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Quantum arrival times and operator normalization
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A recent approach to arrival times used the fluorescence of an atom entering a laser illuminated region, and
the resulting arrival-time distribution was close to the axiomatic distribution of Kijowski, but not exactly equal,
neither in limiting cases nor after compensation of reflection losses by normalization on the level of expecta-
tion values. In this paper we employ a normalization on the level of operators, recently proposed in a slightly
different context. We show that in this case the axiomatic arrival-time distribution of Kijowski is recovered as
a limiting case. In addition, it is shown that Allcock’s complex potential model is also a limit of the physically
motivated fluorescence approach and connected to Kijowski’s distribution through operator normalization.

DOI: 10.1103/PhysRevA.68.022111 PACS number~s!: 03.65.Xp, 42.50.2p
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I. INTRODUCTION

The quantum-mechanical analog of the arrival time o
particle at a given location is physically very interesting, a
for wave packets which are spreading in space this i
highly nontrivial subject. It is a particular case of the descr
tion of time observables in quantum mechanics, i.e., time
random instants–such as the arrival times–or durations,
dwell or sojourn times. For recent reviews cf. Refs.@1,2#.
Difficulties in the formulation of quantum arrival times an
attempts to overcome these were presented, e.g., in R
@3–28#. In particular, the lack of a self-adjoint arrival-tim
operator conjugate to the free Hamiltonian lies at the core
these difficulties.

Allcock @3# modeled a simplified detection procedure
the regionx.0 by means of a complex absorption potenti
Because of reflection, he disregarded strong absorption
only considered the weak absorption limit, in which the d
tection takes a long time but all particles are eventually
tected. Under the assumption that the measured arrival-
distribution was a convolution of an ideal distribution and
apparatus function, he suggested for the unknown ideal
tribution anapproximatepositive expression, obtaining th
~not semidefinite positive! current density as the exact sol
tion. Somewhat pessimistically he argued that a fully sa
factory, apparatus independent, arrival-time distribut
could not be defined.

In contrast, Kijowski@4# ~cf. also Ref.@5#! pursued an
axiomatic approach modeled on the classical case and
tained as arrival-time distribution atx50 for a free particle
of massm coming in from the left with initial statec̃(k) (k
is the wave number! an expression which, in the one
dimensional case, is given by

PK~ t !5
\

2pm
U E dkc̃~k!Ake2 i\k2t/2mU2

. ~1!

Surprisingly, this coincides with the approximate express
suggested by Allcock@3#.
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Much more recently, the distributionPK has been related
to the positive operator valued measure generated by
eigenstates of the Aharonov-Bohm~maximally symmetric!
time-of-arrival operator@1,16,29#, and this method empha
sizes the fact that self-adjointness is not necessary to ge
ate quantum probability distributions. The distribution h
also been generalized for the case where the particle is
fected by interaction potentials@17–19# and for multiparticle
systems@20#.

Yet, the status of Kijowski’s distribution has remaine
unclear and controversial@1,25,26#. As an ideal distribution,
some of its properties or of its generalizations have b
questioned@25# or considered to be puzzling@1#, and its
‘‘operational’’ interpretation, apart from the approxima
connection found by Allcock, has remained elusive@27#.

In two recent papers@27,28#, a procedure to determin
arrival times of quantum mechanical particles has been
cussed, which is based on the detection of fluorescence
tons emitted when a two-level atom enters a las
illuminated region. In general, due to partial reflection of t
atoms by the laser field, not all of them emit photons a
hence some go undetected. Therefore, the measured dis
tion of arrival times is not normalized to one. To normali
the distribution, division by its time integral was consider
~‘‘normalization on the level of expectation values’’!. In
some cases this gave good agreement with the axiomatic
proposed distribution of Kijowski@4#, and parameter regime
where this agreement could be found were described. An
gous to Allcock’s absorption model, the current density co
be obtained exactly in the weak laser driving limit by deco
volution, and strong driving was problematic because of
atomic reflection. The coincidence between the results of
simplified complex potential model and the more realis
and detailed laser-atom model is not accidental and will
explained below.

