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Quantum entanglement in photon-atom scattering
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Joint atom-photon states can become nonseparably entangled by momentum conservation in scattering
events. The consequences are open for observation in interference experiments in which one particle is used to
monitor the evolution of the other. We have previously quantified the degree of available recoil entanglement
in spontaneous emission, and present here the extensions to Rayleigh scattering and Raman scattering, with an
emphasis on the similarity among the three cases. It is found that such scattering processes have the potential
to create a higher degree of entanglement between the scattered photon and the recoiled atom than any reported
to date.
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[. INTRODUCTION recoil effect on spontaneous emission. Then the joint atom-
photon probability amplitudes of Raman and Rayleigh scat-
Quantum entanglement is a property shared by two otering are derived. We introduce the Schmidt decomposition
more quantum-correlated systems. Since Sihger intro-  [13] to provide a detailed analysis following the approach of
duced his catmacroscopic quantum interferendd], en-  Previous studies of frequency-entangled down-conversion
tanglement has been a continuing subject of interest duringhotons[14]. Since the three processes considered in this
the development of quantum mechanics. It became the cefaper share similar features in their joint atom-photon states,
tral topic in discussions of the completeness of quantun®ne can analyze their entanglement collectively.
theory[2] after the famous paper of Einstein, Podolsky, and
Rosen[3]. It is found to be crucial in the decoherence pro- Il. THEORETICAL FRAMEWORK
cess that accounts for the classical appearance of the macro-
Scopic Wor|d[4:|7 as well as app"cations in quantum infor- Quantum entanglement of Scattering events is a reflection
mation and computatiofs]. of the Hilbert space structure of the system. In order to de-
Photon entanglement is almost always discussed in finitéermine the momentum entanglement of the atom and the
Hilbert spaces, e.g., the state-space for two orthogonal polaficattered photon, we need to find the distribution of the mo-
ization assignments used in Bell violation experimd6t3]. menta of the two particles after th_e interaction. This is con-
Here our interest is in the nature of entanglement in continuveniently accomplished in the Scldiager picture. All the
0us|y infinite Hilbert space, as is needed to describe promformat|0n about the Hilbert space Is contained in the J0|nt
cesses such as single-photon emission with atomic recoil. ARrobability amplitudeC(q,k), where q and k denote the
infinite Hilbert space provides the entangled particles with avave vectors of the atom and the photon after the interaction.
wide range of quantum states. This makes high degrees of Let P and R denote the center-of-mass momentum and
entanglement possible. position operators of the atom with mass Suppose also
Generally, entanglement generated by a dynamical prothat the internal atomic states are given|pywith energies
cess originates from conservation laws. We concern ourk;. The Hamiltonian of the system is written as
selves here with the momentum conservation that correlates

the linear momenta of an emitted photon and a recoiling ~ p2 o
atom. Such an entanglement can occur in interference experiH = o + > EliNil+> J A3k o @l as—d-E(R ).
ments[8,9]. Related experimental work on atomic spontane- ] s
ous emission has also been reporfé@], but we have al- @
ready shown that one can realistically expect very little
entanglement in this cagél]. |e) — |b) — |b)
Now we extend our treatment of entanglement in sponta-
neous emission to the closely related processes of spontane ¢ —-g--mo--
ous Raman and Rayleigh scatteriig] as shown in Fig. 1. Wy Wy
In this paper, we show that much stronger entanglement cal wr B
be achieved in Raman and Rayleigh scattering, compared t]g> |a)

spontaneous emission, and we explain why.
We first give a theoretical framework for the analysis of
; : . (@ (b) ()
entanglement in atom-photon scattering and a review of the
FIG. 1. The three models that involve atom-photon entangle-
ment: (a) spontaneous emissiof)) Raman scattering, ar{d) Ray-
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The first two terms are the kinetic energy and the internatudeC(q,k) can be converted into a discrete sum of factored
electronic state energy of the atom. The third term is theyroducts uniquely:

guantized electromagnetic field energy and the last term is
the atom-field interaction in dipole approximation withde-
noting the dipole moment operator of the atom. The electric
field has possibly both classical and quantum elements:

C<q,k>=§ N on(@) dn(K), (5)

R X where\, and ¢,(k) are the eigenvalues and eigenfunctions
E(R,t)=E(t)(e' k- Rmoh) 4 gmilk-R-wL 1)) of the integral equation

hw
i\ K a3k’ pF(k,K") pn(K')=Nppn(K), (6)
+§ Jd ! 2150(277')3 f P

ik-R3 x o—ik-RAT with the photon density matrix defined by

X (€' Tags— &s€ aks) : i)
The first term represents a classical incident field and the pF(k,k')Ef d3qC(q,k)C(g,k")*. 7)

second term is the quantized field which is responsible for
spontaneous emission or scattering. Heyeandal, are the

inilati q y ] £ th tred elect Because thex’s are the eigenvalues of the photon density
anniniiation and creation operators ot thé quantized electrog, vy \ye haveX\,=1, and thes(k)'s form a complete
magnetic field with photon wave vectkrand polarizatiors,

, : : T orthonormal set of photon wave function,(q) is the cor-
er‘('?)h obey the commutation relatids, 8y s 1= s¢ 8(K  responding normalized atom eigenfunction relatedsik)
—K). through

Before spontaneous decay or interaction with the laser, J
the electromagnetic field state is the vacul{®}) and the 1
atom is prepared in some initial std& with center-of-mass Pa(Q) = —f d*kC(q,k) dn(k)*. (€]
momentum distribution given bgq(p), wherefip is the mo- \/k—n

mentum of the atom. We can write the joint atom-field stateI . I d btain all the ei | d ei
in a separable form t is equally good to obtain all the eigenvalues and eigen-

functions through the atom density matrix, and they are the
same as those derived from the photon density matrix. Equa-
®|{0}) tion (8) serves to fix the relative phase of the atom and pho-
ton eigenmodes.
The decomposition in Ed5) has three important proper-
Ef d°pag(p)|p,a;{0}). (3) ties. First, as noted above, it provides a complete set of or-
thonormal functions¢,(k) for the photon specific to the
When the emission or scattering process is completed, tgMission or scattering process. Second, it pairs an atom
atom recoils while emitting a photon. The two particles fly Mode #,(q) with its photon counterparg,(k) in a unique
apart from each other and have no more interaction. Howway. Third, the basis of the decomposition is explicitly dis-
ever, they are entangled. Their joint probability amplitudeCrete, in contrast to the original continuous momentum space
C(q,k) describing their momenta after the interaction is notPases used to describe the state vector.

I‘I’(t=0)>=(fd3pao(p)|p,a>

factorable, i.e.C(q,k) # f1(q) f»(k). Hence the state is writ- Naturally discreteness allows the Schmidt modes to be
ten as a double and continuously infinite nonseparable sufPunted. Now the eigenvalues can be ordered according to
of joint atom-photon states Ni=N,=N\z=-.-, and the degree of entanglement of the

two systems is obviously related to the numberd that
are “important.” As a numerical measure of entanglement
|W(t—o))= > jd?’qf d*kC(qg,k)|g,c;1l), (4 we will use the so-called Schmidt numHéi or participation
s ratio, denoted by [15]:

where|c) is the final internalelectroni¢ state. Note that the

photon polarization index for the amplitudeC(q,k) has Ks ——=1. (9)
been suppressed since we are only interested in the continu- E A2

ous variableg) andk. We shall choose a particular polariza- T

tion in detecting the photon and the explicit form ©fis

unaffected. As an example, iK=1, the Schmidt sum has only one term

and the state is not entangled. On the other hand, if there are

N states all withh ,=1/N, thenK=N. This explains whyK

is called the Schmidt number: it counts the states that are
Schmidt decomposition is one of the methods used tsignificant in making upW). It is this last feature that makes

quantify the degree of entanglement of a bipartite system ithe Schmidt number more useful than other measures of en-

a pure stat¢13]. By applying the decomposition, the ampli- tanglement(such as entropy The number of active or im-

