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Testing integrability with a single bit of quantum information
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We show that deterministic quantum computing with a single bit can determine whether the classical limit
of a quantum system is chaotic or integrable usd{iN) physical resources, whek¢is the dimension of the
Hilbert space of the system under study. This is a square-root improvement over all known classical proce-
dures. Our study relies strictly on the random matrix conjecture. We also present numerical results for the
nonlinear kicked top.
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I. OVERVIEW has led to a demonstration that the standard model of quan-
tum computation can simulate efficiently the dynamics of a
After an initial success in solving mathematical problemsfew quantized chaotic model8—10]; unfortunately, none of
(see Ref[1] for an overview, a large fraction of the re- these proposals indicate how to circumvent the measurement
searches in the field of quantum information processing hagroblem mentioned above.
shifted to its original motivation: the simulation of quantum A recent work by Emersoet al. [11] proposes to study
systemg2]. It is now well established3—5] that evolution ~ statistical properties of the system’s eigenvectors relative to a
produced by certain classes of Hamiltonians can be simuPerturbation as a signature of chaos. They also provide an
lated efficiently on a universal quantum processor. Howeve€fficient procedure to measure these statistics using the stan-
extracting useful information from the physical simulation is dard model of quantum computation. Their motivation for
a problem whose complexity has been underestimated. Irthis work was to show that quantum processors can be used
deed, the ability to simulate the dynamics of a system doetp test the validity of signatures of chaos. Indeed, it is not
not grant one with the ability to evaluate efficiently all physi- clearly established that this signature is universal, perturba-
cal quantities of interest. These quantitiésg., spectral tion independent, and, most importantly, that the decay time
propertie$ are usually measured experimentally ofeapo-  does not scale with the size of the system.
nentially) large number of physical systems—macroscopic Here, we concentrate on a different modptesumably
samples. A direct quantum simulation, on the other hand, caweakey: deterministic quantum computation with a single
only reproduce the statistical output of a single quantum syspseudopure bitDQCI which was introduced in Ref12].
tem which yields drastically less information than what isIn this setting, the initial state of th€+1 qubits computer is
learned from costly classical simulations. Thus, it is not clear
at this point whether quantum simulators can always outper- 1—€ 1
form their classical analogs. p= [T}H e|0>(0|} ®?}1,
Some of these spectral properties play a central role in the
study of quantized chaotic systems. One particular question
of interest is whether the classical limit of a quantum systenwhere 0<e<1 is a constant. Note that, from a computa-
exhibits regular or chaotic motion. It has become widely actional complexity point of view, this is equivalent to a model
cepted(see Refs[6,7], and references thergithat the an- where the state of the first qubit is pure, while the other ones
swer to this question lies in some spectral properties of thare completely random; we shall therefore assume éhat
system, which can be reproduced by those of canonical ran=1 in the remaining part of the paper. The final answer is
dom matrices with the appropriate symmetries. Given a degiven by a finite accuracy evaluation of the average value of
scription of the Hamiltonian of the system, the best-knowno, on the first qubit. As for the dynamics, we assume that we
algorithms evaluating these “signatures of chaos” requireare provided with the ability to excercise coherent control
classical computing resources which grow at least as fast asver one and two qubits at a time. This model is of particular
N?, the square of the dimension of the Hilbert space of thenterest, since it is weaker than the computational model of-
system under study. Indeed, a close inspection of these algéered by liquid-state nuclear magnetic resonarbB®R)
rithms shows that they require either matrix multiplication, quantum computingl3]. Such a computing device, we shall
diagonalization, or evaluation of a determindBf. Since show, can test for integrability usin@(N) physical re-
such a growth is intractable on any conventional computesources, given that the dynamics of the system of interest is
(remember thalN grows exponentially with the size of the efficiently simulatable on the standard model of quantum
physical systemn it is quite natural to try to tackle this prob- computation without ancillary pure qubi{®r, more pre-
lem with a quantum computer. In recent years, this interestisely, with no more tha®(log,K) ancillary pure qubits
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In order to do so, we must first relate the theory underly-reaches a minimum &=0: the levels tend to repel each
ing the spectral property at the center of our study; this isther. In the latter casé€(S) is maximal atS=0, a conse-
done in Sec. Il. We then show how it can be evaluated withguence of the levels statistical independence called cluster-
O(N) physical resources in the DQC1 model. In Sec. IV, weing.
present numerical results for canonical random matrices as With these considerations, one can predict the behavior of
well as for a physical map, the nonlinear kicked top. Finally,the ensemble-average form factors
we conclude with a summary of our results and a discussion

