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Intrinsic decoherence dynamics in smooth Hamiltonian systems:
Quantum-classical correspondence

Jiangbin Gong and Paul Brumer
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A direct classical analog of the quantum dynamics of intrinsic decoherence in Hamiltonian systems, char-
acterized by the time dependence of the linear entropy of the reduced density operator, is introduced. The
similarities and differences between the classical and quantum decoherence dynamics of an initial quantum
state are exposed using both analytical and computational results. In particular, the classicality of early-time
intrinsic decoherence dynamics is explored analytically using a second-order perturbative treatment, and an
interesting connection between decoherence rates and the stability nature of classical trajectories is revealed in
a simple approximate classical theory of intrinsic decoherence dynamics. The results offer deeper insights into
decoherence, dynamics of quantum entanglement, and quantum chaos.
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I. INTRODUCTION

Quantum dynamics induces unitary transformations i
Hilbert space, but most often it is only the dynamics p
jected onto a Hilbertsubspacethat is of interest. In genera
this reduced dynamics is nonunitary and therefore disp
decoherence@1#. For example, if a system of interest
coupled to a bath, then averaging over the bath degree
freedom introduces decoherence in the system dynam
Likewise, in an isolated system, the reduced dynamics o
subsystem of this isolated system can display decohere
We have termed decoherence in the latter case ‘‘intrinsic
decoherence’’ since it does not involve an external bath@2#.

Understanding decoherence is of crucial importance t
variety of modern fields such as quantum information p
cessing@3# and quantum control of atomic and molecul
processes@4–6#. Our interest here is in the quantum-classic
correspondence~QCC! between classical and quantum d
scriptions of thedynamicsof decoherence. Specifically, w
consider an initial quantum state subjected to either quan
or classical dynamics and compare the time evolution of
decoherence in both cases. We note that the formal theo
correspondence between quantum dynamics and clas
Liouville dynamics@7# suggests that classical Liouville dy
namics projected onto a subspace should also display d
herence. That is, as in the quantum case, the classical L
ville dynamics considered in the entire phase space is un
and the classical Liouville dynamics projected onto a s
space is nonunitary. We, therefore, expect that the redu
classical Liouville dynamics propagated classically w
show decoherence dynamics that is, at least qualitativ
parallel to that seen in the reduced quantum dynamics ins
as the loss of phase information, entropy production, etc
the case of bath-induced decoherence, we recently sho
analytically that~a! one can indeed introduce a direct clas
cal analog of quantum decoherence, and~b! examining the
dynamics of decoherence classically gives deeper insi
into both the dynamics of decoherence described quan
mechanically and into the conditions for the QCC in dec
herence dynamics@8#.

Here we extend these considerations to intrinsic deco
1050-2947/2003/68~2!/022101~8!/$20.00 68 0221
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ence, both analytically and computationally. Specifically,
this paper we study the QCC in the dynamics of intrin
decoherence in smooth Hamiltonian systems, with an e
phasis on the usefulness of classical dynamics in descri
intrinsic decoherence. In particular, the classicality of ear
time intrinsic decoherence dynamics is studied using
second-order perturbative treatment, and the interesting
nection between decoherence rates at later times and the
bility properties of classical trajectories is revealed by co
sidering a simple approximate classical theory of intrin
decoherence dynamics. The analytic and computationa
sults shed more light on decoherence, dynamics of quan
entanglement, and quantum chaos. This study is also o
terest to semiclassical decoherence studies@9#, e.g., semi-
classical descriptions of intrinsic decoherence dynamics
large molecular systems@2#.

This paper is organized as follows. In Sec. II, we intr
duce a second-order perturbation theory in an effort to
derstand the QCC in early-time intrinsic decoherence
namics. For simplicity we focus upon two degree-of-freedo
systems, but the extension to larger systems is straigh
ward. Computational results of two sample cases in coup
oscillator model systems, which strongly support the phy
cal picture afforded by the perturbative treatment, a
presented in Sec. III. Then, a classical theory of intrin
decoherence dynamics for initially localized states is deriv
in Sec. IV. In the same section, detailed computational st
ies using this simple theory are carried out for the qua
oscillator model and one of its variants. Discussions an
summary comprise Sec. V.

