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Radiation damping in classical systems: The role of nonintegrability
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The interaction between matter and fields is a classical problem. Still there are difficulties. Time symmetry
is broken. So the radiation damping belongs to a class of phenomena, which includes transport properties. We
propose a radically different approach based on the extension of the dynamics of integrable systems. We
consider a simple model, a harmonic oscillator interacting with a field. For integrable systems, it is well known
that there exists a unitary transformation However, in the radiation damping we have resonances between
the action of the particle and the actions of the field. This makes the system an example of Puinaabe
grable systems. We extend the unitary operator to a new star-unitary op&raidris changes the dynamical
description of radiation damping. Once we know the Hamiltonian, we can of course write the Hamilton
equations. But we have the possibility to go to new descriptions. The inveiilttansformation gives many
new aspects, which are hidden in the initial description. For example, we show that there are fluctuations, and
that there exists an irreducible probability description. The transformatian tepresentation corresponds to
a transformation to Markovian probability equations. We can always come back to the initial representation by
the inverse transformation. We have verified this remarkable prediction by detailed numerical calculations. We
need theA transformation to obtain the definition of a dressed unstable mode, which has a well-defined
lifetime. In the initial representation there are various time scales and there is no strictly exponential lifetime.
The situation is the same as the one we have studied in the quantum case in recent papers.
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[. INTRODUCTION tion permits to define dressed modes exactly as in quantum
mechanics where it leads to the definition of dressed excited
Radiation damping is described by equations breakingtates with well-defined lifetimes.

time symmetry. We consider a partiglearmonic oscillator As is well known, Schrdinger’s equation does not allow
and study the damping of the oscillator through emission opurely exponential decay of the survival probability of an
energy to a classical field. Radiation damping is thereforeexcited stat¢7]. The deviation from the exponential decay is
part of the problems we have studied in recent publicationspecially significant in a short time scal¢he so-called
[1-6]. We consider here a classical situation, which is very‘quantum Zeno” period 8]). This phenomenon, while it oc-
similar to the quantum problem studied in Rdfs2]. [Here-  curs in an extremely short time scale, leads to some puzzles.
after, we shall indicate Refg§l] and[2] as Q1 and Q2, Schwinger has writtent ;. . with failure of the simple ex-
respectively, and cite the equations in these papers, for irponential decay law we have reached, not merely the point at
stance, as EqQ1.2.3 for Eq. (2.3) in Q1.] We have ex- which some approximation ceases to be valid, but rather the
tended unitary transformation theory to dissipative systemdimit of physical meaningfulness of the very concept of un-
Our starting point is Poincate distinction between inte- stable particle’9]. The corresponding Zeno period also ex-
grable and nonintegrable systems based on resonance singsts in classical unstable systems, as the Hamilton equations
larities. Dissipative systems, which we consider, form a clasef motion also do not allow purely exponential decay in
of nonintegrable systems due to resonances. For integrabanonical variables. There have been several attempts to im-
systems we can introduce a transformation operdttead- prove the classical Lorentz-Abraham equatiph0-16.
ing to independent modes and then come back to the initidHowever, all attempts have failed to predict the existence of
variables adJ is invertible. We achieve now a similar situa- the Zeno period.
tion for dissipative systems. We can consider the transforma- In the quantum case presented@i and Q2, the un-
tion A which leads to well-defined equations for dressedstable state is described by a nonfactorizable density opera-
modes and, if useful, come back to the initial variableg\as tor. The situation is similar in radiation damping. Our basic
is also an invertible operator. There is no loss of informationidea was to start with the definition of dressed excited states
in the introduction of the\ transformation. The importance for an integrable system where the unitary transformation
of A in the context of this paper is that we can describe inis well defined in the density matrix space in quantum sys-
this way the structure and the time evolution of the unstabléems. For the nonintegrable case, we construct a new trans-
mode associated with the radiation damping. It is natural tdormation calledA which is an analytic extension of the
assume that the excited mode is characterized by a wellinitary transformatiotd in such a way that\ reduces tdJ
defined lifetime independent of initial conditions. This is re- when there are no resonance singularities. Due to the analytic
alized inA representation. In the usual representation, this igontinuation,A is no more an unitary operator, but has a new
not so. There are different decay periods such as Zeno timeymmetry called the “star unitarity.” For the classical case
exponential period, and long time tails. Thetransforma- discussed in this paper we follow the same basic idea. We
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require the following properties foh: (1) The transforma- contrast to the unitargor canonical transformation. Because
tion A is obtained by analytic continuation of the unitary of this property, we shall see that there appear fluctuations in
transformationU in the continuous spectrum limit for the the emitted field from the dressed unstable mode. This im-
frequency.(2) The transformatiom\ preserves the unit op- plies that the distribution function that represents the dressed
erator, i.e. Al =1. (3) The transformation\ preserves real- unstable mode is a nonlocal ensemble in phase space. Hence,
ity of phase functions(4) The transformatiom\ is analytic ~ the dressed unstable mode cannot be represented by a trajec-
with respect to the coupling constaff) The transformation tory in phase space. Moreover, this property leads to a non-
A is invertible: AA“=A"1A=1 [17]. (6) The Poisgonian algebr_a incorpprating dissipation,_ which is an ex-
A-transformed distribution function that represents ant€nSion of the ordinary Poissonian algelboa Lie algebra.

dressed excited unstable mode obeys a Markovian time evo- glso, itis iln A repre?enégtiqn tr:jat We can ddefinekthe thle_rT
lution (strictly exponential lawcorresponding to irreversible modynamical aspect of radiation damping and make explicit

energy transfer from the excited particle to the decay prodzhe entropy pro.duc.:tion due_to_ the_ rgdiation damping. The
uct. and(7) The transformation\ is expressed by a suitable entropy productiorii.e., the dissipationis a consequence of

combination of the eigenstates of the Liouvillian with com- the fluctuations.
. g . ) There is another important aspect of olurtransforma-
plex eigenvaluesgthe so-called “Gamow state$18].

In thi hall ider the d ical th ftion. As noticed, our nonunitary transformation is invertible.
n this paper we shall consider the dynamical theory ofag e shall see, the evolution of the original variables asso-
classical matter-field interacting systems in the Liouvillian

’ ekt / ) *ciated with the bare mode will be represented by a superpo-
formalism, where the Liouvilliari.y, is defined as the Pois- gjtion of the variables associated with the dressed states. In
son bracket with the Hamiltonian with respect to the canonipite of the fact that the dressed states obey stochastic Mar-
cal variables, i.e.Lyp=i{H,p}. The Liouvillian formula-  kov process fot>0, we do not loose any information by
tion is specially intuitive in terms of the Bargmann-Segalgoing to theA representation.
(BS) representation for a Hilbert space spanned by entire Thanks to the isomorphism between the quantum
functions of the normal coordinat¢$9,20. The BS repre-  Friedrichs model and the classical Friedrichs model in terms
sentation is a classical analog of the coherent-state represegf the BS representation, one can obtain the classical
tation in quantum systenj&1]. Through this representation, through the results iQ1 and Q2 by repeating the same
one can introduce amg,n) representation, whene andn  calculations. Hence, here we often display the formulas with-
are integer power of monomials of the normal coordinatesgut presenting their detailed derivations. We shall indicate
The (m,n) representation corresponds to the number reprethe |ocation of the relevant calculations by citing the equa-
sentation in quantum systems. Since the Liouvillian is a detion numbers |rQ1 andQ2 for the reader’s convenience,
rivative operator with respect to the normal coordinates, the |n Sec. II, we present the Hamiltonian in terms of the
action of the Liouvillian on a monomial generally changes itsnormal modes. In Sec. Ill, we diagonalize the Hamiltonian
power. As a result, it is interesting to see that the interactiofjor both integrable and nonintegrable cases. For the noninte-
leads to “transitions” between the states im,() represen-  grable case this can be done in terms of the Garfwwiua)
tation in spite of the fact that we deal with classical mechanngormal modeg23-24. The Gamow modes are eigenstates
ics. In this representation we find an isomorphism betweenyf the Liouvillian L, with complex eigenvalues. The Gamow
classical systems in them(n) representation and corre- modes play an auxiliary role to introduce our star-unitary
sponding quantum systems in number representation on thgyeratorA for the nonintegrable system.
level of the Liouvillian formalism. In Sec. IV, we introduce the Bargmann-Segal representa-

Using this formulation, we shall show that a strictly par- tion of Liouvillian. In Sec. V, we construct explicitly the
allel formalism to quantum systems is applicable to the probynijtary transformation operatds for the integrable case in
lem of classical radiation damping. As an example, we shallerms of the BS representation. We also summarize the cor-
consider the “classical Friedrichs model.” In terms of the relation dynamics which is the starting point to construct the
normal coordinateq, of the particlea=1 and the field star-unitary transformatioA. In Sec. VI, we presenA for
modesa=k defined in the following section, the Hamil- the nonintegrable system. In Sec. VII, we define the distri-
tonian of the classical Friedrichs mod@2] is given in Eq.  bution function that represents the classical dressed unstable
(2.1). This system corresponds to the quantum Friedrichsnode through thé\ transformations. We present some prop-
model discussed in our previous pap&s, Q2, and in Ref.  erties of the dressed mode. The observables corresponding to
[5]. An advantage of this model is that Hamiltoniéhl) is  the dressed mode obey strictly Markov process with expo-
given in a bilinear form of the normal modes. Thanks to thisnential decay. We need th& representation to define the
structure, one can present a complete description of the evamnstable mode with well-defined lifetime. Moreover, we dis-
lution of the system, not only for the motion of the particle, cuss the nondistributivity oA and its striking consequences
but also for the radiative field, without any approximation. on the nonlocality of the distribution function for the dressed
We have shown that our method can be extended to includenstable mode in phase space. We show that there are intrin-
virtual processes and nonlinear situations, but this will not besic fluctuations of the normal modes of the field emitted from
considered in the present paper. the dressed unstable mode.

An important consequence of the analytic continuation is In Sec. VIII, we present time evolution of the initial co-
that it leads to the transformatiok which is not distributive  ordinates. The main points of this section are to analyze non-
when it acts on a product of canonical variables. This is inMarkov evolution of an excited bare particle. We show that
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there are several different time scales in decay process of Jf  ag Jf  ag
excited bare particle, i.e., a short time classical Zeno period, i{f,gl=> | = == (2.3
intermediate time scale of an approximately exponential de- a \d(a 04y d05 " d0a

cay process, and a long time tail. , o )

In Sec. IX we present several numerical plots to visualizeVhere the summatioaruns over all indices of the particle 1
the several different time scales. We also present a numerica/'d field modes. , _ _
verification of the invertibility of our transformation between . W€ putthe system in a one-dimensional box of sizand
the initial coordinates and the transformed coordinates, and §'P0se the usual periodic boundary condition. Then the
numerical calculation of the nondistributibity of thetrans- ~ SPectrum of the field is discrete, i.e&=2j/L with any
formation. Whenever we obtain the representation, we can mtegerj. To deaI_W|_th the gontmuous spe_ctrum of the field
go back to the initial representation through *. we WI|| take th(_a I|r_n|t_LHoo in the appropriate stage of cal-

In Sec. X, we introduce a microscopic analog of Boltz- culations. In this limit we have
mann’s’H function (negative entropyin statistical mechan- 1 i i
ics in terms ofA representation. We show that the entropy = > _J dk, Q8 g— (k) (2.4)
production(or the dissipatiohis a consequence of the intrin- Q — ’
sic fluctuations in the dressed unstable mode. In the last sec-
tion, we present some concluding remarks. Several usefiyhere 6(k) is the Diracé function and the volume factor

k=—o

relations are given in the Appendixes. O =L/27. The volume dependence of the interact\pis
given byV,=v,/\/Q, wherev,~0(Q0) is a suitable form
Il. CLASSICAL FRIEDRICHS MODEL factor.

