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Intrinsic decoherence dynamics in smooth Hamiltonian systems:
Quantum-classical correspondence
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A direct classical analog of the quantum dynamics of intrinsic decoherence in Hamiltonian systems, char-
acterized by the time dependence of the linear entropy of the reduced density operator, is introduced. The
similarities and differences between the classical and quantum decoherence dynamics of an initial quantum
state are exposed using both analytical and computational results. In particular, the classicality of early-time
intrinsic decoherence dynamics is explored analytically using a second-order perturbative treatment, and an
interesting connection between decoherence rates and the stability nature of classical trajectories is revealed in
a simple approximate classical theory of intrinsic decoherence dynamics. The results offer deeper insights into
decoherence, dynamics of quantum entanglement, and quantum chaos.
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[. INTRODUCTION ence, both analytically and computationally. Specifically, in

L . . . this paper we study the QCC in the dynamics of intrinsic
Quantum dynamics induces unitary transformations in gjecoherence in smooth Hamiltonian systems, with an em-

Hilbert space, but most often it is only the dynamics pro-phasis on the usefulness of classical dynamics in describing
jected onto a Hilbersubspacehat is of interest. In general, intrinsic decoherence. In particular, the classicality of early-
this reduced dynamics is nonunitary and therefore displaysme intrinsic decoherence dynamics is studied using a
decoherencd1]. For example, if a system of interest is second-order perturbative treatment, and the interesting con-
coupled to a bath, then averaging over the bath degrees oection between decoherence rates at later times and the sta-
freedom introduces decoherence in the system dynamichility properties of classical trajectories is revealed by con-
Likewise, in an isolated system, the reduced dynamics of &dering a simple approximate classical theory of intrinsic
subsystem of this isolated system can display decoherenc€coherence dynamics. The analytic and computational re-
We have termed decoherence in the latter caisgrifsic sults shed more light on decoherence, dynamics of quantum

. : . entanglement, and quantum chaos. This study is also of in-
decoherendésmce it does not |n\_/olve an ?X“?ma' baith]. terest to semiclassical decoherence stufidse.g., semi-
Understanding decoherence is of crucial importance to

; ) . ) Rlassical descriptions of intrinsic decoherence dynamics in
variety of modern fields such as quantum information PrO7arge molecular systeni].
cessing[3] and quantum control of atomic and molecular  This paper is organized as follows. In Sec. Il, we intro-

processepd—6]. Our interest here is in the quantum-classicalgyce a second-order perturbation theory in an effort to un-
correspondencéQCC) between classical and quantum de- derstand the QCC in early-time intrinsic decoherence dy-
scriptions of thedynamicsof decoherence. Specifically, we namics. For simplicity we focus upon two degree-of-freedom
consider an initial quantum state subjected to either quanturgystems, but the extension to larger systems is straightfor-
or classical dynamics and compare the time evolution of thevard. Computational results of two sample cases in coupled-
decoherence in both cases. We note that the formal theory @scillator model systems, which strongly support the physi-
correspondence between quantum dynamics and classicgdl picture afforded by the perturbative treatment, are
Liouville dynamics[7] suggests that classical Liouville dy- presented in Sec. Ill. Then, a classical theory of intrinsic
namics projected onto a subspace should also display decgecoherence dynamics for initially localized states is derived
herence. That is, as in the quantum case, the classical Lioiy Sec. IV. In the same section, detailed computational stud-
ville dynamics considered in the entire phase space is unitangs using this simple theory are carried out for the quartic
and the classical Liouville dynamics projected onto a suboscillator model and one of its variants. Discussions and a
space is nonunitary. We, therefore, expect that the reduceshmmary comprise Sec. V.