II. EARLY-TIME INTRINSIC DECOHERENCE DYNAMICS

Consider a conservative system composed of two s
systems, with the total Hamiltonian given by

H~Q,P,q,p!5
P2

2
1

p2

2
1V1~Q!1V2~q!1V12~Q,q!,

~1!

where (Q,P) and (q,p) are dimensionless phase-space co
jugate variables,Vi is the potential of thei th subsystem, and
V12(Q,q) describes arbitrary coupling between the two su
©2003 The American Physical Society01-1
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systems. As the system evolves, the total system wave f
tion uc(t)& becomes inseparable due to quantum entan
ment, even if it is initially separable inQ andq. As a result,
measuring a subsystem would collapse the system w
function and therefore affect the properties of the other s
system. Similarly, ignoring a subsystem decoheres the o
one. The degree of intrinsic decoherence, which is indu
by, and is a manifestation of, quantum entanglement betw
the two subsystems, can be measured by a well-known q
tity: the quantum linear entropy@10#

Sq512Tr1~ r̂̃2!, ~2!

where Tri denotes a trace over thei th subsystem, andr̂̃
[Tr2@ uc(t)&^c(t)u# is the reduced density operator for th
first subsystem. An increase inSq suggests an increase o
1/(12Sq), which gives the number of orthogonal quantu
states that are incoherently populated if the second s
system is ignored. Below we chooseq,p as the ‘‘bath’’ vari-
ables andP,Q as the system variables.

Let rc(Q,P,q,p,t) denote the phase-space distributi
function evolved classically, andrW(Q,P,q,p,t) denote the
quantum~Wigner! phase-space distribution function. The
time evolution equations are given by

]rc

]t
5$H,rc%, ~3!

]rW

]t
5$H,rW%M , ~4!

where $•% denotes the classical Poisson bracket and$•%M
denotes the quantum Moyal bracket@11#. We define classica
and quantum reduced distribution functions as

r̃c~Q,P,t ![E rc~Q,P,q,p,t !dq dp, ~5!

r̃W~Q,P,t ![E rW~Q,P,q,p,t !dq dp. ~6!

Since

Sq~ t !5122p\E r̃W
2 ~Q,P,t !dQ dP, ~7!

where \ is the effective Planck constant, we can define
classical analog@denotedSc(t)] to Sq(t) by replacingr̃W

with r̃c . That is,

Sc~ t ![122p\E r̃c
2~Q,P,t !dQ dP. ~8!

The main focus here is to compareSc(t) with Sq(t), i.e., the
classical vs quantum evolution of the intrinsic decohere
dynamics, as measured by the classical vs quantum ent

Perturbative treatments have proved to be very usefu
understanding decoherence dynamics@8,12–14#. Here, to
analytically examine classical vs quantum intrinsic decoh
02210
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ence dynamics at early times, we apply the perturbative
proach developed in our previous work@8# to the case of
intrinsic decoherence dynamics. Specifically, consider
second-order perturbative expansion with respect to the t
variablet for both Sq andSc , i.e.,

Sc~ t !5Sc~0!1
t

tc,1
1

t2

tc,2
2

1•••,

Sq~ t !5Sq~0!1
t

tq,1
1

t2

tq,2
2

1•••. ~9!

Then, from the classical and quantum dynamics of the en
system one obtains

1

tc,1
524p\E r̃c~Q,P,0!E $H,rc~Q,P,q,p,0!%

3dq dp dQ dP, ~10!

1

tq,1
524p\E r̃W~Q,P,0!E $H,rW~Q,P,q,p,0!%M

3dq dp dQ dP, ~11!

1

tc,2
2

522p\E r̃c~Q,P,0!E $H,$H,rc~Q,P,q,p,0!%%

3dq dp dQ dP

22p\E F E $H,rc~Q,P,q,p,0!%dq dpG2

dQ dP,

~12!

and

1

tq,2
2

522p\E r̃W~Q,P,0!E $H,$H,rW~Q,P,q,p,0!%M%M

3dq dp dQ dP

22p\E F E $H,rW~Q,P,q,p,0!%Mdq dpG2

dQ dP.

~13!

Further, using the definitions of the classical Poisson a
quantum Moyal brackets and assuming that initial class
and quantum distribution functions are identical and se
rable, i.e.,

rc~Q,P,q,p,0!5rW~Q,P,q,p,0!5 r̃1
0~Q,P!r̃2

0~q,p!,
~14!

we have

1

tc,1
5

1

tq,1
50, ~15!
1-2
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1

tc,2
2

52p\E F ]r̃1
0~Q,P!

