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Quantum arrival times and operator normalization
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A recent approach to arrival times used the fluorescence of an atom entering a laser illuminated region, and
the resulting arrival-time distribution was close to the axiomatic distribution of Kijowski, but not exactly equal,
neither in limiting cases nor after compensation of reflection losses by normalization on the level of expecta-
tion values. In this paper we employ a normalization on the level of operators, recently proposed in a slightly
different context. We show that in this case the axiomatic arrival-time distribution of Kijowski is recovered as
a limiting case. In addition, it is shown that Allcock’s complex potential model is also a limit of the physically
motivated fluorescence approach and connected to Kijowski's distribution through operator normalization.
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[. INTRODUCTION Much more recently, the distributioilx has been related
to the positive operator valued measure generated by the
The quantum-mechanical analog of the arrival time of aeigenstates of the Aharonov-Bohmaximally symmetrig
particle at a given location is physically very interesting, andtime-of-arrival operatof1,16,29, and this method empha-
for wave packets which are spreading in space this is gizes the fact that self-adjointness is not necessary to gener-
highly nontrivial subject. It is a particular case of the descrip-agte quantum probability distributions. The distribution has
tion of time observables in quantum meChaniCS, i.e., times aglso been genera“zed for the case where the partic]e is af-
random instants—such as the arrival times—or durations, e.gected by interaction potentia]47—19 and for multiparticle
dwell or sojourn times. For recent reviews cf. Rdf%,2]. systemg 20].
Difficulties in the formulation of quantum arrival times and  vet, the status of Kijowski’s distribution has remained
attempts to overcome these were presented, e.g., in Refgnclear and controversifil,25,26. As an ideal distribution,
[3—28]. In particular, the lack of a self-adjoint arrival-time some of its properties or of its generalizations have been
operator conjugate to the free Hamiltonian lies at the core ofjuestioned[25] or considered to be puzzlinfL], and its
these difficulties. “operational” interpretation, apart from the approximate
Allcock [3] modeled a simplified detection procedure in ¢connection found by Allcock, has remained elusig&].
the regionx>0 by means of a complex absorption potential. In two recent paper$27,28:|' a procedure to determine
Because of reflection, he disregarded strong absorption angrival times of quantum mechanical particles has been dis-
only considered the weak absorption limit, in which the de-cussed, which is based on the detection of fluorescence pho-
tection takes a Iong time but all particles are eventually detons emitted when a two-level atom enters a laser-
tected. Under the assumption that the measured arrival-tim@uminated region. In general, due to partial reflection of the
distribution was a convolution of an ideal distribution and anatoms by the laser field, not all of them emit photons and
apparatus function, he suggested for the unknown ideal disyence some go undetected. Therefore, the measured distribu-
tribution anapproximatepositive expression, obtaining the tion of arrival times is not normalized to one. To normalize
(not semidefinite positiecurrent density as the exact solu- the distribution, division by its time integral was considered
tion. Somewhat pessimistically he argued that a fU”y SatiS'(“normaﬁzation on the level of expectation Va|ues”|n
factory, apparatus independent, arrival-time distributionsome cases this gave good agreement with the axiomatically
could not be defined. proposed distribution of KijowsKi4], and parameter regimes
In contrast, Kijowski[4] (cf. also Ref.[5]) pursued an where this agreement could be found were described. Analo-
axiomatic approach modeled on the classical case and olgous to Allcock’s absorption model, the current density could
tained as arrival-time distribution at=0 for a free particle  be obtained exactly in the weak laser driving limit by decon-
of massm coming in from the left with initial state(k) (k  volution, and strong driving was problematic because of the
is the wave numberan expression which, in the one- atomic reflection. The coincidence between the results of the
dimensional case, is given by simplified complex potential model and the more realistic
and detailed laser-atom model is not accidental and will be
4 5 2 explained below.
HK(t)z—f dkyr(k) ke Hkt2m| ) Also recently, Brunetti and Fredenhagg80] have pro-
2mm posed a general construction of an observable measuring the
“time of occurrence” of some event. This construction in-
Surprisingly, this coincides with the approximate expressiorvolved a unitary time development and a normalization pro-
suggested by Allcock3]. cedure on the level of operators, not on the level of expec-
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tation values. For this purpose they constructed a positive elkx 4 Rle—ikX)
, X

