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Radiation damping in classical systems: The role of nonintegrability
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The interaction between matter and fields is a classical problem. Still there are difficulties. Time symmetry
is broken. So the radiation damping belongs to a class of phenomena, which includes transport properties. We
propose a radically different approach based on the extension of the dynamics of integrable systems. We
consider a simple model, a harmonic oscillator interacting with a field. For integrable systems, it is well known
that there exists a unitary transformationU. However, in the radiation damping we have resonances between
the action of the particle and the actions of the field. This makes the system an example of Poincare´ noninte-
grable systems. We extend the unitary operator to a new star-unitary operatorL. This changes the dynamical
description of radiation damping. Once we know the Hamiltonian, we can of course write the Hamilton
equations. But we have the possibility to go to new descriptions. The invertibleL transformation gives many
new aspects, which are hidden in the initial description. For example, we show that there are fluctuations, and
that there exists an irreducible probability description. The transformation toL representation corresponds to
a transformation to Markovian probability equations. We can always come back to the initial representation by
the inverse transformation. We have verified this remarkable prediction by detailed numerical calculations. We
need theL transformation to obtain the definition of a dressed unstable mode, which has a well-defined
lifetime. In the initial representation there are various time scales and there is no strictly exponential lifetime.
The situation is the same as the one we have studied in the quantum case in recent papers.

DOI: 10.1103/PhysRevA.68.022107 PACS number~s!: 03.65.Ca, 41.60.2m, 45.20.2d, 03.50.2z
in

o
or
on
er

r i

m

in
as
a

iti
-

m
e

io
e
i

b
l t
e

e-
s
im

tum
ited

n
is

-
les.

t at
the
n-
x-
ions
in
im-

of

era-
ic
tes

ys-
ans-
e

lytic
w

se
We
I. INTRODUCTION

Radiation damping is described by equations break
time symmetry. We consider a particle~harmonic oscillator!
and study the damping of the oscillator through emission
energy to a classical field. Radiation damping is theref
part of the problems we have studied in recent publicati
@1–6#. We consider here a classical situation, which is v
similar to the quantum problem studied in Refs.@1,2#. @Here-
after, we shall indicate Refs.@1# and @2# as Q1 and Q2,
respectively, and cite the equations in these papers, fo
stance, as Eq.~Q1.2.3! for Eq. ~2.3! in Q1.# We have ex-
tended unitary transformation theory to dissipative syste
Our starting point is Poincare´’s distinction between inte-
grable and nonintegrable systems based on resonance s
larities. Dissipative systems, which we consider, form a cl
of nonintegrable systems due to resonances. For integr
systems we can introduce a transformation operatorU lead-
ing to independent modes and then come back to the in
variables asU is invertible. We achieve now a similar situa
tion for dissipative systems. We can consider the transfor
tion L which leads to well-defined equations for dress
modes and, if useful, come back to the initial variables asL
is also an invertible operator. There is no loss of informat
in the introduction of theL transformation. The importanc
of L in the context of this paper is that we can describe
this way the structure and the time evolution of the unsta
mode associated with the radiation damping. It is natura
assume that the excited mode is characterized by a w
defined lifetime independent of initial conditions. This is r
alized inL representation. In the usual representation, thi
not so. There are different decay periods such as Zeno t
exponential period, and long time tails. TheL transforma-
1050-2947/2003/68~2!/022107~22!/$20.00 68 0221
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tion permits to define dressed modes exactly as in quan
mechanics where it leads to the definition of dressed exc
states with well-defined lifetimes.

As is well known, Schro¨dinger’s equation does not allow
purely exponential decay of the survival probability of a
excited state@7#. The deviation from the exponential decay
specially significant in a short time scale~the so-called
‘‘quantum Zeno’’ period@8#!. This phenomenon, while it oc
curs in an extremely short time scale, leads to some puzz
Schwinger has written ‘‘ . . . with failure of the simple ex-
ponential decay law we have reached, not merely the poin
which some approximation ceases to be valid, but rather
limit of physical meaningfulness of the very concept of u
stable particle’’@9#. The corresponding Zeno period also e
ists in classical unstable systems, as the Hamilton equat
of motion also do not allow purely exponential decay
canonical variables. There have been several attempts to
prove the classical Lorentz-Abraham equation@10–16#.
However, all attempts have failed to predict the existence
the Zeno period.

In the quantum case presented inQ1 and Q2, the un-
stable state is described by a nonfactorizable density op
tor. The situation is similar in radiation damping. Our bas
idea was to start with the definition of dressed excited sta
for an integrable system where the unitary transformationU
is well defined in the density matrix space in quantum s
tems. For the nonintegrable case, we construct a new tr
formation calledL which is an analytic extension of th
unitary transformationU in such a way thatL reduces toU
when there are no resonance singularities. Due to the ana
continuation,L is no more an unitary operator, but has a ne
symmetry called the ‘‘star unitarity.’’ For the classical ca
discussed in this paper we follow the same basic idea.
©2003 The American Physical Society07-1
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require the following properties forL: ~1! The transforma-
tion L is obtained by analytic continuation of the unita
transformationU in the continuous spectrum limit for th
frequency.~2! The transformationL preserves the unit op
erator, i.e.,LI 5I . ~3! The transformationL preserves real-
ity of phase functions.~4! The transformationL is analytic
with respect to the coupling constant.~5! The transformation
L is invertible: LL215L21L5I @17#. ~6! The
L-transformed distribution function that represents
dressed excited unstable mode obeys a Markovian time
lution ~strictly exponential law! corresponding to irreversible
energy transfer from the excited particle to the decay pr
uct. and~7! The transformationL is expressed by a suitabl
combination of the eigenstates of the Liouvillian with com
plex eigenvalues~the so-called ‘‘Gamow states’’! @18#.

In this paper we shall consider the dynamical theory
classical matter-field interacting systems in the Liouvilli
formalism, where the LiouvillianLH is defined as the Pois
son bracket with the Hamiltonian with respect to the cano
cal variables, i.e.,LHr[ i $H,r%. The Liouvillian formula-
tion is specially intuitive in terms of the Bargmann-Seg
~BS! representation for a Hilbert space spanned by en
functions of the normal coordinates@19,20#. The BS repre-
sentation is a classical analog of the coherent-state repre
tation in quantum systems@21#. Through this representation
one can introduce an (m,n) representation, wherem and n
are integer power of monomials of the normal coordinat
The (m,n) representation corresponds to the number rep
sentation in quantum systems. Since the Liouvillian is a
rivative operator with respect to the normal coordinates,
action of the Liouvillian on a monomial generally changes
power. As a result, it is interesting to see that the interac
leads to ‘‘transitions’’ between the states in (m,n) represen-
tation in spite of the fact that we deal with classical mech
ics. In this representation we find an isomorphism betw
classical systems in the (m,n) representation and corre
sponding quantum systems in number representation on
level of the Liouvillian formalism.

Using this formulation, we shall show that a strictly pa
allel formalism to quantum systems is applicable to the pr
lem of classical radiation damping. As an example, we s
consider the ‘‘classical Friedrichs model.’’ In terms of th
normal coordinateq̄a of the particle a51 and the field
modesa5k defined in the following section, the Hami
tonian of the classical Friedrichs model@22# is given in Eq.
~2.1!. This system corresponds to the quantum Friedri
model discussed in our previous papersQ1, Q2, and in Ref.
@5#. An advantage of this model is that Hamiltonian~2.1! is
given in a bilinear form of the normal modes. Thanks to t
structure, one can present a complete description of the
lution of the system, not only for the motion of the partic
but also for the radiative field, without any approximatio
We have shown that our method can be extended to inc
virtual processes and nonlinear situations, but this will not
considered in the present paper.

An important consequence of the analytic continuation
that it leads to the transformationL which is not distributive
when it acts on a product of canonical variables. This is
02210
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contrast to the unitary~or canonical! transformation. Because
of this property, we shall see that there appear fluctuation
the emitted field from the dressed unstable mode. This
plies that the distribution function that represents the dres
unstable mode is a nonlocal ensemble in phase space. H
the dressed unstable mode cannot be represented by a t
tory in phase space. Moreover, this property leads to a n
Poissonian algebra incorporating dissipation, which is an
tension of the ordinary Poissonian algebra~or Lie algebra!.

Also, it is in L representation that we can define the th
modynamical aspect of radiation damping and make exp
the entropy production due to the radiation damping. T
entropy production~i.e., the dissipation! is a consequence o
the fluctuations.

There is another important aspect of ourL transforma-
tion. As noticed, our nonunitary transformation is invertib
As we shall see, the evolution of the original variables as
ciated with the bare mode will be represented by a supe
sition of the variables associated with the dressed state
spite of the fact that the dressed states obey stochastic
kov process fort.0, we do not loose any information b
going to theL representation.

Thanks to the isomorphism between the quant
Friedrichs model and the classical Friedrichs model in ter
of the BS representation, one can obtain the classicaL
through the results inQ1 and Q2 by repeating the sam
calculations. Hence, here we often display the formulas w
out presenting their detailed derivations. We shall indic
the location of the relevant calculations by citing the equ
tion numbers inQ1 andQ2 for the reader’s convenience,

In Sec. II, we present the Hamiltonian in terms of t
normal modes. In Sec. III, we diagonalize the Hamiltoni
for both integrable and nonintegrable cases. For the noni
grable case this can be done in terms of the Gamow~or dual!
normal modes@23–26#. The Gamow modes are eigenstat
of the LiouvillianLH with complex eigenvalues. The Gamo
modes play an auxiliary role to introduce our star-unita
operatorL for the nonintegrable system.

In Sec. IV, we introduce the Bargmann-Segal represe
tion of Liouvillian. In Sec. V, we construct explicitly the
unitary transformation operatorU for the integrable case in
terms of the BS representation. We also summarize the
relation dynamics which is the starting point to construct
star-unitary transformationL. In Sec. VI, we presentL for
the nonintegrable system. In Sec. VII, we define the dis
bution function that represents the classical dressed uns
mode through theL transformations. We present some pro
erties of the dressed mode. The observables correspondi
the dressed mode obey strictly Markov process with ex
nential decay. We need theL representation to define th
unstable mode with well-defined lifetime. Moreover, we d
cuss the nondistributivity ofL and its striking consequence
on the nonlocality of the distribution function for the dress
unstable mode in phase space. We show that there are in
sic fluctuations of the normal modes of the field emitted fro
the dressed unstable mode.

In Sec. VIII, we present time evolution of the initial co
ordinates. The main points of this section are to analyze n
Markov evolution of an excited bare particle. We show th
7-2
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there are several different time scales in decay proces
excited bare particle, i.e., a short time classical Zeno per
intermediate time scale of an approximately exponential
cay process, and a long time tail.

In Sec. IX we present several numerical plots to visual
the several different time scales. We also present a nume
verification of the invertibility of our transformation betwee
the initial coordinates and the transformed coordinates, a
numerical calculation of the nondistributibity of theL trans-
formation. Whenever we obtain theL representation, we ca
go back to the initial representation throughL21.

In Sec. X, we introduce a microscopic analog of Bol
mann’sH function ~negative entropy! in statistical mechan-
ics in terms ofL representation. We show that the entro
production~or the dissipation! is a consequence of the intrin
sic fluctuations in the dressed unstable mode. In the last
tion, we present some concluding remarks. Several us
relations are given in the Appendixes.

II. CLASSICAL FRIEDRICHS MODEL

We consider a classical system that consists of a cha
harmonic oscillator with a unit mass coupled with a classi
scalar field in one-dimensional space. One may introd
dimensionless variables by using unitsJ051 for an action
variableJ0 of a typical initial condition of the harmonic os
cillator, v051 for a suitable frequency, andc51 for the
speed of light. We assume that the dimensionless Ha
tonian of the system measured by the unitv0J0 is given by

H5H01lV5v1q̄1
c.c.q̄11 (

k52`

1`

vkq̄k
c.c.q̄k

1l (
k52`

1`

V̄k~ q̄1
c.c.q̄k1q̄1q̄k

c.c.!, ~2.1!

where V̄2k5V̄k , c.c. means complex conjugate,q̄1 and q̄k
are the dimensionless normal coordinates measured by
unit AJ0,v1.0 is a dimensionless frequency for the ha
monic oscillator,vk5uku is a dimensionless frequency fo
the field, andl is a coupling constant. As a convention w
call the harmonic oscillator as ‘‘particle.’’ For simplicity w
have dropped processes associated with interaction te
proportional toq̄1q̄k and q̄1

c.c.q̄k
c.c. , which correspond to the

‘‘virtual processes’’ in quantum mechanics. This approxim
tion corresponds to the so-called rotating wave approxim
tion in atomic physics@27#.

