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Quantum walk on the line as an interference phenomenon

Peter L. Knight,* Eugenio Rolda´n,† and J. E. Sipe‡
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~Received 30 April 2003; published 27 August 2003!

We show that the coined quantum walk on a line can be understood as an interference phenomenon, can be
classically implemented, and indeed already has been. The walk is essentially two independent walks associ-
ated with the different coin sides, coupled only at initiation. There is a simple analogy between the evolution
of walker positions and the propagation of light in a dispersive optical fiber.

DOI: 10.1103/PhysRevA.68.020301 PACS number~s!: 03.67.Lx, 05.40.Fb
e
se
b
e
F
e

e-

th
a
h

o

a
-

it

r t
te
rp
on
th

ri-
s

sed

th
ting

ta-
lly

ly

ith
not
ce
pa-

ed
is

ss

si
ss
The quantum random walk~QW! was first proposed ten
years ago by Aharonov, Davidovich, and Zagury@1# as the
quantum analog of the classical random walk~RW!. QWs
are receiving much attention@2–14#: as some problems ar
best solved in classical computation with algorithms ba
on RWs, it is expected that this type of problems could
solved even faster in a quantum computer. Preliminary inv
tigations focused on the nature of the QWs themselves.
example, Kempe@4# has shown that the hitting time of th
discrete QW from one corner of anN-bit hypercube to the
opposite corner is polynomial in the number of steps,n,
while it is exponential inn in the classical case. Subs
quently Shenvi, Kempe, and Whaley@5# showed that a QW
can perform the same tasks as Grover’s search algori
and Childset al. @6# introduced an algorithm for crossing
special graph exponentially faster that can be done wit
classical RW. Kempe@14# has recently reviewed the field.

In the classical RW on the line, the ‘‘walker’’~the particle
or system performing the RW! randomly takes one step t
the right or to the left depending on the result of tossing
coin. After n steps, the probability of finding the walker at
distancem from the origin is given by the binomial distribu
tion, a Gaussian for largen with a standard deviations
5An. In the QW, the role of the coin is played by a qub
~as, e.g., a two-level atom or a spin-1

2 particle!. As its classi-
cal counterpart, the quantum walker moves to the right o
the left depending on the internal state of the qubit. Af
each displacement, the state of the qubit is set to a supe
sition state by means of a suitable unitary transformati
typically a Hadamard, that plays the role of the toss of
coin in the RW. Yet the QW is not arandomwalk, as its time
evolution is completely deterministic. The probability dist
bution in the quantum case is very different from the clas
cal one: it resembles the Airy function~Fig. 1! and has a
standard deviation that is linear withn. This is thediscrete
time QW that should be distinguished from thecontinuous
time QW @2,14#, which we will not consider here.
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Possible implementations of the QW have been propo
by a number of authors@10–12#. Here we show that aclas-
sical implementation of the QW is possible, in analogy wi
other processes usually associated with quantum compu
@15–18#. Indeed, we point out that a classical implemen
tion very similar to the one we are proposing has actua
been implemented by Bouwmeesteret al. @19#, in the context
of the optical Galton board, without the authors explicit
noting this. Other classical~interferometric! implementations
of the QW have been proposed recently@8,13#, but in them
the number of necessary optical elements grows quickly w
the number of steps in the QW, something that does
occur in our scheme. Finally, by reexamining the differen
equations for the walker we show that the nature of pro
gation is simpler than has been previously appreciated.

In our classical approach the role of the walker is play
by the frequency of a light field, and the role of the coin
played by its polarization state. The light field

EW 5 (
m52 l

l

EW m exp@ i ~v01mv̄ !t2 ikmz#1c.c. ~1!

:

ty
:

FIG. 1. ~a! Probability distribution forn5200 for both the clas-
sical ~dashed! and quantum~continuous! random walks. The initial
conditions chosen for calculating the QW wereR0,051/& and
L0,05 i /&, see Eqs.~4! and~5!. Notice that the quantumPm is null
for odd m at oddn. We have represented only nonzero values.~b!
Continuous limit of the QW as given by Eq.~13! for a50.4 and
t5200 with the same initial conditions as in~a!.
©2003 The American Physical Society01-1
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(v0 is the carrier frequency andv̄ is the frequency differ-
ence between successive frequency components! can be rep-
resented by the abstract state

uc)5 (
m52 l

l

@Rmum,x!1Lmum,y)], ~2!

where Rm[ x̂•uW m and Lm[ ŷ•uW m (uW m5EW m /uEW mu) and
Sm52 l

l @ uRmu21uLmu2#51; the ‘‘basis vectors’’um,c! label
the frequency and polarization, withc5x,y; we associated
x(y) with the coin head~tail!.

To implement the walk, we require a unitary operator th
performs

V̂um, y
x)5um61, y

x).

