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Quantum entanglement in photon-atom scattering
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Joint atom-photon states can become nonseparably entangled by momentum conservation in scattering
events. The consequences are open for observation in interference experiments in which one particle is used to
monitor the evolution of the other. We have previously quantified the degree of available recoil entanglement
in spontaneous emission, and present here the extensions to Rayleigh scattering and Raman scattering, with an
emphasis on the similarity among the three cases. It is found that such scattering processes have the potential
to create a higher degree of entanglement between the scattered photon and the recoiled atom than any reported
to date.
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I. INTRODUCTION

Quantum entanglement is a property shared by two
more quantum-correlated systems. Since Schro¨dinger intro-
duced his cat~macroscopic quantum interference! @1#, en-
tanglement has been a continuing subject of interest du
the development of quantum mechanics. It became the
tral topic in discussions of the completeness of quant
theory @2# after the famous paper of Einstein, Podolsky, a
Rosen@3#. It is found to be crucial in the decoherence pr
cess that accounts for the classical appearance of the m
scopic world@4#, as well as applications in quantum info
mation and computation@5#.

Photon entanglement is almost always discussed in fi
Hilbert spaces, e.g., the state-space for two orthogonal po
ization assignments used in Bell violation experiments@6,7#.
Here our interest is in the nature of entanglement in conti
ously infinite Hilbert space, as is needed to describe p
cesses such as single-photon emission with atomic recoil
infinite Hilbert space provides the entangled particles wit
wide range of quantum states. This makes high degree
entanglement possible.

Generally, entanglement generated by a dynamical p
cess originates from conservation laws. We concern o
selves here with the momentum conservation that correl
the linear momenta of an emitted photon and a recoil
atom. Such an entanglement can occur in interference ex
ments@8,9#. Related experimental work on atomic spontan
ous emission has also been reported@10#, but we have al-
ready shown that one can realistically expect very lit
entanglement in this case@11#.

Now we extend our treatment of entanglement in spon
neous emission to the closely related processes of spon
ous Raman and Rayleigh scattering@12# as shown in Fig. 1.
In this paper, we show that much stronger entanglement
be achieved in Raman and Rayleigh scattering, compare
spontaneous emission, and we explain why.

We first give a theoretical framework for the analysis
entanglement in atom-photon scattering and a review of
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recoil effect on spontaneous emission. Then the joint ato
photon probability amplitudes of Raman and Rayleigh sc
tering are derived. We introduce the Schmidt decomposit
@13# to provide a detailed analysis following the approach
previous studies of frequency-entangled down-convers
photons@14#. Since the three processes considered in
paper share similar features in their joint atom-photon sta
one can analyze their entanglement collectively.

II. THEORETICAL FRAMEWORK

Quantum entanglement of scattering events is a reflec
of the Hilbert space structure of the system. In order to
termine the momentum entanglement of the atom and
scattered photon, we need to find the distribution of the m
menta of the two particles after the interaction. This is co
veniently accomplished in the Schro¨dinger picture. All the
information about the Hilbert space is contained in the jo
probability amplitudeC(q,k), where q and k denote the
wave vectors of the atom and the photon after the interact

Let P̂ and R̂ denote the center-of-mass momentum a
position operators of the atom with massM. Suppose also
that the internal atomic states are given byu j & with energies
Ej . The Hamiltonian of the system is written as

Ĥ5
P̂2

2M
1(

j
Ej u j &^ j u1(

s
E d3k\vkâks

† âks2d̂•E~R̂,t !.

~1!

FIG. 1. The three models that involve atom-photon entang
ment:~a! spontaneous emission,~b! Raman scattering, and~c! Ray-
leigh scattering.
©2003 The American Physical Society10-1
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The first two terms are the kinetic energy and the inter
electronic state energy of the atom. The third term is
quantized electromagnetic field energy and the last term
the atom-field interaction in dipole approximation withd̂ de-
noting the dipole moment operator of the atom. The elec
field has possibly both classical and quantum elements:

E~R̂,t !5E~ t !~ei (kL•R̂2vLt)1e2 i (kL•R̂2vLt)!

