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Testing integrability with a single bit of quantum information
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We show that deterministic quantum computing with a single bit can determine whether the classical limit
of a quantum system is chaotic or integrable usingO(N) physical resources, whereN is the dimension of the
Hilbert space of the system under study. This is a square-root improvement over all known classical proce-
dures. Our study relies strictly on the random matrix conjecture. We also present numerical results for the
nonlinear kicked top.

DOI: 10.1103/PhysRevA.68.022302 PACS number~s!: 03.67.Lx, 05.45.Mt
m

ha
m

m
ve
is

. I
oe
i-

pi
ca
y
is

ea
e

th
tio
em
ac

th
ra
d
w
ir
t
th
lg
n

te
e
-
re

an-
f a

ent

to a
an

tan-
or
sed
ot
ba-

ime

le

a-
el
nes
t
is
of

we
rol
lar
of-

ll

t is
um
I. OVERVIEW

After an initial success in solving mathematical proble
~see Ref.@1# for an overview!, a large fraction of the re-
searches in the field of quantum information processing
shifted to its original motivation: the simulation of quantu
systems@2#. It is now well established@3–5# that evolution
produced by certain classes of Hamiltonians can be si
lated efficiently on a universal quantum processor. Howe
extracting useful information from the physical simulation
a problem whose complexity has been underestimated
deed, the ability to simulate the dynamics of a system d
not grant one with the ability to evaluate efficiently all phys
cal quantities of interest. These quantities~e.g., spectral
properties! are usually measured experimentally on a~expo-
nentially! large number of physical systems—macrosco
samples. A direct quantum simulation, on the other hand,
only reproduce the statistical output of a single quantum s
tem which yields drastically less information than what
learned from costly classical simulations. Thus, it is not cl
at this point whether quantum simulators can always outp
form their classical analogs.

Some of these spectral properties play a central role in
study of quantized chaotic systems. One particular ques
of interest is whether the classical limit of a quantum syst
exhibits regular or chaotic motion. It has become widely
cepted~see Refs.@6,7#, and references therein! that the an-
swer to this question lies in some spectral properties of
system, which can be reproduced by those of canonical
dom matrices with the appropriate symmetries. Given a
scription of the Hamiltonian of the system, the best-kno
algorithms evaluating these ‘‘signatures of chaos’’ requ
classical computing resources which grow at least as fas
N2, the square of the dimension of the Hilbert space of
system under study. Indeed, a close inspection of these a
rithms shows that they require either matrix multiplicatio
diagonalization, or evaluation of a determinant@6#. Since
such a growth is intractable on any conventional compu
~remember thatN grows exponentially with the size of th
physical system!, it is quite natural to try to tackle this prob
lem with a quantum computer. In recent years, this inte
1050-2947/2003/68~2!/022302~6!/$20.00 68 0223
s

s

u-
r,

n-
s

c
n

s-

r
r-

e
n

-

e
n-
e-
n
e
as
e
o-

,

r

st

has led to a demonstration that the standard model of qu
tum computation can simulate efficiently the dynamics o
few quantized chaotic models@8–10#; unfortunately, none of
these proposals indicate how to circumvent the measurem
problem mentioned above.

A recent work by Emersonet al. @11# proposes to study
statistical properties of the system’s eigenvectors relative
perturbation as a signature of chaos. They also provide
efficient procedure to measure these statistics using the s
dard model of quantum computation. Their motivation f
this work was to show that quantum processors can be u
to test the validity of signatures of chaos. Indeed, it is n
clearly established that this signature is universal, pertur
tion independent, and, most importantly, that the decay t
does not scale with the size of the system.