]P
G2

C~0,0!dQ dP, ~16!

and

1

tq,2
2

5
1

tc,2
2

12p\E (
l 1Þ l 2>0

@\/~2i !# (2l 112l 2)

~2l 111!! ~2l 211!!

3
] (2l 111)r̃1

0~Q,P!

]P(2l 111)

] (2l 211)r̃1
0~Q,P!

]P(2l 211)
C~ l 1 ,l 2!dQ dP,

~17!

whereC( l 1 ,l 2) is a correlation function given by

C~ l 1 ,l 2![K ] (2l 111)V~Q,q!

]Q(2l 111)

] (2l 211)V~Q,q!

]Q(2l 211) L
r̃

2
0

2K ] (2l 111)V~Q,q!

]Q(2l 111) L
r̃

2
0
K ] (2l 211)V~Q,q!

]Q(2l 211) L
r̃

2
0

.

~18!

Here^•&r̃
2
0 denotes the ensemble average over the zero-

‘‘bath distribution function’’ r̃2
0(q,p). It is worth emphasiz-

ing that in our derivations we have used the same initial s
for the classical and quantum dynamics.

Equation ~15! shows that the zero first-order linear e
tropy increase rate, i.e., 1/tq,150, has a strict classical ana
log. Further, Eq.~16! indicates that classical Liouville dy
namics also predicts a second-order entropy production
1/tc,2

2 that is the analog of the second-order quantum de
herence rate 1/tq,2

2 . Thus, we can identify two categories o
early-time intrinsic decoherence dynamics:classical if tc,2
'tq,2, andnonclassicalif tq,2 appreciably differs fromtc,2 .

To simplify Eqs.~16! and ~17!, we introduce the Fourie
transform@denotedF(Q1 ,Q2)] of r̃1

0(Q,P), i.e.,

F~Q1 ,Q2![E r̃1
0~Q̄,P!expF iDQP

\ GdP, ~19!

whereQ̄[(Q11Q2)/2 andDQ5Q12Q2. We then obtain

1

tc,2
2

5
1

\2E uF~Q1 ,Q2!u2DQ2C~0,0!dQ1 dQ2 , ~20!

and

1

tq,2
2

5
1

tc,2
2

1
1

\2E uF~Q1 ,Q2!u2 (
l 1Þ l 2>0

DQ(2l 112l 212)

~2l 111!! ~2l 211!!

3
1

2(2l 112l 2)
C~ l 1 ,l 2!dQ1 dQ2 . ~21!
02210
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Equations~20! and ~21! are general results. For the spec
case ofV12(Q,q)5 f (Q)g(q), Eqs. ~20! and ~21! can be
rewritten in a simple and more enlightening form:

1

tc,2
2

5

^g2~q!&r̃
2
02^g~q!&r̃

2
0

2

\2

3E uF~Q1 ,Q2!u2DQ2Fd f~Q̄!

dQ
G2

dQ1 dQ2 , ~22!

and

1

tq,2
2

5

^g2~q!&r̃
2
02^g~q!&r̃

2
0

2

\2

3E uF~Q1 ,Q2!u2DQ2FD f ~Q̄!

DQ
G2

dQ1 dQ2 ,

~23!

whereD f (Q̄)/DQ is the finite-difference function,

D f ~Q̄!

DQ
[

f ~Q̄1DQ/2!2 f ~Q̄2DQ/2!

DQ
5

f ~Q1!2 f ~Q2!

Q12Q2
.

~24!

As a result we have the following.
~1! If f (Q) depends only linearly or quadratically upo

the coupling coordinateQ, a common approximation, the
(1/tq,2

2 21/tc,2
2 )50 for any initial state. That is, in this cas

there exists perfect QCC in early-time dynamics of intrin
decoherence, regardless of\, and irrespective of the poten
tials V1(Q) andV2(q).

~2! Even in the case of highly nonlinearf (Q), as long as
F(Q1 ,Q2) decays fast enough withuQ12Q2u such that
D f /DQ'd f /dQ, the QCC would still be excellent. Th
smaller the\, the more rigorous is this requirement.