The normal coordinatesq̄a are related to canonical pair
of variablesxa and pa for the particlea51 and the field
modes a5k as q̄a5Ava /2(xa1 ipa /va). The canonical
variables satisfy the Poisson bracket relation with the K
neckerd normalization,

$q̄a ,q̄b
c.c.%52 ida,b , $q̄a ,q̄b%50. ~2.2!

Here, the Poisson bracket in terms of the normal mode
given by
02210
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i $ f , g%5(
a

S ] f

]q̄a

]g

]q̄a
c.c.

2
] f

]q̄a
c.c.

]g

]q̄a
D , ~2.3!

where the summationa runs over all indices of the particle
and field modesk.

We put the system in a one-dimensional box of sizeL, and
impose the usual periodic boundary condition. Then
spectrum of the field is discrete, i.e.,k52p j /L with any
integer j. To deal with the continuous spectrum of the fie
we will take the limitL→` in the appropriate stage of ca
culations. In this limit we have

1

V (
k52`

1`

→E
2`

1`

dk, Vdk,0→d~k!, ~2.4!

where d(k) is the Diracd function and the volume facto
V[L/2p. The volume dependence of the interactionVk is
given by V̄k[vk /AV, wherevk;O(V0) is a suitable form
factor.

We note that the frequenciesvk in Hamiltonian~2.1! are
degenerate asvk5v2k5uku. To avoid some complexity
coming from this degeneracy, it is better to rewrite t
Hamiltonian in terms of the variablesqk[(q̄k1q̄2k)/A2 for
k.0, qk[(q̄k2q̄2k)/A2 for k<0, andq1[q̄1 as

H5v1q1
c.c.q11 (

k52`

1`

vkqk
c.c.qk

1l (
k52`

1`

Vk~q1
c.c.qk1q1qk

c.c.!, ~2.5!

with Vk5A2V̄k for k.0, andVk50 for k<0. In this new
form the variableqk with the negative argumentk is decou-
pled from the other degrees of freedom. In terms of th
new canonical variables the Poisson bracket of the ph
functions f and g is written in the same expression as E
~2.3! but with qa instead of the original variableq̄a @see Eq.
~3.9!#. We also have relations similar to Eq.~2.2!, such as
$qa ,qb

c.c.%52 ida,b .

III. DIAGONALIZATION OF THE HAMILTONIAN

Because Hamiltonian~2.5! is bilinear, one can ‘‘diagonal-
ize’’ it by introducing dressed normal modes through a line
transformation, as in the case of quantum systems. Thi
true for both integrable and nonintegrable cases. Howeve
is well known that the diagonalization for the nonintegrab
case is not unique, as there is Friedrichs’ diagonalizat
with real spectrum and the Gamow-mode diagonalization~or
dual-mode diagonalization! with complex spectrum@22–26#.
An advantage of the Gamow-mode diagonalization is t
one can unify the diagonalization for both integrable a
nonintegrable cases. Moreover, since the Gamow mo
naturally appear in our nonunitary transformation, we sh
present here this form of diagonalization. Since the algeb
form of the transformation is exactly the same as in quant
mechanics, we shall present here only the relevant form
7-3
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of the transformations which will be used in this paper. F
the complete result of the transformation including the
verse transformation, see our previous paperQ1 for the
quantum case.

In the classical system the frequency of the particle (v1)
is positive. As a result, the integrable case appears only
the discrete spectrum ofvk , where the size of the box i
finite. To avoid un-necessary complexity for the discre
case, we consider a nondegenerate case of the unpertu
frequency; i.e.,vkÞv1 for all k. We have the nonintegrabl
system in the continuous spectrum limit.

In both integrable and nonintegrable cases, one can d
onalize the Hamiltonian in the form

H5z1Q1
c.c.Q̃11 (

k52`

1`

ṽkQk
c.c.Q̃k . ~3.1!

In order to unify the notation, we use the summation s
over the wave numberk of the field instead of integration fo
the nonintegrable case. If necessary, we shall explicitly in
cate the integration sign.

The transformation is given by

Q1
c.c.5N1

1/2Fq1
c.c.1l(

k
ckqk

c.c.G , ~3.2a!

Q̃15N1
1/2Fq11l(

k
ckqkG , ~3.2b!

and

Qk
c.c.5Nk

1/2Fqk
c.c.1

lVk

hd,k
1 ~ṽk!

S q1
c.c.1(

k8

lVk8qk8
c.c.

ṽk2vk81 i e
D G ,

~3.3a!

Q̃k5Nk
1/2Fqk1

lVk

hk
2~ṽk!

S q11(
k8

lVk8qk8

ṽk2vk82 i e
D G .

~3.3b!

Here

ck[
lVk

~z12vk!
1

, ~3.4a!

1

hd,k
1 ~ṽk!

[
1

hk
1~ṽk!

z12vk

~z12vk!
1

, ~3.4b!

where hk
6(v)[hk(v6 i e) with a possitive infinitesimale

→01 @28#. The functionhk(z) is defined by

hk~z![z2v12 (
k8(Þk)

l2Vk8
2

z2vk8

. ~3.4c!

For the nonintegrable case we have Imz1,0 @see Eq.~3.7!#.
Then, the notation 1/(z12vk)

1 means that the denominato
is evaluated on a Riemann sheet that is analytically con
ued from the upper half plane ofz to the lower half plane for
02210
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the continuous spectrum case. In other words, after we
form the integration overk by keepingz on the upper half
plane, we substitutez5z1, which is on the lower half plane
For this reason we often refer this analytic continuation
the ‘‘delayed analytic continuation’’@5#. Therefore,ck and
hd,k

1 are not ordinary functions, but are distributions that a
defined only under the integration overk. For the discrete
spectrum case they reduce to ordinary functions since
have simply 1/(z12vk)

151/(z12vk).
The normalization constants are given by

N15~11j!21, j[l2(
k

ck
2 ~3.5a!

and

Nk5F11
l2Vk

2

uhk
1~ṽk!u2

S 11 (
k8(Þk)

l2Vk8
2

uṽk2vk81 i eu2D G21

.

~3.5b!

The renormalized frequenciesz1 and ṽk are given by the
solutions of the transcendental equations given by

hk
1~z1!50, ~3.6a!

ṽk5vk1
l2Vk

2

hk~ṽk!
. ~3.6b!

Because of our assumptionvkÞv1 for anyk, one can prove
that for the discrete spectrum case,z15ṽ1 is a real number,
and ṽ1Þvk and ṽkÞvk8 for any k andk8 @29#. Hence, the
denominators in the transformation never vanish for the d
crete case. For this case the quantitiesck , N1, andNk are all
real, and we havehk(ṽk)5hk

6(ṽk)5hd,k
6 (ṽk). Moreover,

we haveQ̃a5Qa for the integrable case.
For the continuous spectrum limit, we have the lim

Nk→1 and ṽk→vk , as the differences from the limiting
values are of order 1/V that vanishes forV→`. By the
same reason, one can remove the restriction ofk8Þk in
hk(z) in the continuous spectrum limit. Hence, one may u
the simpler notationsh(z) and hd(z) by dropping the sub-
scriptk in the corresponding quantities, when we discuss
nonintegrable case.

Assuming a suitable form factorVk , the function 1/h1(z)
has a pole atz5z1 in the lower half plane for the noninte
grable case, where

z1[ṽ12 ig. ~3.7!

This pole corresponds to the ‘‘Green’s function’’ pole in th
quantum case, andṽ1 corresponds to the Green’s functio
frequency. The imaginary partg.0 leads to the decay rat
of the excited particle.

For the integrable case,Q̃a5Qa are the dressed norma
modes which diagonalize the Hamiltonian. For the nonin
7-4
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grable case we haveQ̃aÞQa , and these are the Gamo
modes. In both cases they satisfy the Poisson bracket
tions given by

i $Qa ,Q̃b
c.c.%5da,b , i $Qa ,Q̃b%50. ~3.8!

Here, we have

i $ f ,g%5(
a

S ] f

]qa

]g

]qa
c.c.

2
] f

]qa
c.c.

]g

]qa
D

5(
a

S ] f

]Q̃a

]g

]Qa
c.c.

2
] f

]Qa
c.c.

]g

]Q̃a
D . ~3.9!

The Hamilton equation of motion for transformed mo
Q̃1(t) is given in terms of the LiouvillianLH by

i Q̇̃152LHQ̃15z1Q̃1 . ~3.10!

This shows that the Gamow mode is an eigenstate of
Liouvillian with a complex eigenvalue2z1 for the noninte-
grable case. This leads to the solution

Q̃1~ t !5e2 iz1tQ̃1~0!, ~3.11!

which oscillates in time for the integrable case and dec
for the nonintegralbe case.

IV. THE LIOUVILLE SPACE

Following the decomposition of the Hamiltonian in E
~2.1!, we have the decomposition of the Liouvillian into th
unperturbed partL0 associated toH0 and the interaction par
LV associated withV as

LH5L01lLV . ~4.1!

We have

L0r~qW !5(
a

vaS qa
c.c. ]

]qa
c.c.

2qa

]

]qa
D r~qW ! ~4.2!

and

LVr~qW !5(
k

VkS q1
c.c. ]

]qk
c.c.

2q1

]

]qk

1qk
c.c. ]

]q1
c.c.

2qk

]

]q1
D r~qW !. ~4.3!

In order to introduce unitary transformations for the in
grable case or nonunitary transformations in the nonin
grable case, we have to specify a function space. In our
vious works@30,31#, we have introduced a Hilbert space th
is spanned by a set of eigenstates of the unperturbed L
villian L0. We can start with this Hilbert space to specify o
transformation operators.
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For the classical Friedrichs model it is easy to see that
monomial)a(qa

c.c.)maqa
na with non-negative integersma and

na are eigenstates ofL0. However, the integration of thes
monomials over entire phase space diverges. In order to h
a basis of the Hilbert space, we hence multiply converg
factors exp@2Ja# that are invariants of motion for alla for
L0, i.e., L0Ja50, where the action-angle variables (Ja ,aa)
are related to the normal modes byqa5AJaexp@2iaa# with
the domains 0<Ja,` and 0<aa,2p. Then, we obtain a
complete basisf mW ,nW(qW ) of the Hilbert space, which satisfies

L0f mW ,nW~qW !5~mW 2nW !•vW f mW ,nW~qW !, ~4.4!

where

f mW ,nW~qW !5)
a

~qa
c.c.!maqa

na

Ama!na!
e2uqau2, ~4.5!

with qW [$q1 ,qk1
, qk2

, . . . %, mW [$m1 ,mk1
,mk2

, . . . %, mW •vW

[(bmbvb , and 1/Ama!na! being a normalization constan
Equation~4.5! is the well-known basis@19,20# of the Hilbert
space spanned by entire functions ofqa andqa

c.c. , which is
closely related to the coherent states in quantum mecha
@21#. In Appendix A we summarize the relations of the B
basis and the coherent states. Let us denotef mW ,nW as

f mW ,nW~qW !5 ^̂ qW ;qW umW ;nW &&5^qW umW &^nW uqW &, ~4.6!

where ^nW uqW & is the coherent state given in Eq.~A1!. The
non-negative integersma andna in the classical abstract stat
umW ;nW && indicates the powers of the monomial (qa

c.c.)maqa
na in

the modea.
We note

L0(
a

Ja5LH(
a

Ja50. ~4.7!

with Ja5uqau2. Thus, the converging factor in Eq.~4.5! is an
invariant of motion not only for the unperturbed casel50
but also for the perturbed caselÞ0. This is a direct conse
quence of Hamiltonian~2.1! for classical Friedrichs mode
where the ‘‘virtual processes’’ have been neglected.

The statesumW ;nW && are the basic elements in the Hilbe
space which we call the ‘‘Liouville space.’’ They satisf
completeness and orthonomality relations

(
mW

(
nW

umW ;nW &&^̂ mW ;nW u5I , ~4.8a!

^̂ mW ;nW um8W ;n8W &&5)
a

dma ,m
a8
dn

a8 ,na
, ~4.8b!

where I is a unit operator in the Liouville space. As ex
plained in Appendix A, they are dyadic operatorsumW ;nW &&
5umW &^nW u, whereumW & is a basis of a Hilbert space spanned
entire functions ofqW alone ~and not ofqW c.c.). In order to
7-5
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distinguish umW ;nW && from a vector umW &, we often call the
former as a ‘‘supervector,’’ borrowing the terminology fro
quantum mechanics@32#. The supervectorumW ;nW && is an
eigen-supervector of the unperturbed LiouvillianL0 in the
Liouville space@see Eq.~A13!#.

