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Semiclassical theory of coherence and decoherence
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A general semiclassical approach to quantum systems with system-bath interactions is developed. We study
system decoherence in detail using a coherent-state semiclassical wave-packet method which avoids singularity
issues arising in the usual Green’s function approach. We discuss the general conditions under which it is
approximately correct to discuss quantum decoherence in terms of a “dephasing” picture and we derive
semiclassical expressions for the phase and phase distribution. Remarkably, an effective system wavefunction
emerges whose norm measures the decoherence and is equivalent to a density-matrix formulation.
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[. INTRODUCTION some detailed insights and limiting cases are lost in the ma-
chinery, so to speak.

The challenge of understanding to what extent a quantum Another approach is to make a semiclassical approxima-
system can retain its coherence in the presence of interation for the system-bath evolution. Casting the system-bath
tions with other degrees of freedom has attracted much atnteraction and the decoherence problem in terms of semi-
tention, because of recent advances in mesos¢@pi8] and  classical wave-packet dynamics proves to be a useful and
cold-atom experiments},5] as well as keen interest in quan- insightful exercise. Since a semiclassical approach is based
tum computing, which depends crucially on quantum coheron classical trajectories, one can present an intuitive picture
ence[6,7]. of the criteria for coherence and decoherence in a coupled

An essential ingredient in any discussion of coherencesystem bath. One may imagine a more traditional van Vleck
and decoherence is the identification of a “system” and asemiclassical Green’s function approach; however, this has
“bath” which interact with each other in such a way that a the difficulty that caustic infinities abound in the van Vleck
meaningful distinction can be made between the two. In th@refactors due ultimately to the failure of the stationary
double-slit experiment, for example, the electrdos other  phase approximation in the limit of small action changes. For
guantum objects, e.g., “fullerene$8]) are taken as the sys- example, suppose we consider a harmonic oscillator and rep-
tem and the degrees of freedom in the slighonons or resent thenth state/n) semiclassically so thdx|n) has sin-
spins, for exampleare taken as the bath. Because the experigularities at the classical turning points for enekgy. Sup-

ment only involves detecting the interference pattern on &ose now we displacg) slightly in position; call this/n).
screen behind the slits, no direct measurement of the batphe semiclassical projections onto all of the original basis

(i.e., the slit degrees of freedoris made.(Since one has N0 giates(n|R) are completely wrong for small displacements.
knowledge of the state of the bath one must sum over alj pyt one of the projections are incorrectly predicted to be
possible states of the bath, i.e., one “traces over the bath.";erq since their classical manifolds do not overlap, whereas
Only the system is directly observed. As is well knol@ if  the overlap with the undisplaced original state is nearly sin-
the bath detects the path of the particle no interference pagular. The same displacement of thign harmonic-oscillator
tern will be seen; the particle has therefore decohered. On th&ate, expanded in terms of localized Gaussians, is quite ac-
other hand, if there is no or only partial detection of the pathcurate; it has no such difficulties. Slight displacements of
of the particle by the bath, some interference pattern will besystem or bath states is commonplace in the decoherence
seen with its intensity reflecting the degree of coherence oproblem, so we avoid the caustic difficulties by starting with
the particle[9]. We will later show how these familiar state- a wave-packet description, avoiding the singularities. We
ments appear in a very transparent way in our semiclassicélave called this the “oil on troubled waters” effect of using
formalism. a wave-packet descriptidi.5].

The problem of a quantum system interacting with an One of the insights that emerges from this approach re-
environment has been addressed many times in the literatur@tes to recent discussions in the literature concerning the
e.g., Ref.[10-12. The Feynman-Vernon influence func- equivalence of a “bath overlap” picture of decoherence with
tional approach is well known, although its usefulness bea “system dephasing” picture(See Stern, Aharonov, and
yond the context of harmonic baths has been an issue. THewry (SAIl) [12,16,3 and Feynman and Vernori0].) We
influence functional approach to more realistic systems hafind that there are three main processes that contribute to
been advanced significantly by Makri and Thompsondecoherencei) phase jitter(ii) bath overlap decay, ardi)
[13,14], exploiting and developing coherent-state methodsshifts in the trajectory of the system wave-packet. We present
with smooth kernels suitable for Monte Carlo sampling.explicit formulas for each of these effects within our semi-
However, the generality of their approach necessarily meandassical wave-packet description.
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An ambiguity in checking for interference fringes of the
recombined beams is illustrated by supposing that there is a
static potential maximum in the left arm but not the right,
and no system-bath interaction in either arm. This will cause
a time delay of the left wave packet compared to the right, so
no interference will result, even though the system is com-
pletely coherent. There are ways to avoid this, such as taking
longer coherent wave trains initially for the system, but one
must be careful, and other ambiguities can arise.