We note that the frequencies, in Hamiltonian(2.1) are
We consider a classical system that consists of a chargegegenerate ass,=w_,=|k|. To avoid some complexity
harmonic oscillator with a unit mass coupled with a classicatoming from this degeneracy, it is better to rewrite the

scalar field in one-dimensional space. One may introducg s miltonian in terms of the variableg= (q,+q_,)/ 2 for
dimensionless variables by using unitg=1 for an action k>0 =(— = )/\/5 for k<0 andd.=d. as
variableJ, of a typical initial condition of the harmonic os- » A=Ak =Y, andq:=q,

cillator, wg=1 for a suitable frequency, anc=1 for the o
speed of light. We assume that the dimensionless Hamil- H=0:q5%0+ > ogdcax
tonian of the system measured by the unitl, is given by k=—o
+ oo
- tee - C.C. Cc.C.

H:HO+)\V:wlqg.c.q1+k2 wkqﬁ.c.qk +)\k:z_oc Vk(ql qk+Q1Qk )v (25)
oo with V=2V, for k>0, andV,=0 for k<0. In this new
A D V(0SS aetaiatc), (2.1)  form the variableg, with the negative argumetitis decou-

pled from the other degrees of freedom. In terms of these
_ _ _ new canonical variables the Poisson bracket of the phase
whereV_,=V,, c.c. means complex conjugai®, andqy  functionsf and g is written in the same expression as Eq.

are the dimensionless normal coordinates measured by the 3) put with g, instead of the original variable, [see Eq.

unit Jo,@;>0 is a dimensionless frequency for the har-(3.9]. We also have relations similar to E¢@.2), such as
monic oscillator,w,= |k| is a dimensionless frequency for {02,055} = —i8,p.

the field, and\ is a coupling constant. As a convention we
call the harmonic oscillator as “particle.” For simplicity we
have dropped processes associated with interaction terms

proportional toq,q, andq{ gy, which correspond to the Because HamiltoniafR.5) is bilinear, one can “diagonal-
“virtual processes” in quantum mechanics. This approxima-ize” it by introducing dressed normal modes through a linear
tion corresponds to the so-called rotating wave approximatransformation, as in the case of quantum systems. This is
tion in atomic physic$27]. true for both integrable and nonintegrable cases. However, it
The normal coordinates,, are related to canonical pairs 'S Well known that the diagonalization for the nonintegrable
of variablesx, and p, for the particlea=1 and the field case is not unique, as there is Friedrichs’ diagonalization

— . . with real spectrum and the Gamow-mode diagonalizaion
modesa=k as q,=Vw,/2(X,+ip,/w,). The canonical I- ; lizatiomvith | t 2_o
variables satisfy the Poisson bracket relation with the Kro dual-mode diagonalizatiomith complex spectrurfi 6.

A ‘An advantage of the Gamow-mode diagonalization is that
neckerd normalization, one can unify the diagonalization for both integrable and
_ _ nonintegrable cases. Moreover, since the Gamow modes

{92,95°}=—18ap, {9a,qp}=0. (2.2 naturally appear in our nonunitary transformation, we shall

present here this form of diagonalization. Since the algebraic

Here, the Poisson bracket in terms of the normal modes i®rm of the transformation is exactly the same as in quantum
given by mechanics, we shall present here only the relevant formulas

Ill. DIAGONALIZATION OF THE HAMILTONIAN
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of the transformations which will be used in this paper. Forthe continuous spectrum case. In other words, after we per-
the complete result of the transformation including the in-form the integration ovek by keepingz on the upper half

verse transformation, see our previous pa@er for the

quantum case.

In the classical system the frequency of the partiche)(

plane, we substitute=z,;, which is on the lower half plane.
For this reason we often refer this analytic continuation as
the “delayed analytic continuation[5]. Therefore,c, and

is positive. As a result, the integrable case appears only for;dfk are not ordinary functions, but are distributions that are
the discrete spectrum ab,, where the size of the box is defined only under the integration ovkr For the discrete
finite. To avoid un-necessary complexity for the discretespectrum case they reduce to ordinary functions since we
case, we consider a nondegenerate case of the unperturbesve simply 1/¢,— w,) "' =1/(z;— w\).

frequency; i.e.w,# w4 for all k. We have the nonintegrable

system in the continuous spectrum limit.

In both integrable and nonintegrable cases, one can diag-

onalize the Hamiltonian in the form

+ oo

H=2,01°Qu+ 2 @ Qi (3.

In order to unify the notation, we use the summation sign N, =
over the wave numbdqof the field instead of integration for
the nonintegrable case. If necessary, we shall explicitly indi-

cate the integration sign.
The transformation is given by

(l:.c.:Nilz qg.c._’_)\; quﬁ.c}, (3.23
Q1=N;" Q1+)\2k C Qx| (3.2b
and
v AV, qSS
Qﬁ.c.:NﬁIZ QE'C'+ - E q(i.C-+2 NL
ndyk(wk) k' wk—a)k/-l-le
(3.39
- )\Vk )\Vk’qk’
Q=N gt —= (Q1+2 =
Nk (wk) k! W~ wWgr—IlE
(3.3b
Here
AV (3.49
CG=—"""—1, .
(z1— )"
1 1 Z1—w
Lk (3.4b

T m (o) (- )

where 7, (w)= 7 (w*i€) with a possitive infinitesimak
—0+ [28]. The functionz,(z) is defined by

2\ /2
A2V,

wW2)=2—w0,— 2, (3.40

k' (£k) Z— Wy

For the nonintegrable case we havezm:0 [see Eq(3.7)].

The normalization constants are given by

Ni=(1+6) 7% &=N2D ¢} (3.59
K
and
\2V2 A2VZ, o
|:1++—~k2 + 2 ~—k2 .
[ 7 ()] K(#k) |ox— o +ie|
(3.5b

The renormalized frequencies and wy are given by the
solutions of the transcendental equations given by

7 (21)=0, (3.6a
- \2VE
wk=wk+ = . (36b)
(@)

Because of our assumpties) # w, for anyk, one can prove
that for the discrete spectrum cage= w; is a real number,
and o, # o, and o, # wy: for anyk andk’ [29]. Hence, the
denominators in the transformation never vanish for the dis-
crete case. For this case the quantitigsN4, andN, are all

real, and we havey(w) = 7, (0) = 7g,(@x). Moreover,

we haveQ,= Q, for the integrable case.
For the continuous spectrum limit, we have the limits

Ny—1 and w,—wy, as the differences from the limiting
values are of order @Y that vanishes foK) —c. By the
same reason, one can remove the restrictiork’efk in
7«(2) in the continuous spectrum limit. Hence, one may use
the simpler notationsy(z) and ny4(z) by dropping the sub-
scriptk in the corresponding quantities, when we discuss the
nonintegrable case.

Assuming a suitable form factaf, , the function 147 (2)
has a pole ak=2z; in the lower half plane for the noninte-
grable case, where

This pole corresponds to the “Green’s function” pole in the

quantum case, an@; corresponds to the Green’s function
frequency. The imaginary past>0 leads to the decay rate

Then, the notation 1# — w,)© means that the denominator Of the excited particle.
is evaluated on a Riemann sheet that is analytically contin- For the integrable cas€),=Q, are the dressed normal

ued from the upper half plane afto the lower half plane for

modes which diagonalize the Hamiltonian. For the noninte-
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grable case we hav®,#Q,, and these are the Gamow For the classical Friedrichs model it is easy to see that any
modes. In both cases they satisfy the Poisson bracket relsnonomiaIl'Ia(qg'C')maq;a with non-negative integenms, and

tions given by n, are eigenstates df,. However, the integration of these
5 5 monomials over entire phase space diverges. In order to have
i{Qa, Q5 }=6ap, {Qa,Qp}=0. (3.8 a basis of the Hilbert space, we hence multiply converging
factors exp—J,] that are invariants of motion for ad for
Here, we have Lo, i.e.,LyJ,=0, where the action-angle variable}, (a,)
are related to the normal modes fy= \J.exd —ia,] with
if.gl=3 i og  of 99 the domains &J,<%« and O<a,<2w. Then, we obtain a
& a | 992 995%  9qSC 90a complete basis; ;(q) of the Hilbert space, which satisfies
_ (i g i g ) . Lof (@)= (M=) 6,00, (4.4
The Hamilton equation of motion for transformed mode (0SS Mg
Q,(t) is given in terms of the LiouvilliarL, by foq) =] —— 2 e~laal? (4.5
=
iQ1=—LnQ1=20Q;. (3.10

with ﬁz{ql,qkl, Ok, o h rﬁz{ml,mkl,mkz, o h m- e
This shows that the Gamow mode is an eigenstate of the=> myw,, and 14/m,!n,! being a normalization constant.
Liouvillian with a complex eigenvalue- z; for the noninte-  Equation(4.5) is the well-known basi§19,2Q of the Hilbert

grable case. This leads to the solution space spanned by entire functionsqgfand g5, which is
~ o closely related to the coherent states in quantum mechanics
Qi (t)=e771'Q4(0), (3.1)  [21]. In Appendix A we summarize the relations of the BS

_ ) o ) basis and the coherent states. Let us dehgigas
which oscillates in time for the integrable case and decays

for the nonintegralbe case. frﬁ,ﬁ(ﬁ)=(<ﬁ:ﬁ|ﬁ:ﬁ>>:<ﬁ|ﬁ>(ﬁ|ﬁ>1 (4.6)
IV. THE LIOUVILLE SPACE where (n|q) is the coherent state given in E€AL). The
Following the decomposition of the Hamiltonian in Eq. non-negative integers, andn, in the classical abstra;:t state

(2.1), we have the decomposition of the Liouvillian into the [m;n)) indicates the powers of the monomiafy(*)™q,* in
unperturbed pait, associated tél, and the interaction part the modea.
Ly associated with/ as We note

Ly=Lo+ALy. 4.1 Lo Ja=Ly> J,=0. (4.7

a a
We have

with J,=|q,|2. Thus, the converging factor in E¢.5) is an

- ce 9 d - invariant of motion not only for the unperturbed case 0
LOP(q):é @a| Qa7 oo~ Yayg p(q) (42 pyt also for the perturbed caae:0. This is a direct conse-
Ya @ quence of Hamiltoniari2.1) for classical Friedrichs model

where the “virtual processes” have been neglected.

and - -
The stategm;n)) are the basic elements in the Hilbert
R 9 9 space which we call the “Liouville space.” They satisfy
va(q):Z Vil a7 s —qlﬂ completeness and orthonomality relations
K © k
TS BOF 2 3 minjmn|=1, (4.89
Ak 9q5° qkﬁql p(d). 3 m n
In order to introduce unitary transformations for the inte- <(rﬁ;ﬁ|n_1)’;r7>>:];[ Sm,.m!On’ s (4.8

grable case or nonunitary transformations in the noninte-

grable case, we have to specify a function space. In our Pregnere | js a unit operator in the Liouville space. As ex-
vious works[30,31], we have introduced a Hilbert space that | . . . . > -

is spanned by a set of eigenstates of the unperturbed LiOLP-Ia'Pede n Appenednf A the.y are d}’ad'c operatdrs;n))
villian L. We can start with this Hilbert space to specify our =|m){n|, where|m) is a basis of a Hilbert space spanned by
transformation operators. entire functions ofg alone (and not ofg®®). In order to
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distinguish |m;n)) from a vector|m), we often call the Where du(gs)=7"'d’q,=7"'d(Req,)d(Img,)
former as a “supervector,” borrowing the terminology from =dJ,da,/27 (see also Appendix A On the other hand, the
quantum mechanic§32]. The supervectojm:n)) is an duantum vacuum has no energy, sint@la,a,|0)=0,
eigen-supervector of the unperturbed Liouvilliag in the ~ where a, is the annihilatioin operator of the quantum
Liouville space[see Eq(A13)]. modeb.