We note that the interactionLV reproduces a new mono
mial with a different set of integers (mW ,nW ) when it acts on a
given monomial. In other words, the interaction leads
‘‘transition’’ between integer powers of monomials@or be-
tween the statesumW ;nW && with different sets of integers, se
Eq. ~A14! on the level of Liouvillian formulation#, in spite of
the fact that we deal with classical mechanics.

In the Liouville space one can introduce a set$S% of linear
‘‘superoperators’’ that act on the supervectors as

S5(
mW ,nW

(
m8W ,n8W

umW ;nW &&^̂ mW ;nW uSum8W ;n8W &&^̂ m8W ;n8W u. ~4.9!

For a given superoperatorS, its Hermitian conjugate operato
S† is defined as usual. Then the Hermitian operators and
unitary operators in the Liouville space are also defined
S†5S and S†5S21, respectively. The Liouvillan is an ex
ample of Hermitian operators in the Liouville space, i.e.,

LH
† 5LH . ~4.10!

In Appendix A we show the isomorphism between the cl
sical Friedrichs model and the quantum Friedrichs mode
the level of the Liouvillian formalism@see formulas~A13!

and ~A14!#. Indeed, ifumW & and^nW u in Eq. ~4.6! are regarded
as the number states of the unperturbed bosons for the
responding quantum system, then these formulas are ex
the same as the ones obtained for the quantum Liouvil
for the Friedrichs model. This means that all expressions
the superoperators that are constructed from the matrix
ments of the Liouvillian in the number representation
quantum Friedrichs model are also applicable without a
modification to the classical Friedrichs model in terms of
(m,n) representation.

However, it should be emphasized that the isomorph
holds only on the level of the Liouvillian, and not on th
level of the Hamiltonian. Indeed, since the Hamiltonian is
phase function~or a multiplicative operator acting on an
phase functions! in the classical system, there is no su
expression in which the Liouvillian is written as a comm
tation relation with the Hamiltonian as in the case of qua
tum mechanics. Moreover, the classical ‘‘vacuum state’’u0&
~defined asumW & with mW 50) in the (m,n) representation ha
a very different meaning from the quantum vacuum sta
Indeed, the unperturbed energyH0 of the ‘‘classical vacuum
state’’ diverges in the limit ofV→` as

^H0&5E )
a

dm~qa!(
b

vbqb
c.c.qb^̂ qW ;qW u0W ;0W &&

5(
b

vbE )
a

dJaexpS 2(
c

JcD Jb

5v11(
k

vk;O~V!, ~4.11!
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where dm(qa)[p21d2qa[p21d(Reqa)d(Im qa)
5dJadaa/2p ~see also Appendix A!. On the other hand, the
quantum vacuum has no energy, since^0uab

1abu0&50,
where ab is the annihilatioin operator of the quantu
modeb.

We note that the transition by the interactionLV in Eq.
~A14! preserves a number defined by

N5(
a

~ma1na!, ~4.12!

in the stateumW ;nW &&. This is a direct consequence of ou
Hamiltonian ~2.1! where the interactions proportional t
q̄1q̄k andq̄1

c.c.q̄k
c.c. are absent. Because of this property, ea

sector associated to a given integerN in Eq. ~4.12! evolves
independent of the other sectors. As a result, the descrip
of the time evolution of observables is significantly simp
fied for the Friedrichs model. For example, if we are inte
ested in the evolution of the unperturbed action variableJ1
for the particle, it is enough to consider the sector withN
52.

Moreover, there are disjoint sets of the states that evo
independently from other sets inside the same sector.
example, let us consider theN51 sector. We first introduce a
shorthand notation of a state defined by

ua&[u1a ,$0W %8&, ~4.13!

where (ma ,mb8 , . . . ,$0W %8) means all components exce
a,b, . . . are zero, whilema5m, mb85m8, and so on. As we
shall see later, this shorthand notation is specially conven
to compare the results obtained here for the classical sys
to the results obtained for the quantum Friedrichs model
cussed in our previous papersQ1 andQ2. Then in theN
51 sector we have transitions between the dyadic st
u1;0W && and uk;0W &&, or between the dyadic statesu0W ;1&& and
u0W ;k&&, but no transition between the dyadic statesua;0W && and
u0W ;b&& for any a andb.

Throughout this paper, we shall treat superoperatorsS that
are functional of LH ~including the unperturbed casel
50), i.e.,S5S(LH). For this case and with relation~A15!,
we see that the expression in Eq.~4.9! that acts to^̂ mW ;nW u
from the right is equivalent in the normal-mode represen
tion to

)
a

qa
ma~qa

c.c.!na

Ama!na!
S5 (

m8W ,n8W
^̂ mW ;nW uSum8W ;n8W &&)

a

q
a

ma8~qa
c.c.!na8

Ama8!na8!
.

~4.14!

This is a very useful relation to obtain an expression w
matrix elements of a given superoperator in the (m,n) rep-
resentation. We shall extensively use this relation when
discuss the nonunitary transformation later.
7-6
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V. UNITARY TRANSFORMATION AND DYNAMICS
OF CORRELATIONS

Before constructing the nonunitary transformation for t
nonintegrable case, we first present the unitary transfor
tion for the integrable case. In order to emphasize that
system with which we are dealing is the integrable case,
will use notations with a ‘‘bar,’’ such asQ̄a[Q̃a5Qa , as

well as v̄W [$v̄1 ,v̄k1
,v̄k2

, . . . %, and so on. The total Liou
villian is then

LH5(
a

v̄aS Q̄a
c.c. ]

]Q̄a
c.c.

2Q̄a

]

]Q̄a
D . ~5.1!

Hence, the solution of the eigenvalue problem ofLH is given
by

LHuf̄~mW !;f̄~nW !&&5v̄W •~mW 2nW !uf̄~mW !;f̄~nW !&&, ~5.2!

whereuf̄(mW );f̄(nW )&&5uf̄(mW )&^f̄(nW )u is a dyad as usual, an
the vectoruf̄(mW )& is defined in the BS representation by@cf.
Eq. ~A1!#

^qW uf̄~mW !&[)
a

~Q̄a
c.c.!ma

Ama!
^qW u0W &. ~5.3!

Similar to Eq.~A2!, the statesuf̄(mW )& satisfy complete and
orthonormal relations in the Hilbert space spanned by en
functions ofqW . As a result, the supervectorsuf̄(mW );f̄(nW )&&
also satisfy the complete and orthonormal relations of
Liouville space, similar to Eqs.~4.8a! and ~4.8b!.

For the integrable case, one can introduce a unitary tra
formation superoperatorU†5U21 in the Liouville space,

U215(
mW

(
nW

uf̄~mW !;f̄~nW !&&^̂ mW ;nW u, ~5.4a!

U5(
mW

(
nW

umW ;nW &&^̂ f̄~mW !;f̄~nW !u. ~5.4b!

It transforms an unperturbed eigenstate of the Liouvillian
a perturbed eigenstate as

U21umW ;nW &&5uf̄~mW !;f̄~nW !&&. ~5.5!

We note that one can introduce a unitary transformation
eratoru15u21 in the vector space spanned byumW &,

u[(
mW

umW &^f̄~mW !u, u1[(
mW

uf̄~mW !&^mW u. ~5.6!

In terms of this unitary operator,

U215u213u, ~5.7!

or
02210
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U21umW ;nW &&5u21umW &^nW uu. ~5.8!

Here, the factorizable operator (A3B) in the Liouville space
is defined by

~A3B!r5ArB, ~5.9!

whereA, B, and r are linear operators in the vector spa
spanned byumW &.

For integrable systems the unitary operatorU can be writ-
ten in terms of ‘‘kinetic’’ operators based on the ‘‘correlatio
dynamics’’ discussed below. The introduction of the kine
operators is important, as it allows us to extend the unit
operator to the nonunitary operatorL. Since the correlation
dynamics has been repeatedly presented in our previous
pers, Refs.@30–32# and Q1, we shall present only a brie
discussion of its main idea.

To introduce the kinetic operators, we first introduce t
operatorsP(n) which are projectors to orthonormal eige
spaces ofL0,

L0P(n)5P(n)L05w(n)P(n), ~5.10!

where

(
n

P(n)51, P(m)P(n)5P(n)dmn , ~5.11!

andw(n) are real eigenvalues ofL0. The complement projec
tors Q(n) are defined byQ(n)[12P(n), which are orthogo-
nal to P(n) and satisfy@Q(n)#25Q(n).

The unperturbed Liouville equation is then decompos
into a set of independent equations,

i
]

]t
P(n)r5w(n)P(n)r. ~5.12!

In terms of the (m,n) representation, we associate diagon
compomentsP(0)5(nW unW ;nW &&^̂ nW ;nW u of r with w(0)50, which
correspond to invariants of motion in the unpertubed ca
The off-diagonal components withnÞ0 simply oscillate
with frequenciesw(n).

For distribution functions the diagonal components ofr
provide the probability density of the action variable for ea
degree of freedom, while the off-diagonal components g
information on the correlations in angle variables amo
several degrees of freedom. The interaction changes the
of the correlations. Hence, in the Liouville space formu
tion, there appears naturally a dynamics of correlations@30#.
To formulate this more precisely, let us first introduce t
concept of the ‘‘vacuum-of-correlations subspace.’’ For t
Friedrichs mode, that is a set of the dyadic statesumW ;nW &&,
which consists of the elements in which allfield components
are diagonal in the (m,n) representation. For example, usin
the notation defined in Eq.~4.13!, the statesu1;1&& and
uk;k&& are the vacuum states in theN52 sector. We then
introduce an integerd that specifies the ‘‘degree of correla
tion.’’ This is defined as the minimum numberd of succes-
sive interactionslLV by which a given dyadic stateumW ;nW &&
7-7
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can reach the vacuum of correlation. For example, the
diagonal dyadic statesu1;k&& and uk;1&& corresponding to
particle-field correlations haved51, while the dyads
uk;k8&& corresponding to field-field correlations haved52.
The degree of correlation will become important when
specify the analytic continuation of the frequency denomi
tors that appear in the transformation superoperator for
nonintegrable case.

We come now to what we may call the backbone of o
approach. For nonintegrable systems, we introduced in
previous work@30,33,34# ~see also Refs.@35–40#! the kinetic
operatorsC(n), D (n), x (n) corresponding to the dynamics o
correlations. The superoperatorC(n) which will be defined
soon is an ‘‘off-diagonal’’ superoperator, as it describes o
diagonal transitionsC(n)5Q(n)C(n)P(n) from theP(n) corre-
lation subspace to theQ(n) subspace. By operatingC(n) on
the n correlation subspaceP(n), this operator creates corre
lations other than then correlation. In particular,C(0) creates
higher correlations from the vacuum of correlations. For t
reasonC(n) are generally called ‘‘creation-of-correlations
superoperators, or creation operators in short. Conver
the D (n)5P(n)D (n)Q(n) are called destruction operators. Th
superoperatorx (n)5P(n)x (n)P(n) is ‘‘diagonal,’’ as it de-
scribes a diagonal transition between states belonging to
same subspaceP(n).

In terms of these operators, we may indeed consider
namics as a dynamics of correlations. For the integrable
tem the diagonalization of the total Hamiltonian starting w
the projectorsP(n) is equivalent to the dynamics of correla
tions. For the unitary operatorU, the kinetic operatorsC, D,
and x in the integrable systems are defined thorough
relations

U21P(n)5~P(n)1C̄(n)!x̄ (n), ~5.13a!

P(n)U5@ x̄ (n)#†~P(n)1D̄ (n)!, ~5.13b!

we use bars to denote operators defined for integrable
tems, as before. Using Eq.~5.4a!, one can obtain the explici
form of the kinetic operators for the integrable case throu
the relations x̄ (n)5P(n)U21P(n), C̄(n)x̄ (n)5Q(n)U21P(n),
and D̄ (n)5@C̄(n)#† for each subspacen in the (m,n) repre-
sentation.

For the integrable case, the perturbed Liouville equat
is transformed as

i
]

]t
r̄~ t !5Q̄r~ t !, ~5.14!

where r̄(t)[Ur(t) and Q̄[ULHU21. The transformed
Liouville operator is diagonal in the unperturbed basis, i
we have

Q̄P(n)5P(n)Q̄[ū (n)5w̄(n)P(n), ~5.15!
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wherew̄(n) are the real eigenvalues of the ‘‘collision oper
tor’’ Q̄, corresponding tow(n) shifted by the interaction. As
a consequence the dynamics is reduced to the set of e
tions

i
]

]t
P(n)r̄~ t !5w̄(n)P(n)r̄~ t !. ~5.16!