operator on the orthogonal complement of the states on 1 —igx <0

which the time of occurrence is infinite or zero and used its  Pk(X)= \/? Roe _ _

square root for normalization. This normalization procedure T Co ekt C_|n_)ek-x x=0,

was, in particular, applied to sojourn or dwell times. (4)
In this paper it will be shown that normalization on the

level of operators can also be applied to the approach t§/nere

arri_val_ times of Ref.[27] yvhich uses spontaneous photon q= \/m (5)

emissions and, as a technical device, a “conditional” nonuni-

tary time development. As a result we obtain quite simple k.= kZ—2m\. /% (6)

and explicit expressions. In particular, the physically attrac-
tive limit of strong laser field and fast spontaneous emissiowith Img>0, Imk. >0, and
can be performed and shown to exactly yield the axiomatic

distribution of Kijowski[4]. Ne=(—iyxiVy’—40%)/4, @)
In the following section we briefly review the results of 1

Refs.[27] and[28] and then calculate the operator normal- |)\+>:( ) ®)

ized arrival-time distribution. In Secs. Il and IV, fast spon- - 2N 1Q

taneous emission and strong laser fields are considered in ) ) )
different limits. Finally, a connection between the fluores-are eigenvalues and eigenvectors, respectively, of the matrix

cence approach and complex absorption models is exhibiteé}(f’2 ,iﬂy). The coefficientR,,R,,C, ,C_ follow from the
matching conditions at=0 as

Il. OPERATOR-NORMALIZED ARRIVAL TIMES Ri=[N:(q+ky)(k—k_)—N_(q+k_)(k—k.)]/D,

In the one-dimensional model of RgR27], a two-level ©
atom wave packet impinges on a perpendicular laser beam at R,=k(k_—k,)Q/D, (10)
resonance with the atomic transition. Using the quantum
jump approachi31] the continuous measurement of the fluo- C,=-2k(g+k_)N_/D, (12
rescence photons is simulated by a repeated projection onto
no-photon or one-photon subspace evérya time interval C_=2k(gq+k, )N, /D (12

large enough to avoid the Zeno effect but smaller than any i

other characteristic time. The amplitude for the undetectedith the common denominator

atoms i_n thg interaction picture for the intemal Hamiltqnian D=\, (q+k.)(ktk )—A_(q+k_)(k+k,). (13
obeys, in a time scale coarser théin and using the rotating

wave and dipole approximations, an effective Sdimger By decomposing an initial state as a superposition of eigen-
equation governed by the complex conditional Hamiltonianfunctions, one obtains its conditional time development. This
(the hat is used to distinguish momentum and position opis easy for an initial ground-state wave packet coming in

erators from the correspondirmgnumber$ from the far left side in the remote past. Indeed,
P2y Q. _ foo ~ —ihK2t/2m
He=5——ih 512)(2|+ - 00 (12)(1]+]1)(2]), (2 Y= | dkylloBdxe (19

describes the conditional time development of a state which
in the remote past behaves like a wave packet in the ground

state coming in from the left, witig(k), k>0, the momen-

where the ground stafd) is in vector-component notation
(3), the excited stat¢2) is (9), ©(x) is the step function,
and Q) is the Rabi frequency, which gives the mteracnontum amplitude it would have at=0 as a freely moving

strength with the laser field. o . .
Togobtain the time development undet, of a wave packet. The probabilitiN; of no photon detection up to time
¢ t is given by[31]

packet incident from the left, one first solves the stationary

equation N(t)=|| %, (15)
dM(x) and the probability densityI(t) for the first photon detec-
H®=E®,, where ®(x)=| (3 tion is given by
di7(X)
dN(t)
for scattering states with real energy H(t)=— dt - (16)
Ey=7%%Kk?/2m For the two-level system under consideration one Has

—HI=—iyh|2)(2|, and thus
which are incident from the leftkc>0). These are given by
27 (=l an
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The integral of the distributiodI(t) is, in general, smaller
than 1, in fact

fjc dt II(t)=1—N(), (18

and this was used in Rgf27] for normalization on the level
of expectation values.

