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Semiclassical theory of coherence and decoherence

Gregory A. Fiete1,2 and Eric J. Heller1,3

1Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA
2Kavli Institute for Theoretical Physics, University of California, Santa Barbara, California 93106, USA

3Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, USA
~Received 2 December 2002; published 29 August 2003!

A general semiclassical approach to quantum systems with system-bath interactions is developed. We study
system decoherence in detail using a coherent-state semiclassical wave-packet method which avoids singularity
issues arising in the usual Green’s function approach. We discuss the general conditions under which it is
approximately correct to discuss quantum decoherence in terms of a ‘‘dephasing’’ picture and we derive
semiclassical expressions for the phase and phase distribution. Remarkably, an effective system wavefunction
emerges whose norm measures the decoherence and is equivalent to a density-matrix formulation.
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I. INTRODUCTION

The challenge of understanding to what extent a quan
system can retain its coherence in the presence of inte
tions with other degrees of freedom has attracted much
tention, because of recent advances in mesoscopic@1–3# and
cold-atom experiments@4,5# as well as keen interest in quan
tum computing, which depends crucially on quantum coh
ence@6,7#.

An essential ingredient in any discussion of cohere
and decoherence is the identification of a ‘‘system’’ and
‘‘bath’’ which interact with each other in such a way that
meaningful distinction can be made between the two. In
double-slit experiment, for example, the electrons~or other
quantum objects, e.g., ‘‘fullerenes’’@8#! are taken as the sys
tem and the degrees of freedom in the slits~phonons or
spins, for example! are taken as the bath. Because the exp
ment only involves detecting the interference pattern o
screen behind the slits, no direct measurement of the
~i.e., the slit degrees of freedom! is made.~Since one has no
knowledge of the state of the bath one must sum over
possible states of the bath, i.e., one ‘‘traces over the bat!
Only the system is directly observed. As is well known@9#, if
the bath detects the path of the particle no interference
tern will be seen; the particle has therefore decohered. On
other hand, if there is no or only partial detection of the p
of the particle by the bath, some interference pattern will
seen with its intensity reflecting the degree of coherence
the particle@9#. We will later show how these familiar state
ments appear in a very transparent way in our semiclass
formalism.

The problem of a quantum system interacting with
environment has been addressed many times in the litera
e.g., Ref. @10–12#. The Feynman-Vernon influence func
tional approach is well known, although its usefulness
yond the context of harmonic baths has been an issue.
influence functional approach to more realistic systems
been advanced significantly by Makri and Thomps
@13,14#, exploiting and developing coherent-state metho
with smooth kernels suitable for Monte Carlo samplin
However, the generality of their approach necessarily me
1050-2947/2003/68~2!/022112~10!/$20.00 68 0221
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some detailed insights and limiting cases are lost in the
chinery, so to speak.

Another approach is to make a semiclassical approxim
tion for the system-bath evolution. Casting the system-b
interaction and the decoherence problem in terms of se
classical wave-packet dynamics proves to be a useful
insightful exercise. Since a semiclassical approach is ba
on classical trajectories, one can present an intuitive pic
of the criteria for coherence and decoherence in a coup
system bath. One may imagine a more traditional van Vle
semiclassical Green’s function approach; however, this
the difficulty that caustic infinities abound in the van Vlec
prefactors due ultimately to the failure of the stationa
phase approximation in the limit of small action changes. F
example, suppose we consider a harmonic oscillator and
resent thenth stateun& semiclassically so that^xun& has sin-
gularities at the classical turning points for energyEn . Sup-

pose now we displaceun& slightly in position; call thisuñ&.
The semiclassical projections onto all of the original ba
states^nuñ& are completely wrong for small displacemen
All but one of the projections are incorrectly predicted to
zero since their classical manifolds do not overlap, wher
the overlap with the undisplaced original state is nearly s
gular. The same displacement of thenth harmonic-oscillator
state, expanded in terms of localized Gaussians, is quite
curate; it has no such difficulties. Slight displacements
system or bath states is commonplace in the decoher
problem, so we avoid the caustic difficulties by starting w
a wave-packet description, avoiding the singularities.
have called this the ‘‘oil on troubled waters’’ effect of usin
a wave-packet description@15#.

One of the insights that emerges from this approach
lates to recent discussions in the literature concerning
equivalence of a ‘‘bath overlap’’ picture of decoherence w
a ‘‘system dephasing’’ picture.~See Stern, Aharonov, an
Imry ~SAI! @12,16,3# and Feynman and Vernon@10#.! We
find that there are three main processes that contribut
decoherence:~i! phase jitter~ii ! bath overlap decay, and~iii !
shifts in the trajectory of the system wave-packet. We pres
explicit formulas for each of these effects within our sem
classical wave-packet description.
©2003 The American Physical Society12-1
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This paper is organized as follows. In Sec. II we deve
the main ideas of our paper and derive the general expres
for the coherence of a quantum system coupled to a gen
bath ~described by a density matrix!, Eq. ~13!. This expres-
sion can be recast in the form of a very intuitive effecti
system wave function, Eq.~14!, which makes transparent th
effects of system-bath interactions on the system~described
by the norm of the effective wave function!. In Sec. III we
study several important cases of Eqs.~13! and~14! in which
certain physical process~phase jitter, etc.! dominate the sys-
tem decoherence. In Sec. IV we summarize our main res
and conclusions. Important supplementary material is p
sented in the appendixes. In Appendix A we detail how
compute the equations of motion perturbatively for Guass
wave-packet dynamics and derive expressions needed in
main text. In Appendix B we sketch the arguments of Ste
Aharonov, and Imry@12# which equate ‘‘bath overlap’’ and
‘‘dephasing’’ in a special case system-bath interaction.