Ill. SCHMIDT DECOMPOSITION
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portant modes can be an essential parameter for an expefihe fact that this expression of the joint amplitude cannot be

menter wanting to know how many modes to prepare fomwritten as a product of two functions, each of which involves

when designing a laboratory setup. k or g alone, means that the photon and the atom are en-
We now study the three photon-atom interactions: spontatangled in the final stage of emission.

neous emission, Rayleigh scattering, and Raman scattering.

The strong analogies among them enable us to analyze their V. RAMAN AND RAYLEIGH SCATTERING

entanglement information together.
Similar to the single-photon spontaneous emission consid-

IV. SPONTANEOUS EMISSION ered in the last section, Raman and Rayleigh scattering also
give rise to entangled atom-photon pairs enforced by mo-
The first model to analyze is spontaneous radiative decagnentum conservation. We shall consider them in greater de-
as sketched in Fig.(&). The Hamiltonian that describes the tail in this section. The main difference now is the introduc-
free-space spontaneous emission of a two-level atom wittion of a pump field to excite the atom.
massM, transition frequency»,, and ground state and ex- As usual, we have in mind that Raman and Rayleigh scat-
cited statgg) and|e) can be written as tering both occur without populating the upper atomic level
(to avoid encountering the case of fluorescence agaimd
- 3 At A so we will always take the detuning of the pump field from
H= m+hwo|e)<e|+zs f d°kf wi@ysaxs its one-photon resonance to be much larger than the upper
level linewidth y.
at B The schematic diagrams of Raman and Rayleigh scatter-
+ﬁ25 f d*k[gs(k)g)(elae ™ F+H.c]. (10 ing are shown in Figs.(b) and Xc). These two processes are
similar except that the former is inelastic while the latter is
Note that the ground-state energy of the atom is set to zerglastic. One can treat these two processes together when the
The coupling strength is expressed agi (k) final state of_ the. atom is taken care o_f. .
=i\/wk/To(27T)3€ks'dge, with € and dye denoting the The Hamiltonian of Raman scattering is
polarization of the photon and the dipole matrix element of

P2

P2

the atom. ~ P
Initially the atom is prepared in the excited state. Then the H= 2M +Eqla)(al + Ep|b)(b|+Eclc)(c|

atom recoils while dropping into the ground state. At the
time t>y~ ! wherey is the natural decay rate of the upper +E f 43k w Al A — d- E(R1) (14)
atomic level, the state of the system can be written as s kSksTks e

)= j dgqf dkC(g ke Ta kg )@ 1,0). in WhiC-h the electric field is given by Eq2). For_ Rayleigh

s scattering, one can simply drop the teEgc)(c| in H.
(11) At the same time, we restrict the state of the system to be,

.. .. for Raman scattering,
Here we denote the state of the decayed atom with final g

momentum#q by |g,g) and that of the emitted photon with
wave vectok by |1,s). The joint amplitudeC(q,k) gives the I‘I’(t))Ram=f d3pa(p;t)|a,p;{0}>+f d*pb(p;t)|b,p;{0})
correlation between the two particles.