In order to employ operator normalization we rewrite Eq.
(16) in operator form, and to do this we go to the interaction

picture with respect tdi,= p2/2m,

4 6 10
v =nhk/m (cm/s)

I _ aiHot/h —iHot /%
He=e" 0" (Hc—Ho)e Mo, FIG. 1. Operator normalization viewed as change of initial mo-
mentum distribution. Two Gaussian momentum wave packets with
(v)1=2 cmls, (v),=7 cm/s, Av;=Av,=0.48 cm/s, without

|- . . . (solid line) and with operator normalization fd2 =0.66y (dashed
whereU_ is the conditional time development COI"'GSpond'ngline) and Q= y (dot-dashed ling All figures are for the transition

to Hy. Then, Eq.(14) can be written as 62P4,— 62S,, of cesium withy=233.3x10° s~ L.
Wi=e MUt —=)|y)[1), (20

Ul(t,to) = Mot iHdt—tolhg—Hato/t  (19)

and B0 a5 U =) |)1) = | akgoR 01 -K)11). (29

N(t) = (L (#INi)|1), (2D Taking the scalar product with (s, — )| ¢)|1) one finds
with from Eq.(27), and ink space,
R,=UL(t, — o) TUl(t, — o0). (22) (1)(K[B|K")[1)=(1—Ry(K)Ry (k")) (k—k").  (30)
Similarly, Hence, on the incoming states, one can define the operator
TI(t) = (1|(y|TT| )| 1), (23 MMoN=B~Y21,87%2 (31)
with From Eqgs.(27) and(24) one sees that”_.dtlI>=1 and so
A dN(t) the probability distribution
th - T (24) - ON
OO =(L(YITIN 9)|1) (32
=yU(t, —)T[2)(2|U(t, — =). 25
7 V22U ) @9 is normalized to 1. From Eq$24) and(30) one finally ob-
In analogy to Eq(18) we consider the integral tains

f dt =1-N,, (26) HON(t)=yJw dx fdkdk’?p(_k)"fp(k’)

N _ 2711 _ "\ [27—1/2
and define the operat® on the incoming state@vith inter- X[1=[Ry(K)[*] 1= [Ry(K)|7]

nal ground statethrough its matrix elements as

(1 @lBl ) 1) = (1 {@|1- N.|p)|1). (27)

. 2 12 1 (2) o
@l (k2K )t/2m¢(k2)(x)¢(k2,)(x)_ (33

Since|R;(k)|<1, B is not only a positive operator but also
The operatoB can be easily calculated as follows. From Eq.its inverse square-root exists.
(14) one sees that for large the second component of  Operator normalization can be viewed as a change in the
W(x,t) is damped away and therefore only the reflectedncident momentum distributionj(k) by a factor of[1
wave remains: —|Ry(k)|?]~Y2. The effect of this factor on a Gaussian wave
. packet is shown in Fig. 1. For mean initial velocities of the
q'(x't):f dk}],(k)Rl(k)eikxefihkzt/2m| 1) (28  orderof cm/s, a single wave packet is multiplied by a nearly
0 constant factor. Only for very slow particles a1y, a
distortion of the packet occurs. In this region the amplifica-
for larget. Pullinge out from the integral as tion of the slow components by operator normalization leads
one sees, from Eq$20) and(22), that to an additional delay ofl°N(t) compared td1(t).

—ink?t/i2m —iHt/A
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Ill. THE AXIOMATIC ARRIVAL-TIME DISTRIBUTION
AS A LIMIT

In this section it will be shown that the operator-
normalized distributiol1°N(t) approaches Kijowski's axi-
omatic distribution for largey and Q, with y?/Q2= const.

We puta=\1-402/+? and find, for largey,

i
)\izz’y(—lia),

imy

q= P

(34

to leading order iny, where the constants; are given ex-
plicitly in the Appendix. From this one obtains

1 2my
1—-|R.(k 2711 1—|R, (K’ 279-12_ _— _
(1= R[] 1 Ry 2] 2 [ =

(35
and
e kK’ =
(2) () — —-i(g—
S RICL <x>—m[®<—x>03e amax
+0 [P 1 gk
0z < )¢
A ?
-1+ 5 e"- . (36)

ThenII®N(t) becomes, for larger andQ?/y?=const,

h ’v_~ . ,
oN(t) = mf dkdk' (k) l,b(k’)e'ﬁ('@*k 2)t/Zm\/W
1 2my (=
<aoN | o
1 1+«
N2
1+\/1_a ik_x2
2 e

@(—x)Cle (-

eiker

e )1602
X ———
C3 ¥

37)