The collision operator in Eq.~5.15! is expressed in terms o
the kinetic operators@32# by

ū (n)5P(n)w(n)1@ x̄ (n)#21lLVC̄(n)x̄ (n). ~5.17!

The main result is that the Louville space formulation of t
classical mechanics can be expressed in terms of the kin
operators. This is the starting point for our transition fro
integrable to nonintegrable systems.

VI. L TRANSFORMATION

We next consider the nonintegrable case. It is well kno
that the Friedrichs model is nonintegrable in the sense
Poincare´ for the continuous spectum case@41#. More pre-
cisely, there are divergences in the perturbation expan
~i.e., expansion inln with n>0) of invariants of motion
other than functions of the Hamiltonian@30#. The diver-
gences are due to vanishing denominators, which occur w
the frequencies of the system obey relations called Poin´
resonances, such asvk5v1 in 1/(vk2v1). Then one cannot
diagonalize the Hamiltonian by a unitary~or canonical!
transformation that is analytic inl at l50.

However, we can still deal with the vanishing denomin
tors in the continuous spectrum case by performing a suita
analytic continuation of the denominators which appear
the kinetic operatorsC, D, andx. To determine the form of
L, we use the same formal expressions~5.13a! and~5.13b!,

L21P(n)5~P(n)1C(n)!x (n), ~6.1a!

P(n)L5@x (n)#* ~P(n)1D (n)!. ~6.1b!

This guarantees that condition~1! for L presented at the
introduction is satisfied. The analytic continuation can
achieved by adding6 i e with a positive infinitesimale as
1/w⇒1/(w6 i e). The key point is to choose the sign o
6 i e. Reading each term of the perturbation expansion fr
right to left, we choose2 i e for a transition to higher, or
equal, degree of correlations, as this corresponds to a pro
oriented towards the future, while we choose1 i e for a tran-
sition to lower correlations, as this corresponds to a proc
oriented towards the past@6,32,33#. As far as the kinetic
operatorsC(n) and D (n) are concerned, this choice of th
analytic continuation completely determines the form
these operators. To determine the operatorx (n), we need the
other conditions@~2!–~7!# that are displayed in the Introduc
tion ~seeQ1).

Due to the analytic continuation,L is no more unitary
operator, but has a new symmetry called the ‘‘star-unitari
that was introduced by one of the authors~I.P.!, long time
ago @33# ~see also Ref.@32#!, i.e.,
7-8
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L215L* , ~6.2!

where * denotes ‘‘star conjugation.’’ This is an extension
the unitary symmetry to nonintegrable systems. We also h
D (n)[@C(n)#* . Star conjugation means a combination
Hermitian conjugation denoted by † and the ‘‘prime con
gation’’ denoted by the prime symbol,8 which is defined as
an interchange in the role of higher and lower correlation

L* [~L†!85~L8!†. ~6.3!

Instead ofr̄(t)5Ur(t), we now considerr̃(t)5Lr(t),
which satisfies the same equation asr̄ in Eq. ~5.14! but now
Q̃[LLHL21 is the ‘‘collision operator’’ of kinetic theory,

i
]

]t
P(n)r̃~ t !5 ũ (n)P(n)r̃~ t !, ~6.4!

whereũ (n)[Q̃P(n)5P(n)Q̃ and it has the same form asū (n)

in Eq. ~5.17! without the bar notation. In contrast to th
integrable case, one cannot generally writeũ (n) as a simple
form as ū (n) with a shifted frequencyw̄(n), but it is a non-
Hermitian block diagonal operator inP(n) subspace. As a
result, eigenvalueszj

(n) of ũ (n) are generally complex num
bers, wherej characterizes the eigenvalue. This implies th
the Liouvillian LH has the same complex eigenvalues
ũ (n), due to the similitude relationQ̃5LLHL21. In other
words,L21 acting on an eigenstate of the collision opera
ũ (n) generates an eigenstate ofLH with the same complex
eigenvaluezj

(n) of ũ (n). This is only possible if the eigen
states are not in the Hilbert space. Complex eigenva
mean time-symmetry breaking and dissipation.

As mentioned before, the isomorphism between the qu
tum Friedrichs model and the classical Friedrichs mode
terms of the (m,n) representation allows us to find the e
plicit form of L, which is essentially the same as the o
obtained in the quantum system in our previous papersQ1
andQ2. Therefore, we here display only the final forms ofL
with an indication of the equation numbers that have b
presented inQ1 andQ2.

We first present the form ofL in the N51 sector. To
write the explicit form ofL in this subspace, we first intro
duce an auxiliary transformation operatoru1G in the sub-
spaceI 1[(aua&^au in the Hilbert space spanned by the e
tire functions ofqW : @cf. Eqs.~Q1.2.16! and ~Q1.2.17!#

u1G
21[(

a
ufa&^au, u1G[(

a
ua&^f̃au, ~6.5!

which give us

ufa&5u1G
21ua&, ^f̃au5^auu1G . ~6.6!

Here, the ‘‘Gamow states’’ufa& and ^f̃au are given by@see
Eqs.~Q1.2.24!–~Q1.2.29!#
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uf1&5N1
1/2~ u1&1l(

k
ckuk&), ~6.7a!

^f̃1u5N1
1/2(^1u1l(

k
ck^ku!, ~6.7b!

ufk&5uk&1
lVk

hd
1~vk!

S u1&1(
k8

lVk8

vk2vk81 i e
uk8& D ,

~6.7c!

^f̃ku5^ku1
lVk

h2~vk!
S ^1u1(

k8

lVk8

vk2vk82 i e
^k8u D ,

~6.7d!

cf. Eqs.~3.2a!–~3.3b! for the nonintegrable case. These e
pressions are exactly the same as the Gamow states fo
corresponding quantum Friedrichs model constructed in R
@5#. They are bicomplete and biorthonormal in the subsp
spannedI 1, i.e. @see Eq.~Q1.2.23!#,

(
a

ufa&^f̃au5I 1 , ^f̃aufb&5da,b . ~6.8!

We also have the relations@see Eq.~Q1.2.32! and Ref.@5##

^f1uf1&5uN1uS 11l2(
k

ckck
c.c.D 50, ~6.9!

which will be used later. The last equality in Eq.~6.9! is
possible becauseck is not an ordinary function but is a dis
tribution as mentioned in Eq.~3.4a!. Equation~6.9! indicates
that uf1& is not an element in the Hilbert space.

Using this auxiliary transformation operator, theL trans-
formation in the subspaceI 10[(aua;0@!a;0u in the N
51 sector is given by

L215u1G
2131, L5u1G31, ~6.10!

which lead to

L21ua;0&&5ufa ;0&&,^̂ a;0uL5 ^̂ f̃a ;0u. ~6.11!

They satisfy

LHufa ;0&&5zaufa ;0&&,

^̂ f̃a ;0uLH5 ^̂ f̃a ;0uza , ~6.12!

where we have putzk[vk to unify the notations.
Similarly, L in the I 01[(au0;a&&^̂ 0;au subspace in

the N51 sector is given byL21513(u1G
1 )21 and L

513(u1G
1 ), whereu1G

1 is a Hermitian conjugate operator o
u1G .

Next we present the nonunitary transformation in the s
spaceI 11[(a,bua;b&&^̂ a;bu in the N52 sector. The nonuni-
tary transformations in this subspace are given by@see Eqs.
~Q1.5.2! and ~Q2.32!#
7-9
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L21ua;a&&5ura
0&&,^̂ a;auL5 ^̂ r̃a

0u, ~6.13a!

and foraÞb @see Eq.~Q2.24!#,

L21ua;b&&5urab&&,^̂ a;buL5 ^̂ r̃abu, ~6.13b!

where@see Eqs.~Q1.7.3! and ~Q1.7.7!#

ur1
0&&[uF1

0&&1(
k

bkuFk
0&&, ~6.14a!

urk
0&&[uFk

0&&2bkuF1
0&&, ~6.14b!

and

^^r̃1
0u[^^F̃1

0u1(
k

bk^̂ F̃k
0u, ~6.14c!

^̂ r̃k
0u[^̂ F̃k

0u2bk^̂ F̃1
0u, ~6.14d!

with

uF1
0&&[uf1 ;f1&&, uFk

0&&[uf̃k ;f̃k&&, ~6.15a!

^̂ F̃1
0u[^̂ f̃1 ;f̃1u, ^̂ F̃k

0u[^̂ f̃k
c.c. ;f̃k

c.c.u. ~6.15b!

Here, the statesuF j
n&& and ^̂ F̃ j

nu are right and left eigenstate
of the Liouvillian LH . The superscriptn over uFn&& andurn&&
is the same indexn in Eq. ~5.10! @see also Eq.~Q1.4.23!#. As
will be presented later, the first termuF1

0&& in Eq. ~6.14a! is a
decaying eigenstate with the complex eigenvalue22ig,
while the second term is a superposition of degenerate ei
states with zero egenvalue ofLH for any value ofk @see Eqs.
~6.21a! and~6.21b!#. We shall see that the degenerate eig
states inur1

0&& play an essential role to obtain a decay prod
in the decaying process of the stateur1

0&&. For aÞb, we
present the explicit form of Eq.~6.13b! in Appendix B.

The real functionbk is defined by@see Eq.~Q1.7.5!#

bk[
l2

u11ju @~rck
21c.c.!2ckck

c.c.#, ~6.16!

with @see Eq.~Q1.6.17!#

r[
1

2
1

u11ju212~j1jc.c.!/2

j2jc.c.
. ~6.17!

We havebk;O(1/V) and @see Eq.~Q1.7.6!#

(
k

bk51. ~6.18!

In Appendix C we show thatbk is the line shape of the field
that is emitted from the unstable dressed excited mode.
shall see thatbk will play a central role to describe irrevers
ible process in radiation damping.
02210
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To understand the structure of our transformation opera
L, it is worthwhile to compare Eqs.~6.11! and ~6.13a! with
the corresponding expressions for the integrable case in
~5.5!. For example, we have

U21u1;0&&5uf̄1 ;0&&, U21u1;1&&5uf̄1 ;f̄1&&. ~6.19!

We see thatL21u1;0&& is a direct extension ofU21u1;0@.
Since the Gamow stateuf1& is analytic with respect to the
coupling constant atl50, this extension is possible. In con
trast, a simple extension ofU21u1;1&& to the nonintegrable
system leads to only the first termuF1

0&&5uf1 ;f1&& of Eq.
~6.14a!, which is not analytic atl50. We can see this sin
gularity by observing the relation Tr(uf̄1 ;f̄1&&)5^f̄1uf̄1&
51 @see Eq.~A7!#, while we have Tr(uf1 ;f1&&)5^f1uf1&
50 because of Eq.~6.9! for any l. Here we impose condi-
tions ~4! and ~7! displayed in the Introduction to find th
form of L. As has been shown in Appendix A inQ2, the
second term with the factorbk in Eq. ~6.14a! has been added
to remove this singularity@see Eq.~Q2.A1!#. Indeed, the sin-
gular term with the factorckck

c.c. in bk exactly compensate
the singularity in the first term. Thanks to this second te
that we now have Tr(ur1

0&&)51.
Another important consequence of the second term in

~6.14a! is related to degeneracy of the zero eigenstatesuFk
0&&

of the Liouvillian LH . Because of this second term, the sta
ur1

0&& may decay by producing the decay producturk
0&& @see

Eqs.~6.26a! and ~7.8!#. In other words, the existence of th
degenerate eigenstates inur1

0&& guarantees the transition o
the stateur1

0&& to urk
0&&. This is in contrast to the Gamow sta

uF1
0@ alone, as exp@2iLHt#uF1

0&& decays exponentially withou
producing any decay product@see Eq.~6.21a!#. Furthermore,
as has been shown inQ1, the numberr in Eq. ~6.17! reduces
to 1/2 in the integrable case@see Eq.~Q1.6.18!#, while ck
becomes real as mentioned just below Eq.~3.6b!. As a result,
bk vanishes for the integrable case, and our transformed s
ur1

0&& reduces to the integrable oneuf̄1 ;f̄1&&.
The eigenstatesuF j

n&& and^̂ F̃ j
nu satisfy bicompleteness an

biorthonormal relation in the subspaceI 11 with the complex
eigenvaluezj

(n) @see Eqs.~Q1.4.1!, ~Q1.4.27!#, and Appendix
B5 in Q1), i.e.,

(
n, j

uF j
n&&^̂ F̃ j

nu5I 11, ^̂ F̃ i
muF j

n&&5dm,nd i , j , ~6.20!

and

LHuF1
0&&522iguF1

0&&, ^̂ F̃1
0uLH522ig^̂ F̃1

0u,
~6.21a!