On the other handM is simply 1 for a completely co-
herent system, and less than 1 if some decoherence has taken
place. For example, suppose we have a system wave packet
broken into two nonoverlapping but coherent pieces, ile.,

FIG. 1. A wave packet representing the “system” in a narrow _ L+ ; 0\ — 1IN — g0 rT
waveguide is split coherently between two arms, one of which in- 1/\/5(1’11 V), Wlt,h (v |"ZIA> 0 and (y | W=y 1 )
=1. Then the density matriy is

teracts with a “bath.” Upon recombining on the other side, deco-
herence due to the system-bath interaction affects the interference 1
(or lack of it) between the two arms. p= > ; |¢.I><¢J|' (1)

This paper is organized as follows. In Sec. Il we develop .. . S . .
the mairl?idpeas of ogL'Jr paper and derive the general expressip tb ' andetakmg 9” the valuelsandr. Itis easily seen that
for the coherence of a quantum system coupled to a generallp1=Trlp*1=1, i.e., the system is completely coherent.
bath (described by a density matyixEq. (13). This expres- However, if somehow the two partsandr become com-
sion can be recast in the form of a very intuitive effective Pletely decoheredithis in fact requires the action of more
system wave function, Eq14), which makes transparent the degrees Pf freedom—a batlwe lose the off diagonal ele-
effects of system-bath interactions on the systdescribed ments ofp, getting
by the norm of the effective wave functiprin Sec. Il we .
study several important cases of E¢E3) and(14) in which p=5( WP+ "W). )
certain physical procegphase jitter, et¢.dominate the sys-
tem decoherence. In Sec. IV we summarize our main result§ow we have mﬁzl’ but T{?]= 1/2.
and conclusions. Important supplementary material is pre- Thjs is not the end of decoherence for this system, if the
sented in the appendixes. In Appendix A we detail how tOeft and right packets somehow undergo their own, “inter-
compute the equations of motion perturbatively for Guassiama|” decoherence. This internal decoherence will happen on
wave-packet dynamics and derive expressions needed in themuch longer time scale than the decoherence of the two
main text. In Appendix B we sketch the arguments of Sterninitially coherent wave packets because it is diféerencein
Aharonov, and Imnf12] which equate “bath overlap” and the interactions that each wave packet experiences that de-
“dephasing” in a special case system-bath interaction. termines the decoherence rate. This rate is almost always
larger for two separated wave packets than for a given wave
packet. All this is elementary, but it sets the stage for the
more detailed work to follow.

We set out to construct a general formal context for deco- Turning now to a discussion of our general problem of a
herence, with the goal of reaching a useful and intuitivesystem interacting with a bath, we cast our expressions in
physical picture. The most general formal structure for decoterms of density matrices. The most general density matrix
herence(e.g., influence functionals for general anharmonicfor a bath expressed in terms of Guassian wave packets is
bathg would not involve semiclassical approximations, and

Il. SEMICLASSICAL THEORY OF DECOHERENCE

could claim formal exactness. However such formulations ~ .

. . . = W(i,])|Gig){Giol, 3
must necessarily miss the mark on the issue of “useful and Pbath |§;' (1.1)[Gio)(Gjol @
intuitive.”

It is helpful to have a specific model in mind. The model where w(i,j) satisfies all the properties necessary so that
of a two-armed device already introduced and used, for exf,bath is a well-defined density matriX(Trban[;)batrﬂ
ample, in the work of Stern, Ahronov, and Imi¥2] serves =1 [w(i,j)]'=w*(i,j)=w(j,i), etc). In the special case
that purpose well. In Fig. 1, a wave packet representing thef a pure state bath, we can Wriw(i,j)zwiwjei(«fiféj)
system is coherently split into two pieces, one of which latefyhere thew, are real, positive numbers and ti§eare the
interacts with a bath. The degree of coherence can bgssociated phases. The stat@,) are multidimensional
checked experimentally by combining the packets in the  Gaussian wave packets representing the bath states. Expand-
Aharonov-Bohm experiments of Reffl17]), although it is  ing the bath states in Gaussians allows us to make use of
more general to check\/lETr[pfed], where poq IS the re-  very intuitive notions of classical mechaniéshich guide
duced density matrix for the system, after tracing over theéhe wave-packet trajectories in the semiclassical approxima-
bath variables. tion) while at the same time permitting us to overcome tech-
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nical difficulties (singularitieg in a more naive semiclassical wherep' (t),p" (t), etc. have the obvious meaning. To study

treatment with van Vleck propagators. the coherence of the system, we trace over the bath degrees
Assuming that we take our system be the wave packedf freedom to obtain the reduced density matrix,

initially split into two coherent pieces as shown in Fig. 1, the

initial wave function of the system can be written as prec= Tl prodl = Troaa " +p" + 9" +p"], (10
1 which yields, for example,
|¢sys>:_(|glo>+|gz)>)! (4) “ 1 )
V2 Py 2 lo(gulwi.pe®of . a