1(
s
E d3kiA \vk

2e0~2p!3

3~ekse
ik•R̂âks2eks* e2 ik•R̂âks

† !. ~2!

The first term represents a classical incident field and
second term is the quantized field which is responsible
spontaneous emission or scattering. Hereaks andaks

† are the
annihilation and creation operators of the quantized elec
magnetic field with photon wave vectork and polarizations,
which obey the commutation relation@aks ,ak8s8

†
#5dss8d(k

2k8).
Before spontaneous decay or interaction with the la

the electromagnetic field state is the vacuumu$0%& and the
atom is prepared in some initial stateua& with center-of-mass
momentum distribution given bya0(p), where\p is the mo-
mentum of the atom. We can write the joint atom-field st
in a separable form

uC~ t50!&5S E d3pa0~p!up,a& D ^ u$0%&

[E d3pa0~p!up,a;$0%&. ~3!

When the emission or scattering process is completed,
atom recoils while emitting a photon. The two particles
apart from each other and have no more interaction. H
ever, they are entangled. Their joint probability amplitu
C(q,k) describing their momenta after the interaction is n
factorable, i.e.,C(q,k)Þ f 1(q) f 2(k). Hence the state is writ
ten as a double and continuously infinite nonseparable
of joint atom-photon states

uC~ t→`!&5(
s
E d3qE d3kC~q,k!uq,c;1ks&, ~4!

whereuc& is the final internal~electronic! state. Note that the
photon polarization indexs for the amplitudeC(q,k) has
been suppressed since we are only interested in the con
ous variablesq andk. We shall choose a particular polariz
tion in detecting the photon and the explicit form ofC is
unaffected.

III. SCHMIDT DECOMPOSITION

Schmidt decomposition is one of the methods used
quantify the degree of entanglement of a bipartite system
a pure state@13#. By applying the decomposition, the amp
02211
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tudeC(q,k) can be converted into a discrete sum of factor
products uniquely:

C~q,k!5(
n

Alncn~q!fn~k!, ~5!

whereln andfn(k) are the eigenvalues and eigenfunctio
of the integral equation

E d3k8rF~k,k8!fn~k8!5lnfn~k!, ~6!

with the photon density matrix defined by

rF~k,k8![E d3qC~q,k!C~q,k8!* . ~7!

Because thel ’s are the eigenvalues of the photon dens
matrix, we have(ln51, and thef(k)’s form a complete
orthonormal set of photon wave functions.cn(q) is the cor-
responding normalized atom eigenfunction related tofn(k)
through

cn~q!5
1

Aln
E d3kC~q,k!fn~k!* . ~8!

It is equally good to obtain all the eigenvalues and eig
functions through the atom density matrix, and they are
same as those derived from the photon density matrix. Eq
tion ~8! serves to fix the relative phase of the atom and p
ton eigenmodes.

The decomposition in Eq.~5! has three important proper
ties. First, as noted above, it provides a complete set of
thonormal functionsfn(k) for the photon specific to the
emission or scattering process. Second, it pairs an a
modecn(q) with its photon counterpartfn(k) in a unique
way. Third, the basis of the decomposition is explicitly d
crete, in contrast to the original continuous momentum sp
bases used to describe the state vector.

Naturally discreteness allows the Schmidt modes to
counted. Now the eigenvalues can be ordered accordin
l1>l2>l3>•••, and the degree of entanglement of t
two systems is obviously related to the number ofl ’s that
are ‘‘important.’’ As a numerical measure of entangleme
we will use the so-called Schmidt number@5# or participation
ratio, denoted byK @15#:

K[
1

(
n

ln
2
>1. ~9!