According to Rzaewski and zkowicz[16], the ampli- -
tude is given by +§S: f fd pdike(p,k;t)[c,p;Lis), (15)
CS§(g,k) = 9s(k)ag(atk) (12)  Whereas for Rayleigh scattering

Tq_ Tq+k+ kC_ (1)0+i’y'

which is not factorable. Now we take the initial momentum I‘I'(t))Rayzf d3pa(p;t)|a,p;{0}>+f d3pb(p;t)|b,p;{0})
distribution of the center of mass of the atom in its excited
state to have a Gaussian shape with wiath

1 p\2
ao(p)= exp{—(—) . _ . . ,
\/;Up Op Physically, it means that our analysis is confined to a two-
photon process, i.e., the atom, initially in a stable sfatp),
Such a momentum distribution corresponds to an atom pres excited tgb,p) by the laser beam and emits a photp)
pared in a thermal state with zero initial mean velocity. Theupon going to another stable stagep) or |c,p). The non-
symbolT,= (% p)%/2M# is a shorthand for the kinetic energy resonant two-photon process involving intermediate states of
of the atom with momenturip in frequency units. an excited atom with an emitted photon is neglected. We
The absolute square 6°5q,k) tells us the probability of shall consider the Raman scattering first and give the result
finding the atom and photon having wave vectqrandk. for Rayleigh scattering at the end of this section.

+3 | [ apdkeprnlanta.  as
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For Raman scattering, the equations of motion of the am- Q(t)*
plitudes can be simplified by using the slowly varying vari- v(ptkyit)=————u(p;t).
ablesu, v, andw: 2(Dpa—iy)
a(p;it)=u(p;t)exd —i(To+ wa)t], As a result, for a long-pulse or continuous-wave laser, i.e.,

Q(t)=~Q=const, we have these solutions

b(p;t)=v(p;t)exq—i(Tp,kL+ wyt w)t], Ca
u(p;t)=ap(pe ",
c(p.kt)=w(p,kit)ex —i(Tp_ +k+ wat o )t].

Q*ag(p)

) — —Rt
Under the rotating-wave approximation, the equations of v(ptkiH= 2(D! —iy)e '
motion become ba
. i —igs(K)*Q* | ag(p)
) — . w(p+k —kk;t)= ,
u(pit) = 7 QO (p+kesb), (Pt ke ) 2007 —iy) | DX iR
x{e—Rt_ e_iDléat}, (17)

) i
v(ptke;t)==iDp(ptk i)+ QO u(pt)
in which we have introduced the complex absorption Rte

i K field:
-3 fd3kgs(k)w(p+k,_—k,k;t), n a weaxhe
S

1
y+iD{,

R [
w(p+k —kk;t)=—iD¥.w(p+k —kk;t) 4

. (19

* .
+ 95 (Ku(ptkiib), We are interested in the entanglement of the scattered

where () =i orZheo(Zm s he and () PIoOn A e feeled FAm reriore, wihen & photon 1S
=2d,,- E(t)/% are the coupling strength and Rabi frequency. e ba '

. . k _
The generalized detuning frequencieg, and D¢, are de ig(K)* O ag(q+k—k,) .

fined as c(akit)— ~i(Tg+ wgt ot
2(Dg,—iy) Diéa_iR
Dypa= Tp+ kL_Tp+ Wpha ™ W (19
and where the recoil wave vector of the atogs p+k,_ —K is
" used. For Raman or Rayleigh scattering, the deturing
Dea=Tprk —k— Tpt @ca— o+ . = wp,— o, iS much larger than the natural linewidh and

the recoil is a small perturbation. Moreover, the factor
In the Born-Markov approximationy (p+k_;t")=v(p  1/(D|,—ivy) appearing in Eq(19) is not a resonant term; we
+ky ;t)ePoat=t) This gives can treat it as a smooth function gfandk. Consequently,
Eqg. (19 can take a simpler form

: i
v(pt+KL;t)=—i(Dpa—iv)v(p+k )+ QD u(pY), Gy(K)ag(q+k—k,)