Here, we concentrate on a different model~presumably
weaker!: deterministic quantum computation with a sing
pseudopure bit~DQC1! which was introduced in Ref.@12#.
In this setting, the initial state of theK11 qubits computer is

r5H 12e

2
11eu0&^0uJ ^

1

2K1,

where 0,e<1 is a constant. Note that, from a comput
tional complexity point of view, this is equivalent to a mod
where the state of the first qubit is pure, while the other o
are completely random; we shall therefore assume thae
51 in the remaining part of the paper. The final answer
given by a finite accuracy evaluation of the average value
sz on the first qubit. As for the dynamics, we assume that
are provided with the ability to excercise coherent cont
over one and two qubits at a time. This model is of particu
interest, since it is weaker than the computational model
fered by liquid-state nuclear magnetic resonance~NMR!
quantum computing@13#. Such a computing device, we sha
show, can test for integrability usingO(N) physical re-
sources, given that the dynamics of the system of interes
efficiently simulatable on the standard model of quant
computation without ancillary pure qubits@or, more pre-
cisely, with no more thanO(log2K) ancillary pure qubits#.
©2003 The American Physical Society02-1



ly
i

it
we
s
lly
io

b
h
i-

n
-

s,

s
d
i-

th
n

a
om
e
ub
om
pr
d
a

th
ns
o

str

ta
e
r

s

s—

he
so
d
en
th

al

h

ter-

r of

For
t
ing

o be

o
.
nte-

re-
be

i-

be-
ral

ere,

e
ent
d

fi-
r

to
ut
-

tic

of
or
r of

os-
o

POULIN et al. PHYSICAL REVIEW A 68, 022302 ~2003!
In order to do so, we must first relate the theory under
ing the spectral property at the center of our study; this
done in Sec. II. We then show how it can be evaluated w
O(N) physical resources in the DQC1 model. In Sec. IV,
present numerical results for canonical random matrice
well as for a physical map, the nonlinear kicked top. Fina
we conclude with a summary of our results and a discuss
on possible extensions.

II. LEVEL DISTRIBUTION

In the theory of quantum chaos, a key role is played
the statistics of eigenvalues@6,7#. In the case of systems wit
a periodically time-varying Hamiltonian, the central dynam
cal object is the Floquet operatorF̂5T̃@exp$2i*0

TH(t)dt%#,
which maps the state from one time to a time exactly o
modulation periodT later, T̃ being the time-ordering opera
tor. The eigenvalues ofF̂ lie on the unit circle and may be
parametrized in terms of eigenphases, or quasienergie
F̂uf j&5e2 if j uf j&.

The random matrix conjecture asserts that the statistic
eigenvalues of chaotic systems~dynamical systems an
maps! are typically well modeled by the statistics of the e
genvalues of random matrices~Hermitian Hamiltonians and
unitary Floquet operators! with appropriate symmetries@6,7#.
While many important mathematical results underpin
conjecture, a rigorous proof is lacking and support rests o
very large accumulation of numerical results.

An integrable system, by definition, possesses as m
symmetries—constant of motion—as degrees of freed
One can thus write the system’s Hamiltonian as the dir
sum of independent Hamiltonians acting on smaller s
spaces; one for each value of the constants of motion. S
spectral properties of these Hamiltonians can thus be re
duced by those of matrices that are the direct sum of in
pendent random Hermitian operators. The distribution ch
acterizing the entire spectrum is therefore given by
superposition of many independent spectra; as a co
quence, the correlations between levels vanish. Thus,
might expect that the nearest-neighbor level spacing di
bution ~LSD! follow a Poisson law prob(f j 112f j5S)
5P(S);e2GS, a straightforward consequence of their s
tistical independence. This is indeed observed experim
tally, numerically, and most importantly can be derived fo
mally @14#.

On the other hand, chaotic systems possess no or ju
few symmetries. It can be shown@6# that the LSD—keping
aside systematic degeneracy following the symmetrie
obeys a power lawP(S);Sbe2aS2

. The parameterb char-
acterizes the symmetries of the system; it is equal to 1 w
the system possesses a time-reversal symmetry and
geometric invariance, 2 when it has no symmetries, an
when it has a time-reversal symmetry with Kramer’s deg
eracy. Similarly, we will refer to the Poisson ensemble—
characteristic ensemble of integrable systems—asb50.