II. SEMICLASSICAL THEORY OF DECOHERENCE

We set out to construct a general formal context for de
herence, with the goal of reaching a useful and intuit
physical picture. The most general formal structure for de
herence~e.g., influence functionals for general anharmo
baths! would not involve semiclassical approximations, a
could claim formal exactness. However such formulatio
must necessarily miss the mark on the issue of ‘‘useful
intuitive.’’

It is helpful to have a specific model in mind. The mod
of a two-armed device already introduced and used, for
ample, in the work of Stern, Ahronov, and Imry@12# serves
that purpose well. In Fig. 1, a wave packet representing
system is coherently split into two pieces, one of which la
interacts with a bath. The degree of coherence can
checked experimentally by combining the packets~as in the
Aharonov-Bohm experiments of Ref.@17#!, although it is
more general to checkM[Tr@ r̂ red

2 #, where r̂ red is the re-
duced density matrix for the system, after tracing over
bath variables.

FIG. 1. A wave packet representing the ‘‘system’’ in a narro
waveguide is split coherently between two arms, one of which
teracts with a ‘‘bath.’’ Upon recombining on the other side, dec
herence due to the system-bath interaction affects the interfer
~or lack of it! between the two arms.
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An ambiguity in checking for interference fringes of th
recombined beams is illustrated by supposing that there
static potential maximum in the left arm but not the righ
and no system-bath interaction in either arm. This will cau
a time delay of the left wave packet compared to the right
no interference will result, even though the system is co
pletely coherent. There are ways to avoid this, such as ta
longer coherent wave trains initially for the system, but o
must be careful, and other ambiguities can arise.

On the other hand,M is simply 1 for a completely co-
herent system, and less than 1 if some decoherence has
place. For example, suppose we have a system wave pa
broken into two nonoverlapping but coherent pieces, i.e.c
51/A2(c l1c r), with ^c l uc r&50 and ^c l uc l&5^c r uc r&
51. Then the density matrixr̂ is

r̂5
1

2 (
i , j

uc i&^c j u, ~1!

with i andj taking on the valuesl andr. It is easily seen that
Tr@ r̂#5Tr@ r̂2#51, i.e., the system is completely coheren
However, if somehow the two partsl and r become com-
pletely decohered,~this in fact requires the action of mor
degrees of freedom—a bath! we lose the off diagonal ele
ments ofr̂, getting

r̄̂5 1
2 ~ uc l&^c l u1uc r&^c r u!. ~2!

Now we have Tr@ r̄̂ #51, but Tr@ r̄̂2#51/2.
This is not the end of decoherence for this system, if

left and right packets somehow undergo their own, ‘‘inte
nal’’ decoherence. This internal decoherence will happen
a much longer time scale than the decoherence of the
initially coherent wave packets because it is thedifferencein
the interactions that each wave packet experiences tha
termines the decoherence rate. This rate is almost alw
larger for two separated wave packets than for a given w
packet. All this is elementary, but it sets the stage for
more detailed work to follow.

Turning now to a discussion of our general problem o
system interacting with a bath, we cast our expression
terms of density matrices. The most general density ma
for a bath expressed in terms of Guassian wave packets

r̂bath5(
i , j

w~ i , j !uGi0&^Gj 0u, ~3!

where w( i , j ) satisfies all the properties necessary so t
r̂bath is a well-defined density matrix „Trbath@ r̂bath#
51,@w( i , j )#†5w* ( i , j )5w( j ,i ), etc.…. In the special case
of a pure state bath, we can writew( i , j )5wiwje

i (j i2j j )

where thewi are real, positive numbers and thej i are the
associated phases. The statesuGi0& are multidimensional
Gaussian wave packets representing the bath states. Exp
ing the bath states in Gaussians allows us to make us
very intuitive notions of classical mechanics~which guide
the wave-packet trajectories in the semiclassical approxi
tion! while at the same time permitting us to overcome te

-
-
ce
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SEMICLASSICAL THEORY OF COHERENCE AND DECOHERENCE PHYSICAL REVIEW A68, 022112 ~2003!
nical difficulties~singularities! in a more naive semiclassica
treatment with van Vleck propagators.

Assuming that we take our system be the wave pac
initially split into two coherent pieces as shown in Fig. 1, t
initial wave function of the system can be written as

ucsys&5
1

A2
~ ug0

l &1ug0
r &), ~4!

where the statesug0
r & and ug0

l & are the right~r! and left ~l!
Gaussian wave packets~coherent states! near regionA in Fig.
1. The density matrix for the system is thenr̂sys
5ucsys&^csysu. Expressed in terms of Eq.~4!,

r̂sys5
1
2 ~ ug0

l &1ug0
r &)~^g0

l u1^g0
r u!. ~5!