; : 2
on possible extensions.
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) from which most spectral properties can be extracted. For
In the theory of quantum chaos, a key role is played by

D . 2 BYregular systems, TF}=3e~'¢ behaves like the end point
the statistics of eigenvalug8,?]. In the case of systems with 9 y TF=2 J b

iodicallv ti ina Hamiltonian. th tral d . of a random walk in the complex plane: each step having
a periodically fime-varying Hamittonian, the central aynami-, g length and uncorrelated random orientatign After N

cal object is the Floquet operatér= T[exp{.—ing(t)dt}], steps, the average distance from the origin is expected to be
which maps the state fro~m one time to a time exactly one\/ﬁ so we should ﬁnd‘—lzN. For timesn>1, the analysis is
modulation periodT later, T being the time-ordering opera- dentical; if the angleg¢;} are statistically independent, so
tor. The eigenvalues df lie on the unit circle and may be are{¢}“):n¢jmod(27-r)}, n taking positive integer values.
parametrized in terms of eigenphases, or quasienergies, @ conclude that the ensemble-average form factors of inte-
ﬁ|¢j>=e‘i¢i|¢j)_ grable systems should be time independent and equdl to
The random matrix conjecture asserts that the statistics of For chaotic systems, more elaborate calculations are re-
eigenvalues of chaotic systerslynamical systems and quired for the ensemble-average form factors. They can be
map$ are typically well modeled by the statistics of the ei- found in Ref.[6]; here, we shall simply provide an approxi-
genvalues of random matricélermitian Hamiltonians and mate result for &n<N (accuracy of the order of 1G)
unitary Floquet operatoysvith appropriate symmetridg$,7].  known as the Wigner surmises:
While many important mathematical results underpin the

conjecture, a rigorous proof is lacking and support rests on a ( ! 1 _
very large accumulation of numerical results. 2n—nm2:1 m+(N+1)/2 for p=1

An integrable system, by definition, possesses as many
symmetries—constant of motion—as degrees of freedom. T,={ N for p=2 2
One can thus write the system’s Hamiltonian as the direct nAan 1
sum of independent Hamiltonians acting on smaller sub- n+§ E NF12—m for p=4.
spaces; one for each value of the constants of motion. Some \ m=1

spectral properties of these Hamiltonians can thus be rem(?b_\lthou h simple arguments could not indicate the exact be-
duced by those of matrices that are the direct sum of inder-1 oug f th P f 9 fact Id thei |
pendent random Hermitian operators. The distribution char- avior o esg _o_rm actors, we _could guess their genera
acterizing the entire spectrum is therefore given by thdorm: they are initially very small;<N, and, asn grows,
superposition of many independent spectra; as a conséhe}’ reach the same value as the Poisson ensemble. Here,
guence, the correlations between levels vanish. Thus, onB{F} is analogous to aanticorrelatedrandom walk in the
might expect that the nearest-neighbor level spacing districomplex plane composed &f unit steps. As a consequence
bution (LSD) follow a Poisson law probg;,,;— ¢;j=S) of level repulsion, each steps tend to be oriented in different
=P(S)~e 'S, a straightforward consequence of their sta-directions; the probability of finding two steps oriented
tistical independence. This is indeed observed experimerwithin an anglee decreases ag’**. Thus, the distance from
tally, numerically, and most importantly can be derived for-the origin afterN of these anticorrelated steps should defi-
mally [14]. nitely be smaller than/N, which is the expected value for

On the other hand, chaotic systems possess no or justuncorrelated steps. Asgrows, the phaseas¢;mod(27) get
few symmetries. It can be showW6] that the LSD—Kkeping wrapped around the unit circle; the effect is analogous to
aside systematic degeneracy following the symmetries—superposing independent spectral distributions, blurring out
obeys a power IavP(S)~SBe‘”52. The parametep char-  the correlations. When~N, one should thus expect a be-
acterizes the symmetries of the system: it is equal to 1 wheRavior similar to the Poisson ensemble.
the system possesses a time-reversal symmetry and somelt should be noted that the few symmetries of a chaotic
geometric invariance, 2 when it has no symmetries, and #ystem may slightly affect the predictions of E@). The
when it has a time-reversal symmetry with Kramer’s degenaveragerl, was evaluated for fixed values of the constant of
eracy. Similarly, we will refer to the Poisson ensemble—themotion. In what follows, we shall often neglect this point for
characteristic ensemble of integrable systems8a9. the sake of simplicity. Nevertheless, as long as the number of