The operationV̂ can be physically implemented, e.g., with a
electrooptic modulator~EOM! to which a linearly time de-
pendent voltage is applied in such a way that thex ~y! polar-
ization component of the field frequency component (v0
1mv̄) will see its frequency increased~decreased! by an
amountv̄.

After each jump in the frequency of the field, a Hadama
transformation

Ĥum, y
x)5

1

&
@ um,x!6um,y)]

has to be implemented. This can be done optically by me
of a half-wave plate~HWP! with its fast axis forming an
anglep/8 with respect to thex̂ axis @15,16#. Finally, the QW
is implemented by the repeated action on the state of
operatorĤV̂, i.e., aftern iterations zc(n)…5@ĤV̂#nzc(0)…,
which can be written as

zc~n!…5 (
m52n

1n

@Rm,num,x!1Lm,num,y)], ~3!

Rm,n5
1

&
~Rm21,n211Lm11,n21!, ~4!

Lm,n5
1

&
~Rm21,n212Lm11,n21!, ~5!

whereRm,05Lm,050 if mÞ0 andRm,215Lm,2150 ;m.
These are the standard QW equations. Finally, the inten
of each frequency component of the light field, which is t
optical analog of the probability of finding the walker
position m at iteration~time! n, is given by Pm,n5uRm,nu2
1uLm,nu2, which is represented in Fig. 1.

In order to implementn steps the best option is to intro
duce the described elements in an optical cavity, Fig. 2.
cavity imposes a constraint that the optical frequencies m
fit within its set of eigenfrequencies. Thus, the time dep
dent electric field applied to the EOM and the cavity leng
must be adjusted in such a way that the frequency shifv̄
5 f vFSR with vFSR being the cavity free spectral range anf
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being an integer number. Consider nevertheless that a
pulse with a spectral widthDv is initially injected in the
cavity. Although in such a casef does not need to be a
integer, in order to perform a step of the QW at each cav
roundtrip, the step sizev̄ must be large enough to avoi
significant overlap between the spectra of the displa
pulses; thus the frequency steps are well resolved.

The experiment of Bouwmeesteret al. @19# can be seen as
a realization of the QW very similar to that proposed he
These researchers proposed and studied, both theoreti
and experimentally, an optical implementation of the Galt
Board~the quincunx!. What they actually implement is a gri
of Landau-Zener crossings through which a light be
propagates, and concentrate on the study of recurrence
the light spectrum. A simplified version of their experimen
device is that represented in Fig. 2, but with the QWP
placed by a second EOM with its axis rotatedp/4 with re-
spect to the first EOM, which introduces a dephasing
tween the two polarization components. Although th
unitary operation does not correspond to a Hadamard tr
formation, it can be shown that it leads to an essentia
identical QW @5# ~details to be reported elsewhere!. The
main difference with our proposal is that the frequency sh
introduced by the EOM issmaller thanvFSR and then each
step in the QW takes several cavity round-trips. In Fig. 6
Ref. @19# the QW is clearly seen. Bouwmeesteret al. @19#
considered this case as a demonstration of the coher
quality of their system, and did not note its significance
QWs; their focus on the observation of recurrences in
spectrum led them to study other aspects of their system

Let us now reexamine the linear difference equations~4!
and ~5!. They admit a formal solution that has been stud
from a number of points of view, usually with a focus o
identifying its asymptotic behavior for largen @3,9,14# as it
allows for the extraction of much information. Neverthele
the formal solutions presented to date do not rely explic
on a crucial feature of Eqs.~4! and ~5!, which we now ex-
plain, that greatly simplifies a physical understanding of th
solution. A little algebra reveals that the solutionsRm,n and
Lm,n of Eqs.~4! and ~5! also satisfy

am,n115am,n211
1

&
@am21,n2am11,n#, a5R,L. ~6!

This is a remarkable equation, since it demonstrates a
namical independence of the evolution of the two coin sta
R and L. Thus there are two essentially independent wa

FIG. 2. Scheme for the optical implementation of the QW in
Fabry-Perot cavity. The electro-optic modulator~EOM! shifts the
field frequency up or down inv̄/2 depending on its polarization
and a quarter-wave plate~QWP! with its axis forming an anglep/8,
with respect to thex axis, performs the Hadamard transformatio
~notice that light passes twice through each intracavity element
ery round-trip!.
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coupled only by the first step that linksam,1 to am,0 . After
that, the two walks can be studied independently of e
other.

The most naı¨ve continuous limit of Eq.~6! would involve
a first derivative with respect to time and a first derivati
with respect to space, and would suggest waves propaga
only towards1` for both R andL, in apparent violation of
the symmetry of the problem. But this is too simplistic, giv
that for bothR andL one can look for solutions of the form

am,n5Am,n
1 1~21!nAm,n

2 , ~7!

whereAm
6 satisfy

Am,n11
6 2Am,n21

6 56
1

&
@Am21,n

6 2Am11,n
6 #, ~8!

restoring the symmetry. Of course, there is not a uniq
specification of theAm

6 in terms of the fundamentalam ,
since

am,05Am,0
1 1Am,0

2 , ~9!

am,15Am,1
1 2Am,1

2 .