As an example, ifK51, the Schmidt sum has only one ter
and the state is not entangled. On the other hand, if there
N states all withln51/N, thenK5N. This explains whyK
is called the Schmidt number: it counts the states that
significant in making upuC&. It is this last feature that make
the Schmidt number more useful than other measures of
tanglement~such as entropy!. The number of active or im-
0-2
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portant modes can be an essential parameter for an ex
menter wanting to know how many modes to prepare
when designing a laboratory setup.

We now study the three photon-atom interactions: spo
neous emission, Rayleigh scattering, and Raman scatte
The strong analogies among them enable us to analyze
entanglement information together.

IV. SPONTANEOUS EMISSION

The first model to analyze is spontaneous radiative de
as sketched in Fig. 1~a!. The Hamiltonian that describes th
free-space spontaneous emission of a two-level atom
massM, transition frequencyv0, and ground state and ex
cited stateug& and ue& can be written as

Ĥ5
P̂2

2M
1\v0ue&^eu1(

s
E d3k\vkâks

† âks

1\(
s
E d3k@gs~k!ug&^euâks

† e2 ik•R̂1H.c.#. ~10!

Note that the ground-state energy of the atom is set to z
The coupling strength is expressed asgs(k)
5 iAvk/2\e0(2p)3eks•dge , with eks and dge denoting the
polarization of the photon and the dipole matrix element
the atom.

Initially the atom is prepared in the excited state. Then
atom recoils while dropping into the ground state. At t
time t@g21 whereg is the natural decay rate of the upp
atomic level, the state of the system can be written as

uC~ t !&→(
s
E d3qE d3kC~q,k!e2 i (Tq1kc)tuq,g& ^ u1ks&.

~11!

Here we denote the state of the decayed atom with fi
momentum\q by uq,g& and that of the emitted photon wit
wave vectork by u1ks&. The joint amplitudeC(q,k) gives the
correlation between the two particles.

According to Rza¸żewski and Z˙akowicz @16#, the ampli-
tude is given by

CSE~q,k!5
gs~k!a0~q1k!

Tq2Tq1k1kc2v01 ig
, ~12!

which is not factorable. Now we take the initial momentu
distribution of the center of mass of the atom in its excit
state to have a Gaussian shape with widthsp :

a0~p!5
1

Apsp

expF2S p

sp
D 2G . ~13!

Such a momentum distribution corresponds to an atom
pared in a thermal state with zero initial mean velocity. T
symbolTp[(\p)2/2M\ is a shorthand for the kinetic energ
of the atom with momentum\p in frequency units.

The absolute square ofCSE(q,k) tells us the probability of
finding the atom and photon having wave vectorsq and k.
02211
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The fact that this expression of the joint amplitude cannot
written as a product of two functions, each of which involv
k or q alone, means that the photon and the atom are
tangled in the final stage of emission.

V. RAMAN AND RAYLEIGH SCATTERING

Similar to the single-photon spontaneous emission con
ered in the last section, Raman and Rayleigh scattering
give rise to entangled atom-photon pairs enforced by m
mentum conservation. We shall consider them in greater
tail in this section. The main difference now is the introdu
tion of a pump field to excite the atom.

As usual, we have in mind that Raman and Rayleigh sc
tering both occur without populating the upper atomic lev
~to avoid encountering the case of fluorescence again!, and
so we will always take the detuning of the pump field fro
its one-photon resonance to be much larger than the u
level linewidthg.

The schematic diagrams of Raman and Rayleigh sca
ing are shown in Figs. 1~b! and 1~c!. These two processes ar
similar except that the former is inelastic while the latter
elastic. One can treat these two processes together whe
final state of the atom is taken care of.

The Hamiltonian of Raman scattering is

Ĥ5
P̂2

2M
1Eaua&^au1Ebub&^bu1Ecuc&^cu

1(
s
E d3k\vkâks

† âks2d̂•E~R̂,t !, ~14!

in which the electric field is given by Eq.~2!. For Rayleigh
scattering, one can simply drop the termEcuc&^cu in Ĥ.