The exact form of the LSD is not relevant to us; we shallinvariant subspaces is smak(/N), this omission will not
capitalize on the crucial distinct behavior 8{S—0) for  affect our conclusions. For example, if a chaotic system pos-
chaotic and regular systems. In the former caBéS) sesses a symmetry, which breaks its Hilbert space nto

022302-2



TESTING INTEGRABILITY WITH A SINGLE BIT OF . .. PHYSICAL REVIEW A 68, 022302 (2003

equal invariant subspaces, the snralbehaviorT,=n will [ (04)
be transformed intd,=k?n<N, which is all that interests 1 ~
us. One can circumvent this issue when some exact symme- 513{ : F

tries of the system are known: it suffices to simulate the

dynamics of the system within an invariant subspace. FIG. 1. Quantum circuit evaluating the trace fot. The gates

In the light of this analysis, it may seem that form factorsgk are rotation in the Bloch sphere by an angleround axisk
constitute a powerful tool to distinguish between classically—y ory. whenk is set tox, we get the real part of the trace, while

regular and chaotic systems. In particul®, should clearly =y yields the imaginary part.
identify each regime for small values of Nevertheless, the

form factor T,, of a fixed Floquet operatdf will generally 1. QUANTUM ALGORITHM
fluctuate about the ensemble averdge Thus, we seek a
signature of arensemble propertgn asingle elementirawn
from this ensemble.

The solution is to use a version of the ergodic theorem. |

The DQC1 algorithm evaluating the form factor is based
on the idea reported in Ref15] of using a quantum com-
1puter as a spectrometer. The circuit is shown at Fig. 1 where

: S K=[log,N]. By hypothesis, we are able to efficiently simu-
we normalize out the explicit time dependence of the form [logNl. By .yp y a8
factors, an average over a time interdah reproduces the |at€ the dynamics of the system under study so the Bate

effect of an ensemble average. More precisely, one can sho@ly requires a polynomidin n andK) number of elemen-
[6] that tary gates to be constructed. Here, it is ROt we wish to
implement but a coherently controlled version of it, i.e., a

- . linear gate acting ok -+ 1 qubits which applie§" to the last

(Tn/To)= An ,_EA p T [T ® qubits when the first qubit is in staté) and does not do
ronean anything when it is in staté0). Given the circuit forF",

converges to 1 with a varianae® bounded by Xn. For  standard techniques can be used to construct a controlled

large N, we can thus use the firstn<N form factors to  version of it at polynomial codt16].

determine whether the Floquet operator belongs to a polyno- It should also be emphasized that tegubits on which

mial or a Poisson ensemble. Since the value&'—nef—hence the Floquet operator js applied generate a H-ilbert space of

the matrix ensemble—are needed to compute @g. we dimension ¥ which might be larger than the simulated sys-

shall proceed by hypothesis testing: for which choiceTpf ~ tem's Hilbert space. Thus, when applyif‘rgto those qubits,
(T,=N regular,T,~n chaotio does Eq(3) converge to 1? ©n€ really applies @ U, where ideallyU is the identity op-

In other words, we need to determine which of the two vari-erator on Z—N states; it can be any other unitary operator
ables as long as its trace can be evaluated. The effect of these extra

dimensions will be to add a contribution {Tf}/N to the

T, 1 A T, output signal which should be systematically subtracted as

N o tlzﬁ > Y (4)  we shall henceforth assume.
1 n=1 The output of this computation will be the real and imagi-
qhary parts of (T¥E")/2¢ when the last rotation is made
about axisk=x andk=Yy, respectively. Thus, our task is to
distinguish between a signal whose amplitude is of the order
of 1/N (chaotic dynamigsand one of the order of IN

n+An/2

An

c_ 1
0" An £

is most probably drawn from a distribution centered at
with 1/\/An standard deviation. If we restrict our attention to
a regime whereAn<N, both hypotheses cannot have high
probabilities simultaneously17]. On the other hand, when . . . .
the probabilities of both hypothesis are low, the test is incon-(rﬁgu.l""rI dynamigs ernchhcan be. ? chleve;j I\IIJI\S/IIIrQ@(N)

clusive. Nevertheless, remember that the presence of symmB—yS'Ca resources. In the special case o quantum

tries in a chaotic system shifts the value of the distribution bfomputlng, one can, for exgmple, Increase the size of the
a factork?, wherek is the number of invariant subspaces. sample by a factoN as the size of the system increases, or

For k2<N, this should be clearly distinguishable from the SIMPIY repeat the procedufétimes and sum up the outputs.

value of a regular system. This should not be seen as a IimMYgeOtthLr’]‘:'nget a quadratic advantage over all known classical

tation but a feature of our approach allowing one to estimat&
k, the number of invariant subspaces.

