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Relativistic invariant quantum entanglement between the spins of moving bodies
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The entanglement between the spins of a pair of particles may change because the spin and momentum
become mixed when viewed by a moving observer@R. M. Gingrich and C. Adami, Phys. Rev. Lett.89, 270402
~2002!#. In this paper, it is shown that, if the momenta are appropriately entangled, the entanglement between
the spins of the Bell states can remain maximal when viewed by any moving observer. Based on this obser-
vation, a relativistic invariant protocol for quantum communication is suggested, with which the nonrelativistic
quantum information theory could be invariantly applied to relativistic situations.
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I. INTRODUCTION

Relativistic thermodynamics has been an intriguing pr
lem for decades@1#. It has been shown that the probabili
distribution can depend on the frame, and thus the entr
and information may change if viewed from different fram
@2#. Recently, the effect of Lorentz boosts on quantum sta
quantum entanglement, and quantum information has
tracted particular interest@3–6#. Relativistic quantum infor-
mation theory may become necessary in the near future,
possible applications to quantum clock synchronization@7#
and quantum-enhanced global positioning@8#.

The entanglement of quantum systems forms a vital
source for many quantum information processing protoc
@9#, including quantum teleportation@10#, cryptography@11#,
and computation@12#. However, it has been shown that ful
entangled spin states in the rest frame will most likely de
here due to mixing with momentum if viewed from a movin
frame, depending on the initial momentum wave functi
@4#. Therefore the entanglement between two systems
depend on the frame in which this entanglement is measu
These effects may have important consequences for qua
communication, especially when the communicating par
are in relative movement.

In this paper, we show that for a pair of spin-1
2 massive

particles, if the momenta are appropriately entangled, the
tanglement between the spins can remain the same as i
rest frame when viewed from any Lorentz-transform
frame. We also find a set of states for which the margi
entropy, entanglement, and measurement results of the s
are independent of the frames from which they are obser
Based on this observation, we suggest a relativistic invar
representation of the quantum bit~qubit!, and suggest a rela
tivistic invariant protocol for quantum communication, wi
which the nonrelativistic quantum information theory cou
be invariantly applied to relativistic situations. In this pap
we restrict ourselves to spin-1

2 cases, although a generaliz
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tion to larger spins could be done analogously. In particu
the generalization to spin-1 massless particles, such as
tons, may be of special interest@6#, since current experiment
in quantum communication are mostly based on photons

II. ENTANGLEMENT BETWEEN SPINS, WITH THE
PRESENCE OF MOMENTUM ENTANGLEMENT

We start by investigating a bipartite state that, in the m
mentum representation, has the following form viewed fro
the rest frame:

C~p,q!5g~p,q!uc2&, ~1!

where p and q are the momenta for the first and seco
particles, respectively~for a review of the definition of the
momentum eigenstates for massive particles with spin
the transformations under Lorentz boosts, one may refe
Refs. @3,4,13#!. The spin part of the state is the singlet Be
state

uc2&5
1

A2
~ u↑↓&2u↓↑&), ~2!

whereu↑↓&5u↑& ^ u↓&, u↓↑&5u↓& ^ u↑&, with

u↑&5S 1

0D , u↓&5S 0

1D . ~3!

The momentum distributiong(p,q) is normalized according
to

E E ug~p,q!u2d̃pd̃q51, ~4!

whered̃p (d̃q) is the Lorentz-invariant momentum integra
tion measure given by

d̃p5
d3p

2Ap21m2
, ~5!

where we use natural units:c51. Note that there is no en
tanglement between the spin and the momentum part
©2003 The American Physical Society08-1
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C(p,q). The spins are maximally entangled, while the e
tanglement between momenta depends ong(p,q). In what
follows, we usep to represent the momentum four-vector
in Eq. ~7! unless it is ambiguous.

To an observer in a frame Lorentz transformed byL21,
the stateC(p,q) appears to be transformed byL ^ L. There-
fore the state viewed by this observer appears to be

C8~p,q!5U~L ^ L!C~p,q!