We note that the interactioh, reproduces a new mono- We note that the transition by the interactibg in Eq.
mial with a different set of integersi(,n) when it acts on a  (A14) preserves a number defined by
given monomial. In other words, the interaction leads to
“transition” between integer powers of monomigler be-
tween the statefm;n)) with different sets of integers, see N=2 (mg+ny), (4.12
Eq. (A14) on the level of Liouvillian formulatiofy in spite of a
the fact that we deal with classical mechanics.
) In the L|ouw|l? space one can introduce a fgtof linear iy the state|m;n)). This is a direct consequence of our
superoperators” that act on the supervectors as Hamiltonian (2.1) where the interactions proportional to

e g g:9x andqj “qg© are absent. Because of this property, each
s=2> ;ﬂ [m;n){m;n[SIm”;in"){m";n"|. (4.9 gector associated to a given intedéin Eq. (4.12 evolves
™ m’n’ independent of the other sectors. As a result, the description
For a given superoperat6y its Hermitian conjugate operator of the time evolution of observables is significantly simpli-
S'is defined as usual. Then the Hermitian operators and thiéed for the Friedrichs model. For example, if we are inter-
unitary operators in the Liouville space are also defined byested in the evolution of the unperturbed action variahle
S'=S andS'=S"1, respectively. The Liouvillan is an ex- for the particle, it is enough to consider the sector with
ample of Hermitian operators in the Liouville space, i.e., =2.
LT—| (4.10 Moreover, there are disjoint sets of the states that evolve
H™=H- ' independently from other sets inside the same sector. For

In Appendix A we show the isomorphism between the clas€xample, let us consider tie=1 sector. We first introduce a
sical Friedrichs model and the quantum Friedrichs model oghorthand notation of a state defined by

the level of the Liouvillian formalisnisee formulagA13)

and(A14)]. Indeed, ifm) and(n| in Eq. (4.6) are regarded lay=1,.{G}") 4.13
as the number states of the unperturbed bosons for the cor- a ' '
responding quantum system, then these formulas are exactly

the same as the ones obtained for the quantum Liouvilliatvhere m,,m/, ... {0}’) means all components except
for the Friedrichs model. This means that all expressions of 1, .. . are zero, whilen,=m, m{=m’, and so on. As we

the superoperators that are constructed from the matrix elgna)| see later, this shorthand notation is specially convenient
ments of the Liouvillian in the number representation for, compare the results obtained here for the classical system
quantum Friedrichs model are also applicable without anyg the results obtained for the quantum Friedrichs model dis-
modification to the classical Friedrichs model in terms of theg,ssed in our previous pape@l andQ2. Then in theN

(m,n) representation. =1 sector we have transitions between the dyadic states

However, it should be emphasized that the isomorphism. .z R . ~
holds only on the level of the Liouvillian, and not on the 1;0) and|k;0), or between the dyadic stat¢8; 1) and

level of the Hamiltonian. Indeed, since the Hamiltonian is al 0K}, but no transition between the dyadic stg®)) and
phase functionor a multiplicative operator acting on any |0;b)) for anya andb.

phase functionsin the classical system, there is no such Throughout this paper, we shall treat superoperdhst
expression in which the Liouvillian is written as a commu- are functional ofLy, (including the unperturbed case
tation relation with the Hamiltonian as in the case of quan-=0), i.e.,S=S(Ly). For this case and with relatiaiA15),

tum mechanics. Moreover, the classical “vacuum sta®”  we see that the expression in 4.9 that acts to{m;n|
(defined agm) with m=0) in the (m,n) representation has from the right is equivalent in the normal-mode representa-
a very different meaning from the quantum vacuum statetion to

Indeed, the unperturbed enertly, of the “classical vacuum
state” diverges in the limit of)—« as

q™e(qS )" Mg
o fa 2 o algm Y[ -2
(Ho)= f I1 dl’v(qa)% wpdp “dp{(a;a[0;0) 13 Jmg!n,! %; (minlSjm’:n »g ymiin!
2 (4.14

= dl.exp — 2, J.|J L . . . .

% wa 1;[ a p( 2 °) b This is a very useful relation to obtain an expression with

matrix elements of a given superoperator in ther{) rep-

=w1+2 w~0(Q), (4.19) resentation. We shall extensively use this relation when we
K

discuss the nonunitary transformation later.
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V. UNITARY TRANSFORMATION AND DYNAMICS U —1|n',’];ﬁ>>: u—1|n',’]><ﬁ| u. (5.9
OF CORRELATIONS

Before constructing the nonunitary transformation for the €T the factorizable operatoh& B) in the Liouville space

nonintegrable case, we first present the unitary transformds defined by
tion for the integrable case. In order to emphasize that the (AXB)p=ApB, (5.9

system with which we are dealing is the integrable case, we
will use notations with a “bar,” such aQ,=Q,=Q,, as  whereA, B, andp are linear operators in the vector space

well as ZE{;l,Zkl,akz, ...}, and so on. The total Liou- spanned bym).

villian is then For integrable systems the unitary operdtiocan be writ-
ten in terms of “kinetic” operators based on the “correlation
L P 9 dynamics” discussed below. The introduction of the kinetic
Ly=> w, 2l —==o"Qa—=| (5.1  operators is important, as it allows us to extend the unitary
a Q5™ dQa operator to the nonunitary operatdr. Since the correlation

dynamics has been repeatedly presented in our previous pa-
Hence, the solution of the eigenvalue problenigfis given pers, Refs[30—-37 and Q1, we shall present only a brief
by discussion of its main idea.
e To introduce the kinetic operators, we first introduce the
Lulo(m); p(n)h=w-(m—n)|p(m);p(n)), (5.2  operatorsP™ which are projectors to orthonormal eigen-
L . L spaces ot ,
where|¢(m); p(n))=|H(m))(p(n)| is a dyad as usual, and

= . M =pW| =w»p®
the vector| ¢(m)) is defined in the BS representation [y. LoP P Lo=w P, (5.10
Eq. (AD)] where
o (6g.c.)ma o
m)=[] ———(q|0). 5.3 PW=1, pWpM=pts . 5.1
(alp(m)=I1 o (5.3 Y § (5.10

andw(” are real eigenvalues af,. The complement projec-
fors Q™ are defined byQ=1- P, which are orthogo-
nal to P and satisfy] Q("]2=Q™).

The unperturbed Liouville equation is then decomposed
0 a set of independent equations,

Similar to Eq.(A2), the stateg¢(m)) satisfy complete and
orthonormal relations in the Hilbert space spanned by entir
functions ofq. As a result, the supervectofg(m); ¢(n))
also satisfy the complete and orthonormal relations of th‘?nt
Liouville space, similar to Eq94.8a and(4.8b).

For the integrable case, one can introduce a unitary trans- 9
formation superoperatdd"=U ! in the Liouville space, lﬁp(v)ﬁ):W(V)P(V)P- (5.12
U_1=2 2 |$(rﬁ)‘$(ﬁ)>)((n3'ﬁ|, (5.43 In terms of the (n,n) representation, we associate diagonal
mon compoment® @)= :n;n)(n;n| of p with w(®=0, which

correspond to invariants of motion in the unpertubed case.
The off-diagonal components witlhr#0 simply oscillate
with frequenciesv(,

For distribution functions the diagonal componentspof
It transforms an unperturbed eigenstate of the Liouvillian toprovide the probability density of the action variable for each

m;n){(m); d(n)]. (5.4b

u=> >

n

a perturbed eigenstate as degree of freedom, while the off-diagonal components give
information on the correlations in angle variables among
U *1|rﬁ; ﬁ»: |$(n71) ;g( ﬁ)», (5.5) several degrees of freedom. The interaction changes the state

of the correlations. Hence, in the Liouville space formula-
We note that one can introduce a unitary transformation option, there appears naturally a dynamics of correlat[@e.
eratoru* =u~! in the vector space spanned bﬁ): To formulate this more precisely, let us first introduce the
concept of the “vacuum-of-correlations subspace.” For the
. . - . . Friedrichs mode, that is a set of the dyadic stdtasn)),
u=> [m)((m)|, u"=2> [g(m)Xm|. (5.8  which consists of the elements in which féld components
m m are diagonal in them,n) representation. For example, using
the notation defined in Eq(4.13, the states|1;1)) and
|k;k)) are the vacuum states in thé=2 sector. We then
U-l=u-lxu, (5.7)  introduce an integed that specifies the “degree of correla-
tion.” This is defined as the minimum numbdrof succes-

or sive interactions\Ly by which a given dyadic staﬂeﬁ;ﬁ)}

In terms of this unitary operator,
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can reach the vacuum of correlation. For example, the Oﬁ:wherewl’) are the real eigenva|ues of the “collision opera-

diagonal dyadic statefl;k)) and [k;1) corresponding to tor” O, corresponding tov(”) shifted by the interaction. As

particle-field correlations havel=1, while the dyads , .onsequence the dynamics is reduced to the set of equa-
[k;k")) corresponding to field-field correlations hade=2. 4.« a y .

The degree of correlation will become important when we
specify the analytic continuation of the frequency denomina- d _ _ _
tors that appear in the transformation superoperator for the e PWp(t) =w"Pp(t). (5.16
nonintegrable case.