Insertingg andk-. from Eq.(34) one sees that the expression

after X is independent ok andk’. One can inser€C; from
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FIG. 2. Good agreement d1°N (circles with I (solid line)
for large but finitey, y=10ycesium =0.33y. The initial Gauss-
ian wave packet is chosen to become minimal when its center ar-
rives atx=0 (in the absence of the lagep enhance the difference
between Iy and the flux (dotted ling; (v)=0.9 cm/s, Ax
=0.106 pm.

the Appendix and explicitly calculate the integral oxebut
it is easier to note that the term beforeis just Kijowski’'s
distribution, which is normalized to 1, and therefore the ex-
pression after< must equal 1.

Thus, it follows that

MION(t) —TI(t) for y—, ~?/Q?=const. (39

In Fig. 2 it is shown howIqy(t) approachedly for large
but finite .

IV. LIMIT OF LARGE € AND DECONVOLUTION

Experimentally,() is easier to adjust tham. Therefore,
we also consider the limit of larg@, with y held fixed. In
this case, one obtains

Q iy
Ne=F5 =7 (39
q=Vk’+imy/t, Im g>0, (40)
" +mQ+1 2 imy *h AT
SNEF K o [N @
R 1+(1-i)k f 42
1=—1+(1-1) Vma (42
R 1+i)k h 43
2=—(1+1i) N ma (43
to leading order in(). This yields
1 m{
1—|R. (K 27—-1/. 1—|R, (K’ 29-12__ —
[1—[Ry(K)[Z ]~ Y1~ [Ry(k")|?] le—ﬁkk,
(44)

and

022111-4
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hy Kk’

Y0P (0= 5 --{B(-x)2/ @+ 0(x)

X (— ie—ikix_ e—ik_,X)(ieik;x_ eika)}_
(45)

When integrating ovex, only the terme ™+ ~K')X contrib-
utes in leading order of), and this gives

h - ) ,
HON(t)—> 27Tmf dkdk’l/l(k) lr/j(kr)e|(ﬁ/2m)(k27k 2)'[

% KK 4

y+(inim)(k2—k'?)

(46)
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FIG. 3. Excellent agreement between the deconvoluted operator-
normalized distributior I,y (white circles and Il (solid line) for
large O =500y. TI°N is also shown before deconvolutiddashed
line). The initial wave packet is a coherent combination,

For y— one again obtains Kijowski's distribution, but for =2-Y2(y, + ), of two Gaussian states for the center-of-mass
finite y one has a delay in the arrival times. One can try tomotion of a single cesium atom that become separately minimal

eliminate this, as in Ref.27], by a deconvolutior{denoted
by *) with the first-photon distributioW(t) of an atom at
rest in the laser field, making the ansatz

ITON(t) =TT;g(t)* W(t) (47)
for an ideal distributiodI4(t). Clearly, W(t) denotes appa-
ratus resolution function, similar to Re¢B]. In terms of Fou-
rier transforms one obtains from the ansatz

i —ﬁON(V) (48)
d(v)= TOR
where[32]
y 2y 3 2
o) o2ty |1/+E(IV)Z+W(IV)3. (49)

From Eg.(33) one obtains
ﬁON(V)=yF dx fdkdw%@(k')[l
—[Ry(K) 7171~ [Ry(K") [P M2

X 0

i -
v o (ko= k'2>) A0 (x).
(50)

For largeQ) one has MW(v)=1+2iv/y. Inserting this into
Eq. (48) and using Eq(46) yields

~ h —
Tiyg(1)= 5 | AR DD
X sz( v— %(kZ—k'Z)), (51)

and therefore, for any value of and in the limit of strong
driving,

ITig(t) =TTk (1). (52

uncertainty packetéwith Ax;=Ax,=0.031um, and average ve-
locities (v);=18.96 cm/s, (v),=5.42 cm/s at x=0 and t
=2 us). The flux(dotted becomes negative at some place.

The convergence oll,y; to Kijowski's distribution is
shown in Fig. 3. In this example the flux, which is a limit of
a deconvoluted fluorescence distribution without operator
normalization[27], becomes negative.