The exact form of the LSD is not relevant to us; we sh
capitalize on the crucial distinct behavior ofP(S→0) for
chaotic and regular systems. In the former case,P(S)
02230
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reaches a minimum atS50: the levels tend to repel eac
other. In the latter case,P(S) is maximal atS50, a conse-
quence of the levels statistical independence called clus
ing.

With these considerations, one can predict the behavio
the ensemble-average form factors

Tn5uTr$F̂n%u25U(
j 51

N

e2 inf jU2

, ~1!

from which most spectral properties can be extracted.
regular systems, Tr$F̂%5( je

2 if j behaves like the end poin
of a random walk in the complex plane: each step hav
unit length and uncorrelated random orientationf j . After N
steps, the average distance from the origin is expected t
AN so we should findT1̄5N. For timesn.1, the analysis is
identical; if the angles$f j% are statistically independent, s
are $f j

(n)5nf jmod(2p)%, n taking positive integer values
We conclude that the ensemble-average form factors of i
grable systems should be time independent and equal toN.

For chaotic systems, more elaborate calculations are
quired for the ensemble-average form factors. They can
found in Ref.@6#; here, we shall simply provide an approx
mate result for 0,n,N ~accuracy of the order of 1022)
known as the Wigner surmises:

Tn̄55
2n2n (

m51

n
1

m1~N11!/2
for b51

n for b52

n1
n

2 (
m51

n
1

N11/22m
for b54.

~2!

Although simple arguments could not indicate the exact
havior of these form factors, we could guess their gene
form: they are initially very smallT1̄!N, and, asn grows,
they reach the same value as the Poisson ensemble. H
Tr$F̂% is analogous to ananticorrelatedrandom walk in the
complex plane composed ofN unit steps. As a consequenc
of level repulsion, each steps tend to be oriented in differ
directions; the probability of finding two steps oriente
within an anglee decreases aseb11. Thus, the distance from
the origin afterN of these anticorrelated steps should de
nitely be smaller thanAN, which is the expected value fo
uncorrelated steps. Asn grows, the phasesnf jmod(2p) get
wrapped around the unit circle; the effect is analogous
superposingn independent spectral distributions, blurring o
the correlations. Whenn;N, one should thus expect a be
havior similar to the Poisson ensemble.

It should be noted that the few symmetries of a chao
system may slightly affect the predictions of Eq.~2!. The
averageTn̄ was evaluated for fixed values of the constant
motion. In what follows, we shall often neglect this point f
the sake of simplicity. Nevertheless, as long as the numbe
invariant subspaces is small (!AN), this omission will not
affect our conclusions. For example, if a chaotic system p
sesses a symmetry, which breaks its Hilbert space intk
2-2
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TESTING INTEGRABILITY WITH A SINGLE BIT OF . . . PHYSICAL REVIEW A 68, 022302 ~2003!
equal invariant subspaces, the small-n behaviorTn̄.n will
be transformed intoTn̄.k2n!N, which is all that interests
us. One can circumvent this issue when some exact sym
tries of the system are known: it suffices to simulate
dynamics of the system within an invariant subspace.

In the light of this analysis, it may seem that form facto
constitute a powerful tool to distinguish between classica
regular and chaotic systems. In particular,Tn should clearly
identify each regime for small values ofn. Nevertheless, the
form factor Tn of a fixed Floquet operatorF̂ will generally
fluctuate about the ensemble averageTn̄. Thus, we seek a
signature of anensemble propertyon asingle elementdrawn
from this ensemble.