We come now to what we may call the backbone of ourThe collision operator in Eq5.15) is expressed in terms of
approach. For nonintegrable systems, we introduced in ouhe kinetic operatorf32] by
previous work 30,33,34 (see also Ref$35-40) the kinetic
operatorsC), D™, ¥ corresponding to the dynamics of 0 =pPOWM 4 [ (W]~ I\L,CH ). (5.17)
correlations. The superoperat6f”) which will be defined
soon is an “off-diagonal” superoperator, as it describes off-The main result is that the Louville space formulation of the
diagonal transition€")=Q™ (P from theP(*) corre-  classical mechanics can be expressed in terms of the kinetic
lation subspace to th@(”) subspace. By operating” on  operators. This is the starting point for our transition from
the v correlation subspacB(*, this operator creates corre- integrable to nonintegrable systems.
lations other than the correlation. In particulaiC(®) creates
higher correlations from the vacuum of correlations. For this VI. A TRANSFORMATION
reasonC") are generally called “creation-of-correlations”
superoperators, or creation operators in short. Conversel
the D™ =pPMDMQM are called destruction operators. The
superoperatory " =P (WP s “diagonal,” as it de-

We next consider the nonintegrable case. It is well known
that the Friedrichs model is nonintegrable in the sense of
Poincarefor the continuous spectum cafél]. More pre-
scribes a diagonal transition between states belonging to t gisely, there _are_dl\éerg_ences n the_ pert_urbauon expansion
same subspace(®), i.e., expansion !m with n=0) o_f invariants of motion

In terms of these operators, we may indeed consider dycher than functions .Of ;he Ham|I§on|a[|80]. The diver-

f ences are due to vanishing denominators, which occur when

namics as a dynamics of correlations. For the integrable sys; : : .
) —— S . -+ the frequencies of the system obey relations called Poincare
tem the diagonalization of the total Hamiltonian starting with e
resonances, such ag= w; in 1/(wy— w,). Then one cannot

i ™ i i -
t_he projectorsP™™ Is equivalent to th? dynam|cs of correla diagonalize the Hamiltonian by a unitarfpr canonical
tions. For the unitary operatds#, the kinetic operator€, D, . . o -
transformation that is analytic in at A\ =0.

and x in the integrable systems are defined thorough the However, we can still deal with the vanishing denomina-

relations tors in the continuous spectrum case by performing a suitable
analytic continuation of the denominators which appear in
U= IPM =(PM ) (), (5.133  the kinetic operator€, D, andy. To determine the form of
A, we use the same formal expressighsl3g and(5.13h),

PUIU =[] (PW+ D), (5.13b AP =(PM+C) ), (6.13

PIA=[x"]*(PM+DM). (6.1b
we use bars to denote operators defined for integrable sys- .
tems, as before. Using E(5.43, one can obtain the explicit | NS guarantees that conditiod) for A presented at the
form of the kinetic operators for the integrable case througHntroduction is satisfied. The analytic continuation can be
the relations y("=PMy-1p® c M =QMy-1p»), achieved by adding-ie with a positive infinitesimale as
S0) 1~ ()1t , 1/\_/\/:1/(W"__‘|6). The key point is to ch_oose the sign of
and D™’ =[C"]" for each subspace in the (m,n) repre- .. Reading each term of the perturbation expansion from
sentation. o __right to left, we choose-ie for a transition to higher, or
_ For the integrable case, the perturbed Liouville equationyy a1 degree of correlations, as this corresponds to a process
Is transformed as oriented towards the future, while we choosée for a tran-
sition to lower correlations, as this corresponds to a process
- _ oriented towards the pa$6,32,33. As far as the kinetic
i—p()=0p(1), (5.149  operatorsC”) and D) are concerned, this choice of the
analytic continuation completely determines the form of
these operators. To determine the operatdt, we need the
where p(t)=Up(t) and ®=UL,U L. The transformed Other conditiong(2)—(7)] that are displayed in the Introduc-

Liouville operator is diagonal in the unperturbed basis, i.e.fion (seeQ1). _ S _ _
we have Due to the analytic continuation\ is no more unitary

operator, but has a new symmetry called the “star-unitarity”
o L that was introduced by one of the auth@t$.), long time
OPW=pME=g")=w"p®) (5.15  ago[33] (see also Ref32)), i.e.,
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At=A%, 6.2
o2 bO=NED NS clk). (673

where * denotes “star conjugation.” This is an extension of

the unitary symmetry to nonintegrable systems. We also have

DW=[Cc("]*. Star conjugation means a combination of (| =NY2(1| +1 D) c(k]), (6.7b

Hermitian conjugation denoted by T and the “prime conju- K

gation” denoted by the prime symbdl,which is defined as

i i i i AV AV
an interchange in the role of higher and lower correlations, i) =Ky + — k |1>+2 k . |k’>),
.t . 74 (wy) K = o tie
A*=(AT)' =(ANT. 6.3 (6.70
Instead Of;(t)ZUp('[), we now considep(t)=Ap(t), ~ AV AV .
v~vhich satisfies the same equationgam Eq. (5.14) but now (bl =(kI+ 7 () (1 +§ wk—wk,—ie<k ],
O=ALyA s the “collision operator” of kinetic theory, (6.70

9 - _ - cf. Egs.(3.29—(3.3b for the nonintegrable case. These ex-
IEP(V)/J(I)Z 6 PMp(t), (6.4 pressions are exactly the same as the Gamow states for the
corresponding quantum Friedrichs model constructed in Ref.

~ () B () D) _ 2 [5]. They are bicomplete and biorthonormal in the subspace
where"’=0 P =P and it has the same form spanned,, i.e.[see Eq(Q1.2.23],

in Eq. (5.17 without the bar notation. In contrast to the
integrable case, one cannot generally wit® as a simple
form as ") with a shifted frequencyv*’, but it is a non-
Hermitian block diagonal operator iR(*) subspace. As a
result, eigenvalues!”) of #*) are generally complex num- \We also have the relatiorisee Eq(Q1.2.32 and Ref.[5]]
bers, wherg characterizes the eigenvalue. This implies that
the Liouvillian L, has the same complex eigenvalues as (] 1) =Ny
6", due to the similitude relatio®=AL4A " . In other
words, A 1 acting on an eigenstate of the collision operator . o .
B generates an eigenstate kof, with the same complex whlch will be useq later. The Igst equallt_y in E(f?.9) is

. () 5 ) o s . p(_355|_ble becausq is not an ordinary fur_1ct|on bl_Jt is a dis-
eigenvaluez;™ of ¢'". This is only possible if the eigen- ipytion as mentioned in Eq3.4a. Equation(6.9) indicates
states are not in the Hilbert space. Complex eigenvaluegat|4,) is not an element in the Hilbert space.
mean time-symmetry breaking and dissipation. Using this auxiliary transformation operator, thetrans-

As mentioned before, the isomorphism between the quangrmation in the subspack,==,|a;0><a;0| in the N
tum Friedrichs model and the classical Friedrichs model in_ 1 gector is given by

terms of the (n,n) representation allows us to find the ex-

plicit form of A, which is essentially the same as the one A t=udx1, A=u;gX1, (6.10

obtained in the quantum system in our previous paf¥ts

andQ2. Therefore, we here display only the final forms\of  which lead to

with an indication of the equation numbers that have been

presented Q1 andQ2. A Yai0)= ;00 (@0l A=(Ba:0.  (6.19
We first present the form oA in the N=1 sector. To

write the explicit form ofA in this subspace, we first intro- They satisfy

duce an auxiliary transformation operatoyg in the sub-

spacel ;=3 ,|a)(a| in the Hilbert space spanned by the en- Lul¢a;0)=2a| ¢a;0)),

tire functions ofcﬁ: [cf. Egs.(Q1.2.16 and (Q1.2.17]

2 [6)(Bad =11, (Bl d0)=0ap. (69

=0, (6.9

1+A2> ¢ cl®
k

(ba:0lLy=(da:0l2a, (6.12

ud=2 [da)(al, ue=2 |a)(dal, (6.5  where we have put,=wy to unify the notations.

é é Similarly, A in the 15,=3,]0;a)(0;a] subspace in
the N=1 sector is given byA " '=1X(uj5)"* and A
=1X(ujg), Whereujg is a Hermitian conjugate operator of
~ Uig -

|[ba)=usgla), (bal=(alusc. (6.6 lGNext we present the nonunitary transformation in the sub-
~ spacel ;=2 p|a;b)){(a;b| in the N=2 sector. The nonuni-

Here, the “Gamow statesl'¢,) and(¢,| are given by[see tary transformations in this subspace are giverisse Egs.

Egs.(Q1.2.24—(Q1.2.29] (Q1.5.2 and(Q2.32]

which give us
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A Yasa)= |po>> ((a'a|A=<(}3°| (6.133 To understand the structure of our transformation operator
' amaT ar A, it is worthwhile to compare Eq$6.11) and(6.133 with
and fora#b [see Eq(Q2.24] the corresponding expressions for the integrable case in Eq.

(5.5. For example, we have

U™ 1;0)=¢1;0), U Y1;1)=|¢1;¢1). (6.19

where[see Eqs(Q1.7.3 and (Q1.7.7] We see that\ ~%|1;0)) is a direct extension of) ~%|1;0>.
Since the Gamow statep,) is analytic with respect to the
On—|EO 0 ling constant at =0, this extension is possible. In con-
pN=[FON+ >, by|FO, (6.143  coupling , p
IP)=IF2) k dFi) trast, a simple extension & ~1|1;1)) to the nonintegrable
system leads to only the first terfF)=|¢,;¢,) of Eq.
lpN=IF)— byl F), (6.14H  (6.143, which is not analytic ah=0. We can see this sin-

gularity by observing the relation T ;1)) ={ 1| 1)
and =1 [see Eq.(A7)], while we have Tr(ey; 1) =(¢1|by)
=0 because of Eq6.9) for any \. Here we impose condi-
~0|—//FO O tions (4) and (7) displayed in the Introduction to find the
Fil+ 2, b(Fgl, 6.14
(el =(CF] Ek <Fd ( o form of A. As has been shown in Appendix A @2, the
second term with the factd, in Eq. (6.143 has been added

A7 Yab)=p*"). (asblA=(p*],  (6.130

U =(F? —b(FY, (6.149  toremove this singularitjsee Eq(Q2.A1)]. Indeed, the sin-
gular term with the factoc,c; ¢ in b, exactly compensates
with the singularity in the first term. Thanks to this second term
that we now have Ttpd))=1.
IFY=|d1:0),  |[FO)=|de; b, (6.153 Another important consequence of the second term in Eq.

(6.143 is related to degeneracy of the zero eigenstbﬁé}}
BO=((, Bl (FO|=(DCC BSC|. (6.15 of the Liouvillian Ly . Because of this second term, the state
(Fal=(aidal (Rl =A™ b |p9) may decay by producing the decay prodis})) [see
Here, the statefF/)) and<<l~:}’| are right and left eigenstates Egs. (6.263 ar_]d(7'8)]' n F’E)her words, the existence .Of the
of the Liouvillian Ly . The superscript over|F”) and|p") degenerat(()a e|ger2)states_ |“?‘1>>_ guarantees the transition of
is the same index in Eq. (5.10 [see also EqQ1.4.23]. As th% statdp;)) to ka»._Thls |§ in contrast to the c_;amov_v state
will be presented later, the first terfA%) in Eq. (6.143 is a |7 1> alone, as exp-iL,it]|F7) decays exponentially without
decaying eigenstate with the complex eigenvatu@iy, ~ Preducing any decay produgee Eq(6.213]. Furthermore,
while the second term is a superposition of degenerate eige@S has been shown @1, the number in Eq. (6.17) reduces
states with zero egenvalue bf, for any value ok [see Eqs. [© 1/2 in the integrable cadsee Eq.(Q1.6.18], while c,
(6.213 and(6.21H]. We shall see that the degenerate eigenP&cOmes real as mentioned just below E36h. As a result,
states irfp%)) play an essential role to obtain a decay produclbk vanishes for the integrable case, and our transformed state
0 ; .
in the decaying process of the stdie)). For a#b, we |p1)) reduces to the integrable ohé,; ¢1)).

present the explicit form of Eq6.13b in Appendix B. The eigenstatel§| ) and((lNZjV| satisfy bicompleteness and
The real functiorby is defined by{see Eq(Q1.7.9] biorthonormal relation in the subspacg with the complex
, eigenvaluez{” [see Eqs(Q1.4.9, (Q1.4.27], and Appendix
Y B5in Q1), i.e.
= 2 _ c.c. ) )
b= 17 g [(rcg+c.c)—cee ], (6.16

with [see EQ(QL6.17] 2 IFFI=tu (FEFD)=0,.0.,. (6.20

L [+g-1-(E+ o) o1
r=5 : :
2 £ LulFO)=—2iy[FD),  (FIILy=—2i%(F?l, .
We haveb,~O(1/Q) and[see Eq(Q1.7.6] (6213
LulFy=(FRlLy=0, (6.21h

Ek: by=1. (6.189

where —2i y=2z,—2z{°.