The total initial density matrix of the system and bath is th

r̂ tot~0!5 r̂sysr̂bath. ~6!

To study the decoherence of the system due to interact
with the bath, we must compute the time evolution of E
~6!. Our approach is to use the perturbative wave-packet t
evolution described in Appendix A. The key result is that t
state

~ ug0
l &1ug0

r &)uGi0& →
t ime

ug0t
l &uGit

l &1ugit
r &uGit

r &eif i, ~7!

whereugit
r ,(l )& is the wave packet of the system particle mo

ing in the right ~left! arm at timet if the bath was in state
uGi0& initially. The stateuGit

r ,(l )& is the perturbed wave packe
of the bath~according to Appendix A! at timet for a particle
moving in the right~left! arm where the bath was initially in
stateuGi0&. Note that since the particle in the left arm do
not interact with the bath,uGit

l &5uGit
0 & andugit

l &5ug0t
l &. The

phasef i is given by Eq.~A19!.
We emphasize that it is the local nature of the Gauss

wave packets combined with weak interactions that allo
us to write down Eq.~7! with a product statefor the piece of
the wave function that interacted with the bath on the ri
arm. This approximation actually becomes exact as\→0. It
is precisely the lack of ‘‘local entanglement’’@Eq. ~7! still
implies ‘‘global entanglement’’ of course# in the wave func-
tion that makes our approach conceptually convenient.
more general basis, we would have a sum of terms for
right arm piece of the wave function and it would be difficu
to identify physical phases of the type given by Eq.~A19!.

The total density matrix at later times thus becomes

r̂ tot~ t !5
1

2 (
i , j

w~ i , j !~ ug0t
l &uGit

l &1ugit
r &uGit

r &eif i)

3~^g0t
l u^Gjt

l u1^gjt
r u^Gjt

r ue2 if j !, ~8!

which can be rewritten as

r̂ tot~ t !5 r̂ l l ~ t !1 r̂ lr ~ t !1 r̂ rl ~ t !1 r̂ rr ~ t !, ~9!
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wherer̂ l l (t),r̂ lr (t), etc. have the obvious meaning. To stu
the coherence of the system, we trace over the bath deg
of freedom to obtain the reduced density matrix,

r̂ red[Trbath@ r̂ tot#5Trbath@ r̂ rr 1 r̂ rl 1 r̂ lr 1 r̂ l l #, ~10!

which yields, for example,

r̂ red
rl 5

1

2 (
i j

ugit
r &^g0t

l uw~ i , j !eif iOji
0r , ~11!

where

Oji
0r[^Gjt

0 uGit
r &, ~12!

with a similar expression forr̂ red
lr ~just the Hermitian conju-

gate ofr̂ red
rl ) and the other terms. The bath wave packetuGjt

0 &
has a superscript 0 to indicate that it is unperturbed from
trajectory if the system travels in the left arm. Note thatug0t

l &
does not interact with the bath and therefore does not
velop an indexi depending on the bath state.

When r̂ red is squared and traced over to obtain the de
herence measureM[Tr@ r̂ red

2 #, the terms

Mcoh[Tr@ r̂ red
rl r̂ red

lr 1 r̂ red
lr r̂ red

rl # ~13!

contain all the information on interarm coherence. The
give

Mcoh5
1

2 (
i j i 8 j 8

^gj 8t
r ugjt

r &w~ i 8, j 8!w~ j ,i !Oj 8 i 8n
r0 Oi j

0reif j 2 if j 8

[^CsysuCsys&, ~14!

with

uCsys&5
1

A2
(
i , j

w~ j ,i !Oi j
0reif j ugjt

r &. ~15!

Remarkably,Mcoh is the self-overlap of a~generally non-
normalized! effective system wave function. The emergen
of a wave function form is unexpected because we have
specified that the bath was initially in a pure state; it may
in a mixed state such as a thermal bath. We can check
~15! in the limit of no interaction with the bath: then, th
overlap factors are all unity, the phasesf j50, and all the
Gaussiansugjt

r & are the same~normalized! unperturbed state
ug0t

r &. Then,

uCsys&5
1

A2
(

i
w~ i ,i !ug0t

r &5
1

A2
ug0t

r &, ~16!

implying ^CsysuCsys&5Mcoh51/2, i.e., maximum coher-
ence.

Equations~14! and~15! are the central results of this se
tion and these are the main formulas of this paper. Th
apply to any bath~harmonic or not, pure state or mixed stat!
with weak system-bath coupling and any number of to
degrees of freedom.

Equation~14! states that the system coherence is de
mined by an effective system wave function with wav
2-3
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G. A. FIETE AND E. J. HELLER PHYSICAL REVIEW A68, 022112 ~2003!
packet overlap factorŝgj 8t
r ugjt

r &, bath overlap factorsOi j
0r ,

weighting factors~coming from the initial bath conditions!
w( j ,i ), and finally phase factorseif j . The phasesf j are
classical actions divided by\ and are given by Eq.~A19!.
The ‘‘system wave-function’’ overlap form, Eq.~15!, is es-
pecially convenient for intuition and computation. Decoh
ence shows up as a reduction in the norm of the system w
function. This comes about from any or all of three facto
bath overlap decay, phase jitter, and system wave packet
placement.