~3! If D f /DQ differs significantly fromd f /dQ over the
Q-coordinate scale of the initial state, quantum entropy p
duction can be totally unrelated to classical entropy prod
tion. Such cases of poor QCC are of fundamental inter
but are not the focus of this paper.

The second-order perturbative treatment is most relia
for early-time dynamics and for relatively weak decoheren
The above results are particularly significant for studies
the control of intrinsic decoherence, where early-time d
namics of weak decoherence is important. In these circu
stances it is useful to understand the extent to which~quan-
tum! intrinsic decoherence is equivalent to classical entro
production, i.e., to increasingSc(t). In particular, if there
exists good correspondence between classical and qua
decoherence dynamics, then the essence of decoherence
trol is equivalent to the suppression of classical entropy p
duction, and various classical tools may be considered
achieve decoherence control. If not, then fully quantum to
are required.

The above perturbation results clearly demonstrate
quantum dynamics of intrinsic decoherence has a direct a
1-3
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log in classical Liouville dynamics. This rather intriguin
result motivates us to computationally examine the QCC
the dynamics of intrinsic decoherence over all time scale

III. COMPUTATIONAL RESULTS: TWO SAMPLE CASES

To computationally examine the QCC in the dynamics
intrinsic decoherence, we consider coupled-oscillator mo
systems with smooth Hamiltonians. In all the model syste
studied below, we choose

V1~Q!1V2~q!5
b

4
~Q41q4!, ~25!

whereb50.01. SinceV1(Q) andV2(q) have no simple har-
monic terms, any observed agreement between classica
quantum behaviors cannot be attributed to the similarity
tween classical and quantum harmonic-oscillator dynam
If the coupling potentialV12(Q,q) is quadratic in bothQ and
q, i.e., V12(Q,q)5aQ2q2/2, then the resultant coupled
oscillator system is the well known quartic oscillator mod
@15–17#. Because this model is well-studied and can disp
strongly chaotic~e.g.,a51.0, b50.01) or integrable~e.g.,
a50.03,b50.01) dynamics, it is used in Sec. IV as an ide
model to study the QCC in intrinsic decoherence dynam
for both integrable and chaotic cases.

Our perturbation-theory approach predicts good classi
quantum agreement at short times for some potentials
initial conditions and poor agreement for others. We exam
both these cases computationally.

It suffices to consider one case of poor agreement, s
poor QCC at early times invariably translates to similar b
havior at later times. Consider thenV12(Q,q) to be some
highly nonlinear potential. Computations of the quantum d
namics and thus the time dependence ofSq(t) are straight-
forward @16#. Sc(t) is computed directly using the Mont
Carlo simulations with an importance sampling techniq
@where the Monte Carlo simulations are based upon Eq.~27!
below#. From the analytical results above we see t
V12(Q,q) and the scale of the initial state play decisive ro
in the QCC in early-time intrinsic decoherence dynamics
particular, we expect poor QCC ifV12(Q,q)5 f (Q)g(q) dif-
fers significantly from a linear or quadratic function ofQ
such thatD f /DQ differs significantly from (d f /dQ) over the
Q-coordinate scale~i.e., the support! of the initial state. To
confirm this computationally we considerf (Q)g(q)
5sin2(10Q)q2, with the initial distribution functions of the
two subsystems given by

r̃1
0~Q,P!5

1

p\
expF2

~Q2Q0!2

2sQ
2

2
~P2P0!2

2sP
2 G ,

r̃2
0~q,p!5

1

p\
expF2

~q2q0!2

2sq
2

2
~p2p0!2

2sp
2 G . ~26!

Here the dimensionless effective Planck constant is chose
be \50.005 throughout, except for one case in Sec. V, a
sQ/25525sP5A\/2, sq5sp5A\/2, Q050.5, P050.5,
02210
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q050, with H(Q0 ,P0 ,q0 ,p0)50.24. Note thatr̃1
0(Q,P) is

strongly squeezed inP and that this initial distribution func-
tion is considerably delocalized inQ. Further, sinceu f (Q)u
5usin2(10Q)u<1.0, uDQuud f /dQu can be much larger than
uD f (Q)u. Thus, for this case the perturbation result predi
that at early times there can be substantial classical ent
production with insignificant quantum decoherence.
shown in Fig. 1, this is nicely confirmed by the numeric
results ofSq(t) andSc(t). In particular, Fig. 1 shows that a
t51.0, Sc(t) ~discrete points! is ;0.9 while Sq(t) ~solid
line! is still less than 0.2. Evidently, the QCC in this case
indeed very poor from the very beginning.