LHuFk
0&&5 ^̂ F̃k

0uLH50, ~6.21b!

where22ig5z12z1
c.c. .

To unify the expressions with the ones presented inQ1,
let us introduce new notations asun j&& with n50 or ab, and
j 51 or k ~we do not write the indexj for n5ab), i.e.,
u0a&&[ua;a&& anduab&&[ua;b&&. Then, we may writeL in the
subspaceI 11 as @see Eq.~Q1.6.24!#
7-10
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L215(
n, j

ur j
n&&^̂ n j u, L5(

n, j
un j&&^̂ r̃ j

nu. ~6.22!

This is a star-unitary operatorL* 5L21 @see Eq.~Q1.6.22!#.
As has been shown inQ1, the statesur j

n&& and ^̂ r̃ j
nu are

bicomplete and biorthogonal in the subspaceI 11 @see Eq.
~Q1.6.25!#,

(
n, j

ur j
n&&^̂ r̃ j

nu5I 11, ^̂ r̃ i
mur j

n&&5dmnd i j . ~6.23!

We note that

ur j
n~ t !&&[e2 iL Htur j

n&&5L21e2 i Q̃tun j&&, ~6.24!

where the relationLexp@2iLHt#L215exp@2iQ̃t# has been
used. Hence, the time evolution of the statesLur j

n(t)&& is

governed by the collision operatorQ̃ mentioned in Eq.~6.4!.
Using Eqs.~6.13a!–~6.21b! and~B7!, one can find the matrix
elements ofũ (n) ~for ũab;cd

(n) [^̂ a;buũ (n)uc;d&&) in this sector
as, e.g.,

ũ11;11
(0) 522ig1O~V22!, ~6.25a!

ũ11;kk
(0) 5 ũkk;11

(0) 52igbk1O~V22!, ~6.25b!

ũkk;pp
(0) 522igbkbp1O~V23!, ~6.25c!

as well as the explicit forms of the time evolution
ur j

n(t)&& as @see Eqs.~Q1.7.79! and ~Q1.7.10!#,

ur1
0~ t !&&5e22gtur1

0&&1~12e22gt!(
k

bkurk
0&&,

~6.26a!

urk
0~ t !&&5urk

0&&1~12e22gt!bk[ ur1
0&&2(

l
bl urk

0&&],

~6.26b!

and

urab~ t !&&5e2 i (za2zb)turab&&. ~6.26c!

Applying the Hermitian-conjugation to Eq.~6.22!, we see
that the prime-conjugation operator ofL is given by@see Eq.
~6.3!#

~L8!215(
n, j

ur̃ j
n&&^̂ n j u, L85(

n, j
un j&&^̂ r j

nu. ~6.27!

We note the relation

E dGAe2 iL HtL21r5E dG@L8A~ t !#r, ~6.28!

wheredG[)adJadaa is a volume element in phase spac
and A(t)5exp@1iLHt#A is an observable, such as the coo
dinate xa(t) associated with a normal modea. We have a
transformationÂ(t)5L8A(t) of the observable. It is inter
02210
,
-

esting to compare this to a transformation in the integra
systems. Corresponding to this transformation, we h

Ā(t)5UA(t) for the observable. For integrable systems,

unitary operatorU generates canonical transformationx̄a

5Uxa andp̄a5Upa for the phase variables. Our star-unita
transformation gives a generalization of canonical trans
mation for the nonintegrable systems.

VII. DRESSED UNSTABLE MODE AND RADIATION
DAMPING

In this section we shall define the distribution functio
that represents a dressed unstable excited mode in thL
representation. We shall see that the evolution of the ac
variable over this distribution function is purely exponenti
Hence the lifetime of the dressed excited mode is well
fined. This requires a consistent dressing of the field s
rounding the bare particle. To introduce the dressed mo
we first note that the unperturbed excited mode att50 is
represented in terms of the distribution function by

r~JW ,aW ,0!5r1
d~JW ,aW !

[d~J12J10!d~a12a10!)
k

d~Jk!d~ak2ak0!,

~7.1!

whereJ10 anda10 are the action-angle variables of the pa
ticle, and the superscriptd on r indicates that the distribution
function is ad function. The subscript 1 inr1

d indicates that
only the particle is excited. All field modes are in vacuum
t50. The stater1

d(JW ,aW ) is local in phase space and gives
expectation valuev1J10 for H0. The dynamics preserves th
d function that represents a trajectory.

Before introducing the dressed unstable excited mode
us give a comment on our classical distribution function
the unperturbed excited mode, Eq.~7.1!. In quantum me-
chanics the quantum state that represents an unperturbe
cited mode is given by a quantum dyadic stateu1;1&& @see Eq.
~Q1!#. The expectation value ofH0 over this quantum state i
rightfully given by \v1. However, we cannot use the corr
sponding classical BS stateu1;1&& to represent the unper
turbed excited mode for our classical system. Indeed,
expectation value ofH0 over this BS state diverges wit
orderV in the continuous spectrum limitV→` by the same
reason that led to Eq.~4.11!. This is the reason why we mus
use the state Eq.~7.1! instead ofu1;1&& to specify the classi-
cal unperturbed excited mode.

Let us now consider the dressed excited mode. In
integrable case the dressed mode would be represente
the unitary transformation as

r̄1
d~JW ,aW ,0![U21r1

d~JW ,aW !. ~7.2!
7-11
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The time evolutionr̄1
d(t)5exp@2iLHt#r̄1

d(0) of this trans-
formed state still represents a trajectory, since any uni
transformation preserves a trajectory.

We extend this definition to the nonintegrable case, a
now consider evolution inL representation. A distribution
function that represents a dressed unstable mode is give
contrast by the star-unitaryL transformation as

r̂1~JW ,aW ,t ![e2 iL HtL21r1
d~JW ,aW !. ~7.3!

As could be expected, the transformed distribution funct
r̂1(JW ,aW ,t) does not any more represent a trajectory, but c
responds to a nonlocal ensemble in phase space. Let us
present some properties of the time evolution of the unsta
mode in theL representation.

A. Dressing of the field cloud and Markov process

Denoting the expectation value of an observableA over
the stater̂1 by ^A&r̂1

, the evolution of the expectation valu

of qa in the N51 sector is given by

^qa&r̂1(t)5E dGqae2 iL HtL21r1
d~JW ,aW !

5(
b

^̂ a;0ue2 iL HtL21ub;0&&E dGqbr1
d~JW ,aW !

5 ^̂ a;0ue2 iL Htuf1 ;0&&q10, ~7.4!

whereqa0[AJa0exp@2aa0# is the initial value of the norma
mode qa , and Eq.~4.14! has been used to get the seco
equality. Using Eq.~6.12!, we have

^qa&r̂1(t)5e2 iz1t^auf1&q10. ~7.5!

This gives the evolution of the normal mode.
For t50, we have

^q1&r̂1(0)5N1
1/2q10, ~7.6a!

^qk&r̂1(0)5N1
1/2 lVk

~z12vk!
1q10. ~7.6b!

The interaction leads to nonvanishing dressing field^qk&r̂1
,

which disappears when the interaction is switched off,l
50.

Similar to Eq.~7.4!, the evolution of the expectation valu
of qaqb

c.c. in the N52 sector is given by

^qaqb
c.c.&r̂1(t)5E dGqaqb

c.c.e2 iL HtL21r1
d~JW ,aW !

5(
c,d

^̂ a;bue2 iL HtL21uc;d&&

3E dGqcqd
c.c.r1

d~JW ,aW !

5 ^̂ a;bue2 iL Htur1
0&&J10, ~7.7!
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where Eq.~4.14! has again been used to get the seco
equality. Using Eq.~6.26a!, we have

^qaqb
c.c.&r̂1(t)5Fe22gt ^̂ a;bur1

0&&1~12e22gt!

3(
k

bk^̂ a;burk
0&&GJ10, ~7.8!

or equivalently@see Eqs.~6.14a!, ~6.21a!, and~6.21b!#,

^qaqb
c.c.&r̂1(t)5F ^̂ a;bue2 iL Htuf1 ;f1&&

1(
k

bk^̂ a;bue2 iL Htuf̃k ;f̃k&&GJ10.

~7.9!

Equations~7.5! and~7.8! show that these expectation valu
obey strictly the Markov process. For example, fora5b
51, Eq. ~7.8! @or Eq. ~7.9! with Eqs. ~6.21a! and ~6.21b!#
leads to

^J1&r̂1(t)5e22gtuN1uJ101(
k

l2Vk
2bk

uh2~vk!u2
J10. ~7.10!

Since Vk
2 and bk are both proportional to 1/V, the second

term in the right-hand side gives a negligible contribution
order 1/V in the continuous spectrum limitV→`. Equation
~7.10! shows that̂ J1&r̂1

decays strictly obeying the exponen

tial law ~see also Appendix C on the evolution of^Jk&r̂1
). In

contrast to our dressed excited mode, we will see in
following section that there is a classical ‘‘Zeno’’ phenom
enon in a short time evolution of the bare excited state,
a significant deviation from the exponential decay~non-
Markovian process! which corresponds to the quantum Zen
effect for unstable quantum states@8#. The bare excited mode
is not intrinsic to the system, as it has a memory effect of
initial condition, that is, its behavior strongly depends on
initial preparation.

B. Nondistributivity of L

As mentioned before, our dressed excited stater̂1(JW ,aW )
does not any more represent a trajectory, but represen
nonlocal ensemble in phase space. This is a striking dif
ence of the star-unitaryL transformation in nonintegrable
systems from the unitary transformationU in integrable sys-
tems. This difference comes from the nondistributivity of o
transformation operatorL. In a nonlocal ensemble, ther
must be fluctuations. We consider

Da~ t ![^qaqa
c.c.&r̂1(t)2^qa&r̂1(t)^qa

c.c.&r̂1(t) . ~7.11!

We now prove that

D1~ t !50, ~7.12!
7-12
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while

Dk~ t !5bkJ10. ~7.13!

There are no fluctuations for the unstable mode but there
three fluctuations for the field.

We note that the fluctuationDa can also be written as

Da~ t !5E dG@~L8qa
c.c.qa!2~L8qa

c.c.!~L8qa!#r1
d~JW ,aW ,t !,

~7.14!

where we have used relation~6.28! and the fact thatr1
d(JW ,aW )

defined in Eq.~7.1! is thed function. Hence, our result~7.13!
shows that the star-unitary transformation isnot distributive.
This result shows that the line shapebkJ10 in Eq. ~7.13! of
the emitted field from the dressed excited particle repres
not only the intensity of the fluctuation but also the intens
of the nondistributivity ofL.

The proofs of Eqs.~7.12! and~7.13! are as follows. Equa-
tion ~7.9! leads to

^qaqa
c.c.&r̂1(t)5S e22gtu^auf1&u21(

k
bku^auf̃k&u2D J10.

~7.15!

On the other hand, Eqs.~7.4! and ~7.5! give us

^qa&r̂1(t)^qa
c.c.&r̂1(t)5 ^̂ a;aue2 iL Htuf1 ;f1&&J10

5e22gtu^auf1&u2J10. ~7.16!

Hence, we obtain the fluctuations

Da~ t !5(
k

bku^auf̃k&u2J10, ~7.17!

which are invariants of motion.
For a51, D1(t) is just the second term in the right-han

side of Eq.~7.10!, which is of order 1/V. For a5k, Eq.
~7.17! gives Eq.~7.13! plus higher-order contributions with
orderV22 that can be neglected in the continuous spectr
limit V→`. For botha51 andk, the dominant contribution
of Da(t) is proportional to 1/V. We first note that the orde
of magnitude of the action variable of the particle is 1. As
result, one can neglect the fluctuationD1(t);1/V as com-
pared with the action variable of the particle. This gives
Eq. ~7.12! in the limit V→`.

In contrast, one cannot neglect the fluctuation of ea
field modeDk , even in the limitV→`, sincebkJ10 is the
line shape of the emitted field from the dressed excited s
~see Appendix C!. The existence of non-negligible fluctua
tions of the field implies thatr̂1(JW ,aW ) does not represent
trajectory. As mentioned above, the fluctuations are basic
due to the nondistributivity of theL operator.

