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Suppression and acceleration effects of measurements on atomic decay
in anisotropic photonic crystals
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We study the measurement-induced suppression or acceleration of the radiative decay of an atom embedded
in an anisotropic photonic crystal. Due to the presence of a band gap in the electromagnetic density of states,
repeated projections onto the excited state of the atom can lead to a suppression or acceleration effect already
at rather low repetition rates. It is shown that in contrast to the isotropic band-gap materials, both suppression
and acceleration effects are possible, depending on the detuning of the atomic transition from the band edge
and the frequency of measurements.
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[. INTRODUCTION The effect has since been studied in a variety of physical
systems, ranging from atomic physii& to radioactive de-
Artificial materials consisting of periodic structures of di- cay[10] and mesoscopic systerfikl]. In Ref.[12], a scheme
electric media, called photonic crystals, can possess barf@r slowing down decay into a continuum is proposed by
gaps in the density of electromagnetic mofies As a con- means of a sequence of ultrashort pulses. An opposite
sequence a modification or even a suppression of radiatiiehenomenon, the anti-Zeno effédecay acceleration by fre-
decay in these systems has been prediffdDue to the guent measurementswas recently discovered by Kofman
technical difficulties in producing the three-dimensiofgd) ~ and Kurizki[4,5]. Similar predictions have been made in the
photonic band-gap materials with a sufficiently large andtheoretical and numerlqal mvesﬂgaﬂons of quantum chaotic
complete band gap, an unambiguous experimental proof ystemd 13]. Mathematically, a more rigorous treatment of
this effect has, however, not been achieved until now. On th € quantum-Zeno and quantum-anti-Zeno effects has been

other hand, it is well known that the radiative decay of angll:/aerrl]tufrcr)\r-ztzr?oI;cr;eigﬂ:jmnic;?sij-lzﬂhJgghta:\?irc])srlsvoans ;rr?;T sed
atom can be substantially altered by frequently repeateg d y

. . - in Ref. [15]. In Ref. [16], the first observation of the
measurements if the reservoir of radiation modes has guantum-Zeno and quantum—anti-Zeno behaviors due to re-
highly structured density of states in the vicinity of the cor-

. . 1 , peated measurements during the nonexponential period of an
responding atomic resonance. This result of the interplay b&;nsiaple quantum system was reported.

tween quantum dynamics and measurement, which is absent |, this paper, we study the influence of frequent measure-
in classical measurements, is known as the quantum Zengents on the evolution of an initially excited two-level atom
(decay suppressioi3] or quantum—anti-Zentdecay accel- embedded in an anisotropic photonic crystal with a single
eration effect for sharply varying4] and for smoothly vary-  (uppej propagation band and a singlewen stop band. The
ing density of state$DOS) [5]. In the case of sharply vary- restriction to a single propagation band seems justified as
ing DOS, a smoothing parameter was introduced, which cafong as the transition frequency is in the vicinity of the band
be chosen to fit different materials such as isotropic and aredge and the measurement frequency is not too high. A more
isotropic photonic crystals. The purpose of the present papeaslaborate discussion of the band-gap materials with several
is to analyze as to what extent these suppression and acc@kopagation bands will be given elsewhere. It is found that
eration effects can be observed in a 3D photonic crystal. Théhe decay process of the atomic excited state may be accel-
most pronounced changes are to be expected in the band-gafated or inhibited depending on the detuning from the band
materials with an isotropic dispersion relation, as analyzed irdge and the frequency of measurements. Two characteristic
Ref.[6], where the density of states shows a singular behawalues for the atomic transition frequen€y, and for the
ior at the band-edge frequenay,. However, we here want repetition rate of measurements are identified. When the
to consider the more realistic situation of an anisotropic phoupper level is abové), and the frequency of the measure-
tonic crystal, where there is no such singularity. We will ments is smaller tham,, the decay can be slowed down.
show that both acceleration and suppression effects may Btherwise, the decay is accelerated. These properties are dif-
observed depending on the relative detuning of the atomigerent from the ones for an isotropic photonic crysfélk
transition frequency to the band edge and the frequency of
measurements. This is in contrast to the case of an isotropic
photonic crystal.