There remains then the important question of the qua
tative degree of the QCC in circumstances where our per
bative analysis predicts good short-time QCC. In particu
it is important to investigate whether or not good QCC p
dicted perturbatively remains for a considerable amount
time. If so, then the perturbative treatment provides a us
guide to our understanding of the QCC in intrinsic decoh
ence dynamics. If not, then our perturbative results m
sense only for extremely weak decoherence. Dramatica
our computational studies strongly support our analyti
perturbation results, even in the presence of significant de
herence. For example, consider the case, where the pa
eters for the initial state are the same as in the previous
~therefore the initial state is also much delocalized!, but the
coupling potential is given byV12(Q,q)5Q2sin2(q). This
coupling potential is highly nonlinear inq but still quadratic
in Q. In accord with the second-order perturbation resu
such a coupling potential should still give rise to good ear
time QCC in the intrinsic decoherence dynamics of the fi
subsystem. This is confirmed by the quantitative compari
betweenSq(t) andSc(t) shown in Fig. 2. More importantly,
Fig. 2 shows that outstanding QCC remains even when b
Sq(t) and Sc(t) have increased to close to their saturati
value of unity. Numerous other computational results~not
shown! are consistent with the two cases shown here.

These results show the usefulness of the second-order
turbation theory in understanding the QCC in intrinsic dec
herence dynamics emanating from squeezed initial sta
Also of interest is intrinsic decoherence dynamics associa

FIG. 1. A comparison betweenSq(t) ~dashed line! and Sc(t)
~discrete circular points! in the first sample case. The coupling p
tential is highly nonlinear such that at early times classical entr
production is much faster than quantum entropy production. See
text for details. All variables are in dimensionless units.
1-4
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with sufficiently localized initial states, which, in accor
with the previous perturbation results, should display exc
lent early-time QCC for any coupling potentialV12(Q,q).
We now computationally examine the QCC at later times
localized states as initial conditions and explain the result
terms of a simple classical theory of intrinsic decohere
dynamics.

IV. LOCALIZED INITIAL STATES

A. Simple classical approach

Below we show thatSq(t) andSc(t) are often in excellent
agreement, over large time scales, for initially localiz
states, significantly extending the perturbation-theory res
In doing so, we compare the quantumSq(t) with full classi-
cal mechanics as well as with a simple classical theory
rived in this section. The latter provides further insight in
the origins of increasingSc(t).

To derive the simplified classical result, we first use L
ouville’s theorem to reexpressSc(t) as

Sc~ t !5122p\E E rc„Q~ t !,P~ t !,q~ t !,p~ t !,t…

3rc„Q~ t !,P~ t !,q8,p8,t…dq8 dp8 dQ~ t !dP~ t !

3dq~ t !dp~ t !

5122p\E E rc~Q,P,q,p,0!rc„Q~ t !,P~ t !,q8,p8,t…

3dq8 dp8dQ dPdq dp

5122p\E E rc~Q,P,q,p,0!rc~Q9,P9,q9,p9,0!

3dq8 dp8dQ dPdq dp, ~27!

where„Q(t),P(t),q(t),p(t)… is the phase-space location
the trajectory emanating from (Q,P,q,p) at t50, and

FIG. 2. A comparison betweenSq(t) ~dashed line! and Sc(t)
~discrete circular points! in the second sample case. The coupli
potential is highly nonlinear in terms of the position of the seco
subsystem, but is quadratic in terms of the position of the fi
subsystem, resulting in excellent quantum-classical correspond
in intrinsic decoherence dynamics even though the initial distri
tion function of the first subsystem is considerably delocalized.
the text for details. All variables are in dimensionless units.
02210
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(Q9,P9,q9,p9) is the phase-space location of the trajecto
at time zero if the classical trajectory is propagated ba
wards from „Q(t),P(t),q8,p8…. Because the initial state
rc(Q,P,q,p,0) is assumed highly localized in phase spa
(Q9,P9,q9,p9) must be very close to (Q,P,q,p) in order for
the termrc(Q,P,q,p,0)rc(Q9,P9,q9,p9,0) in Eq.~27! to be
appreciable and thus to contribute toSc(t). Hence a conve-
nient approximation can be made: we assume that, at timt,
only those backward trajectories near„Q(t),P(t),q(t),p(t)…
need be taken into account. This means that we treatQ9
2Q, P92P, q92q, p92p, dq8[@q82q(t)#, and dp8
[@p82p(t)# as sufficiently small such that