where the statefg}) and|gy) are the right(r) and left (1)
Gaussian wave packdisoherent statesear regiorA in Fig.
1. The density matrix for the system is thepgs O =(G}IG}y), (12
=|sy9(hsyd. Expressed in terms of E@),

where

with a similar expression fop|. (just the Hermitian conju-

Poys= 1(10b) 1960 ((gbl +(ah)).- (5)  gate ofpj,y and the other terms. The bath wave pagiast)
has a superscript 0 to indicate that it is unperturbed from its
The total initial density matrix of the system and bath is thentrajectory if the system travels in the left arm. Note tfu)
does not interact with the bath and therefore does not de-
;tot(o):,“)sy;)bath_ (6)  Velop an index depending on the bath state.
When;)red is squared and traced over to obtain the deco-
To study the decoherence of the system due to _interactiorﬁ;erence measurd1=Tr[ p2], the terms
with the bath, we must compute the time evolution of Eq.

(6). Our approach is to use the perturbative wave-packet time Meor=TH plbplt i+ plt prt (13

evolution described in Appendix A. The key result is that the i . i i

state contain all the information on interarm coherence. These
give

Dy AN Gy g )Gy + G el 1
— . .
(|go>+|go>)|G|0> |got>|G|t>+|glt>|Glt>e ! (7) Mcohzzlzr <g;’t|g;’t>w(i/'j/)W(j'i)ojf?i,noﬂreIQSJ—ld’j'
where|g; ") is the wave packet of the system particle mov- e
ing in the right(left) arm at timet if the bath was in state =(UIwS, (14)
|Gio) initially. The statd GJ;") is the perturbed wave packet | .

of the bath(according to Appendix Aat timet for a particle

moving in the right(left) arm where the bath was initially in 1 .

state|G;). Note that since the particle in the left arm does | sy = 7 > w(j ,i)Oﬂ’e' %ilgi). (15)
not interact with the batiG!,)=|G%) and|gl,)=|gt,). The 21

phaseg; is given by Eq.(A19). Remarkably, M., is the self-overlap of dgenerally non-

We emphasize that it is the local nature of the Gaussiaformalized effective system wave function. The emergence
wave packets combined with weak interactions that allowsyf a wave function form is unexpected because we have not
us to write down Eq(7) with a product statefor the piece of  gpecified that the bath was initially in a pure state; it may be
the wave function that interacted with the bath on the rightiy 3 mixed state such as a thermal bath. We can check Eq.
arm. This approximation actually becomes exactas0. It (15) in the limit of no interaction with the bath: then, the
is precisely the lack of “local entanglementEq. (7) still  overlap factors are all unity, the phasés=0, and all the
implies “global entanglement” of courgen the wave func- Gaussiansg),) are the saménormalized unperturbed state

tion that makes our approach conceptually convenient. In a,r ). Then
more general basis, we would have a sum of terms for th o ’
right arm piece of the wave function and it would be difficult 1 1
to identify physical phases of the type given by E419). |Wy=— 2, w(i,i)|go)=—=|90) (16)
The total density matrix at later times thus becomes \/E : \/5
1 implying (UY4W9= M =1/2, i.e., maximum coher-
Pl ) == > W(i,)(|gh)|Gl) +|gh) |Gl )e ence.
Polt)=7 .2;‘ (1,D(90|Gie) +1gi)|Gire ™) Equations(14) and(15) are the central results of this sec-

tion and these are the main formulas of this paper. These

[ | —i;
X ((Gotl(Gjel + (g}t (Gjele "), (8 apply to any batttharmonic or not, pure state or mixed sjate
. . with weak system-bath coupling and any number of total
which can be rewritten as degrees of freedom.
R R A R R Equation(14) states that the system coherence is deter-
prod D) =p" () +p" (1) +p" () +p" (1), (99 mined by an effective system wave function with wave-
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packet overlap factorég], |gj,), bath overlap factor®(,  which is just a simple bath overlap. Hegg, is the state of

weighting factors(coming from the initial bath conditions the bath if the particle went around the righeft) arm; 7
w(j,i), and finally phase factors'¢i. The phasesp; are represents the set of bath coordinates. This is the notation of

classical actions divided by and are given by EqA19).  AppendixB. .
The “system wave-function” overlap form, Eq15), is es- In many physical situations, it may be the case that the

pecially convenient for intuition and computation. Decoher—largeSt contribution to the sum in E4L9) comes fromi

ence shows up as a reduction in the norm of the system wavel- (ThiS might be the case because the bath over@fps

function. This comes about from any or all of three factors:2r¢ small fori #j and/or because the off-diagonal terms in