The first experiment on the quantum-Zeno effect was sug- In an anisotropic photonic crystal, the dispersion relation
gested by Cook7], and was later performed by Itamb al.  of the electromagnetic modes is strongly modified by the
[8] using coherent Rabi oscillations in a three-level atomperiodic dielectric structure, and a band gap, is formed on the
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surface of the first Brillouin zone in the reciprocal lattice. Inserting Eq. (5) into Eq. (3), we obtain the integro-
Near the band edge, the dispersion relation may approxdifferential equation

mately be expressed hy,= o+ C|lk—kf|%. Cis a model-

dependent_ con_stant akg i_s a finite cpllection o_f symmgtry iA(t)= _2 gke—i(wk_wl)tftgkA(t/)ei(mk—ml)t'dt/.
related points in the reciprocal lattice associated with the dt K 0

band edge, e.g., the eigbtpoints in the first Brillouin zone (6)

of a diamond photonic crystal. The most important difference . . .
; gquatlon(e) is exactly solvable by Laplace transformation.

from the dependence of the density of states on the ban&?ﬁf’[‘f}’i‘l’g' amplitude in the initial staf&), A(t), takes the

edge. For an isotropic band-gap material, the density o
states is proportional toaf,— wc) Y2 for (w> w,), which o oot el
leads to a singularity at the band edge. In the anisotropic  a(t)= + — f K(x)e *dx, (7)
case, the density of states, is however, proportionalatp ( F'(x1) G'(Xp) ™ 0
—wc)Y? for (w>w,), which is not singular. _

Let us consider a two-level atom embedded in an anisoWherew;.=w;—wc. X; is the root of
tropic photonic crystal. The upper levd) is coupled by the o
allowed electromagnetic modes to the lower lef@l. The F(X)=X— B -0
energy of|0) is set to zero. The atomic transition frequency Vot V=ix—w
from level |1) to level |0), w4, is assumed to be near the
band-edge frequency,. In rotating-wave approximation, in the region[Re(x)>0 or Im(x)>w;.], andx; is the root
the Hamiltonian for the system takes the form of

iB3/2
H= 1)(1]+ ol +i floy1|—H.c). G(X)=X— —————=0
hwl| >< | ; hwkbkbk Ihzk gk(bk|o>< | C) ( ) \/w—c_lm

D
in the region[Re(x)<0 and Im§)<w;.]. The functions
Here, the labek denotes both the wave vector and the po-F'(X), G'(x), andK(x) are defined as
larization of the mode ant, (by) is the radiation-field an-

nihilation (creation operator for thekth mode with fre- Fr(x)=1- x?
quency oy. Ox=(wq0,/2)J(%/280) 0 Vo&-Ug is the 2B8%%~ix—wy
atomic-field coupling constant, whedg anduy are the mag-
nitude and unit vector of the atomic dipole momevig. de- ix2
notes the quantization volume, are the two polarization G'(x)=1- P
unit vectors. The atom is assumed to be initially in the ex- 2B7HIX+ oy
cited statd 1), and the state vector of the system is given at X .
timet by K(X)=/5’3/2 X(wC_IX) )

[(01cH1X) (0o iX) — VB2~ 8%

|lﬁ(t)):A(t)e*iwlqu{O})Jrzk: Br(t)e ' “K[0{1y}), The parametep is given by
2
(wldl)zE Sln249n

where|1,{0}) denotes the atom in the excited state with no p32= n ®)
photon present an®{1,}) describes the atom in the ground 8me h C3? '

state with a single photon ikth mode with frequency, .
From Schrdinger equation, we can obtain the following whered, is the angle between the dipole vector of the atom
equations for the amplitudes(t) andB(t): and thenth k. Note that the phase angles ¢fix— .,
and \ix+ wq. in the above functions have been defined in
B T the region  7/2,7/2).
&A(t)_ _Ek: 9¢€ YB(1), 3 It can be shown analytically that there are two character-
istic frequencies

d . 3/2
— — i(w— o)t
dt Bk(t) gkA(t)e ke, (4) le wc+ T (9)
wC
Formally integrating Eq(3) yields an
t . , QZZZQ)C_ 2 B ’ (10)
Bk(t)z fogkA(t/)el(wk*wl)t dt’. (5) §w%/2+(q1—q2)1/3—(q1+qZ)1/3
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FIG. 1. Frequency regions in a photonic crystal. For bare fre- .

quency detuningsy;.= w;— . from the band edge. with w;. FIG. 2. Decay acceleration effect for an initially excited atom

<A; (region |, the dressed frequency lies in the forbidden band.yith transition frequency in region | of.=1008,w.=— ).