5@UL21p^ UL21q#C~L21p,L21q!, ~6!

where U(L ^ L) represents the unitary transformation i
duced by the Lorentz transformation. For compactness
notation, we here defineUp[D (1/2)(R(L,p)) as the spin-12
representation of the Wigner rotationR(L,p) @4,13#. Be-
causeC8(p,q) differs from C(p,q) by only local unitary
transformations, the entanglement will not change provid
we do not trace out a part of the state. However, in looking
the entanglement between the spins, tracing out over the
mentum degrees of freedom is implied. InC8(p,q) the spins
and momenta may appear to be entangled; therefore the
tanglement between the spins may change when viewe
the Lorentz-transformed observer. By writingC8(p,q) as a
density matrix and tracing over the momentum degrees
freedom, the entanglement between the spins~viewed by the
Lorentz-transformed observer! can be obtained by calcula
ing the Wootters’ concurrence@14# of the reduced density
matrix for spins.

Any Lorentz transformation can be written as a rotati
followed by a boost@13#, and tracing over the momentum
after a rotation will not change the spin concurrence@4#;
therefore we can look only at pure boosts. Without loss
generality we may choose boosts in thez direction and write
the momentum four-vector in polar coordinates as

p5~Ep ,p coswpsinup ,p sinwpsinup ,p cosup!, ~7!

with Ep5Ap21m2, 0<up<p, and 0<wp,2p. Let L
[L(j) be the boost along thez direction~as defined in Ref.
@4#!, wherej is the rapidity of the boost andj5uju. With Eq.
~7!, we obtain

Up5S ap bpe
2 iwp

2bpe
iwp ap

D , ~8!

where

ap5AEp1m

Ep81m
S cosh

j

2
1

p cosup

Ep1m
sinh

j

2D , ~9!

bp5
p sinup

A~Ep1m!~Ep81m!
sinh

j

2
, ~10!

and Ep85Epcoshj1pcosupsinhj. Similar equations can be
obtained for the second particle with momentumq. Substi-
tuting Eq.~8! into Eq. ~6!, we obtain the state viewed by th
Lorentz-boosted observer as
02210
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C8~Lp,Lq!5
g~p,q!

A2 S apbqe
2 iwq2aqbpe

2 iwp

apaq1bpbqe
2 i (wp2wq)

2apaq2bpbqe
i (wp2wq)

apbqe
iwq2aqbpe

iwp

D .

~11!

At the present stage, we use an ‘‘entangled Gaussi
with width s for the momentum distribution, as follows:

g~p,q!5A1

N
expF2

p21q2

4s2 GexpF2
p21q222xp•q

4s2~12x2!
G ,

~12!

wherexP@0,1) andN is the normalization. In Eq.~12!, for a
given s, x can be reasonably regarded as a measure of
entanglement between the momenta. Whenx50, the mo-
mentum part of the state is separable, i.e., the momen
entanglement is zero. However, in the limitx→1, we have

lim
x→1

g~p,q!5A 1

N8
expF2

p2

2s2Gd3~p2q!, ~13!

whereN8 is the normalization. Equation~13! indicates a per-
fect correlation between the momenta. Note that in Eq.~13!
the momenta are not necessarily maximally entangled.

By integrating over the momenta, we obtain the reduc
density matrix for spins, viewed by the Lorentz-boosted o
server, as

r5E E C8~p,q!C8~p,q!†d̃pd̃q. ~14!

The entanglement between the spins viewed by the Lore
boosted observer is obtained by calculating the Woott
concurrence@14#, denoted asC(r). The change in the
Lorentz-transformed concurrenceC(r) depends ons/m, x,
and j. Figure 1 shows the concurrence as a function of
pidity j, for different values ofs/m andx. As in Ref.@4#, the
decrease from the maximum value@C(r)51 for Bell states#
documents the boost-induced decoherence of the spin
tanglement@4#. However, it is interesting to see that for fixe
s/m and j the concurrence decreases less for nonzerox.
Further, it is surprising that at the limitx→1 the concurrence
does not decrease, no matter whats/m andj are. Indeed, in
the limit x→1, not only the concurrence but also the reduc
density matrix for spins is independent ofs/m andj.