. Jon7) al : .
bath overlap decay, phase jitter, and system wave packet di{i Wj oscillate in sign from term to termMaking this ap-

placement. proximation, we find

The are several more interesting facets of @4) deserv- _
ing discussion. We will do this systematically, by considering p~> lwi|%e 40y (20
important special cases that highlight aspects of this formula. !
This gives the interpretation 0¥, as one-half the modu-
lus squared of a phase factiiomes a bath overlapveraged

over different “runs,” or realizations of the bath, i.e.,
We begin our discussion of various limits by assuming 11/ aidi 0N |2
i Mcoh_2|<e 'Oy >W| . (21)

that the system overlaps and possibly also the bath overlaps 1w
are near un?ty. This regime is ino_Ieed accessible, since the;om the system wave-function viewpoint, we hdire the
classical action perturbation termdg=1/46S;, wheredS;  |imit of Eq. (17)],
is the action due to the perturbation along the unperturbed
orbit. There is no doubt the action term can be large com-
pared to 2r and vary widely, since the perturbing classical | WS =
action can be large compared to At the same time, the
wave packet displacement can remain small compared to itshich lays the blame for decoherence entirely in the sum
width, in both position and momentum space. Classical aceontained in the parentheses. This can be reduced in magni-
tion changes are always accompanied by corresponding aretsle by both bath overlap decay factors or by phase jitter.
or volumes in phase space; if one plots the manifolds of the
perturbed system exactly, then a phase 27 will be ac- A. Nondynamical bath
companied by a loop or area in phase space which is of this An important special case to consider is that in which the
magnitude. However, the wave-packet width goes-a#:, bath does not have any dynamics of its own, the so called
but the perturbing action increases 7as'. Therefore, for ~“nondynamical” bath. The nondynamical bath limit emerges
small enough perturbations and small enodghwe can by further settingO'= & in Eq. (18) [or Of =1 in Eq.
safely take the wave-packet overlaps to be 1, and focus of20)], i.e., bath wave packets undisplaced by the interaction,
the phase terms. which would be the case indeed if the bath Hamiltonian

Suppose that the system wave paCHgﬁ@ are not dis- commutes with the bath-particle interaction potential. Then,

placed by the interaction with the bath, then we have 1

|~Ifsy5>=( ﬁZ Iwilzei¢i)|90t>. (23)

Ill. SPECIAL CASES OF DECOHERENCE

1 .
53 |wi|2e'¢ioﬁf) ) @

(9j4lgj~=1 17
The reduction of the norrfcorresponding to decoherende
due entirely to phase jitter. In this case we have a compelling

and Eq.(14) becomes formula emerging, in the spirit of SAlsee Appendix B

1 S i b i b
Moo=y 2 w(i',j")w(j,i)Ojy;, Of e i1 f dnxt (Mxe(m) =2 [w’e=(e), (29
iji’j’
2 where the phase; is imparted with probabilityw;|?: ¢; is
=3 E W(j ,i)Oﬂ’e' ¢ the phase acquired if the bath wave packdGg) initially,
L) and this happens with probabilitjw;|?, the probability

1 weight of that wave packet in the initial bath. This formula
=_—|ul? (18) gives a concrete picture of the nondynamical bath limit, and
2 the origin of the phases that are averaged over: these are
classical actions for the trajectory of the system-bath dynam-

If our bath had initially been in gure state w(j,i) ics, divided by#. In terms of M., we have
=wjwi so that Meor=3(e")|2. (25

The limit of a nondynamical bath can also be achieved
M=E Wi*o?jreijj:f doxi (9 xe(n), (19 (Without _the ba'_[h Hamilto_nian com_muting with the bath-
i particle interaction potentiplby a high-temperature bath
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whose wave-packet description involves mostly very excitedlynamical bath still apply; the question at hand now is the
coherent states. Such coherent states are robust against séliither role of system overlap decay in forming the coher-
overlap decay, unless large energy exchange is occurringnce measureM,,. We assume a nondynamical bath to
This kind of nondynamical bath corresponds to classicamake the analysis simpler; this means that bath wave-packet
states of the radiation field in a large cavity with high enoughself-overlaps are unity, and any decoherence can be blamed
temperature. It is well known that this situation is describedeither on random phaséthe dephasing limjtand/or on sys-
guantum mechanically in terms of excited coherent states akm overlap decay. We now investigate the relative impor-
the field oscillators. Such bathier similarly, externally ap- tance of these two.
plied fieldy tend not to contribute to decoherendea a bath The relevant effective system wave function is then
overlap decay mechanism for weak coupling, but rather the
sort of dephasing expressed b 4). 1 :