For Aj<wjc<A, (region Il), the dressed frequency is exactly at Shown is the coarse-grained survival probability as a function of

the band edge, and fas;.>A, (region 1) the dressed frequency time for the projections in interval§/n with ST=200.n=0 (un-

stays in the allowed band. disturbed evolution, solid curye100 (dashed curve 200 (dotted

curve, 400 (dot-dashed curye 1000 (dot-dot—dashed curyeand

with  g;=[ (40— 2003?83?27+ %12 and 4,  2000(short-dashed curye

=10w2%27- B2, If w,;<Q, (region ) only a single imagi-

nary rootx; exists with Inix;]>w;.. Whenw;>€Q, (re-  very short initial time period, the decay will always be sup-

gion Ill), there is only one complex root, with a negative  pressed. This phenomenon is called the quantum-Zeno effect.

real part and an imaginary part being smaller than. In |n practice, it is however often impossible to make measure-

the intermediate region, i.e., fd2;<w;<Q, (region I,  ments on such a short time scale. On the other hand, if the

there exists no root of the equatiof{x)=0 and G(x) transition frequency of an atom in a photon band-gap mate-

=0. In this case the corresponding terms in Ef).are set rial is close to the cutoff frquency, a suppression effect may

equal to zero. The three frequency regions have a simplpe observed at much smaller repetition rates of the measure-

physical meaning. In region |, the interaction with the radia-ments. Furthermore, also the opposite effect is possible if the

tion modes shifts the bare atomic transition frequency intaundisturbed decay slows down for some time. If the decay

the stop band. Here, the atomic excitation will not decay toprocess is interrupted by a projection before the period of

zero and a bound atom-photon state is generated. In regiagtiower decay sets in, an acceleration effect occurs: the effec-

Il, the interaction moves all bare frequencies exactly to thaive decay of the system will be accelerated by measure-

band edgev, . In region Ill, the atomic transition stays in the ments. These phenomenon can be observed on the decay of

allowed band even after renormalization due to the interacthe atom embedded in an anisotropic photonic crystal.

tion with the field. This is illustrated in Fig. 1. When the atomic transition frequency lies in region |
The last term on the right-hand side of Ed) is due toan  (e.g., w,=1008, w,.=—8), A(t) takes on the following

integration along the cut of the single-valued branchesform

which is taken along the negative part of the axis in the

complex plane. The time-decay behavior of this term is im- et \/i—eiwlct "

portant for the quantum—anti-Zeno effect. A(t)= 0 — f K(x)e *dx. (12)

F'(x, T Jo

Ill. SUPPRESSION AND ACCELERATION EFFECTS

. . . . X1t ’ H H
We now discuss the influence of the frequent prOJecuonsThe terme /.F (x,) does not decay W'th time and leads to
nonvanishing steady-state population in the upper level,

onto the excited state on the decay of the atom. Suppose, . .
detect the atom in the excited state by a von Neumann meag- ich repre;ents a bound atom-photon state: The integral
suremenn times in a time interval. The projection process erm decays in the manner of a power law, which is fast for

itself needs to be short on this time scale and will be as_short times and is slow for long imes. Consequently, fre-

sumed instantaneous. The probability of survival in the ex_quent prqjections on t.he. e state could lead to decay
cited state after tim@ is then acceleration effect. Th|s is shpwn in F|g.. 2 where we have

plotted the(coarse-grainedsurvival probability as a function

P(T)=|A(T/n)|?". (12) of time for different repetition rates of the projection.
When the upper level is within region Il, only the integral