The specification of theam,0 and am,1 , which completely
specifies the initial conditions required to solve Eq.~6!, does
not suffice to determine the initial conditionsAm,0

6 andAm,1
6

required for the solution of Eq.~8! uniquely. Nonetheless, i
is possible to rigorously develop the solution of Eqs.~6! in
terms of the fieldsAm,n

6 ; this we defer to a later publication
The point we wish to stress here is that in the limit ofAm,n

6

that are slowly varying inn andm we can introduce continu
ous functionsA6(x,t) and understand Eq.~8! as the discreti-
zation of the differential equation

(
k50

`
~Dt !2k11

~2k11!!

]2k11

]t2k11 A6~x,t !

57
1

&
(
k50

`
~Dx!2k11

~2k11!!

]2k11

]x2k11 A6~x,t !, ~10!

where Dt and Dx denote the temporal and spatial incr
ments, respectively. Keeping only the first two terms a
approximating the third derivative in time using the equat
at the lowest order, we obtain

]

]t
A6~j,t!57

1

&
F ]

]j
1

1

12

]3

]j3GA6~j,t!, ~11!

wheret5t/Dt andj5x/Dx. In this slowly-varying approxi-
mation conditions~9! can be approximated as

A6
„m~Dx!,0…'Am,0

6 5 1
2 ~am,06am,1!, ~12!

where we have made use of Eq.~7! and assumed thatam,1

5Am,1
1 2Am,1

2 'Am,0
1 2Am,0

2 . Thus in this limit Eq.~12! pro-
02030
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vides the initial conditions for Eq.~11! and those equation
can be solved by Fourier analysis. There are thentwo fields
A6(j,t) that can be associated with each side of the co
This feature persists when the rigorous solution is c
structed in this terminology, where there is a~temporal! ‘‘fer-
romagnetic’’ field Am,n

1 and an ‘‘antiferromagnetic’’ field
(21)nAm,n

2 for each coin side.
Returning to Eq.~11! we make use of Eqs.~12! and take

as initial conditions A6(j,0)5a0,0G(0)6a21,1G(21)
6a1,1G(1), with G(j0)5N exp@2(j2j0)

2/(2a)2# and N a
normalization factor; here we assume that Eq.~11! is only
correct for the long-wavelength components by taking
initial condition that ‘‘smears out’’ the lower-wavelengt
components. The solution is easily found analytically@20,21#
for A6(j,t), and we can write the final result~up to a nor-
malization factor! for both R and L as a(j,t)5A1(j,t)1
(21)nA2(j,t), with

A6~j,t!5a0,0Z~6j,t!6a21,1Z„6~j1j0!,t…

6a1,1Z„6~j2j0!,t…, ~13!

Z~j,t!5
2p

B1/3expS 3ABC12C3

3B2 DAi S AB1C2

B4/3 D , ~14!

where A5j2t/&, B5t/(4/&), C5a2 and Ai(x) is the
Airy function @21#; the R and L solutions differ only in the
different values ofam,0 andam,1 appearing in Eq.~13!. The
appearance of Airy functions in the full solutions of Eqs.~4!
and ~5! @9# can thus be understood as associated with
form of Eq. ~11!, which workers in fiber optics will recog-
nize as the classical equation for the propagation of light i
fiber with no group velocity dispersion but a third-order d
persion term. The linear dependence of the standard de
tion on n arises, of course, simply because of this propa
tion. Solution~13! is represented in Fig. 1~b! for a50.4, and
the similarity with the QW in Fig. 1~a! is clearly apparent.

In conclusion, we have shown that the QW along a li
can be simulated in a purely classical implementation,
volving nothing more than wave interference of electroma
netic fields. And, indeed, it has in fact already been simula
in the laboratory in the work of Bouwmeesteret al. @19#.

Further, this classical nature of the propagation is perh
not surprising. After all, the standard QW is a generalizat
of the quantum-mechanical problem of a spinless part
with hopping amplitudes between sites, familiar from sol
state physics if the time variable is continuous. That lat
problem, which gives a simple Schro¨dinger equation in its
continuum limit, is clearly classical in nature of its propag
tion, as attested to by the appearance of the Schro¨dinger
equation in classical beam propagation problems. The ge
alization involved in concocting the standard QW problem
the inclusion of a spin variable. What we have shown her
that this generalization does not affect the dynamics in
essential way. Except for an initial coupling in the first tw
time steps, the evolutions of the amplitudes associated w
the two sides of the coin proceed independently.
1-3
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