classical Liouville dynamics propagated classically will

show decoherence dynamics that is, at least qualitativelyl]. EARLY-TIME INTRINSIC DECOHERENCE DYNAMICS

arallel to that seen in the reduced quantum dynamics insofar . .
P d y Consider a conservative system composed of two sub-

as the loss of phase information, entropy production, etc. In : ith the total Hamiltoni . b
the case of bath-induced decoherence, we recently show&ySteMs: Wi € fotal Hamiltonian given by

analytically that(a) one can indeed introduce a direct classi- P2 p?
cal analog of quantum decoherence, dhdexamining the H(Q,P,q,p)= -t 7+V1(Q)+Vz(Q)+V12(Q,q),
dynamics of decoherence classically gives deeper insights 1)

into both the dynamics of decoherence described quantum

mechanically and into the conditions for the QCC in deco-where Q,P) and (@,p) are dimensionless phase-space con-

herence dynamicf8]. jugate variablesy, is the potential of théth subsystem, and
Here we extend these considerations to intrinsic decoheiv,,(Q,q) describes arbitrary coupling between the two sub-
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systems. As the system evolves, the total system wave funence dynamics at early times, we apply the perturbative ap-
tion |(t)) becomes inseparable due to quantum entangleproach developed in our previous wofg] to the case of

ment, even if it is initially separable i@ andqg. As a result,

intrinsic decoherence dynamics. Specifically, consider a

measuring a subsystem would collapse the system wawgecond-order perturbative expansion with respect to the time
function and therefore affect the properties of the other subvariablet for both S, andS, i.e.,

system. Similarly, ignoring a subsystem decoheres the other

one. The degree of intrinsic decoherence, which is induced t t2

by, and is a manifestation of, quantum entanglement between
the two subsystems, can be measured by a well-known quan-

tity: the quantum linear entropji 0]
Sq=1-Tr(p?), 2

where Ty denotes a trace over theéh subsystem, antﬁ;

Se()=Se(0)+ —+—+- -+,
cl Tc2
t t?
Sq(t)zsq(0)+7_+7+ (9)
q,1

Tq.2

Then, from the classical and quantum dynamics of the entire

=Tr,[| (1) }((t)|] is the reduced density operator for the System one obtains

first subsystem. An increase i, suggests an increase of
1/(1—-S,), which gives the number of orthogonal quantum
states that are incoherently populated if the second sub-

system is ignored. Below we choogg as the “bath” vari-
ables andP,Q as the system variables.

Let p.(Q,P,q,p,t) denote the phase-space distribution

function evolved classically, and,(Q,P,q,p,t) denote the

quantum(Wignen phase-space distribution function. Their

time evolution equations are given by

Ipc

— —tHupch 3
Jd
%\/:{H,PW}M, (4)

where {-} denotes the classical Poisson bracket &ng,
denotes the quantum Moyal brackéi]. We define classical
and quantum reduced distribution functions as

EC(Q,P.t)EJ pc(Q,P,q,p,t)dg dp, 5)

P PO=[ puQPapdGd  (®)
Since

sq(t)zl—zwhfzsv(Q,P,t)dQdP, (7)

1 ~
—=—47Tﬁf pc(Q,P,O)f {H.pc(Q.P.q,p.0)}

Te1

xdgqdpdQdP (10

1 ~
_:_47Thf pW(QvP,O)J' {H!pW(Qapvqip!o)}M

Tq,l

XdqdpdQdR (12)

i=—2wﬁf}3(QPO)f{H{Hp(QquoO)}}

2

xXdqdpdQdP
2
—Zwﬁf U{H.pC(Q,P,q.p,O)}dq dp} dQdP,
(12
and

1 ~
T:—Zﬂ'ﬁf PW(Q,P,O)J {H.{H,pw(Q,P,q,p,0)}v}wm
q.2

xXdqdpdQdP

2
~2mh | U{H,pMQ,P,q,p,m}qu dp| dQdP
13

where 7 is the effective Planck constant, we can define a

classical analogdenotedSc(t)] to Sy(t) by replacing py
with p.. That is,

sc(t)zl—zwhfzg(Q,P,t)dQ dP. (8)

The main focus here is to compaBg(t) with S¢(t), i.e., the

Further, using the definitions of the classical Poisson and
quantum Moyal brackets and assuming that initial classical
and quantum distribution functions are identical and sepa-
rable, i.e.,

pC(QrP!qapio):pW(Q!Pqup!O):zg(Q!P);g(qap)l(lll)

classical vs quantum evolution of the intrinsic decoherence
dynamics, as measured by the classical vs quantum entropy€ have
Perturbative treatments have proved to be very useful in
understanding decoherence dynamj8s12—14. Here, to — = =0, (15)
analytically examine classical vs quantum intrinsic decoher-
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1 pAQ.P)|°
Tzzwﬁf P c(00dQdp, (16
TC,Z 07P
and
1 1 fil(2i)]@1+ 21
T:T’LZWﬁJ S o ).] |
Tq,Z TC,Z |l¢|2>0 (2|1+1)(2|2+1)
eIPYQP) IR QP)
op(2l1+1) op(2l+1) Cll1.,12)dQdP,
17)
whereC(l,l,) is a correlation function given by
J?1*v(Q,q) 9?2t v(Q,q)
C(ly,lp)=
(21,+1) (21,+1)
JQh JQ'2 9
J@1*Hv(Q,q) d@2*Hv(Q,q)
- gQ@1+D) 9Q(@12+1) :
2 )
(18)