The are several more interesting facets of Eq.~14! deserv-
ing discussion. We will do this systematically, by consideri
important special cases that highlight aspects of this form

III. SPECIAL CASES OF DECOHERENCE

We begin our discussion of various limits by assumi
that the system overlaps and possibly also the bath over
are near unity. This regime is indeed accessible, since
classical action perturbation term isf i51/\dSt , wheredSt
is the action due to the perturbation along the unpertur
orbit. There is no doubt the action term can be large co
pared to 2p and vary widely, since the perturbing classic
action can be large compared to\. At the same time, the
wave packet displacement can remain small compared t
width, in both position and momentum space. Classical
tion changes are always accompanied by corresponding a
or volumes in phase space; if one plots the manifolds of
perturbed system exactly, then a phasef52p will be ac-
companied by a loop or area in phase space which is of
magnitude. However, the wave-packet width goes as;A\,
but the perturbing action increases as\21. Therefore, for
small enough perturbations and small enough\, we can
safely take the wave-packet overlaps to be 1, and focus
the phase terms.

Suppose that the system wave packetsugjt
r & are not dis-

placed by the interaction with the bath, then we have

^gj 8t
r ugjt

r &'1 ~17!

and Eq.~14! becomes

Mcoh5
1

2 (
i j i 8 j 8

w~ i 8, j 8!w~ j ,i !Oj 8 i 8
r0 Oi j

0reif j 2 if j 8

5
1

2 U(i , j w~ j ,i !Oi j
0reif jU2

[
1

2
umu2. ~18!

If our bath had initially been in apure state, w( j ,i )
5wjwi* so that

m5(
i j

wi* Oi j
0reif jwj5E dhx l* ~h!x r~h!, ~19!
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which is just a simple bath overlap. Herex r ( l ) is the state of
the bath if the particle went around the right~left! arm; h
represents the set of bath coordinates. This is the notatio
Appendix B.

In many physical situations, it may be the case that
largest contribution to the sum in Eq.~19! comes fromi
5 j . ~This might be the case because the bath overlapsOi j

0r

are small foriÞ j and/or because the off-diagonal terms
wi* wj oscillate in sign from term to term.! Making this ap-
proximation, we find

m'(
i

uwi u2eif iOii
0r . ~20!

This gives the interpretation ofMcoh as one-half the modu
lus squared of a phase factortimes a bath overlapaveraged
over different ‘‘runs,’’ or realizations of the bath, i.e.,

Mcoh5
1
2 u^eif iOii

0r&wi
u2. ~21!

From the system wave-function viewpoint, we have@in the
limit of Eq. ~17!#,

uCsys&5S 1

A2
(

i
uwi u2eif iOii

0r D ug0t&, ~22!

which lays the blame for decoherence entirely in the s
contained in the parentheses. This can be reduced in ma
tude by both bath overlap decay factors or by phase jitte

A. Nondynamical bath

An important special case to consider is that in which
bath does not have any dynamics of its own, the so ca
‘‘nondynamical’’ bath. The nondynamical bath limit emerg
by further settingOi j

0r5d i j in Eq. ~18! @or Oi j
0r51 in Eq.

~20!#, i.e., bath wave packets undisplaced by the interact
which would be the case indeed if the bath Hamiltoni
commutes with the bath-particle interaction potential. The

uCsys&5S 1

A2
(

i
uwi u2eif i D ug0t&. ~23!

The reduction of the norm~corresponding to decoherence! is
due entirely to phase jitter. In this case we have a compel
formula emerging, in the spirit of SAI~see Appendix B!,

E dhx l* ~h!x r~h!5(
i

uwi u2eif i[^eif i&, ~24!

where the phasef i is imparted with probabilityuwi u2: f i is
the phase acquired if the bath wave packet isuGi0& initially,
and this happens with probabilityuwi u2, the probability
weight of that wave packet in the initial bath. This formu
gives a concrete picture of the nondynamical bath limit, a
the origin of the phases that are averaged over: these
classical actions for the trajectory of the system-bath dyna
ics, divided by\. In terms ofMcoh, we have

Mcoh5
1
2 u^eif i&u2. ~25!

The limit of a nondynamical bath can also be achiev
~without the bath Hamiltonian commuting with the bat
particle interaction potential! by a high-temperature bat
2-4
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SEMICLASSICAL THEORY OF COHERENCE AND DECOHERENCE PHYSICAL REVIEW A68, 022112 ~2003!
whose wave-packet description involves mostly very exci
coherent states. Such coherent states are robust agains
overlap decay, unless large energy exchange is occur
This kind of nondynamical bath corresponds to class
states of the radiation field in a large cavity with high enou
temperature. It is well known that this situation is describ
quantum mechanically in terms of excited coherent state
the field oscillators. Such baths~or similarly, externally ap-
plied fields! tend not to contribute to decoherencevia a bath
overlap decay mechanism for weak coupling, but rather
sort of dephasing expressed by Eq.~24!.

