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We show that the coined quantum walk on a line can be understood as an interference phenomenon, can be
classically implemented, and indeed already has been. The walk is essentially two independent walks associ-
ated with the different coin sides, coupled only at initiation. There is a simple analogy between the evolution
of walker positions and the propagation of light in a dispersive optical fiber.
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The quantum random wallQW) was first proposed ten Possible implementations of the QW have been proposed
years ago by Aharonov, Davidovich, and Zaglity as the by a number of authorsl0—12. Here we show that alas-
quantum analog of the classical random wéaRV). QWs  sical implementation of the QW is possible, in analogy with
are receiving much attentior2—14): as some problems are other processes usually associated with quantum computing
best solved in classical computation with algorithms based15-18. Indeed, we point out that a classical implementa-
on RWs, it is expected that this type of problems could betion very similar to the one we are proposing has actually
solved even faster in a quantum computer. Preliminary invesseen implemented by Bouwmeeségral.[19], in the context
tigations focused on the nature of the QWs themselves. Fa@f the optical Galton board, without the authors explicitly
example, Kempé¢4] has shown that the hitting time of the noting this. Other classicginterferometri¢ implementations
discrete QW from one corner of ax-bit hypercube to the of the QW have been proposed receriy13], but in them
opposite corner is polynomial in the number of steps, the number of necessary optical elements grows quickly with
while it is exponential inn in the classical case. Subse- the number of steps in the QW, something that does not
quently Shenvi, Kempe, and Whalgy] showed that a QW occur in our scheme. Finally, by reexamining the difference
can perform the same tasks as Grover’s search algorithnequations for the walker we show that the nature of propa-
and Childset al. [6] introduced an algorithm for crossing a gation is simpler than has been previously appreciated.
special graph exponentially faster that can be done with a In our classical approach the role of the walker is played
classical RW. Kempg14] has recently reviewed the field. by the frequency of a light field, and the role of the coin is

In the classical RW on the line, the “walkefthe particle  played by its polarization state. The light field
or system performing the RWandomly takes one step to |
the right or to the left depending on the result of tossing a > - . .
coin. After n steps, the probability of finding the walker at a E—m;l Em exfli (wo+ ma)t—iknz]+c.c. @)
distancem from the origin is given by the binomial distribu-
tion, a Gaussian for large with a standard deviationr 0.06 -
=/n. In the QW, the role of the coin is played by a qubit A " (a)
(as, e.g., a two-level atom or a spirparticle). As its classi-
cal counterpart, the quantum walker moves to the right or to
the left depending on the internal state of the qubit. After
each displacement, the state of the qubit is set to a superpo-
sition state by means of a suitable unitary transformation,
typically a Hadamard, that plays the role of the toss of the
coin in the RW. Yet the QW is not eandomwalk, as its time
evolution is completely deterministic. The probability distri-

bution in the quantum case is very different from the classi- 0.04
cal one: it resembles the Airy functiofiFig. 1) and has a P,
standard deviation that is linear with This is thediscrete 0.02

time QW that should be distinguished from tbentinuous
time QW|[2,14], which we will not consider here.
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(wg is the carrier frequency and is the frequency differ-
ence between successive frequency compopeatsbe rep- EOM H QWP
resented by the abstract state

FIG. 2. Scheme for the optical implementation of the QW in a
= R.,,/m,x)+L/m,y)], 2
|4) 2 | [ Rl )+ Lmlm,y)] 2

Fabry-Perot cavity. The electro-optic modulat&fOM) shifts the
field frequency up or down im/2 depending on its polarization,
where R,=X-U,, and L,=% -G, (Gn,=En/|[E,) and andaquarter-wave platQWP) with its axis forming an angler/s,
s [IR |2+|L |2]=1. the “basis vectors“|m 9 label with respect to the axis, performs the Hadamard transformation
m= 1Ll om m ' ' (notice that light passes twice through each intracavity element ev-

the frequency and polarization, with=x,y; we associated ery round-trip.

x(y) with the coin headtail).
To implement the walk, we require a unitary operator tha

performs tbeing an integer number. Consider nevertheless that a light

pulse with a spectral widtAw is initially injected in the
cavity. Although in such a caskdoes not need to be an
integer, in order to perform a step of the QW at each cavity
roundtrip, the step siz@ must be large enough to avoid
significant overlap between the spectra of the displaced
pulses; thus the frequency steps are well resolved.