It is well known in nonequilibrium statistical physics th
there is a close relation between fluctuation and dissipat
In Sec. IX we shall discuss this relation in detail after intr
ducing theH function in L representation.
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C. Non-Poissonian algebra

Another important consequence of the nondistributivity
that it leads to a non-Poissonian algebra. To see this we
that Eq.~6.11! lead to

L21q15Q1 , L21q1
c.c.5Q1

c.c. , ~7.18!

whereQ1
c.c. is the Gamow mode defined in Eq.~3.2a!. Since

L preserves any constant because of condition~3! listed at
Sec. I, we have for a Poisson bracket,

L21$q1 ,q1
c.c.%52 i . ~7.19!

On the other hand, we have

$L21q1 ,L21q1
c.c.%5$Q1 ,Q1

c.c.%

52 i uN1uS 11l2(
k

ckck
c.c.D ,

~7.20!

where we have used the first equailty in Eq.~3.9! for the
Poisson bracket. Comparing this with Eq.~6.9!, we obtain

$L21q1 ,L21q1
c.c.%5$Q1 ,Q1

c.c.%50. ~7.21!

This is in contrast to the unitary transformation for the in
grable case, since we would have$U21q1 ,U21q1

c.c.%
5U21$q1 ,q1

c.c.%52 i because of the distributivity ofU.
Hence, for the nonintegrable case we have a new n
Poissonian algebra incorporating fluctluation as well as d
sipation, which is an extention of the ordinary Poisson
algebra~or Lie algebra!.

Another interesting quantity associated with the exci
dressed stater̂1(JW ,aW ) is the expectation value of the energ
^H&r̂1

. As one can easily verify, its expression is the same

(ṽ11dṽ1)J10 shown in Eq.~Q1.6.13! in Q1, except that\
is replaced byJ10. Here,dṽ1 is a deviation from the Green’s
frequencyṽ1, the difference of which starts with orderl4

@see Eq.~Q1.7.30!#. In quantum mechanics, the frequen
shift from the unperturbed valuev1 due the coupling of the
particle with the field is known to be the Lamb shift~see, for
example, Ref.@42#!. As could be expected, the ratio of th
frequency shift with respect tov1 in classical systems is
much smaller than the corresponding ratio in quantum s
tems because of heavier mass and smallerv1 in classical
systems. However, since we need a careful calculation
estimate the frequency shift in order to remove the ultravio
divergence that also appears in classical systems, we
discuss this problem in a separate paper.

VIII. NON-MARKOV EVOLUTION OF THE EXCITED
BARE MODE AND INVERTIBILITY OF L

We now come to the time evolution of the original coo
dinates. We consider the same initial conditionr1

d(JW ,aW ) as
Eq. ~7.1!, where only the bare particle is excited and all fie
modes are in vacuum att50. In contrast to the dresse
7-13



es

ba
m
te
Th
e
g

ll

r-

a
th

gra-

ec-
he
ale
en-
e

ed

r a

the

al-
, be-

in-
sult
u-
by

ns-

PETROSKY, ORDONEZ, AND PRIGOGINE PHYSICAL REVIEW A68, 022107 ~2003!
excited state, we will see that it obeys a non-Markov proc
where the lifetime isnot well defined. The non-Markov pro-
cess consists of three time scales in the decay of the
particle, showing the classical Zeno effect in a short ti
scale, anapproximatelyexponential decay in an intermedia
time scale, and a power-law decay in a long time scale.
traditional approach to radiation damping is mainly focus
on this intermediate time scale. As emphasized by Schwin
~see the citation in the Introduction!, the main problem of
radiation damping is to identify an object that has a we
defined lifetime. That can be only realized by ourL trans-
formation.

Let us first consider the bare normal modeqa that is in the
N51 sector. We have

^qa& t5E dGqae2 iL Htr~JW ,aW ,0!

5(
b

^̂ a;0ue2 iL Htub;0&&E dGqbr1
d~JW ,aW !. ~8.1!

We now apply the invertibility of our star-unitary transfo
mation L21L51. For the initial condition~7.1!, this leads
to

^qa& t5(
b

^̂ a;0ue2 iL HtL21ub;0&&^̂ b;0uLu1;0&&q10.

~8.2!

This shows that the time evolution of the unperturbed norm
mode is given as a superposition of the time evolution of
transfromed statesL21ub;0@ in Eq. ~6.11!, i.e.,

^qa& t5 ^̂ a;0ue2 iL Htuf1 ;0&&^̂ f̃1 ;0u1;0&&q10

1(
k

^̂ a;0ue2 iL Htufk ;0&&^̂ f̃k ;0u1;0&&q10. ~8.3!

This with relation~6.12! leads to

^qa& t5ga~ t !q10, ~8.4!

where

ga~ t ![e2 iz1t^auf1&^f̃1ua&1(
k

e2 ivkt^aufk&^f̃kua&.

~8.5!

Using Eqs.~6.7a!–~6.7d!, we obtain

g1~ t !5N1e2 iz1t1E
0

1`

dk
2l2vk

2e2 ivkt

hd
1~vk!h

2~vk!
, ~8.6a!
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gk~ t !5A2

VFN1

lvke
2 iz1t

~z12vk!
1

1
lvke

2 ivkt

h2~vk!

1E
0

1`

dl
2lv l

2e2 iv l t

hd
1~v l !h

2~v l !

lvk

v l2vk1 i eG ,

~8.6b!

where we have replaced the summation sign by the inte
tion sign and used the definition ofVk in Eq. ~2.5!.

For the particle modea51, the first term in Eq.~8.5! @or
in Eq. ~8.6a!# decays exponentially. The existence of the s
ond term in Eq.~8.6a! indicates that the decay process of t
bare particle is not purely exponential. For a short time sc
the second term leads to the classical Zeno effect. In App
dix D, we shall discuss this effect in terms of a short tim
expansion of the action variables.

Next, we consider the time evolution of the unperturb
action variablesJa(t) that are in theN52 sector. As far as
we are interested in the evolution of original variables ove
given trajectory represented by ad function, it is enough to
evaluate the evolution of each normal mode in theN51
sector. Then, any original variable in an arbitraryN sector is
given by a function of each normal mode. For example,
average of a productqaqb

c.c. of two a modes is given by a
product of averages,

^qaqb
c.c.& t5^qa& t^qb

c.c.& t5ga~ t !gb
c.c.~ t !J10. ~8.7!

However, this is not the case if we evaluate expectation v
ues of the observables over the dressed unstable mode
cause of the fluctuation due to the nondistributivity ofL
discussed in the preceding section. For this reason, it is
structive to show that one can recover the factorizable re
~8.7! for the bare variables, by starting with the time evol
tion of the L21 transformed states and then inverting
applyingL, similarly as calculated before in Eq.~8.2!.

For the observableqaqb
c.c. in the N52 sector, we have

^qaqb
c.c.& t5E dGqaqb

c.c.e2 iL Htr~JW ,aW ,0!

5(
c,d

^̂ a;bue2 iL Htuc;d&&E dGqcqd
c.c.r1

d~JW ,aW !,

~8.8!

Applying the invertibility just as in Eq.~8.2!, we obtain

^qaqb
c.c.& t5(

c,d
^̂ a;bue2 iL HtL21uc;d&&^̂ c;duLu1;1&&J10.

~8.9!

This shows that the time evolution of the observableqa
c.c.qb

is given as a superposition of the time evolution of the tra
formed statesur j

n@ in Eqs.~6.13a! and ~6.13b!,
7-14
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^qaqb
c.c.& t5 ^̂ a;bue2 iL Htur1

0&&^̂ r̃1
0u1;1&&J10

1(
k

^̂ a;bue2 iL Hturk
0&&^̂ r̃k

0u1;1&&J10

1(
k,k8

8 ^̂ a;bue2 iL Hturkk8&&^̂ r̃kk8u1;1&&J10

1(
k

@ ^̂ a;bue2 iL Htur1k&&^̂ r̃1ku1;1&&

1c.c.#J10, ~8.10!

where the prime over the summation sign denotes the res
tion kÞk8.

Using Eqs.~6.14a!–~6.21b! and ~B1!–~B7! with the ex-
plicit expressions for the Gamow states in Eqs.~6.7a!–
~6.7d!, and using the volume dependencebk;O(1/V), one
can verify with the straightforward calculation that the righ
hand side of Eq.~8.10! leads to

^qaqb
c.c.& t5e2 i (z12z1

c.c.)t ^̂ a;buf1 ;f1&&^̂ f̃1 ;f̃1u1;1&&J10

1(
k,k8

8e2 i (vk2vk8)t ^̂ a;bufk ;fk8&&

3 ^̂ f̃k ;f̃k8u1;1&&J101(
k

@e2 i (z12vk)t ^̂ a;b

3uf1 ;fk&&^̂ f̃1 ;f̃ku1;1&&J101c.c.#J10, ~8.11!

where we have kept predominant contribution of the volu
dependence by neglecting higher-order contribution in 1V.
Adding negligible terms withk5k8 in the last term in Eq.
~8.11!, we finally obtain Eq.~8.7!. This illustrates the invert-
ibility of L.

Let us now analyze the results obtained above. Herea
we use new notationsqa(t)[^qa& t andJa(t)[^Ja& t to em-
phasize that we are dealing with variables over a traject
We first consider the particle modea51. The complex con-
jugateg1

c.c.(t) of Eq. ~8.6a! has exactly the same form as th
survival amplitudê c(0)uc(t)& of the excited quantum bar
state when the initial condition is given byuc(0)&5u1& @5#.
Hence, the action variableJ1(t)/J10 obtained fora5b51 in
the Eq. ~8.7! corresponds to the survival probabilit
u^c(0)uc(t)&u2 in the quantum system.

The first term in Eq.~8.6a! decays exponentially with the
lifetime 1/g. Hence, the exponential part ofJ1(t) decays
with the relaxation timet r[1/2g. This term gives a pre-
dominant contribution in a time scalet;t r .

The second term in Eq.~8.6a! gives a nonexponential be
havior of the decaying process of the excited bare mo
Indeed, due to the delayed analytic continuation in E
~3.4c!, the pole atvk5z1 does not contribute in the integra
tion overk in the second term. As a result, we have only t
branch-point contribution atk50, which leads to a power
law decay as 1/(v1t)a with a.0. The value ofa depends
on the choice of the form factorvk . The time scaletz of the
02210
ic-

e
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.

Zeno period is therefore given bytz[1/v1. Sinceg;l2 for
l!1 while v1;1, we have the well-separated time scale

tz!t r . ~8.12!

The second term in Eq.~8.6a! is essential to satisfy Eqs.~D1!
and~D2! that lead the classical Zeno effect in the short tim
scale for the bare excited mode. For extremely long ti
scales witht@t r , the branch-point contribution again gives
predominant contribution.

In summary, we obtain three time scales in time evolut
of the classical excited bare mode, just as in quantum
chanics;~1! a short-time Zeno period of the deviation fro
the exponential decay,~2! an intermediate time scale of th
exponential decay, and~3! a long time scale of a power-law
decay@43#. Strictly speaking there is no well-defined lifetim
for the bare excited mode because of the existence of n
exponential behavior in the short and long time scales. T
is in contrast to the dressed excited mode as it obeys str
the exponential law shown in Eq.~7.10!. Only through ourL
we may rigorously define the lifetime of the excited mode

Next we consider the emission of the field from the e
cited unstable bare mode. The evolution of the action v
able Jk for the field is given by Eq.~8.10! for a5b5k as
Jk(t)5ugk(t)u2J10. The first term of Eq.~8.6b! vanishes in
the limit t→1`. The contour of the integration in the las
term is located below all singularities that come from t
denominators. Hence, assuming that the form factor is c
sen in such a way that the contribution coming from its s
gularities vanish in the limitt→1`, the integration in the
last term of Eq.~8.6b! also vanishes in this limit. Conse
quently, the dominant contribution comes from the seco
term in Eq.~8.6b!, and we obtain

lim
t→1`

Jk~ t !5
2

V

l2vk
2

uh2~vk!u2
J10'

2

pV

g

~vk2ṽ1!21g2
J10.

~8.13!

The approximation in the last line is valid for a weakly co
pling casel!1 and in the vicinity of the resonance fre
quency vk5ṽ1. The right-hand side is the well-know
Lorentzian line shape.

IX. NUMERICAL PLOTS

In order to visualize the result obtained in the previo
sections, we have peformed numerical calculations. T
main results of this section are~1! a visualization of the
different time scales discussed in the preceding section,~2! a
numerical verification of the invertibility of our transforma
tion between the initial coordinates and the transformed
ordinates, and~3! a numerical calculation of the nondis
tributibity of theL transformation. As has been shown in th
preceding section,L-transformed variables have nonvanis
ing dispersion. Hence, it is worthwhile to demonstrate by
numerical simulation that information of the system, such
a memory effect of the initial condition of the bare excite
mode, is not lost by the star-unitary transformationL.