The solution is to use a version of the ergodic theorem
we normalize out the explicit time dependence of the fo
factors, an average over a time intervalDn reproduces the
effect of an ensemble average. More precisely, one can s
@6# that

^Tn /Tn̄&5
1

Dn (
n85n2Dn/2

n1Dn/2

Tn8 /Tn8
¯ ~3!

converges to 1 with a variances2 bounded by 1/Dn. For
large N, we can thus use the firstDn!N form factors to
determine whether the Floquet operator belongs to a poly
mial or a Poisson ensemble. Since the values ofTn̄—hence
the matrix ensemble—are needed to compute Eq.~3!, we
shall proceed by hypothesis testing: for which choice ofTn̄

(Tn̄5N regular,Tn̄.n chaotic! does Eq.~3! converge to 1?
In other words, we need to determine which of the two va
ables

t05
1

Dn (
n51

Dn
Tn

N
or t15

1

Dn (
n51

Dn
Tn

n
~4!

is most probably drawn from a distribution centered at
with 1/ADn standard deviation. If we restrict our attention
a regime whereDn!N, both hypotheses cannot have hig
probabilities simultaneously@17#. On the other hand, whe
the probabilities of both hypothesis are low, the test is inc
clusive. Nevertheless, remember that the presence of sym
tries in a chaotic system shifts the value of the distribution
a factork2, wherek is the number of invariant subspace
For k2!N, this should be clearly distinguishable from th
value of a regular system. This should not be seen as a l
tation but a feature of our approach allowing one to estim
k, the number of invariant subspaces.

Applying this test to a particular dynamical system wou
require one to compute the spectrum of the Floquet opera
If one was to try and simulate a dynamical map on a qu
tum computer withK qubits, a direct computation woul
require determining allN52K eigenvalues. In the following
section we will construct a quantum circuit that would ena
the form factors themselves to be extracted withO(N)
physical resources, thus allowing a direct test of noninteg
bility that circumvented the need to explicitly compute
eigenvalues.
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III. QUANTUM ALGORITHM

The DQC1 algorithm evaluating the form factor is bas
on the idea reported in Ref.@15# of using a quantum com
puter as a spectrometer. The circuit is shown at Fig. 1 wh
K5 d log2Ne. By hypothesis, we are able to efficiently sim
late the dynamics of the system under study so the gateF̂n

only requires a polynomial~in n andK) number of elemen-
tary gates to be constructed. Here, it is notF̂n we wish to
implement but a coherently controlled version of it, i.e.,
linear gate acting onK11 qubits which appliesF̂n to the last
K qubits when the first qubit is in stateu1& and does not do
anything when it is in stateu0&. Given the circuit forF̂n,
standard techniques can be used to construct a contro
version of it at polynomial cost@16#.

It should also be emphasized that theK qubits on which
the Floquet operator is applied generate a Hilbert spac
dimension 2K which might be larger than the simulated sy
tem’s Hilbert space. Thus, when applyingF̂ to those qubits,
one really appliesF̂ % U, where ideallyU is the identity op-
erator on 2K2N states; it can be any other unitary opera
as long as its trace can be evaluated. The effect of these e
dimensions will be to add a contribution Tr$U%/N to the
output signal which should be systematically subtracted
we shall henceforth assume.

The output of this computation will be the real and imag
nary parts of (Tr$F̂n%)/2K when the last rotation is mad
about axisk5x andk5y, respectively. Thus, our task is t
distinguish between a signal whose amplitude is of the or
of 1/N ~chaotic dynamics! and one of the order of 1/AN
~regular dynamics! which can be a chieved usingO(N)
physical resources. In the special case of NMR quant
computing, one can, for example, increase the size of
sample by a factorN as the size of the system increases,
simply repeat the procedureN times and sum up the outputs
We thus get a quadratic advantage over all known class
algorithms.