phasing expressed by o= el @
B. Dynamical bath

More generally, we see from E@18) that the decoher- The self-overlap of this wave function is
ence(still assuming little system displacemgmirises from 1
two sources: phase decoherence and amplitude decoherence _= 12w 12ai di—idi/ ol |of
(due to|O%|<1). The latter is caused by the bath wave Meon=3 ; [wilw; e Nyl giv)- (28
packets becoming displaced by interaction with the system.
In this case, it is less compelling to associ&et®) with The phase and overlap contributions are manifest. It is not
Zi|wi|zoﬂrei¢i’ since the overlap factors are not naturally possible to give a general rendition of the relative importance
written as integrals over phase factors, although one coul@f phase and overlap contributions to this expression; this
always do this, however absent of physical motivation. Thigill depend on the system and bath under consideration.
situation corresponds to SAI's dynamical bath. The presentlowever, the diagonal terms always survive, even in the
formulation shows a pure phase average picture for this cadinit of strong kicking of the system wave packetgve re-
is somewhat forced. Bath wave-packet displacentend in ~ mind the reader that even though our analysis was perturba-
the following section, system wave-packet displacementtive for the wave-packet displacements, in the sense of clas-
thus emerges as a restraint on a pure dephasing picture 8fcal perturbation theory, the displacements can be strong in
decoherence. the quantum sense. “Strong” is measured by wave-packet
The dynamical bath limit would be uninteresting if deco- overlap decay, which can be severe even while classical per-
herence is always dominated by dephasing. But lowiurbations are correctly giving the wave-packet displace-
temperature baths are prime suspects for overlap decay tBents.(See Appendix A.Restoring the bath overlap factors
dominate dephasing effects. For example, if there is just on&r @ moment, for the diagonal terms we get
bath coherent state, e.g., as im&0 bath whose true ground L L
zgtz,ig?iz)ngggovr\;eellsby a single multidimensional coherent Mg EZ |Wi|4|Oﬂr|2<§ Z i 29

. 11~0r2
Meor=3[01117, (26) SinceZ;|w, |2: 1,

i.e., the decoherence is entirely caused by bath overlap de-

cay. This is true even if the system wave packet is strongly 2 |w;|*~1/N (30)

displaced, since the system wave packet simply overlaps it- i

self in Eqg.(14) when there is but a single state in the sums., ) L . .

It is therefore possible to decohere from the zero temperatur§ &0 INVerse participation ratio, wheheis the number of

initial state or a given single coherent state of the bath, due tBarticipating quantum states describing the bath. \Mes

bath overlap decay; however, at zero temperature this rda'ge, Eq.(30) predicts thatM g, will be vastly smaller than

quires degeneracies of the bath. _1/2, gﬁ(.act.lvely.m(_aamng.thg_ system is completely decohered
Here, it is especially clear that a phase average picture i€ this limit. This is the limiting form in the strong system-

not natural for a dynamical bath: in this case there is onlyKicking limit and makes physical sense: the broader the dis-

one “quantum trajectory” so to speak, a single product Wavérlbutlon of quantum states in .the initial bath_ measured\by

packet that describes the bath-system evolution in the righf Ed- (30), the more uncertain the “potential” felt by the

arm. Equatior(14) shows that the effect in this case is deco-System(bath has a broad distribution of possible stasesd

herence due to a displaced bath wave packet. hence the greater the decoherence.
There remains a question, however: could the system

overlap decay strongly as above without strong phase ran-
domization, so that a pure dephasing picture would miss it?

We now relax the artificialthough possible condition ~ When one considers, for example, the harmonic model, the
that the system overlap terms are essentially 1, i.e., the sysonclusion is soon reached that for finite temperature it is not
tem wave packets can be significantly displaced by interacteasy to strongly displace the system wave packets randomly
ing with the bath. The concepts of a dynamical and a nonwithout strong phase randomization.

C. System overlap decoherence
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IV. CONCLUSIONS lation time, andT3 is the pure dephasing time. The transla-
éi_on of concepts into the present discussion is “dephasing”
T “decoherence”; “pure dephasing™ “dephasing.” The
fme T, is typically the time constant for decay of the initial

In this paper, we have presented a semiclassical, wav
packet-based formalism for decoherence. We have limite

ourselves to the case of a single-system wave packet s ) ; .
ge-sy b pwave function created by absorption of a photon, and is mea-

initially into two mutually coherent pieces, one of which . o :
interacts with a bath. We derive an expression for the megSured from the width of an absorption lirgf we had intro-

sure of coherence in the system, Etd), which determines duced a tunnel coupling between the two arms of our model

the coherence in terms of wave-packet overlap factorgev'ce’ we _QOUId als_o ha_lve had a natura_l p_opula‘glon dec_ay—
ropar or N the probability of being in each arm. This is an interesting
(gj ,tlgjt>, bath overlap factor®;; , weighting factorgcom-

. I RN ) subject for future study.

ing from the Initial bath COﬂdItIOI’)SN.(j ok apd flnqll_y phase The approach we have taken to decoherence is not limited

factorse’ ¢'_- The phaseg); are classical actions divided By ¢, the physical circumstances used here. The semiclassical

and are given by Ec(Al_g). . . wave-packet-perturbation approach should be applicable to a
One perhaps surprising and potentially very computationyiqe variety of situations and physical measurables includ-

ally and intuitively useful aspect of our formulation is the ing electron decoherence in meté2l—24 and studies of

emergence of an effective system wave function, which meag, o classical-quantum correspondefizg]. We hope to pur-
sures the decoherence, Efj5): Decoherence shows up as a sue some of these in the near future.