At the same time, we restrict the state of the system to
for Raman scattering,

uC~ t !&Ram5E d3pa~p;t !ua,p;$0%&1E d3pb~p;t !ub,p;$0%&

1(
s
E E d3pd3kc~p,k;t !uc,p;1ks&, ~15!

whereas for Rayleigh scattering

uC~ t !&Ray5E d3pa~p;t !ua,p;$0%&1E d3pb~p;t !ub,p;$0%&

1(
s
E E d3pd3kc~p,k;t !ua,p;1ks&. ~16!

Physically, it means that our analysis is confined to a tw
photon process, i.e., the atom, initially in a stable stateua,p&,
is excited toub,p& by the laser beam and emits a photonu1ks&
upon going to another stable stateua,p& or uc,p&. The non-
resonant two-photon process involving intermediate state
an excited atom with an emitted photon is neglected.
shall consider the Raman scattering first and give the re
for Rayleigh scattering at the end of this section.
0-3
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For Raman scattering, the equations of motion of the a
plitudes can be simplified by using the slowly varying va
ablesu, v, andw:

a~p;t !5u~p;t !exp@2 i ~Tp1va!t#,

b~p;t !5v~p;t !exp@2 i ~Tp2kL
1va1vL!t#,

c~p,k;t !5w~p,k;t !exp@2 i ~Tp2kL1k1va1vL!t#.

Under the rotating-wave approximation, the equations
motion become

u̇~p;t !5
i

2
V~ t !v~p1kL ;t !,

v̇~p1kL ;t !52 iD bav~p1kL ;t !1
i

2
V~ t !* u~p;t !

2(
s
E d3kgs~k!w~p1kL2k,k;t !,

ẇ~p1kL2k,k;t !52 iD ca
k w~p1kL2k,k;t !

1gs* ~k!v~p1kL ;t !,

where gs(k)5 iAvk/2\e0(2p)3eks•dbc and V(t)
[2dab•E(t)/\ are the coupling strength and Rabi frequen
The generalized detuning frequenciesDba and Dca

k are de-
fined as

Dba5Tp1kL
2Tp1vba2vL

and

Dca
k 5Tp1kL2k2Tp1vca2vL1vk .

In the Born-Markov approximation,v(p1kL ;t8).v(p
1kL ;t)eiD ba(t2t8). This gives

v̇~p1kL ;t !52 i ~Dba8 2 ig!v~p1kL ;t !1
i

2
V~ t !* u~p;t !,

where Dba8 5Dba2De. The frequency shift and linewidth
De andg are explicitly given by

De5(
s

ugsu2S P
Tp1kL2k2Tp1kL

1vcb1vk
D

and

g5(
s

pugsu2d~Tp1kL2k2Tp1kL
1vcb1vk!.

Note that according to the remark at the beginning of t
section, we haveuDu@g, De for both Dba andDca

k .
For weakV(t), an adiabatic solution is appropriate fo

v(p1kL ;t):
02211
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v~p1kL ;t !.
V~ t !*

2~Dba8 2 ig!
u~p;t !.

As a result, for a long-pulse or continuous-wave laser, i
V(t)'V5const, we have these solutions

u~p;t !5a0~p!e2Rt,

v~p1kL ;t !5
V* a0~p!

2~Dba8 2 ig!
e2Rt,

w~p1kL2k,k;t !5
2 igs~k!* V*

2~Dba8 2 ig!
F a0~p!

Dca
k 2 iR

G ,

3$e2Rt2e2 iD ca
k t%, ~17!

in which we have introduced the complex absorption rateR
in a weak field:

R5
uVu2

4 S 1

g1 iD ba8
D . ~18!

We are interested in the entanglement of the scatte
photon and the recoiled atom. Therefore, when a photo
scattered, i.e.,t@uRu21.u2Dba8 /Vu2g21,

c~q,k;t !→ igs~k!* V*

2~Dba8 2 ig!

a0~q1k2kL!