Q9'Q1M13~ t !dq81M14~ t !dp8,

P9'P1M23~ t !dq81M24~ t !dp8,

q9'q1M33~ t !dq81M34~ t !dp8,

p9'p1M43~ t !dq81M44~ t !dp8, ~28!

where Mi j ( i , j 51,2,3,4) is the stability matrix associate
with the backward trajectories emanating fro
„Q(t),P(t),q(t),p(t)…:

Mi j 5
]~Q,P,q,p!

]„Q~ t !,P~ t !,q~ t !,p~ t !…
. ~29!

Although this approximation should be less reliable for ch
otic systems, we demonstrate below that, it is, nonethel
computationally useful in both integrable and chaotic cas

For simplicity, we consider below a specific example
which r̃1

0(Q,P) and r̃2
0(q,p) are symmetric Gaussian state

given by Eq.~26! with sQ5sP5sq5sp[s5A\/2. Other
distributions can be considered in an analogous fashion. S
stituting Eqs.~26! and ~28! into Eq. ~27! and evaluating the
integrals, we obtain

Sc~ t !512
1

2
K expFU2X21V2Y222UVZ

2s2~X2Y22Z2!
G

AX2Y22Z2
L

r
c8

, ~30!

where

X5M13
2 1M23

2 1M33
2 1M43

2 ,

Y5M14
2 1M24

2 1M34
2 1M44

2 ,

Z5M13M141M23M241M33M341M43M44,

U5~Q2Q0!M141~P2P0!M241~q2q0!M34

1~p2p0!M44,

V5~Q2Q0!M131~P2P0!M231~q2q0!M33

1~p2p0!M43, ~31!
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rc8~Q,P,q,p!54p2\2@ r̃1
0~Q,P!#2@ r̃2

0~q,p!#2. ~32!

Equations~30! and ~31! indicate that the classical dynamic
of intrinsic decoherence is closely related to the class
stability matrix elements averaged over a rescaled initial
tribution function. This interesting connection provides i
sight into a variety of interesting aspects of quantum intrin
decoherence dynamics@18–22#. For example, for chaotic dy
namics in which classical trajectories are highly unstable
therefore in whichuMi j u increases rapidly,Sc(t) should in-
crease much faster than for the case of integrable dynam
This observation can, with the assumption that there is fa
good QCC in intrinsic decoherence dynamics, directly
plain previous results on quantum signatures of class
chaos in the dynamics of quantum entanglement@18#. Fur-
ther, because Eqs.~30! and ~31! are expressed in terms o
classical stability matrices, characteristics of the time dep
dence ofSc(t) and therefore ofSq(t) can be easily related to
the time and space fluctuations in the instability of class
trajectories.

B. Computational results: Localized initial states

Consider then the QCC over large time scales for loc
ized initial states for both integrable and chaotic cases. To
so, we examine the quartic oscillator model as well as res
where the coupling potential is replaced by the nonlin
potentialV12(Q,q)50.5Q2q21Q4q2. The initial states are
chosen to be localized initial states, and both the full cla
cal dynamics and the approximate time dependence ofSc(t)
in Eq. ~30! are compared to the quantum result. Specifica
we realize the ensemble average in Eq.~30! by the Monte
Carlo simulations, using only 23104 sampling classical tra
jectories from which the stability matrix elementsMi j are
evaluated. The initial Gaussian states are chosen symm
with s5A\/250.05 and are sufficiently localized so th
Eq. ~28! should be a valid approximation. Full classical r
sults forSc(t) ~represented again by discrete circular point!,
which are much more demanding computationally, are a
provided below.