Here<~>;t2) denotes the ensemble average over the zero-time

“bath distribution function”p3(q,p). It is worth emphasiz-
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Equations(20) and (21) are general results. For the special
case ofV5(Q,q)=f(Q)g(q), Egs.(20) and (21) can be
rewritten in a simple and more enlightening form:

1 (@ (e
75’2_ #?
df(Q)]?
x| IF(Ql,Qz)IZAQZ[d(—QQ)} dQ,dQ,, (22)
and
KGR CICI:
75’2_ %2
AF(Q))?
< IF(Ql,Qz)IzAQZ{%Q)} dQ; dQ;,

(23

WhereAf(a)/AQ is the finite-difference function,

AF(Q) _f(Q+AQ2)—f(Q-AQR) _f(Qu)—f(Qy)

AQ AQ Q1— Q2

(24)

As a result we have the following.

ing that in our derivations we have used the same initial state (1) If f(Q) depends only linearly or quadratically upon

for the classical and quantum dynamics.

Equation (15 shows that the zero first-order linear en-

the coupling coordinat®, a common approximation, then
(1175~ 175 ) =0 for any initial state. That is, in this case

tropy increase rate, i.e., ﬂf{lzo' has a strict classical ana- there exists perfect QCCin earl){-time dypamics of intrinsic
log. Further, Eq.(16) indicates that classical Liouville dy- decoherence, regardless/of and irrespective of the poten-
namics also predicts a second-order entropy production raféls V1(Q) andVy(q). _ _

1/72, that is the analog of the second-order quantum deco- (2) Even in the case of highly nonline&(Q), as long as
herence rate &f,. Thus, we can identify two categories of F(Q1,Q) decays fast enough withQ; — Q| such that

early-time intrinsic decoherence dynamicsassical if 7,
~ 74,2, andnonclassicalf 7, appreciably differs fromr ,.
To simplify Egs.(16) and(17), we introduce the Fourier

transform[denotedF (Q;,Q,)] of p(Q,P), i.e.,

~y = iAQP
F(Ql,Qz)Ef p&’(Q,mexp[' f

}d P, (19

whereQ=(Q;+Q,)/2 andAQ=Q,— Q,. We then obtain

2

1 1
- ;J IF(Q1,Q2)[2AQ%C(0,0dQ; dQ,, (20

and

AQ(@1+22+2)

>

l¢|220 (2|1+ 1)'(2|2+ 1)'

L 1+1f|F<Q Qy)|?
Tﬁ,z 7'5,2 h? b

1
><2(2|1+2|2)C(|1'|2)dQlsz- (21

Af/AQ~df/dQ, the QCC would still be excellent. The
smaller thes, the more rigorous is this requirement.

(3) If Af/AQ differs significantly fromdf/dQ over the
Q-coordinate scale of the initial state, quantum entropy pro-
duction can be totally unrelated to classical entropy produc-
tion. Such cases of poor QCC are of fundamental interest,
but are not the focus of this paper.

The second-order perturbative treatment is most reliable
for early-time dynamics and for relatively weak decoherence.
The above results are particularly significant for studies on
the control of intrinsic decoherence, where early-time dy-
namics of weak decoherence is important. In these circum-
stances it is useful to understand the extent to widgran-
tum) intrinsic decoherence is equivalent to classical entropy
production, i.e., to increasin§.(t). In particular, if there
exists good correspondence between classical and quantum
decoherence dynamics, then the essence of decoherence con-
trol is equivalent to the suppression of classical entropy pro-
duction, and various classical tools may be considered to
achieve decoherence control. If not, then fully quantum tools
are required.