To unify the expressions with the ones presente@in
In Appendix C we show thal, is the line shape of the field let us introduce new notations fs)) with »=0 orab, and
that is emitted from the unstable dressed excited mode. We=1 or k (we do not write the inde) for v=abh), i.e.,
shall see thab, will play a central role to describe irrevers- |0,)=|a;a)) and|ab)=|a;b). Then, we may write\ in the
ible process in radiation damping. subspace , as[see Eq(Q1.6.24]
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. , ~, esting to compare this to a transformation in the integrable
A :VEJ_ Lo Ml A:VEj lvidpil.  (6.22  systems. Corresponding to this transformation, we have

) K(t)z UA(t) for the observable. For integrable systems, the
This is a star-unitary operatoe* =A "~ [see Eq(Q1.6.22].  ypjtary operatorU generates canonical transformatiag

As has been shown iQ1, the stategp;)) and (pj| are  _yyx_ andp,=Up, for the phase variables. Our star-unitary
bicomplete and biorthogonal in the subspdge [see Ed.  yransformation gives a generalization of canonical transfor-
(Q1.6.25], mation for the nonintegrable systems.

> eel1=11,  (pMplN=06,.8;. (6.23
Vi VII. DRESSED UNSTABLE MODE AND RADIATION

We note that DAMPING

e Lt e x 1Bt In this section we shall define the distribution function

|Pj (t))=e " |Pj N=A""e |Vi>>- 6.2 that represents a dressed unstable excited mode in\the
. ) . ~ representation. We shall see that the evolution of the action

where the relationAexd —iLyt]JA™"=ex —iOt] has been yariable over this distribution function is purely exponential.
used. Hence, the time evolution of the statelp;(t))) is  Hence the lifetime of the dressed excited mode is well de-
governed by the collision operat®r mentioned in Eq(6.4).  fined. This requires a consistent dressing of the field sur-
Using Eqgs(6.13a3—(6.21h and(B7), one can find the matrix rounding the bare particle. To introduce the dressed mode,

elements ofg” (for ”ggvb);cdz (a;b|6)|c;dY) in this sector We first note that the unperturbed excited modé-=a0 is

as, e.g., represented in terms of the distribution function by
B 1= —2iy+0(Q7?), (6.253
p(J,@,0=pi(J,a)
Bt =2iyb+0(Q7%),  (6.25h
~ , =08(3; 10 8(ar— arp) [ (30 8(ay— o),
O p=—2i ybyb,+0(Q 3, (6.250 K

as well as the explicit forms of the time evolution of 7.

|p{ (1)) as[see Eqs(Q1.7.79 and(Q1.7.10],

whereJ, and a¢ are the action-angle variables of the par-
Ip2())=e"2"p2W+(1—e"2") > by|pd), ticle, and the superscrigton p indicates that the distribution
K 5 function is aé function. The subscript 1 i;aiS indicates that

(6.263 only the particle is excited. All field modes are in vacuum at

t=0. The state?(J,a) is local in phase space and gives an
oD )=[ph+ (1—e 2Mb[|p— > bilpph], expectation value,J,, for Hy. The dynamics preserves the
! (6.26H 6 function that represents a trajectory.
' Before introducing the dressed unstable excited mode, let
and us give a comment on our classical distribution function of
_ the unperturbed excited mode, E{.1). In quantum me-
|p?0(t) ) =€~ (Za™ 2| paby, (6.260  chanics the quantum state that represents an unperturbed ex-
cited mode is given by a quantum dyadic s{dtgl)) [see Eq.
(Q1)]. The expectation value ¢, over this quantum state is
rightfully given by# .. However, we cannot use the corre-
sponding classical BS statd;1)) to represent the unper-
turbed excited mode for our classical system. Indeed, the
(A= [p!Wvil, A= [y)(p}l. (6.27  expectation value oH, over this BS state diverges with
v vl order() in the continuous spectrum lim — oo by the same
reason that led to Eq4.11). This is the reason why we must
use the state Eq7.1) instead of|1;1)) to specify the classi-
. cal unperturbed excited mode.
j dFAe_'LHtA_lp=f dI'TA’A(t)]p, (6.28 Let us now consider the dressed excited mode. In the
integrable case the dressed mode would be represented by
wheredl'=I1,dJ,de, is a volume element in phase space,h€ unitary transformation as
and A(t) =exd +iLyt]A is an observable, such as the coor-
dinate x,(t) associated with a normal mode We have a -
LA . 571 = —11-1.6/7 °
transformationA(t)=A'A(t) of the observable. It is inter- p1(J,2,00=U""pi(J,a). (7.2

Applying the Hermitian-conjugation to Ed6.22), we see
that the prime-conjugation operator &fis given by[see Eq.
(6.3]

We note the relation
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The time evolutionp2(t) =exd —iLt]p2(0) of this trans- Where Eq.(4.14 has again been used to get the second
formed state still represents a trajectory, since any unitarfduality. Using Eq(6.263, we have
transformation preserves a trajectory.

We extend this definition to the nonintegrable case, and c.Cy -~ ~29tY/a-h| 0 -2yt
. S . T = ; +(1— 4
now consider evolution in\ representation. A distribution (90 >”1(t) e 7 aiblpy)+(1-e7)
function that represents a dressed unstable mode is given in
contrast by the star-unitary transformation as % EK by (a:prE»}Jlo. (7.9

pi(J,at)=e "HA 1], a). (7.3

or equivalently[see Eqgs(6.143, (6.213, and(6.21b],
As could be expected, the transformed distribution function a 1 as 3 ( 3 ( ]

p1(J,a,t) does not any more represent a trajectory, but cor-

responds to a nonlocal ensemble in phase space. Let us now <Qaqg'c'>;1(t)=
present some properties of the time evolution of the unstable

mode in theA representation.

(CH Ca V)

+§k: by <a?b|eiLHt|<~f>kig5k>>}Jlo-

(7.9

A. Dressing of the field cloud and Markov process
Denoting the expectation value of an observahlever
the statep; by (A);,, the evolution of the expectation value Equations(7.5) and(7.8) show that these expectation values

of g, in the N=1 sector is given by obey strictly the Markov process. For example, &b
=1, Eq.(7.9 [or Eq. (7.9 with Egs.(6.213 and (6.210]
<qa>;)1(t):f drq.e LA ~1p2(d, a) leads to
2\ /2
—iLytp —1 53 > (I =€ 2Ny Jyot > 3. (710
=% (a;0le” " HA Y b;0) [ dTgupl(d,a) P 2 (7 (0]
=({(a;0le " "H! ¢, ;0 , 7.4 Since V2 and b, are both proportional to @, the second
$1;0)010 k

_ o term in the right-hand side gives a negligible contribution of
whereqo=VJa0eXH — axo] is the initial value of the normal  order 10 in the continuous spectrum limf— . Equation
modeq,, and Eq.(4.14 has been used to get the second(7.10 shows thatJ;); decays strictly obeying the exponen-

equality. Using Eq(6.12), we have tial law (see also Appendix C on the evolution(@); ). In

<Qa>,31(1)=e_izlt<a|¢1>Q1o- (7.5 contra!st to our dressed ex<_:ited mod_e, we will see in the
following section that there is a classical “Zeno” phenom-
This gives the evolution of the normal mode. enon in a short time evolution of the bare excited state, i.e.,
Fort=0, we have a significant deviation from the exponential decé@on-
Markovian processwhich corresponds to the quantum Zeno
(ql);,l(o)z Ni’quo, (7.63 effect for unstable quantum staféd. The bare excited mode
is not intrinsic to the system, as it has a memory effect of the
v AV initial condition, that is, its behavior strongly depends on its
(Ak)p,(0y= N1 mcho- (7.6D  initial preparation.
The interaction leads to nonvanishing dressing f(«dg};,l, B. Nondistributivity of A
v;ﬂgch disappears when the interaction is switched &ff, As mentioned before, our dressed excited Sffl‘(&‘i&)

does not any more represent a trajectory, but represents a
nonlocal ensemble in phase space. This is a striking differ-
ence of the star-unitar\\ transformation in nonintegrable
_ L systems from the unitary transformatibhin integrable sys-
(Aals“)p 0= f dl g8 e M HIA "1p2(J,a) tems. This difference comes from the nondistributivity of our
transformation operatoA. In a nonlocal ensemble, there
must be fluctuations. We consider

Aa(t)=(da05); 0~ (da)p, {0 sy - (71D

Similar to Eq.(7.4), the evolution of the expectation value
of g,05 in the N=2 sector is given by

=3 (aible A o)

XJ dl'qeqg®pi(d,a) We now prove that
={(a;ble " pINJ10, (7.7 A4(t)=0, (7.12
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while

Ay(t) =byJso. (7.13
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C. Non-Poissonian algebra

Another important consequence of the nondistributivity is
that it leads to a non-Poissonian algebra. To see this we note

There are no fluctuations for the unstable mode but there attgat Eq.(6.11 lead to

three fluctuations for the field.
We note that the fluctuation, can also be written as

Aa(t)Zf (A’ 93%ga) — (A" 9g) (A da)1pT(d, @),
(7.149

where we have used relati¢6.28 and the fact thap3(J, @)
defined in Eq(7.1) is the § function. Hence, our resul?.13
shows that the star-unitary transformatiomd distributive
This result shows that the line shapgl;, in Eq. (7.13 of

the emitted field from the dressed excited particle represents
not only the intensity of the fluctuation but also the intensity

of the nondistributivity ofA.
The proofs of Eqs(7.12 and(7.13 are as follows. Equa-
tion (7.9 leads to

<Qaqg'c'>,31(t): efzyt|<a|¢1>|2+; byl(aldi)|? | I1o-

(7.15
On the other hand, Eq§7.4) and (7.5) give us
<Qa>,31(t)<qg'c'>,31(t):<<a?a|e_iLHt|¢’1?¢’1>>Jlo
=e ?"|(al¢1)|*10- (7.16
Hence, we obtain the fluctuations
Aq()= 2 bil(a)|%10, (7.17)

which are invariants of motion.

A_lq]_:Ql: A_lq(]:_'c': (]:-.C.’ (718)
whereQ“ is the Gamow mode defined in E@.23. Since
A preserves any constant because of condit®rlisted at

Sec. |, we have for a Poisson bracket,
A" Har,g5c =i,
On the other hand, we have
{A"q1, A" 1a7 ={Q1,Q7 "}
1+)\2§k: ckcﬁ'°'>,
(7.20

where we have used the first equailty in £§.9) for the
Poisson bracket. Comparing this with E§.9), we obtain

{A g, A" g7 °1={Q;,Qf*}=0. (7.21

This is in contrast to the unitary transformation for the inte-
grable case, since we would havg) 1q;,U g%}
=U"Yq,,q5%}=—i because of the distributivity ofJ.
Hence, for the nonintegrable case we have a new non-
Poissonian algebra incorporating fluctluation as well as dis-
sipation, which is an extention of the ordinary Poissonian
algebra(or Lie algebra.