IV. NUMERICAL RESULTS

A. Random matrices

Before applying our general proposal to a physical mod
we give a numerical example illustrating the main resu
used from random matrix theory: the ergodic theorem of E
~4!. In order to estimate the average and variance oft0 andt1
in a given universal matrix ensemble, we draw many rand
matricesU (k) from the ensemble and numerically evalua
each quantity. As an example, we have generated 50 ran

FIG. 1. Quantum circuit evaluating the trace ofF̂n. The gates
Ru

k are rotation in the Bloch sphere by an angleu around axisk
5x or y. Whenk is set tox, we get the real part of the trace, whil
k5y yields the imaginary part.
2-3
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POULIN et al. PHYSICAL REVIEW A 68, 022302 ~2003!
matrices from theb52 ensemble—the set of unitary matr
ces with no symmetries. This is illustrated in Fig. 2, whe
the matrices are of size 6003600. For each random matri
U (k) drawn from this ensemble, we can computet1(U (k)) as
functions ofDn. Two such curves~dashed! are plotted on
Fig. 2. By applying this procedure to many samples~here
50!, we can estimate the average oft1 and its fluctuations.
We have computed

^t1&5
1

50 (
k51

50

t1~U (k)!, ^~ t1!2&5
1

50 (
k51

50

@ t1~U (k)!#2;

~5!

the averagêt1& and mean deviations5A^(t1)2&2^t1&
2 are

also plotted in Fig. 2~heavy and light full lines, respec
tively!: as expected,t1 converges to 1 as 1/ADn. The same
procedure can be applied tot0; nevertheless, sincet1 does
converge to 1 in this ensemble,t0 obviously does not since i
differs by a factor of roughlyN/Dn.20 for the range ofDn
we have studied. Of course, this difference would van
whenDn approachesN, since the form factor of any univer
sal ensemble converge to those of the Poisson ensemble~see
Sec. II!; this is why we must restrict our study toDn!N.
The same conclusions can be reached for the other
sembles characterizing chaotic systems, i.e.,b51, 2, and 4.

Similarly, had the matricesU (k) been drawn from theb
50 ensemble—the set of matrices characterizing reg
systems—we would have observedt0 converging to 1 as
1/ADn, while t1, smaller by a factor of roughlyDn/N,
would roughly vanish. From these considerations, the
pothesis test ‘‘t0 converges to 1’’ versus ‘‘t1 converges to 1’’
allows us to discriminate between random matrices dra
from b50 and those drawn from one of theb51, 2, or 3,
with a probability of error decreasing as 1/ADn. Thus, as
long as the random matrix conjecture holds, it should a
allow one to discriminate between regular and chaotic m
tion.

FIG. 2. The two dashed lines showt1 as a function ofDn @Eq.
~4!# for two random unitary matrices drawn from the ensembleb
52. The heavy full line is the value oft1 averaged over 50 suc
random matrices, while the light line shows its variance, wh
drops as 1/ADn as expected.
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B. Kicked top

We now focus our attention on a physical model of gre
interest for its good agreement with random matrix theo
the nonlinear kicked top. We write the Floquet operator in
most general form following Haake@6#, F̂5UzUyUx with

Uk5expH 2 i
tkJk

2

2 j 11
2 iakJkJ , ~6!

where Jk , k5x, y, and z, are the canonical angular
momentum operators. We conveniently define a param
vector p5(ax ,ay ,az ,tx ,ty ,tz). Some authors use a re
stricted form of this Floquet operator where onlytz anday

are nonzero. Since@ F̂,J2#50, the value of the angular mo
mentumj —which appears in Eq.~6!—is conserved. The di-
mension of the Hilbert space is simply given byN52 j 11.

FIG. 3. Value of t0 @Eq. ~4!# of the kicked top in a regular
regime pr5(0,0,1,0,0,10) as in Ref.@6# for different values ofj.

Dashed curve:Dn51 so it is simply Tr$F̂%/N. Full curve: To de-
crease the fluctuation, we have used ergodic averaging over the

Dn530 normalized form factors Tr$F̂n%/N, n51,2, . . . ,30.