The above perturbation results clearly demonstrate that
quantum dynamics of intrinsic decoherence has a direct ana-
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log in classical Liouville dynamics. This rather intriguing 1 - . -
result motivates us to computationally examine the QCC in e
the dynamics of intrinsic decoherence over all time scales. 0.8r Fetons .
IlIl. COMPUTATIONAL RESULTS: TWO SAMPLE CASES “Q 06y . _
=
<
To computationally examine the QCC in the dynamics of < 04 e 7
intrinsic decoherence, we consider coupled-oscillator model W
systems with smooth Hamiltonians. In all the model systems 0.2r ]
studied below, we choose i
05 i ) 3 1

Vl(Q)+Vz(q)=§(Q4+q4), (25) . .
FIG. 1. A comparison betwee§(t) (dashed ling and S(t)

. . (discrete circular poinisin the first sample case. The coupling po-
whereB=0.01. SinceV1(Q) andV,(q) have no simple har- iantial is highly nonlinear such that at early times classical entropy

monic terms, any observed agreement between classical agghduction is much faster than quantum entropy production. See the
quantum behaviors cannot be attributed to the similarity betext for details. All variables are in dimensionless units.

tween classical and quantum harmonic-oscillator dynamics.
If th_e coupling potentiazvlzz(Q,q) is quadratic in botl and do="0, with H(Qo,Py,o,Po) =0.24. Note thaﬁ‘f(Q,P) is
q i.e., Viy(Q,q)=aQ"q"/2, then the resultant coupled- gyongly squeezed iR and that this initial distribution func-
oscillator system is the well known quartic oscillator model;ion, is considerably delocalized i@. Further, sincef(Q)|
[15-17. Because this model is well-studied and can display_|sjr?(10Q)|<1.0, |AQ||df/dQ| can be much larger than
str_ongly ch_aot|de.g.,a=1.o, B=0.01) or integrablée.g.,  [A£(Q)|. Thus, for this case the perturbation result predicts
«=0.03, =0.01) dynamics, itis used in Sec. IV as an idealiha¢ 4t early times there can be substantial classical entropy
model to study the QCC in intrinsic decoherence dynamic$,rqqyction with insignificant quantum decoherence. As
for both integrable and chaotic cases. _shown in Fig. 1, this is nicely confirmed by the numerical
Our perturbation-theory appr_oach predicts good classmalr— sults ofSy(t) andS,(t). In particular, Fig. 1 shows that at
qggntum agreement at short times for some potentials and 1 o Si(t) (discrete pointsis ~0.9 while Sy(t) (solid
initial conditions and poor agreement for others. We exammeﬁne) is still less than 0.2. Evidently, the QCC in this case is

both these cases computationally. __indeed very poor from the very beginning.

It suffices to consider one case of poor agreement, since There remains then the important question of the quanti-
poor QCC at early times invariably translates to similar be+,4iye degree of the QCC in circumstances where our pertur-
havior at later times. Consider then;(Q,q) t0 be some aiive analysis predicts good short-time QCC. In particular,
highly nonlinear potential. Computations of the quantum dy-t js important to investigate whether or not good QCC pre-
namics and thus the time dependenceSgiit) are straight-  gicted perturbatively remains for a considerable amount of
forward [16]. Sc(t) is computed directly using the Monte (ine If 5o, then the perturbative treatment provides a useful
Carlo simulations with an importance sampling techniquey,ide to our understanding of the QCC in intrinsic decoher-
[where the Monte Carlo simulations are based Upon(Ed.  ence dynamics. If not, then our perturbative results make
below]. From the analytical results above we see thalgnge only for extremely weak decoherence. Dramatically,
V12(Q,q) and the scale of the initial state play decisive roles,,r computational studies strongly support our analytical
in the QCC in early-time intrinsic decoherence dynamics. Ierqyrhation results, even in the presence of significant deco-
particular, we expect poor QCCV,5(Q,q) =1(Q)g(q) dif-  herence. For example, consider the case, where the param-
fers significantly from a linear or quadratic function &  gers for the initial state are the same as in the previous case
such thatr f/AQ differs significantly from @f/dQ) overthe  (therefore the initial state is also much delocalizdslit the
Q-cqordlnat_e scaléi.e., the suppoyjtof the |n_|t|al state. To coupling potential is given by/,,(Q,q)=Q2sirf(q). This
confirm this computationally we considef(Q)g(q)  coupling potential is highly nonlinear ig but still quadratic
=sir?(10Q)q?, with the initial distribution functions of the jn Q. In accord with the second-order perturbation resuits,
two subsystems given by such a coupling potential should still give rise to good early-