One possible explanation might be the following. B
boosting the state, we move some of the spin entanglem
to the momentum@4#, and simultaneously the momentu
entanglement appears to be moved to the spins. The tran
of momentum entanglement to spins hence compensate
decrease of spin entanglement, and the Lorentz-transfor
concurrence decreases less. When the momenta of the
particles are perfectly correlated, even though they may
be maximally entangled, the transfer of entanglement fr
momenta to spins happens to fully compensate the decr
of spin entanglement, and the entanglement of the redu
8-2
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spin state remains maximal when viewed by any Loren
boosted observer. For the singlet Bell states with momen
distribution given in Eq.~13! @generally for those given in
Eq. ~15! in the following#, the Lorentz boost does not affe
the reduced spin state, only transformsp (q) to Lp (Lq).
The momentum and spin parts of such states always ap
to be separate viewed from any Lorentz-boosted frame.

That the spin concurrence remains maximal in the lim
x→1 when viewed from any Lorentz-boosted frame can
generalized, without using the ‘‘entangled Gaussian’’ in E
~12!. Directly from Eq. ~11!, we see that if the momentum
distribution takes the form

g8~p,q!5Af ~p!d3~p2q!, ~15!

where f (p) can be any distribution as long asg8(p,q) is
normalized according to Eq.~4!, the boosted state can b
written as

C8~Lp,Lq!5
g8~p,q!

A2 S 0

ap
21bp

2

2ap
22bp

2

0

D 5C~p,q!, ~16!

with ap
21bp

2[1 due to the unitarity ofUp . For the singlet
Bell state shown in Eq.~1! with momentum distribution
given in Eq. ~15!, the reduced density matrix remains th
same as in the rest frame and the entanglement betwee
spins remains maximal when viewed from any Loren
transformed frame. Indeed, the following four ‘‘Bell’’ state
all have invariant reduced density matrices for spins view
from any frame Lorentz boosted along thez axis:

F f
15Af ~p!d~p2q!dup ,uq

dwp1wq,0uf1&, ~17a!

FIG. 1. Spin concurrenceC(r) as a function of rapidityj, for
an initial Bell state with momentum in an ‘‘entangled Gaussia
Data shown as dots~squares! are fors/m51 (s/m54), with solid
~dashed! line for x50 (x50.8). The solid line atC(r)51 repre-
sents the spin concurrence in the limitx→1 for any value ofs/m.
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F f
25Af ~p!d~p2q!dup ,uq

dwp1wq ,puf2&, ~17b!

C f
15Af ~p!d~p2q!dup ,uq

dwp2wq ,puc1&, ~17c!

C f
25Af ~p!d3~p2q!uc2&. ~17d!

Here uf6&5(u↑↑&6u↓↓&)/A2 anduc6&5(u↑↓&6u↓↑&)/A2
are the conventional Bell states, and we definedx,y[d((x
2y)mod 2p) for compactness of notation. In Eqs.~17!, f (p)
can be any distribution as long as the state is normaliz
Further, the states in Eqs.~17!, together with those differing
by only rotations, constitute a set of states of which the
tanglement between the spins remains invariant when vie
from any Lorentz-transformed frame. This invariance lea
to possible applications to relativistic quantum informati
processing.

Here we shall note that, in Eqs.~17! as well as in the
remaining part of this paper, thed functions should be re-
garded as limits of analytical functions under certain con
tions, e.g., Eq.~13! is the limit of Eq.~12! at x→1. The only
restriction onf (p) is that the states should be normalize
Although it is known how standard fermionic Bell states c
be manufactured, an important question still remains, i
how to produce momentum-correlated states. We mi
imagine such states arising from a particular particle de
process, possibly with further manipulations. The difficu
involved in producing these states depends on the spe
physical system and process.

III. RELATIVISTIC INVARIANT PROTOCOL
FOR QUANTUM INFORMATION PROCESSING

A possible application of the above results is to sugge
relativistic invariant protocol for quantum communicatio
The conventional use of a single spin-1

2 particle as a qubit
may not be appropriate in relativity theory, because the
duced density matrix for its spin is generally not covaria
under Lorentz transformations@3#. If and only if we consider
momentum eigenstates~plane waves!, the reduced density
matrix for the spin of a single particle can be covariant un
Lorentz transformations, but momentum eigenstates are
localized and may be difficult in feasible applications.