Dca
k 2 iR

e2 i (Tq1vc1vk)t,

~19!

where the recoil wave vector of the atomq5p1kL2k is
used. For Raman or Rayleigh scattering, the detuningD
[vba2vL is much larger than the natural linewidthg, and
the recoil is a small perturbation. Moreover, the fac
1/(Dba8 2 ig) appearing in Eq.~19! is not a resonant term; we
can treat it as a smooth function ofq and k. Consequently,
Eq. ~19! can take a simpler form

CRam~q,k!5
Gs~k!a0~q1k2kL!

Tq2Tq1k2kL
1~kc2vL!2ṽac1 iU V

2DU2

g

,

~20!

in which Gs(k)[ igs(k)* V* /2(D2 ig). Note that the time-
dependent phase has been taken away since it does not
tribute to entanglement, and we have introduced the St
shifted transition frequencyṽac[vac2uVu2/4D. Now Eq.
~20! looks very similar to Eq.~12! if we define the effective
photon wave vector and frequency

Dk[k2kL

and

Dv[kc2vL , ~21!
0-4
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and identify vac and uV/2Du2g with v0 and g. We shall
discuss this point in more detail in the following section. F
Rayleigh scattering, it is not difficult to get a similar resu

CRay~q,k!5
Gs~k!a0~q1k2kL!

Tq2Tq1k2kL
1S kc2vL1

uVu2

4D D1 iU V

2DU2

g

.

~22!

The initial momentum distributiona0(p) can be modeled by
the same Gaussian distribution as in Eq.~13!.

VI. DETECTION OF THE ATOM AND THE PHOTON

The three-dimensional models presented in the prev
sections are difficult to tackle. Here we simplify the proble
by restricting our attention to the detection of the phot
wave vectork in a fixed direction with respect to the ato
wave vectorq ~see Fig. 2!. Such a setup is intended to su
gest a class of possible experiments.

After dropping the notation of the final state, the phot
1atom state is written as

uCu&5E dqE dkCu~q,k!e2 i (Tq1kc)tuq;1k&. ~23!

As mentioned by the end of Sec. II, we assume that
photon is detected in a particular polarization state and so
index s in Cu is now a given parameter. For spontaneo
emission, according to Eq.~12!, if we set q̂• k̂5cosu, the
amplitude reads as

Cu
SE~q,k!5

Ne2[q212kq cosu1k2]/sp
2

2\

2M
~2qk cosu1k2!1kc2v01 ig

. ~24!

The factorN5gs(k)/Apsp is a slowly varying function ofk
since the probability amplitude is confined in a narrow wid
governed by the radiative rateg which is much smaller than
the resonant frequency. Therefore we can simply regardN as
a constant.

FIG. 2. Schematic diagram of the detection of the atom and
photon.
02211
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It is noticed that the Compton wave vectorMc/\ for the
atom is the largest relevant measure of momentum by a w
margin, and the decay ‘‘wave vector’’g/c is the smallest. We
have this set of inequalities among wave vectors

Mc/\@v0 /c, sp , q, k@g/c, ~25!

and we will use them to reduce the complexity of theq and
k dependences ofCu(q,k).

First, the narrow width of the sharp decay resonance
the denominator ofCu allows us to replacek by k05v0 /c in
the very small first term in the denominator, which becom

2\

2M
~2k0q cosu1k0

2!1kc2v01 ig,

so that the amplitude is approximated as

Cu
SE~q,k!.

Ne2[q212kq cosu1k2]/sp
2

2qvR cosu1kc2S v01
\k0

2

2M D 1 ig

, ~26!

with vR[\k0 /M denoting the mean recoil velocity of th
atom. Note the symmetric role played by the variablesq and
k in Eq. ~26!. Second, we focus on the case whenspc@g
~one may also consider the other extreme in whichspc
!g) and so the same step can be applied to the expone

expF2
~q1k0 cosu!21~k0

2!sin2u

sp
2 G .

Third, we adopt a uniform normalization to the radiativ
width g and define the ‘‘reduced’’ wave vectors

dq[
vR

g
~q1k0 cosu!,

dk[
1

g S kc2v01
\k0

2

2M
cos 2u D . ~27!