CRa"tq,k)I 7
where D{,=Dy,—Ae. The frequency shift and linewidth Tq—Tq+k,kL+(kc—wL)—Z>ac+i o8 Y
Ae and vy are explicitly given by
(20)
Ae=> |gq? P in which G4(k)=igg(k)* Q*/2(A—ivy). Note that the time-
s Tpik —k~ Tpek T @cpt wy dependent phase has been taken away since it does not con-
tribute to entanglement, and we have introduced the Stark-
and shifted transition frequency,.=wa.—|Q|%/4A. Now Eq.
(20) looks very similar to Eq(12) if we define the effective
y=2, 7T|gs|25(Tp+kL—k—Tp+kL+wcb+ wy). photon wave vector and frequency
S
Ak=k—k_
Note that according to the remark at the beginning of this
section, we havéD|> vy, Ae for both Dy, andDX, . and
For weak()(t), an adiabatic solution is appropriate for
v(p+k;t): Aw=kc—w, (22)
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It is noticed that the Compton wave vectdrc/% for the

A atom is the largest relevant measure of momentum by a wide
photon margin, and the decay “wave vectoy/c is the smallest. We
detector k have this set of inequalities among wave vectors

L atom
detector Mc/h>wglc, o, 0, k>vylc, (25
k : :
o o and we will use them to reduce the complexity of thand
RaVAe o >® — - k dependences ot ,(q,k).
q First, the narrow width of the sharp decay resonance of
0 the denominator o€ , allows us to replac& by ko= wg/cC in
the very small first term in the denominator, which becomes
—h
laser beam 37 (K00 CosO+KS) + ke woti,
FIG. 2. Schematic diagram of the detection of the atom and the ) ) )
photon. so that the amplitude is approximated as
a2 2 0_2
and identify w,. and |Q/2A]%y with w, and y. We shall COE k) = Ne~ a7+ 2kgcoso+k oy -
discuss this point in more detail in the following section. For p (0.K)= ﬁkg . (26)
Rayleigh scattering, it is not difficult to get a similar result: —QugCosf+kc—| wy+ M +iy
CRY(q k) = Gs(k)ao(q+k—ku) with vg=7%ky/M denoting the mean recoil velocity of the
' Q2 [Ql? atom. Note the symmetric role played by the varialgesd
Tq Torkk +|{ KCmoL+ aA | VoAl Y kin Eq. (26). Second, we focus on the case whegc>y
22) (one may also consider the other extreme in whi
<) and so the same step can be applied to the exponential
The initial momentum distributioay(p) can be modeled by
the same Gaussian distribution as in ELB). (q+ko cosh)?+ (k3)sirP o
expg — .
o

VI. DETECTION OF THE ATOM AND THE PHOTON

The three-dimensional models presented in the previoughird, we adopt a uniform normalization to the radiative
sections are difficult to tackle. Here we simplify the problemWidth ¥ and define the “reduced” wave vectors
by restricting our attention to the detection of the photon
wave vectork in a fixed direction with respect to the atom 5q= E(quko cosé),
wave vectorg (see Fig. 2 Such a setup is intended to sug- Y
gest a class of possible experiments.

After dropping the notation of the final state, the photon
+atom state is written as

5k—1 k hkg 2
=; c—w0+mc0326 . (27

|‘I’0>:f dqf dkCy(q ke Ta k| q:1).  (23) Then the final expression can be written as
N’ exp(— 692/ %)

As mentioned by the end of Sec. Il, we assume that the 0 S5k— 5q cosf+i
photon is detected in a particular polarization state and so the
index s in C, is now a given parameter. For spontaneouswhere
emission, according to Eq12), if we setq-k=cosé, the N K. sing\2
amplitude reads as N’ = —ex;{—( 0 ) ,
Y Op
Ne-[a%+2kg cosH+k2]/(r'2)
cgE(q,k): z . (29 and 7 is a control parameter defined as
5 (2akcosd+ k?)+kc—wo+iy _ fikgor, 29

The factorN= gs(k)/\/F(rp is a slowly varying function ok

since the probability amplitude is confined in a narrow widthNote that# contains all the physical parameters that deter-
governed by the radiative ratewhich is much smaller than mine the nature of the atomic system. As shown in &§),

the resonant frequency. Therefore we can simply rejgad it controls the range of values of the scaled variaddethat

a constant. give significant contributions to the probability amplitude.