Another interesting quantity associated with the excited
dressed statp;(J,) is the expectation value of the energy
<H>r31' As one can easily verify, its expression is the same as

(w1+ 8wq)J10 sShown in Eq(Q1.6.13 in Q1, except that:

(7.19

:_i|N1|

Fora=1, A,(t) is just the second term in the right-hand is replaced byl,,. Here,dw, is a deviation from the Green’s

side of Eq.(7.10, which is of order 19). For a=k, Eq.

frequencyw;, the difference of which starts with ordar*

(7.17) gi_vzes Eq.(7.13 plus higher-order contributions with [see Eq.(Q1.7.30]. In quantum mechanics, the frequency
order()~ < that can be neglected in the continuous spectrunghift from the unperturbed value, due the coupling of the

limit Q) —o. For botha=1 andk, the dominant contribution

particle with the field is known to be the Lamb shigee, for

of A,(t) is proportional to 10). We first note that the order example, Ref[42]). As could be expected, the ratio of the
of magnltude of the action variable of the partlcle is 1. As afrequency shift with respect to; in classical systems is

result, one can neglect the fluctuatidn(t) ~1/Q) as com-

much smaller than the corresponding ratio in quantum sys-

pared with the action variable of the particle. This giVES USsems because of heavier mass and Smau?rin classical

Eq. (7.12 in the limit Q— oo,

systems. However, since we need a careful calculation to

In contrast, one cannot neglect the fluctuation of eactestimate the frequency shift in order to remove the ultraviolet

field modeA,, even in the limitQ)—oo, sinceb,J;q is the

divergence that also appears in classical systems, we shall

line shape of the emitted field from the dressed excited statgiscuss this problem in a separate paper.

(see Appendix € The existence of non-negligible fluctua-

tions of the field implies thap,(J,a) does not represent a
trajectory. As mentioned above, the fluctuations are basically

due to the nondistributivity of th& operator.

It is well known in nonequilibrium statistical physics that

VIIl. NON-MARKOV EVOLUTION OF THE EXCITED
BARE MODE AND INVERTIBILITY OF A

We now come to the time evolution of the original coor-

there is a close relation between fluctuation and dissipatiordinates. We consider the same initial conditief(J,«) as
In Sec. IX we shall discuss this relation in detail after intro- Eq. (7.1), where only the bare particle is excited and all field

ducing theH function in A representation.

modes are in vacuum dt=0. In contrast to the dressed
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)\Uke_izlt )\vke_i“’kt
+

excited state, we will see that it obeys a non-Markov process 2
where the lifetime is1ot well definedThe non-Markov pro- gu(t)= \fﬁ N,
cess consists of three time scales in the decay of the bare
particle, showing the classical Zeno effect in a short time 2 it
scale, arapproximatelyexponential decay in an intermediate N del 2hvie Avy

time scale, and a power-law decay in a long time scale. The 0 74 (0) 7 (o) o —wtiel’

traditional approach to radiation damping is mainly focused

on this intermediate time scale. As emphasized by Schwinger (8.6

(see the citation in the Introductipnthe main problem of

radiation damping is to identify an object that has a well-where we have replaced the summation sign by the integra-
defined lifetime. That can be only realized by olrtrans-  tion sign and used the definition ®f in Eq. (2.5).

(zi—w) " 7 (wy)

formation. For the particle moda=1, the first term in Eq(8.5) [or
Let us first consider the bare normal magigthat is in the  in Eq. (8.6a] decays exponentially. The existence of the sec-
N=1 sector. We have ond term in Eq(8.69 indicates that the decay process of the

bare particle is not purely exponential. For a short time scale
the second term leads to the classical Zeno effect. In Appen-
<qa>t:f dlge “Hip(J,a,0) dix D, we shall discuss this effect in terms of a short time
expansion of the action variables.
_ R Next, we consider the time evolution of the unperturbed
=> ((a;O|e"LHt|b;O>)j drgupl(J,a). (8.1)  action variablesl,(t) that are in theN=2 sector. As far as
b we are interested in the evolution of original variables over a
given trajectory represented bydafunction, it is enough to
We now apply the invertibility of our star-unitary transfor- evaluate the evolution of each normal mode in the 1
mation A A =1. For the initial condition(7.1), this leads ~ Sector. Then, any original variable in an arbitratysector is
to given by a function of each normal mode. For example, the
average of a produd,q;® of two a modes is given by a
product of averages,

(da)=2 {(@;0le™""HA~|b;0)((b;0| A|1;0)do-
8.2 <qaqg'c' t:<qa>t<qg.o t:ga(t)gglc'(t)‘]lo- (8.7

This shows that the time evolution of the unperturbed norma|—|owever, this is not the case if we evaluate expectation val-
o o ; . ues of the observables over the dressed unstable mode, be-
mode is given as a superposition of the time evolution of the X ST
transfromed state& ~*[b;0> in Eq. (6.11), i.e., cause of the quctuatlon_ due to the nondl_strlbutlwty /bf _
discussed in the preceding section. For this reason, it is in-
structive to show that one can recover the factorizable result
(92)1={a;0|e "1 ¢ ;0)(d1;0]1;0)q10 (8.7) for the bare variables, by starting with the time evolu-
tion of the A~?! transformed states and then inverting by
applying A, similarly as calculated before in E¢B.2).

For the observablg,q; in the N=2 sector, we have

+2k (@;0le "1 ¢y ; 0Ny ;0|1;00a50. (8.3

This with relation(6.12 leads to (9aq5° t:J' drqaqg.C.efiLHtp(j’,&’o)

a/t— at) ’ (84 s c.c > -
)= 9al 0o ) =2, (able 'LHtIC:d»f dl'aeqg*ps(d,a),

where (8.8

i ~ i ~ Applying the invertibility just as in Eq(8.2), we obtain
gu(ti=e el gr)(ufa) + T e W alg)(Bla).  APPYI ) 182

(8.5 _
(905 t:;j (able™" A c;d){(c;d[A[1; 1) 0.
Using EQs.(6.79—(6.7d), we obtain (8.9
fe 2N2p2e-ien This shows that the time evolution of the observatf& gy,
g.(t)=N,e 71t + f dk+k—7, (8.63 is given as a superposition of the time evolution of the trans-
0 ng (07 (wy) formed stategp/> in Egs.(6.138 and (6.13D),
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(0205 *)1=(a;ble™ " pI) (b3l 1; 110
+; (a;ble™ ™| pp)ogl L: 1o

+ 3 aible o N 1:2) 2

+§ [(a;ble™" | p™)p™|1:1)

+c.c]J10, (8.10

where the prime over the summation sign denotes the restri

tion k#k'.

Using Egs.(6.149—(6.21h and (B1)—(B7) with the ex-
plicit expressions for the Gamow states in E@8.79—
(6.7d), and using the volume dependenge-O(1/)), one
can verify with the straightforward calculation that the right-
hand side of Eq(8.10 leads to

(Ga05 %)= A a;b| by py (e Bl 11010

+ X e 1@ e arb| gy ; )

k,k’
X<<3)k:?iskf|1;1>>am+; [e (1= Wi(a;b

X| 1 BN b1 dil 1 1) g0+ c.c]ds0, (8.1D)
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Zeno period is therefore given y=1/w,. Sincey~\? for
A<1 while w;~1, we have the well-separated time scales,

t,<t, . (8.12

The second term in E¢8.63a is essential to satisfy EqeD1)
and(D2) that lead the classical Zeno effect in the short time
scale for the bare excited mode. For extremely long time
scales witht>t, , the branch-point contribution again gives a
predominant contribution.

In summary, we obtain three time scales in time evolution
of the classical excited bare mode, just as in quantum me-
chanics;(1) a short-time Zeno period of the deviation from
the exponential decay?) an intermediate time scale of the
Cé'xponential decay, an@®) a long time scale of a power-law
decay{43]. Strictly speaking there is no well-defined lifetime
for the bare excited mode because of the existence of non-
exponential behavior in the short and long time scales. This
is in contrast to the dressed excited mode as it obeys strictly
the exponential law shown in E¢7.10. Only through ourA
we may rigorously define the lifetime of the excited mode.

Next we consider the emission of the field from the ex-
cited unstable bare mode. The evolution of the action vari-
able J, for the field is given by Eq(8.10 for a=b=k as
Ji(1)=]gx(t)|2310. The first term of Eq(8.6b) vanishes in
the limit t— +o. The contour of the integration in the last
term is located below all singularities that come from the
denominators. Hence, assuming that the form factor is cho-
sen in such a way that the contribution coming from its sin-
gularities vanish in the limit— 4+, the integration in the
last term of EQ.(8.6b also vanishes in this limit. Conse-
quently, the dominant contribution comes from the second

where we have kept predominant contribution of the volumeerm in Eq.(8.6b), and we obtain

dependence by neglecting higher-order contribution {n.1/
Adding negligible terms wittk=k’ in the last term in Eq.
(8.11), we finally obtain Eq(8.7). This illustrates the invert-
ibility of A.

im 3= 2 vy 2 .
m T O T= . 2Y10° —a T ~ 5 5 .
e YT 0 7 (00 7Q (w24 42 0

(8.13

Let us now analyze the results obtained above. Hereafter,

we use new notationg,(t) =(ga); andJ,(t)=(J,); to em-

The approximation in the last line is valid for a weakly cou-

phasize that we are dealing with variables over a trajectoryling casex<1 and in the vicinity of the resonance fre-

We first consider the particle mode=1. The complex con-
jugateg} “(t) of Eq.(8.6a has exactly the same form as the
survival amplitude( #(0)|(t)) of the excited quantum bare
state when the initial condition is given hy(0))=|1) [5].
Hence, the action variabli (t)/J,, obtained fora=b=1 in
the Eg. (8.7 corresponds to the survival probability
[((0)|(1))|? in the quantum system.

The first term in Eq(8.6a decays exponentially with the
lifetime 1/y. Hence, the exponential part df(t) decays
with the relaxation timet,=1/2y. This term gives a pre-
dominant contribution in a time scate-t, .

The second term in Eq48.69 gives a nonexponential be-

quency wk=Z)1. The right-hand side is the well-known
Lorentzian line shape.