Also recently, Brunetti and Fredenhagen@30# have pro-
posed a general construction of an observable measuring
‘‘time of occurrence’’ of some event. This construction in
volved a unitary time development and a normalization p
cedure on the level of operators, not on the level of exp
©2003 The American Physical Society11-1
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tation values. For this purpose they constructed a posi
operator on the orthogonal complement of the states
which the time of occurrence is infinite or zero and used
square root for normalization. This normalization proced
was, in particular, applied to sojourn or dwell times.

In this paper it will be shown that normalization on th
level of operators can also be applied to the approach
arrival times of Ref.@27# which uses spontaneous photo
emissions and, as a technical device, a ‘‘conditional’’ nonu
tary time development. As a result we obtain quite sim
and explicit expressions. In particular, the physically attr
tive limit of strong laser field and fast spontaneous emiss
can be performed and shown to exactly yield the axiom
distribution of Kijowski @4#.

In the following section we briefly review the results
Refs. @27# and @28# and then calculate the operator norm
ized arrival-time distribution. In Secs. III and IV, fast spo
taneous emission and strong laser fields are considere
different limits. Finally, a connection between the fluore
cence approach and complex absorption models is exhib

II. OPERATOR-NORMALIZED ARRIVAL TIMES

In the one-dimensional model of Ref.@27#, a two-level
atom wave packet impinges on a perpendicular laser bea
resonance with the atomic transition. Using the quant
jump approach@31# the continuous measurement of the flu
rescence photons is simulated by a repeated projection
no-photon or one-photon subspace everydt, a time interval
large enough to avoid the Zeno effect but smaller than
other characteristic time. The amplitude for the undetec
atoms in the interaction picture for the internal Hamiltoni
obeys, in a time scale coarser thandt, and using the rotating
wave and dipole approximations, an effective Schro¨dinger
equation governed by the complex conditional Hamilton
~the hat is used to distinguish momentum and position
erators from the correspondingc numbers!

Hc5
p̂2

2m
2 i\

g

2
u2&^2u1

\V

2
Q~ x̂!~ u2&^1u1u1&^2u!, ~2!

where the ground stateu1& is in vector-component notatio
( 0

1), the excited stateu2& is ( 1
0), Q(x) is the step function,

and V is the Rabi frequency, which gives the interacti
strength with the laser field.

To obtain the time development underHc of a wave
packet incident from the left, one first solves the station
equation

HcFk5EkFk , where Fk~x![S fk
(1)~x!

fk
(2)~x!

D ~3!

for scattering states with real energy

Ek5\2k2/2m

which are incident from the left (k.0). These are given by
@27#
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Fk~x!5
1

A2p H S eikx1R1e2 ikx

R2e2 iqx D , x<0

C1ul1&eik1x1C2ul2&eik2x, x>0,
~4!

where

q5Ak21 img/\, ~5!

k65Ak222ml6 /\ ~6!

with Im q.0, Imk6.0, and

l65~2 ig6 iAg224V2!/4, ~7!

ul6&5S 1

2l6 /V D ~8!

are eigenvalues and eigenvectors, respectively, of the m
1
2 (V

0
2 ig

V ). The coefficientsR1 ,R2 ,C1 ,C2 follow from the
matching conditions atx50 as

R15@l1~q1k1!~k2k2!2l2~q1k2!~k2k1!#/D,
~9!

R25k~k22k1!V/D, ~10!

C1522k~q1k2!l2 /D, ~11!

C252k~q1k1!l1 /D ~12!

with the common denominator

D5l1~q1k1!~k1k2!2l2~q1k2!~k1k1!. ~13!