Then the final expression can be written as

Cu
SE~q,k!.

N8exp~2dq2/h2!

dk2dq cosu1 i
, ~28!

where

N85
N

g
expF2S k0 sinu

sp
D 2G ,

andh is a control parameter defined as

h[
\k0sp

Mg
. ~29!

Note thath contains all the physical parameters that det
mine the nature of the atomic system. As shown in Eq.~28!,
it controls the range of values of the scaled variabledq that
give significant contributions to the probability amplitud

e

0-5
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Thus h serves as an ‘‘observability index.’’ If we write
\sp /M as velocity dispersionsv and replacesv /c by
sv /v0 ~the corresponding relative Doppler width of th
atomic transition that would be associated with the veloc
spread!, we geth5sv /g, which can then be interpreted a
the ratio of motional to radiative linewidths. We shall al
see that it is directly related to the participation ratioK.

Equation~28! represents a general class of two-body a
plitudes associated with atomic spontaneous decay. The
relation between the photon and the atom enters through
Lorentzian term, which arises from energy conservation. T
Gaussian indicates the range of the amplitudeCu(q,k), in
dimensionless units appropriately defined by the system.
combined Lorentzian-Gaussian form of Eq.~28! also appears
in the absorption line shape for an atomic gas@17#. In such a
system, the Gaussian arises from the Doppler shift of
resonance response frequency of an individual atom, whe
the Lorentzian comes from the collisions of the gas atom

By the same argument, one may obtain a similar exp
sion for the Raman~or Rayleigh! scattering. In view of Eqs
~12! and ~20!, and using Eq.~21!, we get

Cu
Ram~q,k!.

N9 exp~2dq2/h2!

dk2dq cosu1 iU V

2DU2 , ~30!

wheredq and dk take the same form as those in Eq.~27!,
except thatk0 andv0 are replaced byDk0 andṽca , respec-
tively, and that the angleu is taken to be the one between th
atom wave vectorq and the effective photon wave vecto
Dk5k2kL . Now Dk0 is defined at the value ofk when the
amplitudeCRam takes a sharp resonance atDv5ṽac . The
possibility that k and kL do not necessarily align (Dk0
ÞDv/c) is reflected in the factor

N95
Gs

Apspg
expF S Dk0 sinu

sp
D 2S 12

2ṽca

Dk0c
D G ,

which is unimportant in subsequent analysis.
Now both Eqs.~28! and ~30! exhibit identical character

However, in the latter case, one can obtain a much sha
02211
y

-
or-
he
e

he

e
as
.
s-

er

resonance by controlling the ratiouV/2Du via the Rabi fre-
quency and the laser detuning.

The control parameterh appearing in Eqs.~28! and ~30!
gives a useful entanglement measure. In the case of sca
ing, both the incident laser field strength and the relat
orientation ofk andkL provide extra degrees of freedom
determining this parameter. We can see that Eq.~28! can also
be used to describe Eq.~30! if we introduce the effective
Rayleigh/Raman control parameter

hR[hU2D

V U2

, ~31!

and rescaledq and dk accordingly. In this way one may
analyze the two processes together.

As a remark, the dependence ofCu on u for both sponta-
neous emission and scattering shows that only the projec
of k ~or Dk) on q is relevant to entanglement. Apparently, f
Raman and Rayleigh scattering, when the incident lase
given, fixing the position of the photon detector and fixin
the angleu in the analysis are incompatible with each oth
because photons with different wave vectors recorded by
detector actually haveDk with differentu with respect toq.
However, such a variation can be neglected as the scatt
photons usually have frequency very close to the reson
Dv.ṽac even thoughk andkL are not collinear. Therefore
we can focus on a particular angleu in subsequent analysis
We chooseu5p so that the entanglement is the largest.