reduction in the norm of the system wave function. Similar
ideas have been introduced in the context of a stochastic
Schralinger equation18].
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propriate to a number of physical situations where the
system-bath interactions are quite weak. In Sec. Ill B a situ- APPENDIX A: COHERENT STATES AND GAUSSIAN
ation is discussed where system wave packets are barely per- WAVE PACKETS
turbed but bath wave packets are significantly displaced. In
this limit, one can still force a random phase picture, but the We present a brief review of Gaussian wave-packet dy-
identification with an average over random phase factors i§amics for our approach to the decoherence problem. It is
more of a mathematical equivalence than a physically motiwell known that the problem of the usual kinetic-energy op-
vated idea. Finally, if the system wave packet is stronglyerator with a time-dependent potential at most quadratic in
perturbed by the interaction, as in Sec. Ill C, a new decoherthe coordinates is exactly solvable, and is especially simple
ence mechanism sets in: system overlap decay. Such systéithe case of initial wave functions which are Gaussian;
disturbance is hardly rare or unlikely. Strong perturbation ofthese remain exactly Gaussian wave packets under time evo-
the system can occur with or without significant bath dis-lution.
placement. We note that our goals extend far beyond such quadratic

Our perturbation treatment has certain similarities to lin-systems; we will see that a semiclassical approximation per-
ear response theory. For chaotic systéexpected for, say, a Mits the use of quadratic form dynamics in more general
liquid or gaseous bajlit could suffer the same criticisfii9] contexts. We make use of the so-called “thawed Guassian
that the actual magnitude of the perturbation for which theapproximation”[26-28 which employs the auxiliary vari-
formalism is valid is unreasonably small. However, it might ablesZ andPz, whose dynamics are given by the equations
benefit from the same saving graces as the linear respondglow. The thawed Gaussian approximation allows one to
theory; namely, that ensembles of trajectories are better b@pproximate the potentidbcally as quadratic thus taking
haved than individual trajectories. advantage of the exactness of Gaussian propagation on qua-

The distinction we are making between phase randomizadratic potentials.
tion versus overlap decay has long been central within the In a multidimensional form, a general Gaussian wave
context of spectroscopy of systems embedded in a(saty, ~ Packet is given by
e.g., Ref.[20]). The concepts of “dephasing,” “depopula- .
tio_n,’_’ and “pure dephasing” are traditional in spectroscopy. lﬂ(q,t)=exp{l—[(q—Qt)T'At'(q—Qt)+pt'(q—Qt)+St]],
Within the context of exponential decay, the relation f A
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1 ! (31)  WhereA is anNX N matrix for N coordinates describing the

= — 4 —
T, 2T, T3 stability of the center of the Gaussian wave packet, gnd
p; areN-dimensional vectors describing the position and mo-
is legion, whereT, is the dephasing timdl;; is the depopu- mentum evolution of the center of the wave packet. We have
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introduced the more conventional wave-packet notatjpn
=q(t), etc. Let the classical Hamiltonidth=T+V have the
usual Cartesian kinetic-energy operator and a general time
dependent potential smooth at least up to quadratic order

in the coordinates. The parameters of the Gaussian then obe
29,30

aqtzv H (A2)
d B FIG. 2. A Gaussian wave packet in an anharmonic potential is
apt_ o VqH' (A3) approximately propagated by expanding the potential to quadratic
order locally around the instantaneous center of the Gaussian.
AtZEPZZ*l, (A4)  quadratic terms, arguing that the tails of the Gaussian are
negligible where the Taylor expansion starts to break down.
4(P 0 —V'(1)\[P We use this quadratic form to propagate the packet in the
_( Z) :( )( Z), (A5) next time instant. Thus the Gaussian will propagate in the
dt\ z m~1 0 z next instant according to Eq$A2)—(A6). If we agree to
" move the center of the Taylor expansion to the moving mean
: i . iti — i
B n, —1 position of the wave packety;, then Eqgs.(A2)—(A6) will
S=Let 2Tr[ Z-z7, (AG) hold, since the potential is now, by construction, a time-

dependent quadratic form. However, the interpretation has
wherelL, is the usual classical Lagrangian. Integrating overchanged—the position and momentum parameggend p;
time, we have are now just exactly the usual classical trajectories on the
exact, anharmonigotential, but the distortion of thevave
(A7) packet_ is governed by the local quadratic expansidrihe
potential—thus keeping the wave packet Gausfg). We
illustrate the idea in Fig. 2.

i%
S$i=Sp+ S+ 7Tr[|n Z],

where V" and m~* are N-dimensional matrices of mixed  |n general this approximation breaks down after some
second derivatives of the Hamiltonian with respect to positime due to wave-packet spreading, but that time can be put
tion and momentum Coord|nates, reSpeC“Ver. That IS, off as |0ng as we p|ease $S—>O, since we can take a nar-
2 rower wave packet, with position and momentum uncertain-
J°H . ; . .
(V"] = (A8) ties going as\#. This delays the spreading by at least a
90;99; aq;’ factor ~1/|In#| in time (for chaotic systems31-34.