By decomposing an initial state as a superposition of eig
functions, one obtains its conditional time development. T
is easy for an initial ground-state wave packet coming
from the far left side in the remote past. Indeed,

C~x,t !5E
0

`

dk c̃~k!Fk~x! e2 i\k2t/2m ~14!

describes the conditional time development of a state wh
in the remote past behaves like a wave packet in the gro
state coming in from the left, withc̃(k), k.0, the momen-
tum amplitude it would have att50 as a freely moving
packet. The probabilityNt of no photon detection up to time
t is given by@31#

N~ t !5uuCtuu2, ~15!

and the probability densityP(t) for the first photon detec-
tion is given by

P~ t !52
dN~ t !

dt
. ~16!

For the two-level system under consideration one hasHc

2Hc
†52 ig\u2&^2u, and thus

P~ t !5guuc t
(2)uu2. ~17!
1-2
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The integral of the distributionP(t) is, in general, smaller
than 1, in fact

E
2`

`

dt P~ t !512N~`!, ~18!

and this was used in Ref.@27# for normalization on the leve
of expectation values.

In order to employ operator normalization we rewrite E
~16! in operator form, and to do this we go to the interacti
picture with respect toH05 p̂2/2m,

Hc
I 5eiH 0t/\~Hc2H0!e2 iH 0t /\,

Uc
I ~ t,t0!5eiH 0t/\e2 iH c(t2t0)/\e2 iH 0t0 /\, ~19!

whereUc
I is the conditional time development correspondi

to Hc
I . Then, Eq.~14! can be written as

Ct5e2 iH 0t/\Uc
I ~ t,2`!uc&u1&, ~20!

and Eq.~15! as

N~ t !5^1u^cuN̂tuc&u1&, ~21!

with

N̂t5Uc
I ~ t,2`!†Uc

I ~ t,2`!. ~22!

Similarly,

P~ t !5^1u^cuP̂ tuc&u1&, ~23!

with

P̂ t52
dN̂~ t !

dt
~24!

5gUc
I ~ t,2`!†u2&^2uUc

I ~ t,2`!. ~25!

In analogy to Eq.~18! we consider the integral

E
2`

`

dt P̂ t512N̂` , ~26!

and define the operatorB̂ on the incoming states~with inter-
nal ground state! through its matrix elements as

^1u^wuB̂uc&u1&5^1u^wu12N̂`uc&u1&. ~27!

The operatorB̂ can be easily calculated as follows. From E
~14! one sees that for larget the second component o
C(x,t) is damped away and therefore only the reflec
wave remains:

C~x,t !.E
0

`

dkc̃~k!R1~k!eikxe2 i\k2t/2mu1& ~28!

for larget. Pullinge2 i\k2t/2m out from the integral ase2 iH 0t/\

one sees, from Eqs.~20! and ~22!, that
02211
.

.

d

Uc~`,2`!uc&u1&5E
0

`

dkc̃~k!R1~k!u2k&u1&. ~29!

Taking the scalar product withUc(`,2`)uw&u1& one finds
from Eq. ~27!, and ink space,

^1u^kuB̂uk8&u1&5~12R1~k!R1~k8!!d~k2k8!. ~30!

Hence, on the incoming states, one can define the ope

P̂ t
ON5B̂21/2P̂ tB̂

21/2. ~31!

From Eqs.~27! and~24! one sees that*2`
` dtP̂ t

ON51 and so
the probability distribution

PON~ t ![^1u^cuP̂ t
ONuc&u1& ~32!

is normalized to 1. From Eqs.~24! and ~30! one finally ob-
tains

PON~ t !5gE
2`

`

dx E dkdk8c̃~k!c̃~k8!

3@12uR1~k!u2#21/2@12uR1~k8!u2#21/2

3ei\(k22k82)t/2mfk
(2)~x!fk8

(2)
~x!. ~33!

SinceuR1(k)u,1, B̂ is not only a positive operator but als
its inverse square-root exists.