In order to visualize the different time scales mention
7-15
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above, we have plottedJ1(t) obtained by numerical integra
tions of the equation of motions and compared them with
theoretical results. To perform the numerical integrations
have used the discretized form of Hamiltonian~2.5! with a
given sizeL of the box and with a cuttoff wave numbe
kmax. The equations of motion have been solved forqa(t)
@and also forqa(2t)] by the numerical diagonalization o
the Hamiltonian into the form~3.1! ~see Ref.@29# for a de-
scription of the numerical method!. This numerical method is
more reliable than other numerical methods, such as
Runge-Kutta method. To compare the numerical results w
the theoretical results for the continuous spectrum, we h
restricted the time scale ast!tbox , wheretbox[L/c, so that
the light cannot cross the box in this time scale. Since
agreement between the theoretical results and the nume
results is excellent, we show only the plots by the numer
results in all figures presented in this paper@44#. In Figs.
1–3, we plotJ1(t) as a function of timet. In all plots in this

FIG. 1. Numerical results of the time evolution of the origin
variableJ1(t) ~the solid line! and the transformed variable^J1&r̂1(t)

~the broken line!. The abscissa ist, which is measured by a uni
1/v1. On this scale we do not see any difference betweenJ1(t) and
^J1&r̂1(t) .

FIG. 2. A magnification of a short-time portion of Fig. 1. Th
solid line is J1(t) and the broken line iŝJ1&r̂1(t) . One can see a
deviation from exponential decay inJ1(t) ~the classical Zeno ef-
fect!. The dots on the solid line are the results of the inverse tra
formation from the transformed variables, by applyingL to
^J1&r̂1(t) we go back toJ1(t).
02210
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paper, we putv151, l50.1, and we use the form facto
vk5Avk /pu(kmax2uku) with the cutoff wave numberkmax
52p. We also useDk50.005, which gives the size of th
box asL51256.6. For this case we obtain the decay r
2g50.108~the relaxation timet r59.5) and the shifted fre-
quencyṽ150.878. In all figures presented in this paper, tim
is measured by the unit 1/v151.

In Fig. 1 we showJ1(t)5uq1(t)u2 by the solid line~see
also Ref.@45#!. This has been obtained by a numerical in
gration of motion for the original normal modeq1(t). In
order to compare the evolution of the original variableJ1(t)
to the transformed variable, we also plot^J1&r̂1(t) by the
broken line. On this scale we do not see any difference.

The numerical value of̂J1&r̂1(t) has been calculated b

using the data ofqa(2t) obtained from the numerical inte
gration of the equations of motion, as follows. In Eq.~7.9!,
we first note that

uf1 ;f1&&5N1F u1;1&&1l2(
k,l

ckcl
c.c.uk; l &&

1l(
k

~ckuk;1&&1ck
c.c.u1;k&&!G . ~9.1!

This gives us for the first term in Eq.~7.9!,

^̂ 1;1ue2 iL Htuf1 ;f1&&J105N1F uq1~2t !u21Ul(
k

ck

3qk
c.c.~2t !U2

1l(
k

@ckqk
c.c.~2t !

3q1~2t !1c.c.#G , ~9.2!

where we have used the relation

^̂1;1ue2 iL Htua;b&&5^̂ 1;0ue2 iL Htua;0&&^̂ 0;1ue2 iL Htu0;b&&

5@ ^̂ a;0ue1 iL Htu1;0&&#c.c.@ ^̂ 0;bu

3e1 iL Htu0;1&&#c.c.

5
qa~2t !c.c

q10
c.c.

qb~2t !

q10
. ~9.3!

s-

FIG. 3. A numerical result of2dJ1(t)/dt as a function of time
t, which is measured by a unit 1/v1. One can see both a short-tim
deviation and a long-time deviation from the exponential decay
7-16
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For the second term in Eq.~7.9!, one can repeat a simila
calculation to Eq. ~9.2! and obtain an expression o

^̂ 1;1uexp@2iLHt#uf̃k ;f̃k&&J10, which is a function of qa
(2t). Hence, from the numerical data ofqa(2t), one can
evaluate the numerical value of^J1&r̂1(t) .

Figure 2 is a magnification of a portion of Fig. 1 for
short Zeno time scale of ordertz . Again, the solid line is
J1(t), while the broken line iŝ J1&r̂1(t) . The difference is

clear. J1(t) deviates from exponential decay. One can s
that our result satisfies relations~D1! and~D2! for J1(t). The
Zeno time scale is not intrinsic to the system, but depends
the initial condition. Since the traditional approaches of
radiation damping have ignored the existence of this sh
time scale, the basic formulas, such as Larmors radia
formula @11#, to derive radiation damping do not hold in th
Zeno period.

The most interesting result in Fig. 2 is the bold dots on
solid line for J1(t). The dots are the result of the invers
transformation from the transformed variables. By apply
L to ^J1&r̂1(t) , we go back toJ1(t). No information is lost.

As mentioned above, the solid line in Fig. 2 has be
obtained by a numerical integration of the equations of m
tion for the initial normal modesqa(t), while the broken line
for the transformed variable has been plotted using the
merical data ofqa(2t). In Fig. 2, one can see that there
indeed no Zeno period in the transformed variable^J1&r̂1(t) .
The dots have been obtained by performing the inverse tr
formation over the numerical data for the transformed va
ables at several points of time. The result shows that the
a good agreement between the inverse transformed var
and the initial variableJ1(t). This numerically verifies the
invertibility of our nonunitary transformationL.

In the intermediate time scale witht;t r , the ur1
0&& com-

ponent in Eq.~8.10! predominates and the excited bare mo
decays approximately obeying the exponential law~see Fig.
1!. The exponential decay is a Markov process that is int
sic to the unstable particle independent of its initial con
tion.

For the long time scale witht@t r , the field-field correla-
tion componenturkk8&& in Eq. ~8.10! now predominates, i.e.
the branch-point effect coming from the second term in E
~8.6a! again gives a predominant contribution. This is a
the time scale that has been neglected by traditional
proaches to radiation damping. In Fig. 3 we have plotte
2d ln J1 /dt for this long time scale as a function of timet
~see also Ref.@45#!. We can again observe the deviation fro
the exponential behavior~the long time tail!. For the long
time scale the exponential part becomes so small that
power decaying component predominates. However, the
solute value of the action variable is already very small
this long time scale.

In Fig. 4 we show plots of the fluctuationDk(t) in Eq.
~7.11! for a5k. In this figure we show a numerical result o
^Jk&r̂1

as well aŝ qk&r̂1
^qk

c.c.&r̂1
at k50.9 as a function of the

time t. The thin solid line above in the figure is^Jk&r̂1
and

the thick solid line below iŝqk&r̂1
^qk

c.c.&r̂1
. In order to find

numerically the values of̂Jk&r̂1
and^qk&r̂1

^qk
c.c.&r̂1

, we have
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individually calculated the first and the second terms in E
~7.9! for a5b5k, as well aŝ^k;kuexp@2iLHt#uf1;f1&&J10 in
Eq. ~7.16! by a similar numerical method presented in Eq
~9.1!–~9.3!. The broken line is the fluctuationDk(t) that cor-
responds to the second term in Eq.~7.9! for a5b5k. As has
been predicted by our theoretical calculation,Dk(t) remains
a constant in time and its value is consistent with our th
retical prediction ofDk(t)50.6147 for our specific values o
k andL. In contrast toDk(t), ^Jk&r̂1

~the thin solid line! and

^qk&r̂1
^qk

c.c.&r̂1
~the thick solid line! change in time.

X. H FUNCTION AND FLUCTUATION VS DISSIPATION

An important consequence of the star-unitary transform
tion is that it allows us to introduce a microscopic analog
Boltzmann’s H theorem in statistical mechanics by co
structing a Lyapunov operator that decays monotonically
all times @32–34,46#. We can describe radiation damping
terms ofH function that is defined as an expectation value
a Lyapunov operator in the Liouville space. TheH function
corresponds to negative ‘‘entropy’’ in statistical mechani
In the preceding section we have shown that there are fl
turationsDk}bk of the field in the dressed stater̂1(t). As is
well known in nonequilibrium statistical physics, there is
close relation between fluctuation and dissipation, which
often expressed in the form of the fluctuation-dissipat
theorem@47#. In this section we shall show this relation from
the point of ‘‘entropy production’’ defined through ourH
function.

Let us introduce a Lyapunov operator associated wit
phase functionAn that depends on afinite numbern of the
modes of the system@32#,

MAn
[L†uAn&&^̂ AnuL. ~10.1!

Then we have aH function defined by

HAn
@r~ t !#[^̂ r~ t !uMAn

ur~ t !&&, ~10.2!

which is a nonlinear functional ofr(t).

FIG. 4. Numerical results of the fluctuationDk(t) ~the broken
line!, ^Jk&r̂1

~the thin solid line above! and^qk&r̂1
^qk

c.c.&r̂1
~the thick

solid line below! at k50.9 as a function of timet, which is mea-
sured by a unit 1/v1. As has been predicted by our theoretic
calculation,Dk(t) remains a constant in time and its value is co
sistent with our theoretical prediction ofDk(t)50.6147.
7-17
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PETROSKY, ORDONEZ, AND PRIGOGINE PHYSICAL REVIEW A68, 022107 ~2003!
For example, theH function associated to the partic
modeq1 is given by

Hq1
@r~ t !#[u ^̂ q1uLur~ t !&&u25U E dGq1Le2 iL Htr~JW ,aW ,0!U2

5U(
a

^̂ 1;0uLe2 iL Htua;0&&^qa&0U2

, ~10.3!

where^qa&0 is the expectation value ofqa over an arbitrary
initial ensembler(JW ,aW ,0). Applying Eqs.~6.11! and ~6.12!
to this, we obtain

Hq1
@r~ t !#5e22gt^c~0!uf̃1&^f̃1uc~0!&, ~10.4!

whereuc(0)&[(aua&^qa&0. This has exactly the same stru
ture of theH function as the one introduced in the quantu
Friedrichs model in our previous workQ2 and in Refs.
@5,48,49#. For example, if we consider the trajectory give
by Eq.~7.1!, we obtainuc(0)&5u1&q10

c.c. , which corresponds
to the case discussed in detail in our previous paper@5#.
Instead, if we consider the caseq1050, but with nonvanish-
ing field modesqk0Þ0 at t50, our expression~10.4! re-
duces to the form in the scattering case of the field, wh
has been investigated in detail inQ2 and in@48#.

Let us now discuss the relation between the fluctuati
bk of the field in the dressed stater̂1(t) and the dissipation
associated with the entropy production. To this end, we c
sider theH function associated to the action variables wh
are evaluated over the transformed stater̂1(t). We have

(
a

HJa
@ r̂1~ t !#5(

a
U E dGJaLe2 iL HtL21r1

d~JW ,aW !U2

5(
a

u f aa~ t !u2J10
2 , ~10.5!

where

f aa~ t ![^̂ a;aue2 i ũ(0)tu1;1&&. ~10.6!

Taking the time derivative and using Eqs.~6.25a!–~6.25c!
with ~6.18!, we have a set of equations,

]

]t
f 11~ t !52g(

k
bk@ f kk~ t !2 f 11~ t !#, ~10.7a!

]

]t
f kk~ t !52gbk(

p
bp@ f 11~ t !2 f pp~ t !#. ~10.7b!

From these equations we obtain

f 11~ t !1(
k

f kk~ t !51, ~10.8!

which is an invariant of motion. One may notice that Eq
~10.7a!–~10.7b! have exactly the same structure as the Pa
master equation that is well known in quantum nonequi
02210
h

s
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rium statistical mechanics, in spite of the fact that we d
with classical mechanics. From these equations we obta

2
d

dt (
a

HJa
@ r̂1~ t !#54gJ10

2 U f 11~ t !2(
k

bkf kk~ t !U2

>0.

~10.9!

Hence, the ‘‘entropy production’’ per unit time defined as t
left-hand side is greater or equal to zero. There is a diss
tion. The dissipation is a result of nonvanishing collisio
kernelsbk of master equation~10.7a! and ~10.7b!. On the
other hand, the collision kernels are just the fluctuations
the field in Eq. ~7.13!. Hence the fluctuations lead to th
dissipation and vice versa.

It should be emphasized that our approach to entropy p
duction is purely based on microscopic dynamics, which
valid for arbitrary strength of the coupling constant and
bitrarily far from equilibrium without any approximations. I
this sense we now establish a deeper relation between
fluctuations and the dissipation both coming from the re
nace singularities in nonintegrable systems.