Since any quantum stataside from spin statg¢<an be
built out of Gaussians, we have a full semiclassical approach,
stability equations, EqLA5), which admit the solution gzﬁﬁfiigErr?é-gfggng:rﬂsﬁg&;tsorﬂfnp_agated with its own

P, The phases, of Eq. (A7) is the usual action, taken along
( t (A9) the guiding trajectory, modified by an extra term that takes
Z, the place of a Maslov phase. This term evolves smoothly in
time and therefore is another advantage of a wave-packet
where approach as compared to the more troublesome eigenfunc-
. tions of Hermitian operators.

M(t)z?exp{f K(t’)dt’}, (A10) There are other approaches based on wave pa.ckets.that
share the smoothing property, such as a full semiclassical
coherent-state propagat$85—-37. This differs from the

and T denotes the time ordering operator, needed becauseabove Gaussian-wave-pack66WP) method, in that the
) propagator is optimized for both the initial Gaussian and a
K (1) :( 0 . -V (t)) final Gaussian onto which it is projected. It is also the “natu-
m- 0

and so forthS; is the usual classical action. EquatidA®)—
(A6) hold for a general time-dependevit We focus on the

PZo

=M(t) -

(A1) ° . . LIS Proje : .
ral” semiclassical apprOX|mat|0n if one retains statlonary

phase as the defining idea while passing to a coherent-state
does not commute with itse(fn general at different times.  basis. The coherent-state method is usually more accurate at
M(t) is the usual classical stability matrix, whefd,;;  the same value of compared to GWP, but it suffers several
=dp;/Ipy, etc. complexities. Foremost among these is that complex classi-
Consider a narrowin q) Gaussian wave packet centered cal trajectories come ifalbeit for real time, with their at-
on the classical positiog, and momentunp,. Assuming a  tendant analytical difficulties including Stokes lines. There-
reasonably smooth potential, let us expand aroggdp to  fore, we choose the GWP approach as a best compromise
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between accuracy and complexity. In the semiclassical limismall additional potential creates small new forces on the

©—0, there is no accuracy compromise. particle near its old trajectory.
Perturbation theory may seem limited in scope at first _
glance, but we soon realize that strong interaction with many 2. Perturbation of the phase

bath degrees of freedom leads to such rapid and near com- To see how the phase of the wave packet changes under
plete decoherence that an analysis of the strong system-batiie perturbation, we examine

coupling regime seems a littlpost mortem We therefore
focus our attention on the weak coupling limit.

In the setup in Fig. 1, we have a Hamiltonian given by %= 05= 5f (T=Vo=AVydt

H=Hp+Hy+V=Ho+\Vy, (A12) =5f (T—Vo)dt’—b‘f AV dt'. (A17)

whereI:Ip (H,) is the Hamiltonian of the particlébath and ~ We see the change comes in two parts. The first is the change

V is the coupling between them. Suppose we have solved tHg the “old” action (it irr:volves the %'dVo) due t% thednve
Flo=Fi,+ A, problem, and now we wish to include the ef- trajectory. Assuming the new one has not wandered too far,

- we have
fects of AV, the system-bath interaction. In accordance with
perturbation theory, the first-order effect is determined by the
extra potential felt by the wave packet as it travels over its
old trajectory. Assuming this perturbation is smooth as ab
function of coordinates, we include only terms linear in the
interaction strengthy. We can include perturbations to qua-
dratic order as well, at the cost of increased complexity, bu
we defer this for future work. A weak interaction with a bath

5f (T—Vo)dt' =\p,89, (A18)

y the stationary principle of the actidthe right-hand side
(RHS of this equation is not zero since the perturbation
auses a drift in final position, 8q; .] Thus, the wave packet
hase change, to first order, is

will show up in two ways in the wave packet given in Eq. osy 1 ,
(A1): (1) Changes to the guiding trajectory, andp; and(2) b =7 gf?f (T=Vo—AVy) dt
changes to the phase.
=\ p‘b‘qt—if V1 (go(t'))dt’ (A19)
1. Perturbation of the guiding trajectory h h 1{% '
Let go(t) be the solution of th&o problem for a particu- APPENDIX B: THE DEPHASING ARGUMENTS
lar trajectory. The first-order perturbed solution we take to be OF STERN, AHARONOV, AND IMRY
q(t) =do(t) + N 8q(t), p(t) =po(t) + N Sp(t). By substituting
this into Hamilton's equations, we find thaty,, 5p, obey Stern, Aharonov, and Imr{SAl) have argued12,16 that