Operator normalization can be viewed as a change in
incident momentum distributionc̃(k) by a factor of @1
2uR1(k)u2#21/2. The effect of this factor on a Gaussian wa
packet is shown in Fig. 1. For mean initial velocities of t
order of cm/s, a single wave packet is multiplied by a nea
constant factor. Only for very slow particles andV@g, a
distortion of the packet occurs. In this region the amplific
tion of the slow components by operator normalization lea
to an additional delay ofPON(t) compared toP(t).

FIG. 1. Operator normalization viewed as change of initial m
mentum distribution. Two Gaussian momentum wave packets w
^v&152 cm/s, ^v&257 cm/s, Dv15Dv250.48 cm/s, without
~solid line! and with operator normalization forV50.66g ~dashed
line! andV5g ~dot-dashed line!. All figures are for the transition
62P3/2262S1/2 of cesium withg533.33106 s21.
1-3
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III. THE AXIOMATIC ARRIVAL-TIME DISTRIBUTION
AS A LIMIT

In this section it will be shown that the operato
normalized distributionPON(t) approaches Kijowski’s axi-
omatic distribution for largeg and V, with g2/V25const.
We puta[A124V2/g2 and find, for largeg,

l65
ig

4
~216a!,

q.Aimg

\
,

k6.qA17a

2
,

R1.212
2ik

g1/2
Ai\

m
C1~a!,

R2.2
k

g1/2
Ai\

m
C2~a!, ~34!

to leading order ing, where the constantsCi are given ex-
plicitly in the Appendix. From this one obtains

@12uR1~k!u2#21/2@12uR1~k8!u2#21/2.
1

4C1
A2mg

\kk8
~35!

and

gFk
(2)~x!Fk8

(2)
~x!.

\kk8

2pm H Q~2x!C2
2e2 i (q2q̄)x

1Q~x!
16

C3
2

V2

g2 US 11A11a

2 D eik1x

2S 11A12a

2 D eik2xU2J . ~36!

ThenPON(t) becomes, for largeg andV2/g25const,

PON~ t !.
\

2pmE dkdk8 c̃~k!c̃~k8!ei\(k22k82)t/2mAkk8

3
1

4C1
A2mg

\ E
2`

`

dx H Q~2x!C2
2e2 i (q2q̄)x

1Q~x!
16

C3
2

V2

g2 US 11A11a

2 D eik1x

2S 11A12a

2 D eik2xU2J . ~37!

Insertingq andk6 from Eq.~34! one sees that the expressio
after 3 is independent ofk andk8. One can insertCi from
02211
the Appendix and explicitly calculate the integral overx, but
it is easier to note that the term before3 is just Kijowski’s
distribution, which is normalized to 1, and therefore the e
pression after3 must equal 1.

Thus, it follows that

PON~ t !→PK~ t ! for g→`, g2/V25const. ~38!

In Fig. 2 it is shown howPON(t) approachesPK for large
but finite g.

IV. LIMIT OF LARGE V AND DECONVOLUTION

Experimentally,V is easier to adjust thang. Therefore,
we also consider the limit of largeV, with g held fixed. In
this case, one obtains

l6.7
V

2
2

ig

4
, ~39!

q5Ak21 img/\, Im q.0, ~40!

k6.A6
mV

\
6

1

2 S k21
img

2\ DA6\

mV
, ~41!

R1.211~12 i !kA \

mV
, ~42!

R2.2~11 i !kA \

mV
, ~43!

to leading order inV. This yields

@12uR1~k!u2#21/2@12uR1~k8!u2#21/2.
1

2
AmV

\kk8
~44!

and

FIG. 2. Good agreement ofPON ~circles! with PK ~solid line!
for large but finiteg, g510gCesium, V50.33g. The initial Gauss-
ian wave packet is chosen to become minimal when its center
rives atx50 ~in the absence of the laser! to enhance the difference
between PK and the flux ~dotted line!; ^v&50.9 cm/s, Dx
50.106mm.
1-4
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gFk
(2)~x!Fk8

(2)
~x!.