Figures 3 and 4 compare results forSc(t) obtained from
Eq. ~30! and from exact classical results withSq(t) ~dashed
line! for integrable and chaotic dynamics in the quartic o
cillator model, respectively. A number of observations are
order. First, it is clear that in both cases the approxim
Sc(t) are in excellent agreement with the full classical
sults, confirming the utility of the simple model@Eq. ~30!#.
Second, bothSc(t) andSq(t) are seen, in the chaotic case,
relax faster towards 1.0 than they do in the integrable c
Third, the oscillation amplitudes ofSq(t) in the chaotic case
are much smaller than that in the integrable case. Hence
fast relaxation and small-amplitude oscillations ofSq(t)
shown in Fig. 4 may be regarded as fingerprints of the
derlying classical chaos. Finally, and most importantly,
entire time dependence, including oscillations in Figs. 3 a
4 of Sq(t) are beautifully captured by both the exact and
approximateSc(t). It should also be noted that the QCC tim
scale shown in Fig. 4 is appreciably longer than is the Q
break timetb;5.0 for the same\, obtained by quantitatively
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comparing the structure of the classical and quantum dis
bution functions@23#. This can be understood by the fact th
Sc(t) @or Sq(t)] describes the reduced distribution functio
r̃c(Q,P,t) @or r̃W(Q,P,t)], which is insensitive to the fine
structure ofrc(Q,P,q,p,t) @or rW(Q,P,q,p,t)].

Calculations for many other initial states confirm that t
QCC results shown in Figs. 3 and 4 are typical, indicat
that ~a! the QCC is essentially exact over large time sca
and ~b! the simple classical theory of intrinsic decoheren
dynamics introduced above provides a useful approxima
to the exact results.

Figure 5 shows one case, however, where the approxim
Sc(t) and exact classical or quantum results differ quant
tively. Here the system is still the quartic oscillator mod
with a51.0, b50.01, but with an initial state of specia
type. In particular, both the initial average positionQ0 and
the initial average momentumP0 are set to zero. Initial state
of this type are called channel states@17#, and effectively
give rise to very weak coupling between the two subsyste
over a considerably large time scale. Indeed, since at s
times d f /dQ̄'D f (Q̄)/DQ'0 for Q̄'Q050, one obtains
from Eqs.~22! and~23! that 1/tc,2

2 51/t2,q
2 '0. Therefore the

early-time intrinsic decoherence rate should be small, as s

FIG. 3. A comparison betweenSq(t) ~dashed line! and the ap-
proximateSc(t) ~solid line! calculated from Eq.~30! for the quartic
oscillator model in the case of integrable dynamics (a50.03,b
50.01). The initial state is given by Eq.~26!, with sP5sQ5sp

5sq5A\/2, \50.005, Q050.4, P050.5, q050.6, and
H(Q0 ,P0 ,q0 ,p0)50.24. Full classical results based upon Eq.~27!
are represented by discrete circular points. All variables are in
mensionless units.

FIG. 4. Same as in Fig. 3 except for strongly chaotic dynam
(a51.0,b50.01).
1-6
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INTRINSIC DECOHERENCE DYNAMICS IN SMOOTH . . . PHYSICAL REVIEW A68, 022101 ~2003!
in Fig. 5, although the underlying classical dynamics
strongly chaotic. For this reason, one expects that the
namical behavior ofSc(t) andSq(t) should differ from pre-
vious cases. As shown in Fig. 5, in this case bothSq(t) and
Sc(t) increase in a stepwise fashion, distinctly different fro
that in Figs. 3 and 4. Agreement between them remains
cellent. However, the approximateSc(t) misses some of the
important structure.

In Fig. 6, we show the QCC result for a simple variant
the quartic oscillator model, i.e.,V12(Q,q)50.5Q2q2

1Q4q2, a coupling potential that is neither linear nor qu
dratic. As seen in Fig. 6, even with such nonlinear coupl
Sc(t) and Sq(t) are in excellent agreement over large tim
scales. This emphasizes the fact that the good QCC re
observed in the quartic oscillator model are not due to
fact that the coupling potential therein is quadratic. Hen
we conclude that for initially localized states, our simp
classical theory of intrinsic decoherence dynamics@see Eq.
~30!# is generally useful in describing intrinsic decoheren
dynamics in smooth Hamiltonian systems.

V. DISCUSSION AND SUMMARY

Quantum entanglement between individual subsyste
has no classical analog. Nevertheless, as shown in this w
the quantum dynamics of quantum entanglement, as m
fested in the quantum dynamics of intrinsic decoheren
does have a classical analog in classical Liouville dynam

FIG. 5. Same as in Fig. 3 except for strongly chaotic dynam
(a51.0,b50.01), and for a special initial Gaussian state, w
Q05P050, q050.6, andH(Q0 ,P0 ,q0 ,p0)50.24.