decoherence may be thought of as dephasing, i.e., that a
d [ dp 0 —V"(t)\/[dp f(t) quantum particle acquires a broad distribution of possible
a( s ):(ml 0 )(5 ) ( 0 ) (A13) phases so that its phase is “randomized” and thereby loses
At At coherence. SAI argue that decoherence due to shifting a bath
into an orthogonal state and decoherence due to a particle
acquiring a broad distribution of possible phases are equiva-
lent. In this appendix we give the skeleton of their argument
, in their original notation to provide a counter point for our
+M(t)ftM(t’)‘1(f(t )>dt’ discussion ir_] the body of this paper. . .
0 0 SAI consider a quantum particleoordinatex) moving
(A14)  around both arms of an Aharonov-Bohm ring threaded by
magnetic flux with a batlicoordinates) that only interacts
t f(t") with the particle in the right arm as shown in Fig. 1. Particles
=M(t)foM(t’)‘1< )dt’,

wheref(t) = —V;(qo(t)) is the time-dependent forcing func-
tion. The solution is

5pt> ( dPo
=M(t
(5qt O 506

(A15)  moving around the left arm are assumed not to interact with
the environment. The initial wave function is taken to be

since 8pp= 89p=0 in the present circumstances, with P(t=0)=[1(X)+r(X)]® xo(7), (B1)

and corresponds to the particle having just entered the ring
, (A16)  region (near pointA in Fig. 1), but not yet interacting with
the bath. Heré(x) (r(x)) is the initial particle wave function

andT™ forces the reverse order of times, i.e., earliest times to. the left(right) arm, assumed to be a wave packet, and
: : X 1 is the initial state of the bath, assumed to be localized
the left in the series expansion d¥l(t) 1. Note that Xol7)

(d/dOM(D)~T=M (1)~ 3K (t). Thus, the perturbation of a in the right arm. SAIl then take a final wave functigmear

. . / ; ) PointB in Fig. 1)
general trajectory in classical mechanics generates a linearly
forced oscillator problem. This is not surprising, since the Y1) =1(X,7)@x1 () +1r(X,7)Q X, (7), (B2)

R t
M(t)1=TTex;{ - f K(t")dt'
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wherex,(7) (x;(#)) is the state of the bath had the particle nondynamical environment is distinguished from a dynami-
gone around the leftright) arm [38]. SAI distinguish be-  cal one, in that the interaction picture opera¥q(t’) com-

tween “dynamical” and “nondynamical” environments, mutes with itself at different times in the nondynamical case.
which either do or do not involve nontrivial dynamiCS on For a dynamica| environment it is not genera”y pOSSible
their own, respectively. From E¢B2), SAI obtain the result [12 41 to write down a simple relationship such as that ex-

that the interference term ($ak|ng the trace over the envi- pressed in Eq(BS) However, for a nondynamical environ-
ronmenj ment,

2Re{|*(x)r(x) f doxt (mx(m)|, (B3

<e“”>:f dgP()e'?, (B7)
which allows one to interpret the reduction of the interfer-

ence(loss of coherengan terms of a reduction in the over-

lap of the bath states for the two paths around the [[88j.

— 2
SAl then argue that one can make the identification whereP(¢)=|xo(7(#))|*dn/d¢. , _
The central result of the work of SAl is the equivalence

i3 . expressed in EqB4) which states that the reduction of Eq.
(%)= f dnxi (7)) x: (1), (B4)  (B3) can be viewed as either the shifting of the bath states for
the two paths around the ringue to the interactions in the

where (€' 5¢>>E<Xo|eigb|)(0> and where for nondynamical en- right arm of the ring or as the particle on the interacting arm

vironments the phase angleis being subject to an uncertain potential resulting in an uncer-
tain phase shift and hence a reductiorn{ &t).

—_ The key approximation of SAIl is the assumption that the

¢ J dtvIx(v 1, (B5) interaction in the right arm is weak enough to neglect

_ . . . . changes in the trajectory of the particle, while still allowing
with x(t) being the classical trajectory of the particle aroundine path to change in response to the presence of the particle.
the right ring arm[40]. For the case of dynamical environ- Thjs anproximation eliminates entangling on the upper arm
ments (the overall wave function is, of course, still entanglead

results in the appearance of a direct product of bath states in
Ixo), (B6) the interference term, E¢GB3). This simplification is neces-

sary to reach a “pure dephasing” expression. In the general
- A s situation, the trajectory of the particle is in fact altered in the
whereV, (t")=e'"e! /ﬁVG_A'Hbt " is the potential in the inter- interacting arm, which leads to entangling with the bath, a
action representation ant is the time-ordering operator. A dephasing effect not included in the SAI picture.

- . i .
<X0|el¢|Xo>=<Xo|TeXF{ - ﬁjo dt’Vv(t")
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