V. CONNECTION WITH COMPLEX POTENTIALS

The above approach to arrival times, which was based on
photon emissions, has another interesting limit which estab-
lishes a connection with the complex-potential approach pro-
posed by AllcocK 3]. Consider now larger and{}, but with
Q?/y=const instead of)?/y? as before. Then, a little cal-
culation shows that in Eq14) the second componenmt?)
~ v~ Y2 while the first component goes to

WO (x, 1) = f:dk?b(me*i“z“zwk(x), (53

where
eikx+ Refikx
T, x=0,

Xx=0

¢k(X)=[

R_k_K
T k+k’

e

K=

(54)

From Eg. (53) one obtains thaty{") satisfies the one-
dimensional Schidinger equation
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d . . The advantage of the one-channel model is that it provides a
iﬁal//§l):[p2/2m—iVo®(X)]¢§l) (55  simple calculational tool for further, more complicated,
arrival-time problems, and that, by simple limits and opera-
with the complex potential-iV,0 (X). Sincey{?—0 one  tor normalization, it is related to the operational fluorescence
has, from Eq(15), approach as well as to the axiomatic distribution of Ki-
jowski.
N(O =412 (56)

and so, fromll(t) = —dN/dt together with Eq(55), VI. DISCUSSION

oV [ In Ref. [27] it had been pointed out that from the alge-
I(t)= TOJ dx|yM(x,1)|2. (57)  braic structure of the arrival-time distribution in the opera-
0 tional fluorescence model, it seemed impossible to obtain

This is consistent with Eq17) sincey| <ﬂ(2)|2 remains finite Kijowski’s distribution by considering a suitable limit since
t . % .
Equations(55) and (57) provide a connection with the one co_uld not produce the necessary t This Fern_w now
complex-potential model of Allcock where the particle ab-2/'S€s N the model through an operator normalization which

sorption rate is taken as a measure for the arrival time. ThiOrresponds to the normalization approach of i&g]. In
model is here seen to arise as a limiting case from the apgiiMmple, operational terms, this normalization can also be
proach of Ref[27]. It is also obtained by considering, some- Viewed as a modification of the initial state in such a way
what artificially, a position-dependent Einstein coefficientthat the detection losses, due, in particular, to a strong laser
y(x)=v0(x), and using an incoming state in the upperdriving, are compensated. Our results provide a crucial step
level, or from the irreversible detector model put forward bytowards understanding and clarifying the physical content of
Halliwell [11]. Kuowskl’s_ dlstrlbuuc.)n,. and, more preC|ser,_ egtab_hsh a set
The distribution in Eq(57) is again not normalized to 1, of operations and limits in which such a distribution could
and it is therefore natural to employ an operator normaliza&*actly be measured. In addition, it has been shown in this
tion. With the same arguments as in Sec. Ill, the operatorP@per that Allcock’s one-channel model, which was based on
normalized distribution is obtained as a somewhaad hoccomplex absorption potential, is in fact a
limiting case of the fluorescence model and also related to
Kijowski's distribution through operator normalization.

TON(t) = %j dxf dkdK G(k) (k) [1—|R(k)|?]~ 2 Instead of the operator-normalized expression of (Bd)
hJo one could also consider the expectation value of the not
X[1—[R(K')[2] Y2 (RO T(K) manifestly positive expressionil}=2%(B~I1,+ 11,87 1)

B whose time integral is also 1. Interestingly, in the limit
@i i(k2 =K 2)t2mg =i (k=" )x (59 — and Q2 y*=const, this yields for the distribution the
guantum-mechanical flud, discussed in Ref27].

In the limit of strong interactionVy,—~, one again finds In this paper we have concentrated on initial states with a

that this goes to Kijowski’s distribution: definite momentum sign, and freely moving particles. How-
ever, the approach can be carried over to a more general
ION(t) =TI (t) for Vo—oo. (590  setting and this will be investigated elsewhere.

APPENDIX: EXPLICIT EXPRESSIONS FOR Ci(a)

The constant€;(«a) in Egs.(34) and (36) are given by

2\2a+(1+a)¥—(1- a)*?

C1= Va1-a?+ Ja+ lla—1)+Vi1—-a(l+a) ’

—a2 o — —
o 2\2\1-?(V1+a—1-a) a2)

V1+a(V2+V1—a)(a—1)+V1—a(\2+V1+a)(a+1)’

(A1)

Com 5 [VIF a2+ VI= @) (a-1)+ I~ a(VZ+ VTF a@)(a+1)], (A3)

with a=1-407%/»2.
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