B. Dynamical bath

More generally, we see from Eq.~18! that the decoher-
ence~still assuming little system displacement! arises from
two sources: phase decoherence and amplitude decohe
~due to uOii

0r u,1). The latter is caused by the bath wa
packets becoming displaced by interaction with the syst
In this case, it is less compelling to associate^eif i& with
( i uwi u2Oii

0reif i, since the overlap factors are not natura
written as integrals over phase factors, although one co
always do this, however absent of physical motivation. T
situation corresponds to SAI’s dynamical bath. The pres
formulation shows a pure phase average picture for this c
is somewhat forced. Bath wave-packet displacement~and in
the following section, system wave-packet displaceme!
thus emerges as a restraint on a pure dephasing pictu
decoherence.

The dynamical bath limit would be uninteresting if dec
herence is always dominated by dephasing. But lo
temperature baths are prime suspects for overlap deca
dominate dephasing effects. For example, if there is just
bath coherent state, e.g., as in aT50 bath whose true groun
state is described well by a single multidimensional coher
state, Eq.~14! becomes

Mcoh'
1
2 uO11

0r u2, ~26!

i.e., the decoherence is entirely caused by bath overlap
cay. This is true even if the system wave packet is stron
displaced, since the system wave packet simply overlap
self in Eq.~14! when there is but a single state in the sum
It is therefore possible to decohere from the zero tempera
initial state or a given single coherent state of the bath, du
bath overlap decay; however, at zero temperature this
quires degeneracies of the bath.

Here, it is especially clear that a phase average pictur
not natural for a dynamical bath: in this case there is o
one ‘‘quantum trajectory’’ so to speak, a single product wa
packet that describes the bath-system evolution in the r
arm. Equation~14! shows that the effect in this case is dec
herence due to a displaced bath wave packet.

C. System overlap decoherence

We now relax the artificial~though possible! condition
that the system overlap terms are essentially 1, i.e., the
tem wave packets can be significantly displaced by inter
ing with the bath. The concepts of a dynamical and a n
02211
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dynamical bath still apply; the question at hand now is
further role of system overlap decay in forming the coh
ence measureMcoh. We assume a nondynamical bath
make the analysis simpler; this means that bath wave-pa
self-overlaps are unity, and any decoherence can be bla
either on random phases~the dephasing limit! and/or on sys-
tem overlap decay. We now investigate the relative imp
tance of these two.

The relevant effective system wave function is then

uCsys&5
1

A2
(

i
uwi u2eif iugit

r &. ~27!

The self-overlap of this wave function is

Mcoh5
1

2 (
i j

uwi u2uwj u2eif i2 if j^gjt
r ugit

r &. ~28!

The phase and overlap contributions are manifest. It is
possible to give a general rendition of the relative importan
of phase and overlap contributions to this expression;
will depend on the system and bath under considerat
However, the diagonal terms always survive, even in
limit of strong kicking of the system wave packets.~We re-
mind the reader that even though our analysis was pertu
tive for the wave-packet displacements, in the sense of c
sical perturbation theory, the displacements can be stron
the quantum sense. ‘‘Strong’’ is measured by wave-pac
overlap decay, which can be severe even while classical
turbations are correctly giving the wave-packet displa
ments.~See Appendix A.! Restoring the bath overlap factor
for a moment, for the diagonal terms we get

Mcoh'
1

2(i
uwi u4uOii

0r u2<
1

2 (
i

uwi u4. ~29!

Since( i uwi u251,

(
i

uwi u4;1/N ~30!

is an inverse participation ratio, whereN is the number of
participating quantum states describing the bath. WhenN is
large, Eq.~30! predicts thatMcoh will be vastly smaller than
1/2, effectively meaning the system is completely decohe
in this limit. This is the limiting form in the strong system
kicking limit and makes physical sense: the broader the
tribution of quantum states in the initial bath measured byN
in Eq. ~30!, the more uncertain the ‘‘potential’’ felt by the
system~bath has a broad distribution of possible states! and
hence the greater the decoherence.

There remains a question, however: could the sys
overlap decay strongly as above without strong phase
domization, so that a pure dephasing picture would miss
When one considers, for example, the harmonic model,
conclusion is soon reached that for finite temperature it is
easy to strongly displace the system wave packets rando
without strong phase randomization.
2-5
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IV. CONCLUSIONS

In this paper, we have presented a semiclassical, w
packet-based formalism for decoherence. We have lim
ourselves to the case of a single-system wave packet
initially into two mutually coherent pieces, one of whic
interacts with a bath. We derive an expression for the m
sure of coherence in the system, Eq.~14!, which determines
the coherence in terms of wave-packet overlap fac
^gj 8t

r ugjt
r &, bath overlap factorsOi j

0r , weighting factors~com-
ing from the initial bath conditions! w( j ,i ), and finally phase
factorseif j . The phasesf j are classical actions divided by\
and are given by Eq.~A19!.

One perhaps surprising and potentially very computati
ally and intuitively useful aspect of our formulation is th
emergence of an effective system wave function, which m
sures the decoherence, Eq.~15!: Decoherence shows up as
reduction in the norm of the system wave function. Simi
ideas have been introduced in the context of a stocha
Schrödinger equation@18#.