Applying this test to a particular dynamical system would IV. NUMERICAL RESULTS
require one to compute the spectrum of the Floquet operator.
If one was to try and simulate a dynamical map on a quan-
tum computer withK qubits, a direct computation would Before applying our general proposal to a physical model,
require determining alN= 2% eigenvalues. In the following we give a numerical example illustrating the main results
section we will construct a quantum circuit that would enableused from random matrix theory: the ergodic theorem of Eq.
the form factors themselves to be extracted wikiN) (4). In order to estimate the average and variandg ahdt;
physical resources, thus allowing a direct test of nonintegrain a given universal matrix ensemble, we draw many random
bility that circumvented the need to explicitly compute all matricesU® from the ensemble and numerically evaluate
eigenvalues. each quantity. As an example, we have generated 50 random

A. Random matrices

022302-3



POULIN et al. PHYSICAL REVIEW A 68, 022302 (2003

25 - - - - 3
A
- [ : ] .
CHET R RN R N AR
1 vyt . . n A N P l: ll l: a4 P,
' ‘.l\"‘ . n Al n 2 ll n . '}
’ Yy Ol LI " 1 P
M 'y . 2F : TR :. .: s -" 1, :, 1
15: ’"'s~ [ .". :: l: :| : :l :: |‘I :
AR R R A R
S LS B L .l.‘ll::
'y vy . L L PR
'y LI ' LY "L
VAP AR
1t . [ : 1 . ] |.
vy ' s H
' “ . :, u [ ": [y
: R H } :
' ' . 1 H
00 10 20 30 40 50 0 . . . .
An 0 200 400 600 800
J

FIG. 2. The two dashed lines shdwas a function ofAn [Eq.
(4)] for two random unitary matrices drawn from the ensemple FIG. 3. Value ofty [Eq. (4)] of the kicked top in a regular
=2. The heavy full line is the value df averaged over 50 such regimep,=(0,0,1,0,0,10) as in Ref6] for different values ofj.
random matrices, while the light line shows its variance, whichDashed curveAn=1 so it is simply T{f:}/N_ Full curve: To de-
drops as 1fAn as expected. crease the fluctuation, we have used ergodic averaging over the first

An=30 normalized form factors {'f:”}/N, n=12,...,30.

matrices from the3=2 ensemble—the set of unitary matri-
ces with no symmetries. This is illustrated in Fig. 2, where
the matrices are of size 68@00. For each random matrix We now focus our attention on a physical model of great
U® drawn from this ensemble, we can comptiteU¥) as  interest for its good agreement with random matrix theory:
functions of An. Two such curvegdashed are plotted on the nonlinear kicked top. We write the Floquet operator in its
Fig. 2. By applying this procedure to many samplesre  most general form following Haake], F=U,U,U, with
50), we can estimate the averagetgfand its fluctuations.
We have computed CndE

Uy=ex —|m—|aka , (6)

B. Kicked top

50 50

1 1
= E‘ (k) 2\ 2 (k)\72-
(ty) 5ok:1t1(U )i ((t)%) 5ok:1[t1(U )15 where J,, k=X, y, and z, are the canonical angular-

(5) momentum operators. We conveniently define a parameter
vector p=(ay,ay,a,,74,7,,7,). Some authors use a re-
stricted form of this Floquet operator where onlyand a,
the averagét,) and mean deviation= \{((t;)?)—(t;)? are  are nonzero. SincgF,J?]=0, the value of the angular mo-
also plotted in Fig. 2(heavy and light full lines, respec- mentumj—which appears in Eq6)—is conserved. The di-
tively): as expectedt, converges to 1 as {An. The same mension of the Hilbert space is simply given Ny=2j+1.
procedure can be applied tg; nevertheless, sincg does

converge to 1 in this ensemblg,obviously does not since it 7

differs by a factor of roughl\N/An=20 for the range ofAn Al \

we have studied. Of course, this difference would vanish 5 y

whenAn approaches, since the form factor of any univer- b & " ,"

sal ensemble converge to those of the Poisson ensdsdse '-‘ .": ,'..::

Sec. I); this is why we must restrict our study thn<<N. 4t H . '-_

The same conclusions can be reached for the other en- =~ k! i [

sembles characterizing chaotic systems, Bes,1, 2, and 4. 3 ! -
Similarly, had the matricet)®¥ been drawn from thes O

