is
this case is

a+k2B, (39)
% L (k?cosh 2 +|1—-k?))l, ksinh2J, B
EMM 2 K sinh 2rJ cosh 2l | wherea is given by Eq.(34). Now we can rewrite Eq5) as
2 2 (33) follows.
1 ~ ~ I
It is easy to see that the correlation matrix in the case of qu(q)k,NC): Emaxg absA Y(a+ kzﬁ)]—f)
the amplification k> 1) is also given by Eq.33). Moreover, BeBy
in the Gaussian case, we can separately deal with the effect 1 |
of attenuation or amplification and that of thermal ndis4]. - =g abgA~1a) __4) ’ (40)
Hence, considering the effect of thermal noise with zero 2 2
mhean and varianceN , we obtain the co_rrelr:]atu?n matrix of wherel, is the 4x4 identity matrix andB; is a set of real
the state @ka(;@IB)[WSq(X))AB( Ysq(x)] in the form positive 2<2 matrices, satisfying conditiof88) and
_h N.| 0 ngq_,’_ ﬂpp
a= EMMT+h|: 82 0:|, (34) T+qu$Ntr, (41)

which is derived from Eqs(6) and (35).

In order to compute Eq40), we first obtain the eigenval-
ues of A~*(a+k?B). From a general discussidi3], we
find that these eigenvalues can be represented: g, ,
*ivy, with y,,y,=1/2. The characteristic polynomial is cal-
Here we compute the capac@sq(QDk,Nc). Energy func-  culated as

tion (4) for the two-mode squeezed state (X)) ap(¥sq(X)]

for any value ofk.

C. Computation of capacity assisted by
two-mode squeezed states

defA—A Y (a+k?B)]

is
T NN 2 (B2 202+ £+ KB (£+K267P)]
0= +Nsa 9 ~ (B (£ B £+ B 7P
with a squeezing energ)s,= (cosh2—1)/2. First, let us — Pn(2E+ K2 BII+ K2 BPP) + 4, (42)

mention that we can restrict anpriori probability distribu-
. X ; . where
tion to Gaussian one without loss of generality. To show the

validity of this restriction, we first point out that the second £=K?Ngq+ Ng+m(k) + 3,
term in the right-hand side of E¢5) can be ignored because L
it takes the same value for amypriori distribution. Thus, it 7=Nsqt 2,

suffices to show that the first term is maximized by an
priori Gaussian distribution. For arbitrary distributiom
e P;, there exists such Gaussian distributian that ;AB wherem(k) is given by Eq.(13). Here let us pay attention to
= [p(x)7(dx) has the same first and second moment adhe fact that when the coefficients bfin Eq. (42) take larger
pas=/p007(dx). Then it is known[12] that H(pag) values, the capacits, becomes larger. This can be easily

- . i o shown from the fact thag(x) is a monotonously increasing
=H(pag) holds. This means that an optimelpriori distri-  oncave function, and tells us that the optimal valueg®
bution is given by Gaussian one. In the following, we denoteﬂpp and 8% should satisfy39"=0 and 8°P= % when

the correlation matrix of aa priori Gaussian distributionr 2t= B99+ BPP is fixed. This simplifies Eq(42) as
by

gzk[qu(qu+ 1)]1/27 (43

defA—A Y (a+k?B)]

~ |B O
:{o ol (36) =[N+ p(E+K32t) — PP+ N2 (E+K2t— )2
(44)
whereO is the 2X2 zero matrix ang3 is a 2xX2 real sym- o
metric matrix Solving defx —A " Y(a+k?B)]=0, we obtain the solutions
+iy,(t) and =i y,(t), with
ﬁ{ﬁ . qu} (37 2 0k
B pPp 71(t)=§T7’+ \/—52+ @T”, (45)

satisfying the positivity condition
fy g p ty B §+k2t—7] \/ ) (§+k2t+77)2
BI9BPP— (BIP)2=0. (39) Vo)== \
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k=1,Nc=0

Squeezing energy Nsq

FIG. 1. Dependence @&,,/C, on the squeezing enerdy., for
the ideal channel witk=1, N.=0, andN,,= 10, the noisy channel
with k=1, N.=0.1, andN,,=10, the attenuated channel wikh
=0.5, N.=0, andN,,=10, and the amplified channel with=2,
Nc.=0, andN,=10. Here squeezing enerdy., is measured by
average photon number.

On the other hand, the eigenvaluesiof!(a+k%B) can be
obtained as*ivy,(0), £iy,(0). Thus, the capacity of at-
tenuated or amplified noisy chann@l y_assisted by two-

mode squeezed states is given by

Csq(Prn)=  max  g(yi(t) = 1/2+g(y(t)—1/2)
0<t=N¢; —Ngq
—9(¥(0)=1/2)+g(¥(0) - 1/2), (46)
=0g(y1(Ny— qu) —1/2)+g(yo(Ny — qu)

—1/2)=g(y1(0) = 112~ g(7,(0) — 1/2).

IV. ABILITY OF TWO-MODE SQUEEZED STATE TO
ENHANCE A CLASSICAL COMMUNICATION

PHYSICAL REVIEW A 68, 022303 (2003

2
Csq/Cc1
Cea/Cer *

20 40 60 80 100

input energy Ner

FIG. 2. For the ideal channel witk=1 andN.=0, C,/C
andC,.,/C are plotted vs the input enerdy;, by dots and a solid
line, respectively, where input ener@y, is measured by average

photon number. The dotted line sho@gq/Cd, Where(NZSq is an
approximation ofC, given by assuming the suboptimal squeezing
energyNgq= N /2.