If the decay of A(t) is exactly exponential|A(T/n)|?"  term is present in the expression #¢t). Here, the survival
=|A(T)|? and the survival probability would not be affected probability decays to zero and no steady-state population re-
by the measurements. It is, however, known that due to thenains in the excited state. Since the time evolution of the
boundedness of the spectrum from below, the decay is mtegral in Eq.(12) is essentially the same as in the previous
nonexponential decay. For an atom interacting with freecase in region Il, a decay acceleration effect will be observed
space electromagnetic modes, this time scale is of the ordevhen the excited population is measured repeatedly. The
of the inverse energy of the excited state. If the measuretime evolution of the survival probability is qualitatively
ments are made fast enough such that lies within this  similar to Fig. 2.
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The behavior shown in Fig. 3 can easily be understood if
o one considers the effective decay rhteof the atom defined
0.014 by
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FIG. 3. Suppression and acceleration effects for an atom witt= 1008 and different relative position of the upper level from
transition frequency in region Ill,=1008,w;.=28). Shown is  the band gago;..
the coarse-grained survival probability as a function of time for ~For very short initial time period10 28" in Fig. 4),
projections in intervald/n, with 8T=200. (a) Suppression effect, the effective decay rate increases with titnét means that
n=0 (the coherent evolution, solid curyel00 (dashed curye 200  there is a quantum-Zeno effect of the excited atomic decay as
(dotted curve (b) acceleration effecth=400 (dot-dashed curye  the time interval between the two measurements is smaller
1000 (dot-dot—dashed curye2000(short-dashed curye than the time period. However, the measurements on such a
short time scale is difficult to make. After the short time
Finally, when the upper level is within region 11A(t) period, the effective decay rates for different detuning of the
can be written as upper level from the band edge have different properties.
When the atomic transition frequency is within region |
(curve a) or region Il, the effective decay rate decreases
K(x)e *'dx. (13)  monotonously with time. If the atomic upper level is within
0 region Il (curveb, c, andd), the effective decay rate de-
creases first to a minimum value and then grows to a con-
The time evolution of this expression is more complex tharstantl’y, corresponding to the asymptotic exponential decay.
in the previous two cases since the two terms in 8@  When the atomic upper level moves deeper into the propa-
have different weights at different times. The decay of thegation band, the density of state increases and the population
first terme*2'/G’ (x,) is exponential, and the corresponding decay becomes faster. So the asymptotic decaylIigtm-
decay time is a constant—(R€x,]). Thus, the measure- creases as the relative position of the upper level from the
ments will not change the contribution of this term to theband gapw,. increases. In addition, the time of slowest de-
effective decay rate. The decay of the integral term, on theay decreases as;. increasegas shown in Fig. ¥ Thus,
other hand, slows down with time. For short times, the decayhe influence of the frequent measurements on the time evo-
is faster than that of the exponential term, and the total decaltion of the atomic upper-level population depends on both
time of |A(t)| is smaller than—1/Rg x,]. For long times the relative position of the upper level from the band gap and
(t—), the decay rate tends to zero and the total decay dhe repetition rate of the measurements. When the frequency
|A(t)| is dominated by the exponential term with rate of the measurements is larger than a characteristic repetition
(—1/Rd x,]). In Fig. 3 we have plotted the time evolution of rate vy, there is a quantum-anti-Zeno effect. When the fre-
the survival probability foro,=1008, w,;.=28 with T  quency is smaller tham,, a suppression effect can be ob-
=200/8 and differentn. One recognizes that for an increas- served. The characteristic repetition raig depends on the
ing repetition rate of measurements, the decay first slowsetuning of the atomic transition frequency from the band
down and then accelerates, i.e., one can observe decay swgsige. This is illustrated in Fig. 5
pression first and then the anti-Zeno behavion &screases. In regions | and Il, i.e., fow, below Q,, repeated mea-
For reasons discussed above, there will of course again besarements always lead to an acceleration effect. In region Ill,
Zeno effect in the limit of very high repetition rates, i.e., veryi.e., for w,. above(), both suppression and acceleration ef-
large values oh. fects are possible depending on the repetition tatef the

A(t)=

eXat \/i‘eiwlctfoc

G'(x2) &
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3.0 has no singularity near the cutoff frequency and is much
251 . smaller. Thus compared to the case of an atom embedded in
,/' an isotropic photonic crystal, the decay discussed here is
2.0 acceleration I slower and the corresponding characteristic decay time is
< 1.5 e substantially largefe.g.,~10°8 ! asw,.=0.28; ~10°B 1
}1 o] P for w,.=0.10018). The long decay time in the anisotropic
) // Suppression case makes the suppression and acceleration effects more
051 o, =0, /,/ easily observable in an experiment.
0.0 NI : :
-1 0 1 2 3 4

IV. CONCLUSION

1¢c

In this paper, the influence of repeated measurements on
the time evolution of an atomic excitation is investigated,
when the atom is embedded in an anisotropic photonic crys-
tal. The decay of excitation can be accelerated or suppressed
by sufficiently frequent measurements. Which behavior oc-
curs, suppression or acceleration, depends on the relative po-
measurements. Fer< v, there is a slowdown of decay, and sition of the upper level from the band gap and the frequency
for v>v, the decay is accelerated by measurements. Whesf measurements. This is different from the case of an iso-
the upper level lies deep inside the propagation band, thgopic photonic crystal.
characteristic frequencyy is very large, and the acceleration
effect is hard to observe experimentally.

The above results differ from that for asotropic photo-
nic crystal[6]. For a two-level atom in an isotropic photonic ~ This research was supported in part by the 973 Project of
crystal, the dispersion relation leads to a singularity in thehe Ministry of Science and Technology of China, the Na-
density of states at the band edge. As a result, the decay tibnal Natural Science Foundation of China, and a RGC from
the excited atom is fast with a very short characteristic timehe Hong Kong Government. Y.Y. acknowledges support

FIG. 5. The characteristic repetitian, as function of the rela-
tive position of the upper level from the band gap.. For v
<, there is an acceleration effect and fer v, a suppression
effect is observed.
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