FIG. 6. Same as in Fig. 3 except for a modified quartic oscilla
model in whichV12(Q,q)50.5Q2q21Q4q2.
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describing classical correlations between classical sub
sembles. Hence, it is useful to isolate the conditions un
which there is good QCC in intrinsic decoherence dynam
This is done analytically, for early-time dynamics and f
weak decoherence, by a second-order perturbative theory
terestingly, as demonstrated by our computational studie
Secs. III and IV, the physical picture of the QCC afforded
the perturbative treatment can be still very useful even w
the time scale under investigation is relatively long and
degree of intrinsic decoherence is significant. In particu
under the circumstances where there is good early-t
QCC, classical Liouville dynamics can provide a simp
means of understanding different aspects of intrinsic de
herence dynamics, for relatively large time scales and
both integrable and chaotic dynamics. Further, we have
rived an approximate but very simple classical theory of l
ear entropy production of intrinsic decoherence dynamics
sociated with localized initial states, and shown that the r
of entropy production is closely related to the stability pro
erties of classical trajectories.

Clearly, the linear entropy is just one of many possib
representation-independent measures of intrinsic deco
ence, andSq(t)'Sc(t) does not mean that the quantum d
namics is equivalent to the corresponding classical Liouv
dynamics. For example, if the saturation value of the lin
entropy in the long-time limit is of particular interest, the
the measures 1/@12Sc(t)# and 1/@12Sq(t)# ~which gives
the number of orthogonal states that are incoherently po
lated! should be more useful in describing the QCC. Inde
our results in Figs. 4 and 6 suggest that as time increases
has 1/@12Sc(t)#@1/@12Sq(t)#. This is consistent with our
previous observation@8# that decoherence can dramatica
improve QCC, but even strong decoherence does not ne
sarily suffice to ensure that quantum entropy production
the same as classical entropy production.

It should also be pointed out that the model quantum s
tems studied in this paper are still far from the semiclass
regime. This is indicated, in the chaotic case of the qua
oscillator model for example, by the fact that the QCC bre
time is relatively short compared to the time scale that

FIG. 7. A comparison betweenSq(t) ~dashed line! and Sc(t)
~discrete circular points! for strongly chaotic dynamics of the qua
tic oscillator model (a51.0,b50.01) and for\50.05. The initial
state is given by Eq.~26!, with sP5sQ5sp5sq5A\/2, Q0

50.4, P050.5, q050.6, andH(Q0 ,P0 ,q0 ,p0)50.24. All vari-
ables are in dimensionless units.
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examined. Correspondence will worsen quantitatively w
increasing\, although, as discussed above,\ is far from the
only factor influencing the quality of the QCC. However, w
note that for localized initial states the qualitative features
the time dependence of classical and quantum linear en
pies may remain similar to one another with much larg
effective Planck constants. For example, Fig. 7 displ
fairly good QCC betweenSq(t) and Sc(t), in the chaotic
case of the quartic oscillator model, with\50.05 and with
an initial symmetric Gaussian state.

A number of interesting extensions of this work are und
consideration. First, it seems straightforward but necessa
consider cases in which the coupling potential depends u
both position and momentum. Second, we propose to fur
investigate the role of the dynamics of the subsystems
addition to that of the coupling potential~e.g., the dynamics
in coupled Morse oscillator systems!. Third, it is interesting
to study the QCC in intrinsic decoherence dynamics in te
of the decay of off-diagonal density-matrix elements. Su
studies are ongoing, with preliminary studies@24# indicating
that comparing the time dependence of off-diagonal dens
matrix elements to its direct classical analog@8# will provide
-

l
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deeper insights into the QCC in intrinsic decoherence
namics.

To summarize, we have shown that classical dynam
can be very useful in describing intrinsic decoherence
namics in smooth Hamiltonian systems. In particular,
have identified conditions under which excellent quantu
classical correspondence in the early-time dynamics of
trinsic decoherence is possible via a second-order pertu
tive treatment, have presented a simple classical theor
intrinsic decoherence dynamics emanating from localiz
initial states, and have provided supporting computatio
results. The hope is that by extending this study to hig
dimensional Hamiltonian systems, we may use purely c
sical approaches to describe~at least qualitatively! the dy-
namics of quantum entanglement or intrinsic decoherenc
polyatomic molecular systems.
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