After the derivation of the general formulas for the coh
ence of a quantum system interacting with a bath in Sec
we discuss several special limits of the interaction. In o
limit, discussed in Sec. III A, neither system nor bath wa
packets are significantly displaced by the interaction, bu
distribution of phases develops which decoheres the sys
This limit is naturally described as ‘‘dephasing’’ and is a
propriate to a number of physical situations where
system-bath interactions are quite weak. In Sec. III B a s
ation is discussed where system wave packets are barely
turbed but bath wave packets are significantly displaced
this limit, one can still force a random phase picture, but
identification with an average over random phase factor
more of a mathematical equivalence than a physically m
vated idea. Finally, if the system wave packet is stron
perturbed by the interaction, as in Sec. III C, a new decoh
ence mechanism sets in: system overlap decay. Such sy
disturbance is hardly rare or unlikely. Strong perturbation
the system can occur with or without significant bath d
placement.

Our perturbation treatment has certain similarities to l
ear response theory. For chaotic systems~expected for, say, a
liquid or gaseous bath! it could suffer the same criticism@19#
that the actual magnitude of the perturbation for which
formalism is valid is unreasonably small. However, it mig
benefit from the same saving graces as the linear resp
theory; namely, that ensembles of trajectories are better
haved than individual trajectories.

The distinction we are making between phase random
tion versus overlap decay has long been central within
context of spectroscopy of systems embedded in a bath~see,
e.g., Ref.@20#!. The concepts of ‘‘dephasing,’’ ‘‘depopula
tion,’’ and ‘‘pure dephasing’’ are traditional in spectroscop
Within the context of exponential decay, the relation

1

T2
5

1

2T1
1

1

T2*
~31!

is legion, whereT2 is the dephasing time,T1 is the depopu-
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lation time, andT2* is the pure dephasing time. The transl
tion of concepts into the present discussion is ‘‘dephasin
→ ‘‘decoherence’’; ‘‘pure dephasing’’→ ‘‘dephasing.’’ The
time T2 is typically the time constant for decay of the initia
wave function created by absorption of a photon, and is m
sured from the width of an absorption line.~If we had intro-
duced a tunnel coupling between the two arms of our mo
device, we could also have had a natural population dec
the probability of being in each arm. This is an interesti
subject for future study.!

The approach we have taken to decoherence is not lim
to the physical circumstances used here. The semiclas
wave-packet-perturbation approach should be applicable
wide variety of situations and physical measurables incl
ing electron decoherence in metals@21–24# and studies of
the classical-quantum correspondence@25#. We hope to pur-
sue some of these in the near future.
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APPENDIX A: COHERENT STATES AND GAUSSIAN
WAVE PACKETS

We present a brief review of Gaussian wave-packet
namics for our approach to the decoherence problem.
well known that the problem of the usual kinetic-energy o
erator with a time-dependent potential at most quadratic
the coordinates is exactly solvable, and is especially sim
in the case of initial wave functions which are Gaussia
these remain exactly Gaussian wave packets under time
lution.

We note that our goals extend far beyond such quadr
systems; we will see that a semiclassical approximation p
mits the use of quadratic form dynamics in more gene
contexts. We make use of the so-called ‘‘thawed Guass
approximation’’ @26–28# which employs the auxiliary vari-
ablesZ andPZ , whose dynamics are given by the equatio
below. The thawed Gaussian approximation allows one
approximate the potentiallocally as quadratic thus taking
advantage of the exactness of Gaussian propagation on
dratic potentials.

In a multidimensional form, a general Gaussian wa
packet is given by

c~q,t !5expH i

\
@~q2qt!

T
•At•~q2qt!1pt•~q2qt!1st#J ,

~A1!

whereAt is anN3N matrix for N coordinates describing th
stability of the center of the Gaussian wave packet, andqt ,
pt areN-dimensional vectors describing the position and m
mentum evolution of the center of the wave packet. We h
2-6
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introduced the more conventional wave-packet notationqt
5q(t), etc. Let the classical HamiltonianH5T1V have the
usual Cartesian kinetic-energy operator and a general t
dependent potentialV smooth at least up to quadratic ord
in the coordinates. The parameters of the Gaussian then
@29,30#

d

dt
qt5“pH, ~A2!

d

dt
pt52“qH, ~A3!

At5
1

2
PZ•Z21, ~A4!

d

dt S PZ

Z D 5S 0 2V9~ t !

m21 0 D S PZ

Z D , ~A5!

ṡt5Lt1
i\

2
Tr@ Ż•Z21#, ~A6!

whereLt is the usual classical Lagrangian. Integrating ov
time, we have

st5s01St1
i\

2
Tr@ ln Z#, ~A7!

where V9 and m21 are N-dimensional matrices of mixed
second derivatives of the Hamiltonian with respect to po
tion and momentum coordinates, respectively. That is,

@V9# i j 5
]2H

]qi]qj
, ~A8!

and so forth.St is the usual classical action. Equations~A2!–
~A6! hold for a general time-dependentV. We focus on the
stability equations, Eq.~A5!, which admit the solution

S PZt

Zt
D 5M ~ t !S PZ0

Z0
D , ~A9!

where

M ~ t !5T̂expF E t

K ~ t8!dt8G , ~A10!

and T̂ denotes the time ordering operator, needed becau

K ~ t !5S 0 2V9~ t !

m21 0 D ~A11!

does not commute with itself~in general! at different times.
M (t) is the usual classical stability matrix, whereM11
5]pt /]p0, etc.