time QCC in the intrinsic decoherence dynamics of the first
(Q—Qp)? _(P= Po)? subsystem. This is confirmed by the quantitative comparison

|
pl(le)_%ex -

Zo-é 20% ' betweenS,(t) andS(t) shown in Fig. 2. More importantly,
Fig. 2 shows that outstanding QCC remains even when both
1 (A-G0)2 (P py)? Sq(t) and Sc.(t) have increased to close to their saturation
pYq.p)= —exr{— o’ _ o7 | (26)  value of unity. Numerous other computational resulist
wh 205 207 shown are consistent with the two cases shown here.

These results show the usefulness of the second-order per-
Here the dimensionless effective Planck constant is chosen tarbation theory in understanding the QCC in intrinsic deco-
be #=0.005 throughout, except for one case in Sec. V, antherence dynamics emanating from squeezed initial states.
0ol25=250p=\112, o4=0,=\h/2, Qy=0.5 P,=0.5, Also of interest is intrinsic decoherence dynamics associated
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1 - - - (Q",P",q",p") is the phase-space location of the trajectory
/ - at time zero if the classical trajectory is propagated back-
08 ¢ 1 wards from (Q(t),P(t),q’,p’). Because the initial state
= ;’ p:(Q,P,q,p,0) is assumed highly localized in phase space,
06 I (Q",P",q",p") must be very close toQ,P,q,p) in order for
B § the termp(Q,P,q,p,0)p:(Q",P”,q",p",0) in EqQ.(27) to be
z 0‘4';‘ 1 appreciable and thus to contribute $g(t). Hence a conve-
“ 02_0," | nient approximation can be made: we assume that, atttime
“ly only those backward trajectories nd&(t),P(t),q(t),p(t))
0;" , , , , , need be taken into account. This means that we t@at
e 0 -Q, P"-P, q"—q, p"—p, 6d'=[ad"—q(t)], and 5p’
e =[p’ —p(t)] as sufficiently small such that
FIG. 2. A comparison betwee8,(t) (dashed ling and S(t)
(discrete circular poinjsin the second sample case. The coupling Q"~Q+My3(t)dq" +My4(t)5p’,
potential is highly nonlinear in terms of the position of the second
subsystem, but is quadratic in terms of the position of the first P"~P+Myy(t) 69" +My4(t)Sp’,
subsystem, resulting in excellent quantum-classical correspondence
in intrinsic decoherence dynamics even though the initial distribu- q"~q+Mgz(t) 69" +M3zy(t)Sp’,
tion function of the first subsystem is considerably delocalized. See
the text for details. All variables are in dimensionless units. p"~p+Mys(t)5q" +Myy(t)Sp’, (28

with sufficiently localized initial states, which, in accord WhereM;; (i,j=1,2,3,4) is the stability matrix associated
with the previous perturbation results, should display excelWith —the — backward  trajectories ~emanating  from
lent early-time QCC for any coupling potentish(Q,q).  (Q(t),P(t),q(t),p(t)):
We now computationally examine the QCC at later times for

localized states as initial conditions and explain the results in M = 9(Q.P.a.p) ] (29)
terms of a simple classical theory of intrinsic decoherence 4 a(Q(1),P(1),q(1),p(t))
dynamics. . L .
Although this approximation should be less reliable for cha-
otic systems, we demonstrate below that, it is, nonetheless,
IV. LOCALIZED INITIAL STATES computationally useful in both integrable and chaotic cases.
A. Simple classical approach For simplicity, we consider below a specific example in

Below we show thag,(t) andS(t) are often in excellent Which p3(Q.P) andp3(q,p) are symmetric Gaussian states
agreement, over large time scales, for initially localizeddiven by Eq.(26) with oq=o0p=0q=0op=0=J#/2. Other

states, significantly extending the perturbation-theory resuldistributions can be considered in an analogous fashion. Sub-
In doing so, we compare the quantiBg(t) with full classi- stituting Eqs.(26) and (28) into Eq. (27) and evaluating the

cal mechanics as well as with a simple classical theory delntégrals, we obtain

rived in this section. The latter provides further insight into 2u2 | 22
r{u X24V2Y2—2UVZ