022110-5
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Thus » serves as an “observability index.” If we write resonance by controlling the ratj6)/2A| via the Rabi fre-

fioc,/M as velocity dispersiorno, and replaces,/c by  quency and the laser detuning.

o,lwg (the corresponding relative Doppler width of the  The control parameter appearing in Eqs(28) and (30)

atomic transition that would be associated with the velocitygives a useful entanglement measure. In the case of scatter-

spread, we getn=o,/v, which can then be interpreted as ing, both the incident laser field strength and the relative

the ratio of motional to radiative linewidths. We shall also orientation ofk andk, provide extra degrees of freedom in

see that it is directly related to the participation reitio determining this parameter. We can see that(2§). can also
Equation(28) represents a general class of two-body am-be used to describe E@30) if we introduce the effective

plitudes associated with atomic spontaneous decay. The cdrayleigh/Raman control parameter

relation between the photon and the atom enters through the

Lorentzian term, which arises from energy conservation. The 2A

Gaussian indicates the range of the amplit@ig€q,k), in MR=1"0y

dimensionless units appropriately defined by the system. The

combined Lorentzian-Gaussian form of EB8) also appears

in the absorption line shape for an atomic §&%]. In such a | the t togeth

system, the Gaussian arises from the Doppler shift of th&nalyze the o processes togetner.

resonance response frequency of an individual atom, whereansé éjsaerrﬁgggkﬁ t;ne ddsig?tr::ien nc;(]% gvfsntg;fcr)r?l()t?thorrgz-ction
the Lorentzian comes from the collisions of the gas atoms. 9 y Proj

By the same argument, one may obtain a similar expres%f k (orAk)do;q IIS relr?vani;to _entangr:em?rr:t. Appo?re?tlly, for.
sion for the Ramaifor Rayleigh scattering. In view of Egs. aman and Rayleigh scattering, when the incident faser 15

: given, fixing the position of the photon detector and fixing
(12) and(20), and using Eq(21), we get the anglefd in the analysis are incompatible with each other,

2
, (31)

and rescaledq and 6k accordingly. In this way one may

N” exp( — 892/ 7°) because photons with different wave vectors recorded by the

chamq,k)= 5, (30)  detector actually havAk with different ¢ with respect tag.
Sk— 50 COSO+i| = However, such a variation can be neglected as the scattered
2A photons usually have frequency very close to the resonant

Aw=w,. even thougtk andk, are not collinear. Therefore
we can focus on a particular anglein subsequent analysis.
We choosed= 7r so that the entanglement is the largest.

where §q and sk take the same form as those in Eg7),
except thak, and w, are replaced bk, andw.,, respec-
tively, and that the anglé is taken to be the one between the
atom wave vectolg and the effective photon wave vector

Ak=k—k_. Now Ak, is defined at the value df when the VII. ENTANGLEMENT INFORMATION

amplitude C*®™ takes a sharp resonance b = w,.. The After deriving the joint probability amplitudes for sponta-
possibility thatk and k,do not necessarily alignAko  neous emission, Raman and Rayleigh scattering, we may
#Awlc) is reflected in the factor analyze the correlation between the atom and the photon

o ~ quantitatively by means of the Schmidt decomposition. We
N = Gs ex;{(Ako sin 9) (1_ cha) take the angl® between the atom and photon wave vectors
\/;Upy Ty Akqc) |’ to be 7. First, the partial density matrices of the emitted
photon and the recoiled atom are determined. We notice that
which is unimportant in subsequent analysis. the symmetric role off andk in the amplitudeC under the
Now both Eqgs.(28) and (30) exhibit identical character. sharp resonance condition is revealed in E2f), using
However, in the latter case, one can obtain a much sharpevhich the photon and atom density matrices are found to be