VII. ENTANGLEMENT INFORMATION

After deriving the joint probability amplitudes for sponta
neous emission, Raman and Rayleigh scattering, we
analyze the correlation between the atom and the pho
quantitatively by means of the Schmidt decomposition.
take the angleu between the atom and photon wave vecto
to be p. First, the partial density matrices of the emitte
photon and the recoiled atom are determined. We notice
the symmetric role ofq andk in the amplitudeC under the
sharp resonance condition is revealed in Eq.~26!, using
which the photon and atom density matrices are found to
rF~k1 ,k2![E
2`

`

dqC~q,k1!C~q,k2!* .E
2`

`

dq
uNu2e2([q2k1]/sp)2

e2([q2k2]/sp)2

FvRq1ck12S v01
\k0

2

2M D 1 igGFvRq1ck22S v01
\k0

2

2M D 2 igG ~32!

and

rA~q1 ,q2![E
2`

`

dkC~q1 ,k!C~q2 ,k!* .E
2`

`

dk
uNu2e2([q12k]/sp)2

e2([q22k]/sp)2

FvRq11ck2S v01
\k0

2

2M D 1 igGFvRq21ck2S v01
\k0

2

2M D 2 igG . ~33!
0-6
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By a partial fraction expansion these integrals can be wri
in terms of a sum of two Faddeeva functions or comp
error functions if desired.

The eigenvaluesln and Schmidt functionscn(k) of the
photon density matrix in Eq.~32! are obtained by solving the
integral equation in Eq.~6! and the corresponding atom
Schmidt modes through Eq.~8!. We have used matrices o
size 500035000 to carry out the diagonalization. Cautio
has to be taken in the largeh regime when the density ma
trices become very sharp and localized along the diago
The spatial behavior of the Schmidt wave functions can a
be studied by taking Fourier transforms

C̃~x,y;t !5E
2`

`

dqÈ`

dkC~q,k!e2 i (Tqt1qx)e2 ik(ct2y).

~34!
Plots of the first three Schmidt modes withh5100 are

shown in Fig. 3. It is obvious that the atom and phot
modes are nearly exactly the same except thatf̃n(x,t)50
for uxu.ct when the photon is not emitted. This sharp cut
of the spatial photon modes can be seen from Eq.~32! since
the Lorentzian is assumed to be much sharper than
Gaussian when we apply the inequalities in Eq.~25!,
whereas for the atom modes Eq.~33! suggests that the
Lorentzian is sharper than the Gaussian only wheng/vR
!sp , or equivalentlyh@1. Therefore the atom modes b
come identical to the photon modes in the largeh limit. Also
note that the number of nodes in position space~or the num-
ber of bumps in momentum space! is proportional to the
Schmidt mode indexn. More surprisingly, the tails of the

FIG. 3. The first three Schmidt pairs withh5100. The left and
right columns give the envelopes of the photon and atom mode
position space at the timet53g21, with insets showing the corre
sponding modes in momentum space. Note that the spatial ax
the atom and photon modes are in different dimensionless u
The first row also shows the sharp atom state and the slowly de
ing photon state in the zero recoil limit, which are plotted using
same scale as the entangled case.
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photon Schmidt wave functions in position space behave
Gaussians. This phenomenon corresponds to a stronger
of localization than one expects from exponential decay.

As a remark, we have ignored the dispersion effect of
atomic wave function whenGt@1 in Fig. 3, whereG
5\sp

2/2M is the dispersion rate andt is the time when the
wave function is registered, since the entanglement betw
the individual particles is fixed once their interaction
turned off. This can be seen more explicitly by first writin
the amplitudeC(q,k) in Schmidt form,

C~q,k!5(
n

Alncn~q!fn~k!. ~35!

Then, using Eq.~34!, the corresponding position space am
plitude is

C̃~x,y;t !5(
n

Alnc̃n~x;t !f̃n~y2ct!, ~36!

where

c̃n~x;t ![E dqcn~q!e2 i (qx1Tqt),

f̃n~y![E dkfn~k!eiky. ~37!