202(X?Y?-7?)

the origins of increasin,(t).
To derive the simplified classical result, we first use Li-

ouville’s theorem to reexpres}(t) as Se(t)=1-3 o3 , (30
VXY“—2Z ol
Sc(t)zl—ZWﬁf fpc(Q(t),P(t),q(t),p(t),t) where
Xpc(Q(1),P(1),q",p",)dg’ dp” dQ(t)dP(t) X=MZ+ M3+ M2+ M3,
xdq(t)dp(t)
Y:Mi4+M§4+M§4+M§4,
=1_2th j pc(Q,P,q,p,0)p.(Q(1),P(t),q",p’,t) Z=M13M 14+ MM o4+ M 3gM a4+ M 43M 44,
xdq’dp’dQ dPdqdp U=(Q—Qo)M s+ (P—=Pg)Ma+(q—0g)M3,
~1-274 [ [ piQ.P.0.POQ"P 0070 +(P=Po)Mas,
qurdprdequdp (27) V:(Q_QO)M13+(P_PO)M23+(q_qO)M33
+(P—pPo)Mys, (31)

where (Q(t),P(t),q(t),p(t)) is the phase-space location of
the trajectory emanating fromQ,P,q,p) at t=0, and and
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pe(Q,P,a,p) =471 p1(Q,P)1[p3(a,p) 1% (32
Equations(30) and (31) indicate that the classical dynamics . 08r ¥
of intrinsic decoherence is closely related to the classical \CQ*% 06k i
stability matrix elements averaged over a rescaled initial dis- o
tribution function. This interesting connection provides in- = 04b Y ]
sight into a variety of interesting aspects of quantum intrinsic i& i
decoherence dynami€$8—22. For example, for chaotic dy- 02l j
namics in which classical trajectories are highly unstable and
therefore in which/M;;| increases rapidlyS.(t) should in- e O P s
crease much faster than for the case of integrable dynamics. time

This observation can, with the assumption that there is fairly

good QCC in intrinsic decoherence dynamics, directly ex- FIG. 3. A comparison betwee§(t) (dashed lingand the ap-
plain previous results on quantum signatures of classicdiroXimateS(t) (solid line) calculated from Eq(30) for the quartic
chaos in the dynamics of quantum entanglenfdsi. Fur- oscillator moo_le_l in the cgse_of integrable dynamlc&,:(o.osﬁ
ther, because Eq$30) and (31) are expressed in terms of —0-01). The initial state is given by Eq26), with op=0q=0}
classical stability matrices, characteristics of the time depena 0q=|\3/m, h:_%och"lz ?IOTO'AT’ IP":?'S‘b q0d=0.6, and
dence ofS¢(t) and therefore 0§,(t) can be easily related to (Qo,Po.0o,Po) =0.24. Full classical results based upon EZ)

. . . . - . re represented by discrete circular points. All variables are in di-
the time and space fluctuations in the instability of classicaf" P 'y P
. . mensionless units.
trajectories.