o o IN|2e~ (9 kil o) g~ ([a—kallop)?
PF(kl,kz)EJ’ qu(q,kl)C(q,kz)*:j dqg K2 P (32
- - 0 . 0 .
URq+Ck1_ (,00+ _2M +|’y URq+Ck2_ (1)0+ _2M _|’y:|
and
o o IN|2e~ (1=Kl o)’ g~ ([a2~ Kl op)?
P(ar.0)= | dka(a, kC(a k= [ dk - — @9
- - 0|, . 0| .
|:Uqu+Ck_ (,l)o+ _2M +|'y URq2+Ck_ (Uo+ _ZM)_|’)/:|
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photon Schmidt wave functions in position space behave as

~ |¢,.(5%)| v, 69 ~ Gaussians. This phenomenon corresponds to a stronger form
¢, 1) . . Yulx, 1) of localization than one expects from exponential decay.
; : : : As a remark, we have ignored the dispersion effect of the
n=1 A\ : A atomic wave function wherl't>1 in Fig. 3, wherel’
=ho,2)/2M is the dispersion rate artdis the time when the

i wave function is registered, since the entanglement between
T T ; the individual particles is fixed once their interaction is
: turned off. This can be seen more explicitly by first writing

i : A the amplitudeC(q,k) in Schmidt form,
: V C(a,K) =2 Aatn(a) (). (35)

K L5y | -L57 6q Lsn Then, using Eq(34), the corresponding position space am-

plitude is

xylc 0 xylvg ~ - ~
Couyi) =2 Wnlhn(XD)da(y—ct),  (36)
FIG. 3. The first three Schmidt pairs with= 100. The left and n
right columns give the envelopes of the photon and atom modes in
position space at the time=3y 1, with insets showing the corre- where
sponding modes in momentum space. Note that the spatial axes of

the atom and photon modes are in different dimensionless units.

The first row also shows the sharp atom state and the slowly decay- Ya(xt)= f day,(q)e @+ T,
ing photon state in the zero recoil limit, which are plotted using the

same scale as the entangled case.

By a partial fraction expansion these integrals can be written ¢n(y)= f dkepn(k)e™. (37)
in terms of a sum of two Faddeeva functions or complex
error functions if desired.

The eigenvalues., and Schmidt functiongs,(k) of the
photon density matrix in Eq32) are obtained by solving the
integral equation in Eq(6) and the corresponding atom
Schmidt modes through E@8). We have used matrices of
size 500 5000 to carry out the diagonalization. Caution
has to be taken in the large regime when the density ma-
trices become very sharp and localized along the diagonal. VIII. EXPERIMENTAL PARAMETERS
The spatial behavior of the Schmidt wave functions can also FOR HYPERENTANGLEMENT
be studied by taking Fourier transforms

It can then be shown easily thél,} and{¢,} also form
orthonormal bases for the Hilbert spaces of the atom and
photon. As a result, Eq36) is still a Schmidt decomposition
with the same\’s as before, and the entanglement is not
changed by the dispersion of the atomic wave packet.

The relation between the Schmidt numiseand the con-
- - trol parametery is given in Fig. 4. It is found empirically
E(x,y;t)zf dqf dkC(q,k)e ' (TqtTagik(ct=y) that K~1+0.28(»p—1) whenz>1, and that the numerical
- o factor 0.28 depends on the form of the initial atomic momen-
(39 tum distribution. For the spontaneous decay of a sodium
Plots of the first three Schmidt modes witj=100 are  atom, one finds tha is of the order of unityf11]. Here we
shown in Fig. 3. It is obvious that the atom and photongre interested in ways to reach much larger values, and the
modes are nearly exactly the same except thdtx,t)=0  context of Raman scattering from cesium atoms appears re-
for [x|>ct when the photon is not emitted. This sharp cutoffalistic.