The experiment of Bouwmeester al.[19] can be seen as
a realization of the QW very similar to that proposed here.
These researchers proposed and studied, both theoretically

Vim, })=|m=1,5).

The operation/ can be physically implemented, e.g., with an
electrooptic modulatofEOM) to which a linearly time de-
pendent voltage is applied in such a way thatxthg) polar-
ization component of the field frequency componeny, (
+mw) will see its frequency increase@ecreasedby an

amountw. : L :
. . , and experimentally, an optical implementation of the Galton
tra'r?;‘f)rrrig%gg]ump in the frequency of the field, a HadamardBoard(the quincunx. What they actually implement is a grid

of Landau-Zener crossings through which a light beam
1 propagates, and concentrate on the study of recurrences in
H|m, ;) = —[|m,x)=|m,y)] the light spectrum. A simplified version of their experimental
V2 device is that represented in Fig. 2, but with the QWP re-
] ) ) placed by a second EOM with its axis rotatett with re-
has to be implemented. This can be done optically by meangyect to the first EOM, which introduces a dephasing be-
of a half-wave plateHWP) with its fast axis forming an  tween the two polarization components. Although this
anglen/8 with respect to th& axis[15,16. Finally, the QW  ypjtary operation does not correspond to a Hadamard trans-
is implemented by the repeated action on the state of thgyrmation, it can be shown that it leads to an essentially
operatorHV, i.e., aftern iterations|(n))=[HV]"|#(0)), identical QW [5] (details to be reported elsewhgrélhe
which can be written as main difference with our proposal is that the frequency shift
introduced by the EOM ismallerthan wgsg and then each
step in the QW takes several cavity round-trips. In Fig. 6 of
|¢(n))=m:2_n [Rinnl M%)+ Lin oM y)], 3 Ref. [19] the QW is clearly seen. Bouwmeesteral. [19]
considered this case as a demonstration of the coherence
1 quality of their system, and did not note its significance to
Ronn="—(Rm-1n-1+Lms1n-1) (49 QWs; their focus on the observation of recurrences in the
V2 ’ ' spectrum led them to study other aspects of their system.
Let us now reexamine the linear difference equati@hs
and (5). They admit a formal solution that has been studied
Lm,n:E(Rm—l,n—l_'—m+1,n—1)’ ) from a number of points of view, usually with a focus on
identifying its asymptotic behavior for large[3,9,14 as it
whereR, o=Lm=0 if m#0 andRy,_;=Ly_,=0 Vm. allows for the e>_<traction of much information. Neverthe_le_ss
These are the standard QW equations. Finally, the intensitif® formal solutions presented to date do not rely explicitly
of each frequency component of the light field, which is theOn @ crucial feature of Eqg4) and (5), which we now ex-
optical analog of the probability of finding the walker at plaln_, thatgreatly simplifies a physical understgndmg of their
position m at iteration (time) n, is given bme,n=|Rm,n|2 solution. A little algebra revealg that the solutidRg , and
+|Lmnl?, which is represented in Fig. 1. Lmn of Egs.(4) and(5) also satisfy
In order to implement steps the best option is to intro-
duce the described elements in an optical cavity, Fig. 2. The
cavity imposes a constraint that the optical frequencies must
fit within its set of eigenfrequencies. Thus, the time depen-
dent electric field applied to the EOM and the cavity lengthThis is a remarkable equation, since it demonstrates a dy-
must be adjusted in such a way that the frequency ghift namical independence of the evolution of the two coin states
= fwpsgrWith wggg being the cavity free spectral range @nd R andL. Thus there are two essentially independent walks,

+n

1
am,n+1:am,n—l+E[am—l,n_amﬁ-l,n]i a=R,L. (6
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coupled only by the first step that links, ; to ao. After  vides the initial conditions for Eq.11) and those equations

that, the two walks can be studied independently of eacltan be solved by Fourier analysis. There are ttvemfields

other. A~ (&,7) that can be associated with each side of the coin.
The most naie continuous limit of Eq(6) would involve  This feature persists when the rigorous solution is con-

a first derivative with respect to time and a first derivativestructed in this terminology, where there istemporal “fer-

with respect to space, and would suggest waves propagatingmagnetic” field A; , and an “antiferromagnetic” field

only towards+« for both R andL, in apparent violation of (- 1)"A,, for each coin side.