FIG. 4. Value of t1 @Eq. ~4!# of the kicked top in a chaotic
regimepc5(1.1,1,1,4,0,10) as in Ref.@6# for different values ofj.

Dashed curve:Dn51 so it is simply Tr$F̂%. Full curve: To decrease
the fluctuation, we have used ergodic averaging over the firstDn

530 normalized form factors Tr$F̂n%/n, n51,2, . . . ,30.
2-4
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TESTING INTEGRABILITY WITH A SINGLE BIT OF . . . PHYSICAL REVIEW A 68, 022302 ~2003!
By adequately choosing the parametersp, the kicked top
can be either in a regular or in a chaotic regime; see Ref.@6#
for more details. Thus, we can evaluatet0 andt1 of Eq. ~4! in
both regimes and verify that they indeed allow one to d
criminate between them. This is presented in Figs. 3 an
for different values of the total angular momentumj. In Fig.
3, the system is in a regular regime; we have only plottedt0
sincet1 is larger by a factor proportional toj so clearly does
not converge to 1. Similarly, only the value oft1 is exhibited
in Fig. 4. Notice that while ergodic averaging decreases
fluctuations, it is not essential to discriminate between re
lar and chaotic regimes. Indeed, the scale of fluctuation
extremely small compared toj, which is the factor by which
t0 and t1 differ.

The analogy with a random walk in the plane can also
illustrated graphically. In Fig. 5 we have plotted the sum
the eigenvalues vectorially. The apparent structure of
vectors is purely artificial, the eigenphases were ordere
an increasing order~the sum of vectors is obviously a com
mutative operation!; we have chosen this ordering to facil
tate the presentation.

The effect of LSD are striking in Fig. 5. The light vecto
~chaotic regime! are arranged in an almost perfect circ
eigenphases tend to be equally separated. On the other
the heavy vectors~regular regime! are quite often aligned in
an almost straight line; a manifestation of level clustering.
a consequence, the heavy vectors end up further apart
the origin than do the light vectors; on an average, th
distances differ by a factorAN.

Finally, we can use the form factor to study the transiti
between regular and chaotic motions. To do so, we let
parameter vector continuously vary from its regular value
its chaotic value:p5(12e)pr1e pc ~see captions of Figs. 3
and 4!. For e50, the expected value oft0 is 1. As e in-
creases, the system enters a chaotic regime; when chao
fully developed,t0 should vanish as 1/N. This is indeed ob-

FIG. 5. Vectorial representation of eigenphas
( j (cosfj ,sinfj), where thef j have been ordered in an increasin
order. Thea andt parameters of the Floquet operator@Eq. ~6!# are
tuned so the system is in a regular regime~heavy vectors! and a
chaotic regime~light vectors! as in Figs. 3 and 4. The value ofj is
20 so each curve contains 41 vectors.
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served in Fig. 6, where we have plottedt0 as a function ofe
for different system sizes. Moreover, the results indicate t
the transition to chaos becomes more sensible as the siz
the system increases.

V. CONCLUSION

We have shown that, using a single bit of quantum inf
mation, we can test whether the spectrum of a unitary ma
obeys a Poisson or a polynomial law. Under the rand
matrix conjecture, this can be used to determine whether
system has a regular or chaotic behavior in its classical lim
The idea relies on estimating the averaged form factor us
the ergodic theorem which roughly states that a time aver
can reproduce an ensemble average. The form factors
regular and chaotic regimes differ by a factor ofAN and the
output signal of our computation decreases as 1/N: the re-
quired physical resources thus scale asN. This is a quadratic
improvement over all known classical algorithms. We a
presently investigating a different signature of quantu
chaos which might not suffer from this signal loss, a
hence, could offer an exponential speedup.

This result provides an insight into the nature of the p
tential computational speedup offered by quantum mech
ics. In particular, it provides a strong argument towards
computational power of mixed state quantum computing.
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