It can then be shown easily that$c̃n% and $f̃n% also form
orthonormal bases for the Hilbert spaces of the atom
photon. As a result, Eq.~36! is still a Schmidt decomposition
with the samel ’s as before, and the entanglement is n
changed by the dispersion of the atomic wave packet.

VIII. EXPERIMENTAL PARAMETERS
FOR HYPERENTANGLEMENT

The relation between the Schmidt numberK and the con-
trol parameterh is given in Fig. 4. It is found empirically
that K'110.28(h21) whenh@1, and that the numerica
factor 0.28 depends on the form of the initial atomic mome
tum distribution. For the spontaneous decay of a sodi
atom, one finds thatK is of the order of unity@11#. Here we
are interested in ways to reach much larger values, and
context of Raman scattering from cesium atoms appears
alistic.

In the case of Raman and Rayleigh scattering, the ef
tive control parameterhR can be changed arbitrarily by tun
ing the Rabi frequency of the incident laser and its detun
with the atom. However, there are two competing practi
considerations that constrain the range of attainableV and
D. First, the atom has to interact with the laser field lo
enough to yield a scattered photon. This means either
atom has to move slowly or the laser beam be made w
enough, such that the interaction time is about several de
times tR[gR

215(2D/V)2g21. On the other hand, the
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power of lasers used in quantum optics experiments is u
ally not too large, say of the order of 100 W/cm2.

For cesium, the atom has massM52.21310225 kg, a
D-line transition frequencyv052pc/(852.4 nm), and natu
ral decay linewidthg52p32.6 MHz. To obtain strong en
tanglement, we advance these parameter values as re
able:V52p3300 MHz andD52p315 GHz. These give
an upper population (V/2D)250.0001 and laser intensityI
.2e0c(\V/2ea0)2590 W/cm2. Slowly moving cesium at-
oms can be prepared by an atomic fountain or by a magn
trap. At a temperature of 0.02 K, the atom has a therm
speed \sp /M51.118 m/s. Within the decay timetR

50.612 ms, the distanceDL traveled due to thermal motio
is DL50.684 mm. Therefore the atom will remain suf
ciently long in the field if the laser has a beamwidth of se
eral millimeters. Using these parameters, we gethR'5000
and henceK'1400, a huge increase over the value obtain
for the spontaneous decay of sodium.

FIG. 4. The plot of the participation ratioK as a function of the
control parameterh. The inset is a magnification of the graph ne
h50.
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IX. CONCLUSION

In summary, we have extended our previous studies of
photon-atom entanglement in spontaneous emission to
man and Rayleigh scattering. We found strong analog
among the three processes, so that we could consider the
a single setting. We have provided a procedure to exp
their properties systematically. This procedure relies on
Schmidt method which not only gives a number~the Schmidt
number, or participation ratio! to tell the ‘‘degree’’ of en-
tanglement, but at the same time provides a discrete se
photon wave functions, whose individual elements pair
with their respective atomic counterparts. We have conve
a continuous basis describing the Hilbert space into a co
able one, which is effectively finite. The photon mode fun
tions of the new basis can be uniquely and predictably loc
ized in principle by projective measurement of the ato
Such an interpretation is possible only through the use
Schmidt decomposition.

In addition, the entanglement of the atom and the pho
in the physical processes considered is found to be dire
related to a single entanglement indexh, which, in the case
of Raman and Rayleigh scattering, can be controlled thro
the adjustment of the pump laser field strength and detun
We have demonstrated that Rayleigh scattering using ces
atoms with reasonable laser parameters can give a Sch
number as high as 1000, in contrast to the typically sm
K,10 in atomic spontaneous emission and parame
down-conversion.

Finally, it is noted that there is no experiment as far as
authors know that can investigate the properties of the a
or the photon in terms of their Schmidt modes, which de
onstrate entanglement directly. In this paper, we have o
dealt with the longitudinal momenta of the atom and phot
The transverse momentum distributions are expected to
detected more easily, and, with the Schmidt analysis, m
find application in quantum imaging@18#.
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