However, two spin-12 particles that are appropriately en
tangled, as in Eqs.~17!, without being momentum eigen
states, could indeed have a reduced density matrix for s
that is invariant under Lorentz transformation. Such inva
ance provides us the possibility to feasibly represent a sin
qubit using two appropriately entangled spin-1

2 particles, in a
Lorentz-invariant manner. Taking into account that in ma
practical situations of communication one may need to ma
tain the particles along desired directions, here we ass
the ideal case where the momenta of the pair of partic
have deterministic directions and the two particles are m
ing along the same deterministic direction. We may a
choose the boostL to be along thez axis and the momenta to
lie in thex-z plane, i.e.,up[uq[u andwp[wq[0, without
loss of generality. In this protocol we use a momentum d
tribution that has the following form in the rest frame:

’

8-3
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g̃~p,q!5Af ~p!d~p2q!dup ,uduq ,udwp,0dwq0
,

~18!

with f (p) being arbitrary as long asg̃(p,q) is normalized as
in Eq. ~4!. Because Eq.~18! is a simultaneous instance of th
momentum distributions of the states in both Eq.~17a! and
Eq. ~17d!, both g̃(p,q)uf1& and g̃(p,q)uc2& have invariant
reduced density matrices for spins when viewed from a
Lorentz-boosted frame. This enables us to use these
states as the orthonormal bases, namely,u0̃& and u1̃&, of a
qubit, as follows:

u0̃&;g̃~p,q!uf1&, ~19a!

u1̃&;g̃~p,q!uc2&. ~19b!

Equations~19! can be regarded as a representation of a sin
‘‘Lorentz-invariant’’ qubit, in the sense that we look only a
the spin part of the state. The representation of ‘‘ Loren
invariant’’ multiple qubits can be obtained straightforward
Note that in multiqubit states the momentum distributions
individual qubits are not necessarily the same. We can
ther find an operator acting upon a single qubit, in terms
the ‘‘Lorentz-invariant’’ bases, as

Õ5 (
s,t50,1

lstus̃&^t̃u. ~20!

The operators acting upon multiple qubits can be obtai
analogously. We refer to these operators as ‘‘Lorentz inv
ant’’ in the sense that, if we look only at spins, the action
the operator on the stateau0̃&1bu1̃& (; a,bPC with uau2
1ubu251) remains the same when viewed in any Loren
boosted frame.

Within the set of these ‘‘Lorentz-invariant’’ qubits an
operators, the entropy, entanglement, and measuremen
sults all have invariant meanings in different frames, des
the fact that these quantities may have no invariant mean
for a single quantum spin and some other situations@3,4#.
gy

er

,
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Therefore it is guaranteed that, by using such states and
erators, the nonrelativistic quantum information theory c
be invariantly applied to relativistic situations.

IV. CONCLUSION

As observed in Ref.@4#, because Lorentz boosts entang
the spin and momentum degrees of freedom, the entan
ment between the spins may change if viewed from a m
ing frame. In particular, maximally entangled spin states w
most likely decohere due to mixing with the momentum d
grees of freedom, depending on the initial momentum wa
function @4#.

In this paper, we investigate the quantum entanglem
between the spins of a pair of spin-1

2 massive particles in
moving frames, for the case that the momenta of the parti
are entangled. We show that, if the momenta of the pair
appropriately entangled, the entanglement between the s
of the Bell states remains maximal when viewed from a
Lorentz-transformed frame. Further, we suggest a relativi
invariant protocol for quantum communication with whic
the nonrelativistic quantum information theory could be
variantly applied to relativistic situations.

Although the investigations are based on spin-1
2 particles,

we believe that similar results for larger spins could be o
tained analogously. In particular, we hope our work will he
to find a relativistic invariant protocol for quantum informa
tion processing based on photons, i.e., the case of mas
spin-1 particles.
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