comparing the structure of the classical and quantum distri-
B. Computational results: Localized initial states bution functiong23]. This can be understood by the fact that
Consider then the QCC over large time scales for localSc(t) [or Sy(t)] describes the reduced distribution functions
ized initial states for both integrable and chaotic cases. To dp¢(Q.P.t) [or pw(Q,P,t)], which is insensitive to the fine
s0, we examine the quartic oscillator model as well as resultstructure ofp.(Q,P,q,p.t) [or pw(Q,P.q,p.t)].
where the coupling potential is replaced by the nonlinear Calculations for many other initial states confirm that the
potential V,,(Q,q) = 0.5Q%g%+ Q*g%. The initial states are QCC results shown in Figs. 3 and 4 are typical, indicating
chosen to be localized initial states, and both the full classithat () the QCC is essentially exact over large time scales
cal dynamics and the approximate time dependen& @  and(b) the simple classical theory of intrinsic decoherence
in Eq. (30) are compared to the quantum result. Specificallydynamics introduced above provides a useful approximation
we realize the ensemble average in E20) by the Monte to the exact results.
Carlo simulations, using only>210* sampling classical tra- Figure 5 shows one case, however, where the approximate
jectories from which the stability matrix elemeni4;; are S:(t) and exact classical or quantum results differ quantita-
evaluated. The initial Gaussian states are chosen symmetiively. Here the system is still the quartic oscillator model
with o=\%/2=0.05 and are sufficiently localized so that With «=1.0, 3=0.01, but with an initial state of special
Eq. (28) should be a valid approximation. Full classical re-type. In particular, both the initial average positiQg and
sults forS(t) (represented again by discrete circular pgints the initial average momentuf, are set to zero. Initial states
which are much more demanding computationally, are als@®f this type are called channel statels], and effectively
provided below. give rise to very weak coupling between the two subsystems
Figures 3 and 4 compare results 8(t) obtained from over a considerably large time scale. Indeed, since at short
Eq. (30) and from exact classical results wiij(t) (dashed times df/dQ~Af(Q)/AQ~0 for Q=~Q,=0, one obtains
line) for integrable and chaotic dynamics in the quartic os-from Egs.(22) and(23) that 1/r§’2: 1/T§’q%0. Therefore the
cillator model, respectively. A number of observations are inearly-time intrinsic decoherence rate should be small, as seen
order. First, it is clear that in both cases the approximate

S.(t) are in excellent agreement with the full classical re- 1 . ~

sults, confirming the utility of the simple modgEq. (30)]. ’

Second, botlg (t) andSy(t) are seen, in the chaotic case, to 0.8f ]
relax faster towards 1.0 than they do in the integrable case. s

Third, the oscillation amplitudes @&,(t) in the chaotic case « 06r 1
are much smaller than that in the integrable case. Hence, the 5

fast relaxation and small-amplitude oscillations 8f(t) = 04r |
shown in Fig. 4 may be regarded as fingerprints of the un- il

derlying classical chaos. Finally, and most importantly, the 02 1
entire time dependence, including oscillations in Figs. 3 and 0 ,

10 15 20 25 30
time

[ =

4 of Sy(t) are beautifully captured by both the exact and the 0
approximates.(t). It should also be noted that the QCC time

scale shown in Fig. 4 is appreciably longer than is the QCC FIG. 4. Same as in Fig. 3 except for strongly chaotic dynamics
break timet,,~5.0 for the samé, obtained by quantitatively («=1.0,6=0.01).
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]. T T
| .’9,:9"9"’ —————————————————————————— ]
0.8 ,
= = J
o % 06F ]
) < s
E Z /
= = 04f i
oF o !
02}/ ]
f
O %5 10 15 20 25 % 5 10 15
time time

FIG. 5. Same as in Fig. 3 except for strongly chaotic dynamics FIG. 7. A comparison betwee8,(t) (dashed ling and S(t)
(«=1.0,8=0.01), and for a special initial Gaussian state, with (discrete circular poinjsfor strongly chaotic dynamics of the quar-
Qo=Po=0, go=0.6, andH(Qgy,Pg,dq,po) =0.24. tic oscillator model ¢=1.0,8=0.01) and forh=0.05. The initial

state is given by Eq(26), with op=0q=0,=0,=\%/2, Q,
in Fig. 5, although the underlying classical dynamics is=09-4: Po=0.5, qo=0.6, andH(Q,Po,qo,Po) =0.24. All vari-
strongly chaotic. For this reason, one expects that the dy2bles are in dimensionless units.
namical behavior oB(t) andSy(t) should differ from pre-
vious cases. As shown in Fig. 5, in this case bft) and  describing classical correlations between classical suben-
Sc(t) increase in a stepwise fashion, distinctly different fromsembles. Hence, it is useful to isolate the conditions under
that in Figs. 3 and 4. Agreement between them remains exwhich there is good QCC in intrinsic decoherence dynamics.
cellent. However, the approxima&(t) misses some of the This is done analytically, for early-time dynamics and for
important structure. weak decoherence, by a second-order perturbative theory. In-