—21In2+In[1+ 2N, V(1= )(1+37)

+4y(1—y)N31(=Cqy),

Co~
(47)

with a ratio of squeezing energisq t0 Ny, ¥=Ngq/Ny,
(0=vy=1). As the coefficient 4(1—vy) dominates the
value of Cy for sufficiently largeN,, , we can find that the
optimal squeezing energis, is equal toN/2 approxi-
mately. In Fig. 2, the dotted line shows the value€gf/C,
with Ns4= N, /2, which seem to give a good approximation
of values ofC4,/C, with the optimized squeezing energy.
From Eq.(47), we get

Csq

In order to evaluate the ability of two-mode squeezed

state to enhance classical communication, we compare the

ratio of Cgq to the unassisted capaci@y, with that of the
entanglement-assisted capaci., to C., where Cg,
qu(q)k,NC)v CcI:CcI((Dk,NC)v and Cea:Cea(q)k,Nc) are
given by Egs(46), (11), and(14), respectively. In what fol-
lows we assume thaC., is optimized with respect to a
squeezing energMg,. In Fig. 1,Cs4/C,, are plotted versus
Nsq for the ideal channel withkk=1, N.=0, andN; =10,
the noisy channel witkk=1, N.=0.1, andNtr 10, the at-
tenuated channel witk=0. 5 N =0, andN;,=10, and the
amplified channel wittk=2, N.=0, andN,,=10. The op-
timized value ofCs,/C is given as the peak value of each
graph in Fig. 1. In Fig. 2, for the ideal channel wkk1 and
Ne=0, Csq/Cq, and C¢,/Cg are plotted versus\;, by

spots and by a solid line, respectively. This figure shows that
two-mode squeezed states enhance classical commumca‘uggS 0fCyq/Cq andC

well when input energi,, is sufficiently large. In particular,
we conjecture tha€s,~C.Y) holds forN,>1, whereC{)

lim —=2, (48
Ntr*)OO cl
qu/Cc12‘4
Cea/Cc12.2
2
1.8
1.6
1.4
® ® ® [ ] ®
1ol @ e o o o o
@
[
20 40 60 80 100

input energy Ncr

FIG. 3. For the attenuated channel witk 0.9 andN.=0, val-
«al Cc) are plotted vs the input energylr by
dots and SO|Id line, respectively, where input enéxgyis measured
by average photon number. Note that those values for channels

denotes the one-shot entanglement-assisted capacity. For ssififfering from amplification or small thermal noise show similar

ficiently largeNy, , we have

behavior.
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Csq/Celn 4 N;, is sufficiently large, but the gain of entanglement-
assisted capacity in itself vanishes in the limithyf — <0 in

the nonideal case. On the other hand, in the amplified case,
5 where Eg.(49) also holds, the speed of convergence of
CealC¢ andCgy/C. asNy,— is very slow for any value

of k>1, and the gain of entanglement-assisted capacity does
1.6 not vanish.

In order to estimate the effect of two-mode squeezed state

Cea/Ccl 2.2

1.4 . . .
analytically, let us consider the cale— . It is known that
1.2
. Cea 1
o o o lim —=(N,+21)In| 1+ —/, (50
20 40 60 80 100 N Cel [\

Input energy Ner which tends to infinity whem,, tends to zero. Note that Eq.

FIG. 4. For the attenuated channel wik=0.5 andN,=0, (50) is stated in Ref.[6] using the valueCgpaq=In(1

Csq/Cel and C,/Cy are plotted vs the input enerdy,, by dots +k?N, /N) instead ofC ; these two statements are equiva-
and solid line, respectively, where input eneidy is measured by lent becauseC/Cgpa—1 asN,—. On the other hand,

average photon number. we can show by straightforward calculation
: . Csq Ny—N
while C,,/C is equal to 2 for any value dfl;, . Note that lim 9= S99 (51)
Eq. (48) holds not only fory=1/2 but also for any value of NcﬂwcCI Ny
o<y=<l1.

which means that two-mode squeezed state is useless in this

In Fig. 3, values oCsq/Cej andCeq/C are plotted ver- .\ o Eq$50) and(51) hold for any value ok.

sus N;, by spots and by a solid line, respectively, for the
attenuated channel witk=0.9 andN;=0. In addition, it is V. DISCUSSION
found that those values for the channel with a small thermal
noise also have similar behavior. These show that the two- We have obtained the capacity of attenuated or amplified
mode squeezed states enhance classical communication welRisy channel assisted by two-mode squeezed state. As a
when the channel with a large input energy does not sufferesult, we have found th&ts, approaches the entanglement-
strongly from attenuation or thermal noise. assisted capacit§,, for sufficiently large input energy, and

In Fig. 4, values ofC,,/C, andC,,/C, are plotted ver- that two-mode squeezed states enhance classical communi-
sus Ny, by spots and by a solid line, respectively, for the cation well for nearly ideal channels. On the other hadg,
attenuated channel witlkk=0.5 and N,=0. This figure does not achiev€., at all for small input energies. This is
shows that two-mode squeezed states are useless when thgcause the two-mode squeezed state necessarily needs large
effect of attenuation is large. The behavior@§,/C. and energy in order to be entangled well. Unfortunately, for the
C.a/C¢ for the nonideal attenuated noisy channel is differ-channel suffering strong attenuation or thermal noise, the

ent from that for the ideal channel. In fact, we have gain of entanglement assistance takes large values only when
the input energy is small. This means that any entangled state

lim %‘: lim %‘:1, (49  With large input energy is useless in this case. Thus, we
Ny Cel Ny e Gl conclude that two-mode squeezed state cannot enhance clas-

sical communication through such a channel. The problem of
for any nonideal attenuated noisy channel. Like for the ideafinding a good two-mode entangled state for a small input
channel C4 achievesC,, approximately when input energy energy will be the subject of further investigation.
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