IX. NUMERICAL PLOTS

In order to visualize the result obtained in the previous
sections, we have peformed numerical calculations. The
main results of this section ard) a visualization of the
different time scales discussed in the preceding sect®ra
numerical verification of the invertibility of our transforma-
tion between the initial coordinates and the transformed co-
ordinates, and3) a numerical calculation of the nondis-

havior of the decaying process of the excited bare modetributibity of the A transformation. As has been shown in the

Indeed, due to the delayed analytic continuation in Eq
(3.40, the pole atw,= 2z, does not contribute in the integra-

preceding sectionA -transformed variables have nonvanish-
ing dispersion. Hence, it is worthwhile to demonstrate by the

tion overk in the second term. As a result, we have only thenumerical simulation that information of the system, such as

branch-point contribution d&=0, which leads to a power-
law decay as 1#t)* with «>0. The value ofa depends
on the choice of the form factar,. The time scale, of the

a memory effect of the initial condition of the bare excited
mode, is not lost by the star-unitary transformatitn
In order to visualize the different time scales mentioned
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aa(t) _ dlag
dat

5 10 15 20 25 30 0.175
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FIG. 3. A numerical result of-dJ,(t)/dt as a function of time
t, which is measured by a unitd{. One can see both a short-time

deviation and a long-time deviation from the exponential decay.
FIG. 1. Numerical results of the time evolution of the original

variableJ,(t) (the solid ling and the transformed variab{él);,l(t) paper, we puiw;=1, A=0.1, and we use the form factor
(the broken ling The abscissa it which is measured by a unit ;, = W‘g(kmax_“(D with the cutoff wave numbek,, .y
1/w,. On this scale we do not see any difference betwh¢t) and =27, We also use\k=0.005, which gives the size of the
()50 - box asL=1256.6. For this case we obtain the decay rate
2vy=0.108(the relaxation time,=9.5) and the shifted fre-
above, we have plotted (t) obtained by numerical integra- quencyw,=0.878. In all figures presented in this paper, time
tions of the equation of motions and compared them with oufs measured by the unit &j=1.
theoretical results. To perform the numerical integrations we |n Fig. 1 we showd, (t)=|qg,(t)|? by the solid line(see
have used the discretized form of Hamiltoniéh5) with a  also Ref.[45]). This has been obtained by a numerical inte-
given sizeL of the box and with a cuttoff wave number gration of motion for the origina| normal mo(ml(t)_ In
Kmax- The equations of motion have been solved dgft)  order to compare the evolution of the original variablét)
[and also forg,(—t)] by the numerical diagonalization of to the transformed variable, we also pial;); ) by the
the Hamiltonian into the fornt3.1) (see Ref[29] for a de- 510 jine. On this scale we do not see anyldifference.

scription of the numerical methadlhis numerical method is The numerical value ofJ;);. . has been calculated by
more reliable than other numerical methods, such as the . /P11 L
sing the data of,(—t) obtained from the numerical inte-

Runge-Kutta method. To compare the numerical results witfy!SIn! _ :

the theoretical results for the continuous spectrum, we hav@ration of the equations of motion, as follows. In Eg.9),
restricted the time scale at,,, wheret,,,=L/c, so that W€ first note that
the light cannot cross the box in this time scale. Since the by N
agreement between the theoretical results and the numerical ¢1:b1)= Ny
results is excellent, we show only the plots by the numerical

LA e Tkl

results in all figures presented in this papéd]. In Figs. ) c.cya .
1-3, we plotJ,(t) as a function of time. In all plots in this +)‘2k (el L)+ ci | Likp) | ©.
Ju(t) This gives us for the first term in E¢7.9),

(1;1]e MM 1; p1)I1o0= Ny |aa(—1)|*+

)\zk: Ck

2

Xqps(—t) +>\§ [chap ®(—t)

Xg.(—t)+c.cl|, 9.2

where we have used the relation

(:1le”""ra;b)=((1;0le~"1|a;0))(0; /e "|0;b))

FIG. 2. A magnification of a short-time portion of Fig. 1. The =[(a;0le™"+]1;0)]%[(0:b]
solid line isJy(t) and the broken line i§J;); (). One can see a Xe+iLHt|0;1»]c.c.
deviation from exponential decay ih(t) (the classical Zeno ef-
fect). The dots on the solid line are the results of the inverse trans- Qa(—1)SC gp(—1)
formation from the transformed variables, by applying to = vy . (9.3
(J1);,y We go back tal;(t). U1o G10
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For the second term in Eq7.9), one can repeat a similar Ak (t)
calculation to EQ.(9.2 and obtain an expression of
(1;1)exd —iLyt]dr; H)I1o, Which is a function ofq, 006
(—t). Hence, from the numerical data qf(—t), one can

evaluate the numerical value @;); (1) R

Figure 2 is a magnification of a portion of Fig. 1 for a
short Zeno time scale of ordey. Again, the solid line is
J;(t), while the broken line igJ;); (. The difference is oo

clear. J;(t) deviates from exponential decay. One can see

that our result satisfies relatiof®1) and(D2) for J,(t). The - = = e

Zeno time scale is not intrinsic to the system, but depends on ) )

the initial condition. Since the traditional approaches of the FIG- 4. Numerical results of the fluctuatiaiy(t) (the broken

radiation damping have ignored the existence of this shotn®: (J);, (the thin solid line aboveand(qy); (ai);, (the thick

time scale, the basic formulas, such as Larmors radiatioflid line below atk=0.9 as a function of time, which is mea-

formula[11], to derive radiation damping do not hold in the Sured by a unit 14,. As has been predicted by our theoretical

Zeno period. cglculathn,Ak(t) remalns a con§t§lnt in time and its value is con-
The most interesting result in Fig. 2 is the bold dots on the>Stent with our theoretical prediction dfi(t) =0.6147.

solid line for J,(t). The dots are the result of the inverse .

transformation from the transformed variables. By applying'(ndi;’iOILIaIIy calculated the Z&St a|nd the sec|ond te>;ms in EqQ.
. : e 7.9 for a=b=k, as well ag(k;k|exg —iLut]|¢p1;P1)J 10N
A k . No inf lost. e . HAIY1 %7177~ 10
0 (J1)j,r) » We g0 back taly(t). No information is lost Eq. (7.16) by a similar numerical method presented in Egs.

As mentioned above, the solid line in Fig. 2 has beeng )_(g 31 The broken line is the fluctuatioh,(t) that cor-
obtained by a numerical integration of the equations of mo'responds to the second term in Eg.9) for a=b=k. As has
tion for the initial normal modeg,(t), while the broken line " .

: . been predicted by our theoretical calculatidn(t) remains
for t_he transformed varlable_: has been plotted using the NU3 constant in time and its value is consistent with our theo-
merical data ofg,(—1t). In Fig. 2, one can see that there is

: e i retical prediction ofA,(t) =0.6147 for our specific values of
'_ltfezdtnohzenob perlogtln_ thz [t)ransfchrme_d V?:‘"(l_j@@l(t) .t kandL. In contrast taA(t), (Ji);, (the thin solid ling and
e dots have been obtaine erforming the inverse trans-, \. , c.c.\. . - I
formation over the numerical dgfa for the%ransformed variqu)f’1<qk >”1 (the thick solid ling change in time.
ables at several points of time. The result shows that there is
a good agreement between the inverse transformed variabl&. H FUNCTION AND FLUCTUATION VS DISSIPATION
and the initial variablel,(t). This numerically verifies the
invertibility of our nonunitary transformation .

An important consequence of the star-unitary transforma-
. . . : tion is that it allows us to introduce a microscopic analog of
In the intermediate time scale with-t,, the|p?)) com- b g

nent in Eq(8.10 predominat nd the excited bare mod Boltzmann's H theorem in statistical mechanics by con-
pone gle.1% predominates a € excited baré mo estructing a Lyapunov operator that decays monotonically for
decays approximately obeying the exponential [aee Fig.

1). The exponential decay is a Markov process that is intrin—aII times[32-34,44. We can describe radiation damping in
sié to the [l)mstable artic)ie inde ender?t of its initial condi—terms of function that is defined as an expectation value of
tion P P a Lyapunov operator in the Liouville space. Thefunction

: : : ) ) corresponds to negative “entropy” in statistical mechanics.
) For the long t”ﬂf S_Cale witte-t,, the f|e|d-f|e.|d corre-la- In the preceding section we have shown that there are fluc-
tion componentp“® ) in Eqg. (8.10 now predominates, i.e.,

. . . turationsA b, of the field in the dressed stape(t). As is
the branch-point effect coming from the second term in EqWeII known in nonequilibrium statistical physics, there is a

(8.69 again gives a predominant contribution. This is alsoclose relation between fluctuation and dissipation, which is

the time scale Fha.‘t has be_en negle_cted by traditional aRsften expressed in the form of the fluctuation-dissipation
proaches to radiation damping. In Fig. 3 we have plotted

_dInJ,/dt for this long time scale as a function of tinte theorem[47]. In this section we shall show this relation from

(see also Ref45]). We can again observe the deviation from ;Bﬁ nglnnt of "entropy production” defined through ot
t_he exponential behawo(:t_he long time tajl. For the long Let us introduce a Lyapunov operator associated with a
time scale th_e exponential part bec_omes so small that th hase function,, that depends on finite numbern of the
power decaying component predominates. However, the al nodes of the systelf82]
solute value of the action variable is already very small in Y '
this long time scale. Ma =ATANAIA 10

In Fig. 4 we show plots of the fluctuatiof,(t) in Eq. An A Al A (10.3
(7.1 for a=k. In this figure we show a numerical result of
(Ji),, as well agqy), (A *);, atk=0.9 as a function of the
time t. The thin solid line above in the figure {gy); and Ha [p(D]=(p(D)|M [p(D)), (10.2
the thick solid line below igay);,(qi*);,. In order to find

numerically the values df), and(ay); (di“),,, we have which is a nonlinear functional gi(t).

Then we have &{ function defined by
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For example, theH function associated to the particle rium statistical mechanics, in spite of the fact that we deal
modeq; is given by with classical mechanics. From these equations we obtain

2

d . 2
~ gt 2 Mo [pa(D]=473g fuu() = 20 bifiuD)| =0,

2 (10.9
: (10.3

qu[pm]z|<<q1|A|p<t>>>|2=‘ f drg;Ae "+p(J,a,0)

=’E (1;0[Ae " a;0)(da)o , » ,

a Hence, the “entropy production” per unit time defined as the

. . . left-hand side is greater or equal to zero. There is a dissipa-

where(da)o is the »eXPECtat'On value af, over an arbitrary 5, The dissipation is a result of nonvanishing collision

initial ensemblep(J,«,0). Applying Egs.(6.11) and (6.12  kernelsb, of master equatiori10.7a and (10.7h. On the

to this, we obtain other hand, the collision kernels are just the fluctuations of
. the field in Eq.(7.13. Hence the fluctuations lead to the

Ho,[p(1)]=€"2"(4(0)[$1)(¢1[¢(0)),  (10.4  dissipation and vice versa.

It should be emphasized that our approach to entropy pro-
where|#(0))==,|a)(ga)o. This has exactly the same struc- duction is purely based on microscopic dynamics, which is
ture of the’ function as the one introduced in the quantumvalid for arbitrary strength of the coupling constant and ar-
Friedrichs model in our previous worQ2 and in Refs. bitrarily far from equilibrium without any approximations. In
[5,48,49. For example, if we consider the trajectory given this sense we now establish a deeper relation between the
by Eq.(7.1), we obtain|(0))=|1)qfy ", which corresponds fluctuations and the dissipation both coming from the reso-
to the case discussed in detail in our previous pdpér nace singularities in nonintegrable systems.