Consider a narrow~in q) Gaussian wave packet center
on the classical positionq0 and momentump0 . Assuming a
reasonably smooth potential, let us expand aroundq0 up to
02211
e-

ey

r

i-

quadratic terms, arguing that the tails of the Gaussian
negligible where the Taylor expansion starts to break do
We use this quadratic form to propagate the packet in
next time instant. Thus the Gaussian will propagate in
next instant according to Eqs.~A2!–~A6!. If we agree to
move the center of the Taylor expansion to the moving m
position of the wave packet,qt , then Eqs.~A2!–~A6! will
hold, since the potential is now, by construction, a tim
dependent quadratic form. However, the interpretation
changed—the position and momentum parametersqt andpt
are now just exactly the usual classical trajectories on
exact, anharmonicpotential, but the distortion of thewave
packet is governed by the local quadratic expansionof the
potential—thus keeping the wave packet Gaussian@26#. We
illustrate the idea in Fig. 2.

In general this approximation breaks down after so
time due to wave-packet spreading, but that time can be
off as long as we please as\→0, since we can take a na
rower wave packet, with position and momentum uncerta
ties going asA\. This delays the spreading by at least
factor ;1/u ln \u in time ~for chaotic systems! @31–34#.

Since any quantum state~aside from spin states! can be
built out of Gaussians, we have a full semiclassical approa
exact as\→0. Each Gaussian is propagated with its ow
optimized time-dependent Hamiltonian.

The phasest of Eq. ~A7! is the usual action, taken alon
the guiding trajectory, modified by an extra term that tak
the place of a Maslov phase. This term evolves smoothly
time and therefore is another advantage of a wave-pa
approach as compared to the more troublesome eigenf
tions of Hermitian operators.

There are other approaches based on wave packets
share the smoothing property, such as a full semiclass
coherent-state propagator@35–37#. This differs from the
above Gaussian-wave-packet~GWP! method, in that the
propagator is optimized for both the initial Gaussian and
final Gaussian onto which it is projected. It is also the ‘‘nat
ral’’ semiclassical approximation if one retains stationa
phase as the defining idea while passing to a coherent-
basis. The coherent-state method is usually more accura
the same value of\ compared to GWP, but it suffers sever
complexities. Foremost among these is that complex cla
cal trajectories come in~albeit for real time!, with their at-
tendant analytical difficulties including Stokes lines. The
fore, we choose the GWP approach as a best comprom

FIG. 2. A Gaussian wave packet in an anharmonic potentia
approximately propagated by expanding the potential to quadr
order locally around the instantaneous center of the Gaussian.
2-7



m

rs
an
o

-b

t
f-
ith
th
it

he
a-
bu
th
q.

b

-

s t

a
he

the

nder

nge

far,

on
t

at a
ble
ses
bath
ticle
iva-
ent
ur

by

les
ith

ring

nd
ed
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between accuracy and complexity. In the semiclassical li
\→0, there is no accuracy compromise.

Perturbation theory may seem limited in scope at fi
glance, but we soon realize that strong interaction with m
bath degrees of freedom leads to such rapid and near c
plete decoherence that an analysis of the strong system
coupling regime seems a littlepost mortem. We therefore
focus our attention on the weak coupling limit.

In the setup in Fig. 1, we have a Hamiltonian given by

Ĥ5Ĥp1Ĥb1V̂[Ĥ01lV̂1 , ~A12!

whereĤp (Ĥb) is the Hamiltonian of the particle~bath! and
V̂ is the coupling between them. Suppose we have solved
Ĥ05Ĥp1Ĥb problem, and now we wish to include the e
fects oflV̂1, the system-bath interaction. In accordance w
perturbation theory, the first-order effect is determined by
extra potential felt by the wave packet as it travels over
old trajectory. Assuming this perturbation is smooth as
function of coordinates, we include only terms linear in t
interaction strength,l. We can include perturbations to qu
dratic order as well, at the cost of increased complexity,
we defer this for future work. A weak interaction with a ba
will show up in two ways in the wave packet given in E
~A1!: ~1! Changes to the guiding trajectory,qt andpt and~2!
changes to the phasest .

1. Perturbation of the guiding trajectory

Let q0(t) be the solution of theĤ0 problem for a particu-
lar trajectory. The first-order perturbed solution we take to
q(t)5q0(t)1ldq(t), p(t)5p0(t)1ldp(t). By substituting
this into Hamilton’s equations, we find thatdqt ,dpt obey

d

dt S dpt

dqt
D 5S 0 2V9~ t !

m21 0 D S dpt

dqt
D 1S f~ t !

0 D , ~A13!

wheref (t)52V18„q0(t)… is the time-dependent forcing func
tion. The solution is

S dpt

dqt
D 5M ~ t !S dp0

dq0
D 1M ~ t !E

0

t

M ~ t8!21S f~ t8!

0 D dt8

~A14!

5M ~ t !E
0

t

M ~ t8!21S f~ t8!

0 D dt8, ~A15!

sincedp05dq050 in the present circumstances, with

M ~ t !215T̂†expF2E t

K ~ t8!dt8G , ~A16!

andT̂† forces the reverse order of times, i.e., earliest time
the left in the series expansion ofM (t)21. Note that
(d/dt)M (t)215M (t)21K (t). Thus, the perturbation of a
general trajectory in classical mechanics generates a line
forced oscillator problem. This is not surprising, since t
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small additional potential creates small new forces on
particle near its old trajectory.