=0 ensemble—the set of matrices characterizing regular ' A i

systems—we would have observigl converging to 1 as 1k y : %

1/JAn, while t;, smaller by a factor of roughhAn/N,

would roughly vanish. From these considerations, the hy- 00

pothesis test t, converges to 1” versust’ converges to 1”
allows us to discriminate between random matrices drawn
from B=0 and those drawn from one of the=1, 2, or 3, FIG. 4. Value oft; [Eq. (4)] of the kicked top in a chaotic
with a probability of error decreasing as\l¥n. Thus, as regimep.=(1.1,1,1,4,0,10) as in Ref6] for different values of.
long as the random matrix conjecture holds, it should als®ashed curveAn=1 so it is simply T{F}. Full curve: To decrease
allow one to discriminate between regular and chaotic mothe fluctuation, we have used ergodic averaging over the first
tion. =30 normalized form factors TE"}/n, n=1,2, .. . ,30.
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FIG. 5. \Vectorial representation of eigenphases:
3;(cos¢;,singy), where theg; have been ordered in an increasing
order. Thea and 7 parameters of the Floquet operatgqg. (6)] are
tuned so the system is in a regular regitheavy vectorsand a
chaotic regimglight vectorg as in Figs. 3 and 4. The value pfs
20 so each curve contains 41 vectors.

FIG. 6. Value ofty [Eq. (4)] with An=30 for different system
size: Full heavy linej =50; dashed linej=100; and light full line,
j=200.

served in Fig. 6, where we have plottedas a function ofe
for different system sizes. Moreover, the results indicate that

By adequately choosing the parametgrshe kicked top  the transition to chaos becomes more sensible as the size of
can be either in a regular or in a chaotic regime; see [®éf. the system increases.

for more details. Thus, we can evalugiendt, of Eq.(4) in
both regimes and verify that they indeed allow one to dis-
criminate between them. This is presented in Figs. 3 and 4
for different values of the total angular momentjnin Fig.
3, the system is in a regular regime; we have only plotted
sincet; is larger by a factor proportional foso clearly does We have shown that, using a single bit of quantum infor-
not converge to 1. Similarly, only the value @afis exhibited = mation, we can test whether the spectrum of a unitary matrix
in Fig. 4. Notice that while ergodic averaging decreases thebeys a Poisson or a polynomial law. Under the random
fluctuations, it is not essential to discriminate between regumatrix conjecture, this can be used to determine whether the
lar and chaotic regimes. Indeed, the scale of fluctuation igystem has a regular or chaotic behavior in its classical limit.
extremely small compared jpwhich is the factor by which  The idea relies on estimating the averaged form factor using
to andt, differ. the ergodic theorem which roughly states that a time average
The analogy with a random walk in the plane can also b&an reproduce an ensemble average. The form factors in a
illustrated graphically. In Fig. 5 we have plotted the sum Ofregular and chaotic regimes differ by a factor\3f and the
the eigenvalues vectorially. The apparent structure of th%utput signal of our computation decreases a¢: the re-
vectors is purely artificial, the eigenphases were ordered igyired physical resources thus scalé\Nadhis is a quadratic
an increasing orde(the sum of vectors is obviously a com- jynrovement over all known classical algorithms. We are
mutative operation we have chosen this ordering to facili- presently investigating a different signature of quantum

tate the presentation. S _ chaos which might not suffer from this signal loss, and
The effect of LSD are striking in Fig. 5. The light vectors naence could offer an exponential speedup.

(chaotic regimg are arranged in an almost perfect circle;  Thjs result provides an insight into the nature of the po-
eigenphases tend to be equally separated. On the other haggyijal computational speedup offered by quantum mechan-
the heavy vectorgregular regimgare quite often aligned in jcs |n particular, it provides a strong argument towards the

an almost straight line; a manifestation of level clustering. Ascomputational power of mixed state quantum computing.
a consequence, the heavy vectors end up further apart from

the origin than do the light vectors; on an average, these
distances differ by a factoyN.

Finally, we can use the form factor to study the transition
between regular and chaotic motions. To do so, we let the
parameter vector continuously vary from its regular value to  We thank Harold Ollivier for stimulating discussions and
its chaotic valuep=(1—¢€)p,+ € p. (see captions of Figs. 3 careful reading of this manuscript and Howard Wiseman for
and 4. For €e=0, the expected value df, is 1. As € in- pointing out an error in an earlier version of this work. D.P.
creases, the system enters a chaotic regime; when chaos aas financially supported by Canada’s NSERC and R.L. by
fully developedt, should vanish as . This is indeed ob- NSERC and CIAR. This work was partially funded by NSA.
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