the symmetry of the problem. But this is too simplistic, given  Returning to Eq(11) we make use of Eq$12) and take

that for bothR andL one can look for solutions of the form as injtial conditions A*(£,0)=a,G(0)*a_; G(—1)

+a,,G(1), with G(£&)=Nexd —(é—£)%(2a)?] and A a

amn=Anat(—1)"A; ., (7)  normalization factor; here we assume that Exl) is only
L correct for the long-wavelength components by taking an
whereA;, satisfy initial condition that “smears out” the lower-wavelength

components. The solution is easily found analytic29,21]
. . for A*(¢,7), and we can write the final resulip to a nor-
Anni1~ Ann-1= [Am 1o~ At 1) ®  malization factor for both R and L asa(é,7) =A™ (£,7)+
(—1)"A(&,7), with
restoring the symmetry. Of course, there is not a unique
specification of theA. in terms of the fundamentad,,,

AT(Em)=aoZ(* €, 1) Fa 1 Z(*(é+&),7)

since
N , *ag Z((E— &), 7). (13
am,O: Am,0+ Am,O! (9)
a..=A" —A- 2 3ABC+2(C3 AB+ (C?
mt mt m.i: Z(f,T) = BTéeX 362 i B4/3 ’ (14)

The specification of the,, and a,,;, which completely
specifies the initial conditions required to solve E8), does
not suffice to determine the initial conditions, , and A, ;
required for the solution of Eq8) uniquely. Nonetheless, it
is possible to rigorously develop the solution of E(®. in

where A= ¢—7/v2, B=1/(4W2), C=a? and A;(x) is the
Airy function [21]; the R and L solutions differ only in the
different values ofa,, o anda,, ; appearing in Eq(13). The

a ran f Airy functions in the full solutions of E¢$.
terms of the field#\; ,; this we defer to a_later pgb_lication. aﬁge(g)a[gt]:ecgn th)l/JS bg Sngerstogduassggsgci;(éd Vﬁh the
The point we wish to stress here is that in the “m'mﬁ_,n form of Eq. (11), which workers in fiber optics will recog-
that are slowly varying im andmwe can introduce continu- pjze a5 the classical equation for the propagation of light in a
ous functionsA~(x,t) and understand E¢8) as the discreti-  fiper with no group velocity dispersion but a third-order dis-

zation of the differential equation persion term. The linear dependence of the standard devia-
B tion onn arises, of course, simply because of this propaga-
E (At)2KTL g2kt A tion. Solution(13) is represented in Fig.(lt) for «=0.4, and
“h (2k+1)! W (x,0) the similarity with the QW in Fig. (a) is clearly apparent.
In conclusion, we have shown that the QW along a line
1 & (Ax)%kFL g+l can be simulated in a purely classical implementation, in-
=+ T AT (X1), (100 volving nothing more than wave interference of electromag-

— |
vai=o (2k+ 1)t ox netic fields. And, indeed, it has in fact already been simulated

in the laboratory in the work of Bouwmeester al. [19].
Further, this classical nature of the propagation is perhaps
not surprising. After all, the standard QW is a generalization
of the quantum-mechanical problem of a spinless particle
with hopping amplitudes between sites, familiar from solid-
state physics if the time variable is continuous. That latter

where At and Ax denote the temporal and spatial incre-
ments, respectively. Keeping only the first two terms and
approximating the third derivative in time using the equatlon
at the lowest order, we obtain

3 .
iAi(g T):_i 2= J A*(£7) (11) problem, which gives a simple Scliliager equation in its
ar ' Vvalog 1208 continuum limit, is clearly classical in nature of its propaga-

tion, as attested to by the appearance of the Sithger
wherer=t/At andé=x/Ax. In this slowly-varying approxi- equation in classical beam propagation problems. The gener-

mation conditiong9) can be approximated as alization involved in concocting the standard QW problem is
the inclusion of a spin variable. What we have shown here is
A*(M(AX),00~A 0= 3(8mo*am1), (12)  that this generalization does not affect the dynamics in an

essential way. Except for an initial coupling in the first two
where we have made use of HJ) and assumed that,;  time steps, the evolutions of the amplitudes associated with
=An 1~ An1~Ano—Amo- Thus in this limit Eq.(12) pro-  the two sides of the coin proceed independently.
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