2. Perturbation of the phase

To see how the phase of the wave packet changes u
the perturbation, we examine

dst5dSt5dE ~T2V02lV1!dt8

5dE ~T2V0!dt82dE lV1dt8. ~A17!

We see the change comes in two parts. The first is the cha
in the ‘‘old’’ action ~it involves the oldV0) due to the new
trajectory. Assuming the new one has not wandered too
we have

dE ~T2V0!dt85lptdqt ~A18!

by the stationary principle of the action@the right-hand side
~RHS! of this equation is not zero since the perturbati
causes a drift in final position,ldqt .] Thus, the wave packe
phase change, to first order, is

f i5
dst

\
5

1

\
dE ~T2V02lV1! dt8

5l
ptdqt

\
2

l

\E V1„q0~ t8!…dt8. ~A19!

APPENDIX B: THE DEPHASING ARGUMENTS
OF STERN, AHARONOV, AND IMRY

Stern, Aharonov, and Imry~SAI! have argued@12,16# that
decoherence may be thought of as dephasing, i.e., th
quantum particle acquires a broad distribution of possi
phases so that its phase is ‘‘randomized’’ and thereby lo
coherence. SAI argue that decoherence due to shifting a
into an orthogonal state and decoherence due to a par
acquiring a broad distribution of possible phases are equ
lent. In this appendix we give the skeleton of their argum
in their original notation to provide a counter point for o
discussion in the body of this paper.

SAI consider a quantum particle~coordinatex) moving
around both arms of an Aharonov-Bohm ring threaded
magnetic flux with a bath~coordinateh) that only interacts
with the particle in the right arm as shown in Fig. 1. Partic
moving around the left arm are assumed not to interact w
the environment. The initial wave function is taken to be

c~ t50!5@ l ~x!1r ~x!# ^ x0~h!, ~B1!

and corresponds to the particle having just entered the
region ~near pointA in Fig. 1!, but not yet interacting with
the bath. Herel (x) „r (x)… is the initial particle wave function
on the left ~right! arm, assumed to be a wave packet, a
x0(h) is the initial state of the bath, assumed to be localiz
in the right arm. SAI then take a final wave function~near
point B in Fig. 1!

c~t!5 l ~x,t! ^ x l~h!1r ~x,t! ^ x r~h!, ~B2!
2-8
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wherex l(h) „x r(h)… is the state of the bath had the partic
gone around the left~right! arm @38#. SAI distinguish be-
tween ‘‘dynamical’’ and ‘‘nondynamical’’ environments
which either do or do not involve nontrivial dynamics o
their own, respectively. From Eq.~B2!, SAI obtain the result
that the interference term is~taking the trace over the env
ronment!

2ReF l * ~x!r ~x!E dhx l* ~h!x r~h!G , ~B3!

which allows one to interpret the reduction of the interfe
ence~loss of coherence! in terms of a reduction in the over
lap of the bath states for the two paths around the ring@39#.
SAI then argue that one can make the identification

^ei f̂&5E dhx l* ~h!x r~h!, ~B4!

where^ei f̂&[^x0uei f̂ux0& and where for nondynamical en
vironments the phase anglef is

f52E dtV@x~ t !#/\, ~B5!

with x(t) being the classical trajectory of the particle arou
the right ring arm@40#. For the case of dynamical environ
ments

^x0uei f̂ux0&5^x0uT̂expF2
i

\E0

t

dt8V̂I~ t8!G ux0&, ~B6!

whereV̂I(t8)5eiĤ bt8/\V̂e2 iĤ bt8/\ is the potential in the inter-
action representation andT̂ is the time-ordering operator. A
.

e

-

02211
-

nondynamical environment is distinguished from a dynam
cal one, in that the interaction picture operatorV̂I(t8) com-
mutes with itself at different times in the nondynamical ca
For a dynamical environment it is not generally possib
@12,41# to write down a simple relationship such as that e
pressed in Eq.~B5!. However, for a nondynamical environ
ment,

^ei f̂&5E dfP~f!eif, ~B7!

whereP(f)[ux0„h(f)…u2dh/df.
The central result of the work of SAI is the equivalen

expressed in Eq.~B4! which states that the reduction of Eq
~B3! can be viewed as either the shifting of the bath states
the two paths around the ring~due to the interactions in the
right arm of the ring! or as the particle on the interacting ar
being subject to an uncertain potential resulting in an unc
tain phase shift and hence a reduction in^ei f̂&.

The key approximation of SAI is the assumption that t
interaction in the right arm is weak enough to negle
changes in the trajectory of the particle, while still allowin
the bath to change in response to the presence of the par
This approximation eliminates entangling on the upper a
~the overall wave function is, of course, still entangled! and
results in the appearance of a direct product of bath state
the interference term, Eq.~B3!. This simplification is neces-
sary to reach a ‘‘pure dephasing’’ expression. In the gene
situation, the trajectory of the particle is in fact altered in t
interacting arm, which leads to entangling with the bath
dephasing effect not included in the SAI picture.
s.
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