of the spatial photon modes can be seen from(Bg). since In the case of Raman and Rayleigh scattering, the effec-
the Lorentzian is assumed to be much sharper than thive control parameterg can be changed arbitrarily by tun-
Gaussian when we apply the inequalities in E5), ing the Rabi frequency of the incident laser and its detuning

whereas for the atom modes E(B3) suggests that the with the atom. However, there are two competing practical
Lorentzian is sharper than the Gaussian only whéng  considerations that constrain the range of attain&bland
<o,, or equivalentlyn>1. Therefore the atom modes be- A. First, the atom has to interact with the laser field long
come identical to the photon modes in the largkmit. Also enough to yield a scattered photon. This means either the
note that the number of nodes in position spémethe num-  atom has to move slowly or the laser beam be made wide
ber of bumps in momentum spacis proportional to the enough, such that the interaction time is about several decay
Schmidt mode index. More surprisingly, the tails of the times 7g=vys'=(2A/Q)%2y 1. On the other hand, the
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500 I I I I IX. CONCLUSION

photon-atom entanglement in spontaneous emission to Ra-
[ ] ] man and Rayleigh scattering. We found strong analogies
2 . .
- /// 1 among the three processes, so that we could consider them in
P ] a single setting. We have provided a procedure to exploit

300 H their properties systematically. This procedure relies on the
0 2 4 6 8 10//

A / In summary, we have extended our previous studies of the

400 H

Schmidt method which not only gives a numlifgre Schmidt
number, or participation ratjoto tell the “degree” of en-
tanglement, but at the same time provides a discrete set of
photon wave functions, whose individual elements pair up
with their respective atomic counterparts. We have converted
a continuous basis describing the Hilbert space into a count-
able one, which is effectively finite. The photon mode func-
tions of the new basis can be uniquely and predictably local-
ized in principle by projective measurement of the atom.
Such an interpretation is possible only through the use of
Schmidt decomposition.
/] In addition, the entanglement of the atom and the photon
L _ in the physical processes considered is found to be directly
FIG. 4. The plot of th_e part_|C|pat|on r_a_tlé E:lS a function of the related to a single entanglement indexwhich, in the case
control parameter;. The inset is a magnification of the graph near of Raman and Rayleigh scattering, can be controlled through
7=0. the adjustment of the pump laser field strength and detuning.
We have demonstrated that Rayleigh scattering using cesium
power of lasers used in quantum optics experiments is uswtoms with reasonable laser parameters can give a Schmidt
ally not too large, say of the order of 100 W/gm number as high as 1000, in contrast to the typically small
For cesium, the atom has mabb=2.21x10 ?°kg, a K<10 in atomic spontaneous emission and parametric
D-line transition frequency,=2mc/(852.4 nm), and natu- down-conversion. _ _
tanglement, we advance these parameter values as reas@htnors know that can investigate the properties of the atom
able: ) =27x300 MHz andA=27X 15 GHz. These give ©' the photon in terms of their Schm!dt modes, which dem-
an upper population(#/2A)?=0.0001 and laser intensity onstrate entanglement directly. In this paper, we have only

~2e,C(1Q/2e85)%=90 Wicn?. Slowly moving cesium at- dealt with the longitudinal momenta of the atom and photon.

) ) The transverse momentum distributions are expected to be
oms can be prepared by an atomic fountain or by a magne,:?

200

100

0 200 400 600 800 1000 1200 1400 1600

trap. At a temperature of 0.02 K, the atom has a therm etected more easily, and, with the Schmidt analysis, may

speed fio,/M=1.118 m/s. Within the decay timerg Ind application in quantum imaging.8].
=0.612 ms, the distanckL traveled due to thermal motion
is AL=0.684 mm. Therefore the atom will remain suffi-
ciently long in the field if the laser has a beamwidth of sev- This work was principally supported by the DoD Multi-
eral millimeters. Using these parameters, we ggt=5000 disciplinary University Research Initiativé1URI) program
and henc&K ~ 1400, a huge increase over the value obtainecadministered by the Army Research Office under Grant No.
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