XI. CONCLUDING REMARKS

The fundamental result in this paper is that we found flu
tuations in theL transformed variables in the classical rad
tion damping problem. The reason for the fluctuations is t
information concentrated in the excited mode 1 goes to m
modesk of the field through the resonance interaction. T
resonance thus leads to the fluctuations as well as the d
pation. The line shapebk of the emitted classical field give
the probability to find the modek, which is somewhat similar
to Born’s probablistic interpretation in quantum mechani
Hence, our theory is a theory of fluctuations and dissipat
in classical electrodynamcis. We should emphasize that
fluctuations are explicit in theL-transformed variables, no
in the initial variables. There are no trajectories in theL
representation, as the states are nonlocal in phase space
jectories exist in the original variables. But we needL trans-
formation to identify the exponentially decaying mode
Through our star-unitary transformation, we have a phys
of resonances, not of forces, and not by a description
terms of space-time points. The deep change by going to
L representation comes from the fact that resonances pla
essential role. This is quite different from the idea of po
events used in classical field theory.

In this paper we have focused our attention on the c
where the fields surrounding the particle are not in the th
modynamic condition, as they has a finite energy. Indeed
is a typical situation of radiation damping problem. If w
take the thermodynamic limit of the fields, the linear tran
formations that leads to diagonalization of the Hamiltoni
leads to divergence@50#. Nevertheless, one can still constru
an exact form ofL transformation for the classical Friedrich
model. In the thermodynamic limit, the star-unitary transfo
mation leads to Gaussian white noise in theL representation
without relying upon any phenomenological argument a
approximations. This result has been presented in a sep
paper@51#.
7-18
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APPENDIX A: THE BARGMANN-SEGAL
REPRESENTATION

The Bargmann-Segal basis~4.6! of the Hilbert space
spanned by entire functions ofqa andqa

c.c. is related to the
‘‘coherent states’’ in analogy to quantum mechanics by

^mW uqW &5)
a

~qa!ma

Ama!
e2uqau2/2. ~A1!

In the Hilbert space spanned by entire functions ofqW , the
statesumW & statisfy complete and orthonomal relations

(
mW 50W

umW &^mW u51, ^mW unW &5)
a

dma ,na
, ~A2!

where the summation goes over all non-negative integersma
for all a.

As usual, the ‘‘coherent states’’ defined by

uqW &5(
mW

umW &^mW uqW &, ~A3!

are overcomplete in the Hilbert space, i.e.,

E )
a

dm~qa!uqW &^qW u51, ~A4!

and

^qW uq8W &5)
a

e[ 2(1/2)uqau21qa
c.c.qa82(1/2)uqa8u2] , ~A5!

wheredm(qa)[p21d2qa[p21d(Reqa)d(Im qa).
Any linear operatorA acting on a vectorua& in this Hil-

bert space may be written as a superposition of dyadic
erators$umW &^nW u% as

A5(
mW

(
nW

AmW ;nW umW &^nW u. ~A6!

Similar to quantum mechanics, one can introduce the Li
ville space spanned by linear operators in this Hilbert sp
@see Eqs.~4.8a! and~4.8b!#. To represent vectors in the Liou
02210
l
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ville space, we use the double bra-ket notation asuA@ and
!Bu whereA andB, are linear operators in the Hilbert spac
spanned byumW &. The Liouville space is also a Hilbert spac
where the inner product between the supervectors are de
by

!BuA@5Tr~B†A![(
mW

^mW uB†AumW &, ~A7!

whereB† is a Hermitian conjugate of the linear operatorB.
Then the Hilbert norm of the vectoruA@ in the Liouville
space is defined byuuAuu[A!AuA@, if it exists.

In analogy with quantum mechanics, we introduce t
super ‘‘bra-ket’’ notations for dyadsumW ;nW @5umW &^nW u. Then
we haveAmW ;nW5!mW ;nW uA@. Hence,A can be written as an
element of the Liouville space as

A5(
mW

(
nW

umW ;nW &&^̂ mW ;nW uA&&. ~A8!

Relations~A4! and ~A5! lead to

E E )
a,b

dm~qa!dm~qb8!uqW ;q8W &&^̂ qW ;q8W u5I ~A9!

and

^̂ qW ;q8W uq9W ;q-W &&5^qW uq9W &^q-W uq8W &. ~A10!

In terms of the BS representation, the LiouvillianLH is writ-
ten by

^̂ qW ;q8W uL0uq9W ;q-W &&5(
a

vaFqa
c.c.S ]

]qa
c.c.

1
qa

2 D
2qa8S ]

]qa8
1

q8a
c.c.

2 D G ^̂ qW ;q8W uq9W ;q-W &&,

~A11!

and

^̂ qW ;q8W uLVuq9W ;q-W &&

5(
k

VkFq1
c.c.S ]

]qk
c.c.

1
qk

2 D 2q18S ]

]qk8
1

q8k
c.c.

2 D
1qk

c.c.S ]

]q1
c.c.

1
q1

2 D 2qk8S ]

]q18
1

q81
c.c.

2 D G
3 ^̂ qW ;q8W uq9W ;q-W &&. ~A12!

Puttingq8W5qW in the above expressions, we recover the e
pressions for the Liouvillian in Eqs.~4.2! and ~4.3!. In the
(m,n) representation, Eqs.~A11! and ~A12! lead to

L0umW ;nW &&5vW •~mW 2nW !umW ;nW && ~A13!

and
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LVumW ;nW &&5(
k

Vk@Am1~mk11!um121,mk11,$mW %8;nW &&

1A~m111!mkum111,mk21,$mW %8;nW &&

2A~n111!nkumW ;n111,nk21,$nW %8&&

2An1~nk11!umW ;n121,nk11,$nW %8&&#, ~A14!

where the prime on$mW %8 denotes that the particle 1 and th
field modek are excluded from the set of the compone
in mW .

In Eq. ~A14! the first term in the right-hand side vanish
for m150. The same is true formk50 in the second term
for nk50 in the third term, and forn150 in the last term.
Hence, one cannot have any (mW ,nW ) states that have a nega
tive value ofma or nb for a certain value ofa or b in the
right-hand side of Eq.~A14!.

As a special case, we have

LHu0W ;0W &&5L0u0W ;0W &&50, ~A15!

where

^̂ qW ;qW u0W ;0W &&5e2(
a

uqau2. ~A16!

These are consistent as(aJa is an invariant of motion for
both unperturbed and perturbed cases shown in Eq.~4.7!.

In Eqs.~A13! and~A14!, we see an isomorphism betwee
the classical Friedrichs model and the quantum Friedri
model on the level of the Liouvillian formalism. Indeed,
umW & and^nW u in Eq. ~4.6! are regarded as the number states
the unperturbed bosons for the corresponding quantum
tem, then these formulas are exactly the same as the
obtained for the quantum Liouvillian for the Friedrich
model.

APPENDIX B: EXPLICIT FORMS OF rab AND r̃ab

The explicit forms ofrab and r̃ab are given@see Eqs.
~Q1.7.2! and ~Q1.B20!–~Q1.B29!# by

urab&&[uFab&&, ^̂ r̃abu[^̂ F̃abu. ~B1!

Here,

uFkk8&&5ufk ;fk8&&,

uF1k&&5uf1 ;fk&&2(
l

u l ; l &&f ~k,l !, ~B2!

and
02210
s

s

f
s-
es

^̂ F̃kk8u5 ^̂ f̃k ;f̃k8u,

^̂ F̃1ku5&&f̃1 ;f̃ku2(
l

^̂ l ; l u f̃ ~k,l !, ~B3!

with

f ~k,l ![^̂ l ; l uf1 ;fk&&2N1
1/2 lVk

z12vk
Fd l ,k2

l2Vl
2

hd
2~vk!

3S 1

v l2vk1 i e
1

1

~z12v l !
1D G , ~B4!

f̃ ~k,l ![^̂ l ; l uf̃1 ;f̃k&&2N1
1/2 lVk

z12vk
Fd l ,k2

l2Vl
2

h1~vk!

3S 1

v l2vk2 i e
2

1

~z12v l !
1D G ~B5!

and

^̂ a;buFk1&&5@ ^̂ a;buF1k&&#c.c.,

^̂ F̃k1ua;b&&5@ ^̂ F̃1kua;b&&#c.c.. ~B6!

These are the right and left eigenstates of the Liouvillian

LHuFab&&5~za2zb
c.c.!uFab&&,

^̂ F̃abuLH5~za2zb
c.c.!^̂ F̃abu. ~B7!

APPENDIX C: LINE SHAPE OF THE EMITTED FIELD
FROM r̂1

In this appendix we show that the functionbkJ10 is the
line shape of the field that is emitted from the dressed exc
mode.

For a5b5k in Eq. ~7.8!, we obtain

lim
t→`

^Jk&r̂1(t)5(
l

bl ^̂ k;kur l
0&&J105bkJ101O~V22!.

~C1!

This shows that the functionbkJ10 is just the line shape o
the field that is emitted from the dressed excited mode
Q1 we have shown that for a weakly coupling case withl
!1, we can approximatebk as @see Eq.~Q1.7.15!#

bk'
1

V

1

p

~l2g2!3

@~vk2ṽ1!21l4g2
2#2

, ~C2!

where l2g2 is the lowest-order approximation ofg in the
expansion ofl given by

l2g2[VE
0

1`

dkl2Vk
2pd~vk2v1!52pl2vv1

2 . ~C3!

Therefore, this line shape is narrower than the Lorentz
line shape~8.13! emitted by the bare excited mode. As h
7-20
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been discussed inQ1, the difference between the line sha
bkJ10 and the Lorentzian line shape is consistent with
elimination of the short-time event in the Zeno period in t
dressed excited particle. Indeed, during the Zeno period
bare excited state reorganizes space by producing a co
tent dressing field attracted around the particle, and after
the particle starts to decay obeying the exponential law
contrast, since our dressed excited mode already includ
consistent dressing field, the dressed excited particle de
strictly exponentially from the beginning. The dispersion
the action variable is of orderg in the line shapebkJ10, and
there is no large fluctuation of the action variable as in
case of the Lorentzian line shape.

APPENDIX D: CLASSICAL ZENO PERIOD

We first prove the theorems

lim
t→0

dJa~ t !

dt
50, ~D1!

while

lim
t→0

d2Ja~ t !

dt2
Þ0. ~D2!

These theorems are important when we consider the ev
tion of the system in a short time scale. The proofs are
follows: we have

i n
dnJa~ t !

dtn
5E dGJaLH

n e2 iL Htr1
d~JW ,aW !

5(
c,d

^̂ a;auLH
n e2 iL Htuc;d&&

3E dGqcqd
c.c.r1

d~JW ,aW !. ~D3!

Substituting Eq.~7.1! into this expression, we obtain

lim
t→0

dnJa~ t !

dtn
5~2 i !n^̂ a;auLH

n u1;1&&J10. ~D4!

We have
th

02210
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^̂ a;auLHu1;1&&50, ~D5!

while

^̂ a;auLH
2 u1;1&&5l2^̂ a;auLV

2 u1;1&&Þ0, ~D6!

which can be easily verified from the expressions in E
~A13! and ~A14!. Thus we obtain theorems~D1! and ~D2!.

These theorems show that in a short time scale, there
classical ‘‘Zeno’’ period that corresponds to the quantu
Zeno period for unstable quantum states@8#. From theorems
~D1! and ~D2!, we see that a short-time expansion of t
solution ofJa(t)2Ja(0) in the series oft should start witht2

term. In other words, the short-time evolution is time sy
metric for an operation to change the sign oft, which is in
contrast to the case in the exponential decay.

Using Eq.~A14!, we have

^̂ 1;1uLV
2 u1;1&&52(

k
uVku2, ~D7!

^̂ k;kuLV
2 u1;1&&522uVku2. ~D8!

The quantityl2(kuVku2 is of the order of the square of th
ultraviolet cutoff frequencyvM of the interaction and is gen
erally much larger thanv1. Hence, in an extremely shor
time scalet;1/vM!1/v1, the action variableJ1(t) of the
particle decreases as

J1~ t !5S 12l2(
k

uVku2t2D J10, ~D9!

while Jk(t) increases as

Jk~ t !5l2uVku2t2J10. ~D10!

This implies that during this extremely short time scale, th
is an emission of the fields from the particle through a
versible process.

We have proven theorems~D1! and~D2! for the classical
Friedrichs model that is a simplified model of radiatio
damping in classical matter-field coupling systems. Th
theorems are not restricted to our model, but hold for v
general situation of the radiation damping including thre
dimensional case of the electromagnetic field coupled wit
charged particle.
c
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