\g

2pm

kk8

V
$Q~2x!2ei (q̄2q8)x1Q~x!

3~2 ie2 i k̄1x2e2 i k̄2x!~ ieik18 x2eik28 x!%.

~45!

When integrating overx, only the terme2 i ( k̄12k18 )x contrib-
utes in leading order ofV, and this gives

PON~ t !→ \

2pmE dkdk8c̃~k!c̃~k8!ei (\/2m)(k22k82)t

3Akk8
g

g1~ i\/m!~k22k82!
. ~46!

For g→` one again obtains Kijowski’s distribution, but fo
finite g one has a delay in the arrival times. One can try
eliminate this, as in Ref.@27#, by a deconvolution~denoted
by * ! with the first-photon distributionW(t) of an atom at
rest in the laser field, making the ansatz

PON~ t !5P id~ t !* W~ t ! ~47!

for an ideal distributionP id(t). Clearly,W(t) denotes appa
ratus resolution function, similar to Ref.@3#. In terms of Fou-
rier transforms one obtains from the ansatz

P̃ id~n!5
P̃ON~n!

W̃~n!
, ~48!

where@32#

1

W̃~n!
511S g

V2
1

2

g D in1
3

V2
~ in!21

2

gV2
~ in!3. ~49!

From Eq.~33! one obtains

P̃ON~n!5gE
2`

`

dx E dkdk8c̃~k!c̃~k8!@1

2uR1~k!u2#21/2@12uR1~k8!u2#21/22p

3dS n2
\

2m
~k22k82! Dfk

(2)~x!fk8
(2)

~x!.

~50!

For largeV one has 1/W̃(n).112in/g. Inserting this into
Eq. ~48! and using Eq.~46! yields

P̃ id~n!5
\

2pmE dkdk8c̃~k!c̃~k8!

3Akk82pdS n2
\

2m
~k22k82! D , ~51!

and therefore, for any value ofg and in the limit of strong
driving,

P id~ t !5PK~ t !. ~52!
02211
o

The convergence ofP id to Kijowski’s distribution is
shown in Fig. 3. In this example the flux, which is a limit o
a deconvoluted fluorescence distribution without opera
normalization@27#, becomes negative.

V. CONNECTION WITH COMPLEX POTENTIALS

The above approach to arrival times, which was based
photon emissions, has another interesting limit which est
lishes a connection with the complex-potential approach p
posed by Allcock@3#. Consider now largeg andV, but with
V2/g5const instead ofV2/g2 as before. Then, a little cal
culation shows that in Eq.~14! the second componentc t

(2)

;g21/2 while the first component goes to

c (1)~x,t !5E
0

`

dkc̃~k!e2 i\k2t/2mfk~x!, ~53!

where

fk~x!5H eikx1Re2 ikx, x<0

Teikx, x>0,

R5
k2k

k1k
,

T5
2k

k1k
,

k5Ak21
2imV0

\2
, Im k.0,

V05
\V2

2g
. ~54!

From Eq. ~53! one obtains thatc t
(1) satisfies the one-

dimensional Schro¨dinger equation

FIG. 3. Excellent agreement between the deconvoluted opera
normalized distributionP id ~white circles! andPK ~solid line! for
large V5500g. PON is also shown before deconvolution~dashed
line!. The initial wave packet is a coherent combination,c
5221/2(c11c2), of two Gaussian states for the center-of-ma
motion of a single cesium atom that become separately mini
uncertainty packets~with Dx15Dx250.031mm, and average ve-
locities ^v&1518.96 cm/s, ^v&255.42 cm/s at x50 and t
52 ms). The flux~dotted! becomes negative at some place.
1-5
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HEGERFELDT, SEIDEL, AND MUGA PHYSICAL REVIEW A68, 022111 ~2003!
i\
d

dt
c t

(1)5@ p̂2/2m2 iV0Q~ x̂!#c t
(1) ~55!

with the complex potential2 iV0Q( x̂). Sincec t
(2)→0 one

has, from Eq.~15!,

N~ t !5uuc t
(1)uu2 ~56!

and so, fromP(t)52dN/dt together with Eq.~55!,

P~ t !5
2V0

\ E
0

`

dxuc (1)~x,t !u2. ~57!