In Fig. 6, we show the QCC result for a simple variant of terestingly, as demonstrated by our computational studies in
the quartic oscillator model, i.e.V;5Q,q)=0.5Q%g? Secs. Il and 1V, the physical picture of the QCC afforded by
+Q%qg?, a coupling potential that is neither linear nor qua-the perturbative treatment can be still very useful even when
dratic. As seen in Fig. 6, even with such nonlinear couplingthe time scale under investigation is relatively long and the
Sc(t) and Sy(t) are in excellent agreement over large timedegree of intrinsic decoherence is significant. In particular,
scales. This emphasizes the fact that the good QCC resultsder the circumstances where there is good early-time
observed in the quartic oscillator model are not due to th€)CC, classical Liouville dynamics can provide a simple
fact that the coupling potential therein is quadratic. Hencemeans of understanding different aspects of intrinsic deco-
we conclude that for initially localized states, our simple herence dynamics, for relatively large time scales and for
classical theory of intrinsic decoherence dynanjese Eq. both integrable and chaotic dynamics. Further, we have de-
(30)] is generally useful in describing intrinsic decoherencerived an approximate but very simple classical theory of lin-

dynamics in smooth Hamiltonian systems. ear entropy production of intrinsic decoherence dynamics as-
sociated with localized initial states, and shown that the rate
V. DISCUSSION AND SUMMARY of entropy production is closely related to the stability prop-

o erties of classical trajectories.

Quantum .entanglement betWeen |nd|V|dUa| S.ubs.ystems C|ear|y' the linear entropy is just one of many pOSsib|e
has no classical analog. Nevertheless, as shown in this Workepresentation-independent measures of intrinsic decoher-
the quantum dynamics of quantum entanglement, as manknce, ands,(t)~S,(t) does not mean that the quantum dy-
fested in the quantum dynamics of intrinsic decoherencenamics is equivalent to the corresponding classical Liouville
does have a classical analog in classical Liouville dynamicgynamicsl For example, if the saturation value of the linear

entropy in the long-time limit is of particular interest, then

1 —— the measures [I1—Sc(t)] and 1]1—Sy(t)] (which gives
the number of orthogonal states that are incoherently popu-
08F 1 lated should be more useful in describing the QCC. Indeed,
= our results in Figs. 4 and 6 suggest that as time increases one
« 06r I has 1J1— S,(t)]>111—S,(t)]. This is consistent with our
5 previous observatiof8] that decoherence can dramatically
= 04r | improve QCC, but even strong decoherence does not neces-
“ 02l ¥ | sarily suffice to ensure that quantum entropy production is
’ the same as classical entropy production.
0 . . . . . It should also be pointed out that the model quantum sys-
o 5 10 1 20 25 30 tems studied in this paper are still far from the semiclassical

time regime. This is indicated, in the chaotic case of the quartic

FIG. 6. Same as in Fig. 3 except for a modified quartic oscillatoroscillator model for example, by the fact that the QCC break
model in whichV,,(Q,q)=0.5Q%g%+ Q*q>. time is relatively short compared to the time scale that we
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examined. Correspondence will worsen quantitatively withdeeper insights into the QCC in intrinsic decoherence dy-

increasingh, although, as discussed abovieis far from the

only factor influencing the quality of the QCC. However, we

namics.
To summarize, we have shown that classical dynamics

note that for localized initial states the qualitative features oftan be very useful in describing intrinsic decoherence dy-
the time dependence of classical and quantum linear entrayamics in smooth Hamiltonian systems. In particular, we
pies may remain similar to one another with much largerhave identified conditions under which excellent quantum-
effective Planck constants. For example, Fig. 7 displayslassical correspondence in the early-time dynamics of in-

fairly good QCC betweer§y(t) and Sc(t), in the chaotic
case of the quartic oscillator model, with=0.05 and with
an initial symmetric Gaussian state.

trinsic decoherence is possible via a second-order perturba-
tive treatment, have presented a simple classical theory of
intrinsic decoherence dynamics emanating from localized

A number of interesting extensions of this work are underinitial states, and have provided supporting computational
consideration. First, it seems straightforward but necessary t@sults. The hope is that by extending this study to high-
consider cases in which the coupling potential depends upotdimensional Hamiltonian systems, we may use purely clas-
both position and momentum. Second, we propose to furthesical approaches to descrilfat least qualitatively the dy-
investigate the role of the dynamics of the subsystems imamics of quantum entanglement or intrinsic decoherence in

addition to that of the coupling potentié.g., the dynamics
in coupled Morse oscillator systemd hird, it is interesting

to study the QCC in intrinsic decoherence dynamics in terms

polyatomic molecular systems.
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