Instead, if we consider the caggy=0, but with nonvanish-

ing field modesq,;#0 att=0, our expressior{10.4 re- XI. CONCLUDING REMARKS
duces to the form in the scattering case of the field, which
has been investigated in detail @2 and in[48]. The fundamental result in this paper is that we found fluc-

Let us now discuss the relation between the fluctuationguations in theA transformed variables in the classical radia-
by of the field in the dressed stapg(t) and the dissipation fuon dampmg problem. Th.e reason for the fluctuations is that
associated with the entropy production. To this end, we coninformation concentrated in the excited mode 1 goes to many

sider the{ function associated to the action variables whichmodesk of the field through the resonance interaction. The
~ resonance thus leads to the fluctuations as well as the dissi-
are evaluated over the transformed siatét). We have

pation. The line shapb, of the emitted classical field gives
2 the probability to find the modke which is somewhat similar
> HJa[,Bl(t)]=2 U drJ,Ae “HA 12T, a) to Born’s probablistic interpretation in quantum mechanics.
a a Hence, our theory is a theory of fluctuations and dissipation
in classical electrodynamcis. We should emphasize that the
=Z |faa(t)|2J§0, (10.5 fluctuations are explicit in thé -transformed variables, not
a in the initial variables. There are no trajectories in the
representation, as the states are nonlocal in phase space. Tra-
jectories exist in the original variables. But we netedrans-
formation to identify the exponentially decaying modes.
Through our star-unitary transformation, we have a physics

Taking the time derivative and using Eg$.253—(6.259 ?f reso::ances,fnot of .fc;rcgrsr,] a(?d nothby a Sescr.iptict)n tir:]
with (6.18, we have a set of equations, erms of space-time points. The deep change by going to the
A representation comes from the fact that resonances play an

9 essential role. This is quite different from the idea of point
ﬁfn(t)=272 bl fr(t) —f11(t)],  (10.78  events used in classical field theory.
K In this paper we have focused our attention on the case
P where the fields surrounding the particle are not in the ther-
e _ _ modynamic condition, as they has a finite energy. Indeed this
(?tfkk(t) Zybk% Dl 1) = Fpp()]. - (10.78 is a typical situation of radiation damping problem. If we
take the thermodynamic limit of the fields, the linear trans-

where

faa(t)=(a;ale " 1;1). (10.6

From these equations we obtain formations that leads to diagonalization of the Hamiltonian
leads to divergencis0]. Nevertheless, one can still construct
an exact form of\ transformation for the classical Friedrichs

fiq(t)+ fr(t) =1, 10. S .
u(®) ; (V) (108 | 1odel. In the thermodynamic limit, the star-unitary transfor-

mation leads to Gaussian white noise in theepresentation
which is an invariant of motion. One may notice that Egs.without relying upon any phenomenological argument and
(10.79—(10.7b have exactly the same structure as the Paulapproximations. This result has been presented in a separate
master equation that is well known in quantum nonequilib-paper[51].
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super “bra-ket” notations for dyadn;n>=|m)(n|. Then
APPENDIX A: THE BARGMANN-SEGAL we haveAn;;,;:<rﬁ;ﬁ|A>. Hence,A can be written as an
REPRESENTATION element of the Liouville space as

The Bargmann-Segal basig.6) of the Hilbert space e o o
spanned by entire functions of, andqS® is related to the A=2 2 [min)(min|A). (A8)
“coherent states” in analogy to quantum mechanics by mon
Relations(A4) and(A5) lead to

> > (g™
(mqy=]] —=e1al"2, (A1) o
2 | T du@oanapiaan@al-1 @9

In the Hilbert space spanned by entire functionsﬁofthe

states/m) statisfy complete and orthonomal relations and
o o (a:a’la”:q™)=(ala"){a"|a"). (A10)
2 Imym|=1, (mn)=II 6, o, (A2 _ o
m=0 a ara In terms of the BS representation, the Liouvilliap is writ-
ten by
where the summation goes over all non-negative integgrs
for all a. . o d Ja
As usual, the “coherent states” defined by <<Q§Q'||-o|Q";qm>>=§ wa| 95 P TS
a
=3 Imy(mld), (A3 Lo e\ .
. —Ga| ——+ 5| [€asa’la"a™,
90
are overcomplete in the Hilbert space, i.e., (A11)
| T ducaplaal-2 (g and
(a:a’|Lvla™;a™)
and e
J Ak g q'y”
— \V; c.c. + = =gl —+
(lah=11 el ~(2)aal >+ a5 ag— (12)agl?] (A5) Zk K 91 (aqﬁ-c- 2) ql((;q{( 2 )
a
(9 q ) (9 qu.C.
wheredu(q,) =7 'd?q,=7"'d(Req,)d(Img,). A iy ‘qk(—ﬁ > )l
Any linear operatoA acting on a vectofa) in this Hil- 991 94
bert space may be written as a superposition of dyadic op- S = =
g betp YARE O x(adTIq Ay (A12)

erators{|m)(n|} as
Puttinga7=ﬁ in the above expressions, we recover the ex-

A= > AsalmXnl. (A6)  bressions for the Liouvillian in Eqg4.2) and (4.3). In the
m ’ (m,n) representation, Eq$A11) and(A12) lead to
Similar to quantum mechanics, one can introduce the Liou- |_O|rﬁ;ﬁ>>:(5.(rﬁ—ﬁ)|rﬁ;ﬁ>) (A13)

ville space spanned by linear operators in this Hilbert space
[see Eqgs(4.89 and(4.8b]. To represent vectors in the Liou- and
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- o .. B _ -
Lmsiy= Vil my(mer Dlmy - Lmg+ L{m)n) FEI=(oc b,
K
I R N e
+‘/(m1+1)mk|m1+ 1,mk—1,{m}’;n>> <<F |_>>¢11¢k| Z <<|,||f(k,|), (BS)
—V(ny+Dndming+1n,—14n}") with
—Vni(ne+D)|m;n =1 +14nt' )], (A14) D)= 1) N2 AV, \2V2
i )=\ ¢li¢k 1 7,— oy 1,k ﬂg(a)k)
where the prime o¥m}’ denotes that the particle 1 and the
field modek are excluded from the set of the components « 1 B 1 ) (B4)
in m. w—wctie (z—w)") |
In Eq. (A14) the first term in the right-hand side vanishes o 2
for m;=0. The same is true fam,=0 in the second term, Tk )=(1:1[By; ) N2 AV P A7V
for n,=0 in the third term, and fon;=0 in the last term. NPTz — ol T T (o))
Hence, one cannot have anlgﬁ,(ﬁ) states that have a nega- 1 1
tive value ofm, or n, for a certain value of or b in the % _ +” (B5)
right-hand side of Eq(A14). w—o—ie (Z1— o)
As a special case, we have
and
L|0;0)="L,|G;0)=0, (A15) (@;b|F ) =[(a;b[FH)1ee,
where (Fa;b)=[(F™|a;b)1ec. (B6)
These are the right and left eigenstates of the Liouvillian,
S > _ 2
(610 0p=e~ 2 IaaF* (A16) L Fa0) = (z,— 25%)|Faby,
Tab — .C.\ /Eab
These are consistent &,J, is an invariant of motion for (FILn=(za=z5*)(F*. (B7)

both unperturbed and perturbed cases shown in£&@).

In Egs.(A13) and(A14), we see an isomorphism between APPENDIX C: LINE SHAPE OF THE EMITTED FIELD
the classical Friedrichs model and the quantum Friedrichs FROM p,
model on the level of the Liouvillian formalism. Indeed, if

> > In this appendix we show that the functidpJd,g is the
|m) and(n| in Eq. (4.6) are regarded as the number states Ofline shape of the field that is emitted from the dressed excited

the unperturbed bosons for the corresponding quantum Sy?ﬁode
tem, then these formulas are exactly the same as the ones For.a=b=k in Eq. (7.8), we obtain
obtained for the quantum Liouvillian for the Friedrichs T
model.

|im<Jk>;1m=Z bi(k;K| pP I 10= bid 19+ O 72).

t—oo |

APPENDIX B: EXPLICIT FORMS OF p2° AND p2° (CY

The explicit forms ()fpab and ‘E)ab are given[see Egs. This shows that the functiob,J,q is just the line shape of
(Q1.7.2 and(Q1.B20—(Q1.B29] by the field that is emitted from the dressed excited mode. In
Q1 we have shown that for a weakly coupling case with
<1, we can approximath, as[see Eq(Q1.7.15]

p*)=[F2),  (p*|=(F>". (B1) .
11 A
bk%ﬁ_ (~ 22) 4 22’ (C2)
Here, T [(wk— 1)+ N"ys]
KK 1, where\?y, is the lowest-order approximation af in the
[FED=1di: i), expansion of\ given by
+ o
2., _ 2y/2 _ _ 2.2

|F1k>>:|¢l;¢k>>_2| ||,|>>f(k,|), (BZ) A yz—Qfo dkn kaﬁ(wk wl) 27\ le. (C3)
Therefore, this line shape is narrower than the Lorentzian
and line shape(8.13 emitted by the bare excited mode. As has
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been discussed iQ1, the difference between the line shape {a;alLy|1;1)=0, (D5)
b J1o and the Lorentzian line shape is consistent with an
elimination of the short-time event in the Zeno period in thewhile
dressed excited particle. Indeed, during the Zeno period the
bare excited state reorganizes space by producing a consis-
tent dressing field attracted around the particle, and after that

) . : which can be easily verified from the expressions in Egs.
the particle starts to decay obeying the exponential law. IQAlS) and (A14). Thus we obtain theorem®1) and (D2).

contrast, since our dressed excited mode already includes*a These theorems show that in a short time scale. there is a
consistent dressing field, the dressed excited particle deca%f '

. . o . . assical “Zeno” period that corresponds to the quantum
strictly exponentially from the beginning. The dispersion OfZeno eriod for unstable quantum stai®% From theorems
the action variable is of ordey in the line shapd,J,o, and P q

: . ) . . (D1) and (D2), we see that a short-time expansion of the
there is no large fluctuation of the action variable as in the . . . )
o solution ofJ,(t) —J,(0) in the series of should start witht
case of the Lorentzian line shape. . U
term. In other words, the short-time evolution is time sym-
metric for an operation to change the signtofvhich is in

contrast to the case in the exponential decay.

{a;a|L3|1;1)=\?(a;a|L|1;1)#0, (D6)

APPENDIX D: CLASSICAL ZENO PERIOD

We first prove the theorems Using Eqg.(A14), we have
dJ,(t ) .
jim 222 -0, (D1) (1AL 1p=22 [Vyl?, (D7)
t—0 dt k
while (KLY L 1)=—2|V\|. (D8)
d23,(1) The quantityh?S,|V,|? is of the order of the square of the
Iimw— #0. (D2) ultraviolet cutoff frequencyw), of the interaction and is gen-
t—0 erally much larger thanmw,. Hence, in an extremely short

. . time scalet~ 1/wy <1/ the action variablel,(t) of the
These theorems are important when we consider the evoly- Om =01 (1)

. . : article decreases as
tion of the system in a short time scale. The proofs are a

follows: we have 2 2,2
. Jl(t)=(1—)\ Ek [V, %t )Jm. (D9)
t . - o
in—"":J drd,Lle tHip2(J,a)
dt" aH P while J(t) increases as

:2 <<a;a||_r|]|e*iLHt|C;d>> Jk(t):)\2|vk|2t2~]10- (D10
c,d

This implies that during this extremely short time scale, there

ce 83 > is an emission of the fields from the particle through a re-
XJ dl'a.aq™pi(d,@). (D3)  versible process.
We have proven theoreni®1) and(D2) for the classical
Substituting Eq(7.1) into this expression, we obtain Friedrichs model that is a simplified model of radiation
N damping in classical matter-field coupling systems. These
- d"a(0) NNaeall N1 - theorems are not restricted to our model, but hold for ver
lim—m—=(=)"(a&alLi|1: ). (D) are 0 >l DUt ot y
o dt general situation of the radiation damping including three-
dimensional case of the electromagnetic field coupled with a
We have charged patrticle.
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