This is consistent with Eq.~17! sinceguc t
(2)u2 remains finite.

Equations~55! and ~57! provide a connection with the
complex-potential model of Allcock where the particle a
sorption rate is taken as a measure for the arrival time. T
model is here seen to arise as a limiting case from the
proach of Ref.@27#. It is also obtained by considering, som
what artificially, a position-dependent Einstein coefficie
g(x)5gQ(x), and using an incoming state in the upp
level, or from the irreversible detector model put forward
Halliwell @11#.

The distribution in Eq.~57! is again not normalized to 1
and it is therefore natural to employ an operator normali
tion. With the same arguments as in Sec. III, the opera
normalized distribution is obtained as

PON~ t !5
2V0

\ E
0

`

dxE dkdk8c̃~k!c̃~k8!@12uR~k!u2#21/2

3@12uR~k8!u2#21/2T~k!T~k8!

3ei\(k22k82)t/2me2 i (k̄2k8)x. ~58!

In the limit of strong interaction,V0→`, one again finds
that this goes to Kijowski’s distribution:

PON~ t !→PK~ t ! for V0→`. ~59!
02211
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The advantage of the one-channel model is that it provide
simple calculational tool for further, more complicate
arrival-time problems, and that, by simple limits and ope
tor normalization, it is related to the operational fluorescen
approach as well as to the axiomatic distribution of K
jowski.

VI. DISCUSSION

In Ref. @27# it had been pointed out that from the alg
braic structure of the arrival-time distribution in the oper
tional fluorescence model, it seemed impossible to ob
Kijowski’s distribution by considering a suitable limit sinc
one could not produce the necessary termAk. This term now
arises in the model through an operator normalization wh
corresponds to the normalization approach of Ref.@30#. In
simple, operational terms, this normalization can also
viewed as a modification of the initial state in such a w
that the detection losses, due, in particular, to a strong la
driving, are compensated. Our results provide a crucial s
towards understanding and clarifying the physical conten
Kijowski’s distribution, and, more precisely, establish a s
of operations and limits in which such a distribution cou
exactly be measured. In addition, it has been shown in
paper that Allcock’s one-channel model, which was based
a somewhatad hoccomplex absorption potential, is in fact
limiting case of the fluorescence model and also related
Kijowski’s distribution through operator normalization.

Instead of the operator-normalized expression of Eq.~31!
one could also consider the expectation value of the
manifestly positive expressionP̂ t

J[ 1
2 (B̂21P̂ t1P̂ tB̂

21)
whose time integral is also 1. Interestingly, in the limitg
→` and V2/g25const, this yields for the distribution th
quantum-mechanical fluxJ, discussed in Ref.@27#.

In this paper we have concentrated on initial states wit
definite momentum sign, and freely moving particles. Ho
ever, the approach can be carried over to a more gen
setting and this will be investigated elsewhere.
APPENDIX: EXPLICIT EXPRESSIONS FOR Ci„a…

The constantsCi(a) in Eqs.~34! and ~36! are given by

C15
2A2a1~11a!3/22~12a!3/2

A2aA12a21Aa11~a21!1A12a~11a!
, ~A1!

C25
2A2A12a2~A11a2A12a!

A11a~A21A12a!~a21!1A12a~A21A11a!~a11!
, ~A2!

C35
1

2
@A11a~A21A12a!~a21!1A12a~A21A11a!~a11!#, ~A3!

with a[A124V2/g2.
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