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Quantum shutter transient solutions and the delay time for thed potential
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The analytical solution to the time-dependent Schro¨dinger equation for tunneling using cutoff plane-wave
initial conditions is in general given by the sum of two types of terms that exhibit a transient behavior. The time
evolution of the probability density for thed potential is compared with the free case to investigate in this case
the role of these transient terms for the delay time. We find, by a dynamical calculation, that the delay time
arises from the interference between these transient terms and we show that at very long times it goes into the
phase delay time, given by the energy derivative of the phase of the transmission amplitude.
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I. INTRODUCTION

It is well known that the notion of delay time originate
more than 50 years ago in connection with scattering pr
lems in nuclear physics@1,2#. This notion tell us that the
action of a potential on a propagating quantum particle is
produce a delay time relative to the free propagating sit
tion. At asymptotically long times one may obtain an expr
sion for the delay time by using the time honored method
the stationary phase. In one dimension this correspond
the derivative with respect to the energy of the phaseu of the
transmission amplitude, namelytu5\du/dE @3#. We shall
refer to this expression as thephase delay time. Clearly, since
the transmission amplitude may be obtained solving
time-independent Schro¨dinger equation, it is not necessary
perform a time-dependent analysis to obtain the above
pression@4,5#. In a dynamical analysis the delay time is o
tained as the time difference between the maxima of
peaks of the transmitted and free evolving probability den
ties. We shall refer to the result of this calculation as
dynamical delay timeand denote it byDt. It requires to
solve the time-dependent Schro¨dinger equation as an initia
value problem. It has been customary to choose as in
state a Gaussian wave packet and solve numerically the t
dependent Schro¨dinger equation to get the transmitted a
free wave packets in order to calculateDt @6#. In contrast
with this, as discussed below, our approach considers
tially cutoff waves@7#.

In recent work, an exact analytical solution to the tim
dependent Schro¨dinger equation was obtained for cutoff in
tial plane waves impinging on a potential@8#. The dynamical
problem may be visualized as agedanken experimentcon-
sisting of a shutter, situated say atx50, that separates ini
tially a beam of particles from a potential barrier. Att50,
the shutter is opened and we follow the transmitted proba
ity density as it evolves in time throughx.0. One may
envisage a whole class of problems whose dynamical
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scription is closer to the above quantum shutter setup t
scattering by a Gaussian wave packet@9#. In general, the
transmitted solution exhibits two types of transient terms.
asymptotically long times one of them goes into the stati
ary solution to the problem, whereas the other tends t
vanishing value@8#. However, at finite times one may as
how these transient terms contribute to the delay time. In
work, we address the above question for the case of an
actly solvable model, namely thed barrier potential. We in-
vestigate thedynamical delay timeDt for that potential.
Since at long times the transient solutions go into the w
known stationary solution to the problem, we also comp
Dt with the corresponding exact analytical expression for
phase delay timetu5\du/dE.

The paper is organized as follows. Section II presents
solution to the time-dependent Schro¨dinger equation for the
d potential barrier using cutoff plane waves as the init
condition. In Sec. III it is shown that the delay time follow
from the interference transient terms. Finally, Sec. IV p
vides the concluding remarks.

II. TIME-DEPENDENT SOLUTION

We consider the solution of the time-dependent Sch¨-
dinger equation for tunneling through ad barrier potential
V(x)5bd(x),

i\
]C~x,t !

]t
5S 2

\2

2m

]2

]x2
1bd~x!D C~x,t !, ~1!

with cutoff plane-wave initial conditions att50,

C~x,k,t50!5H eikx, x,0

0, x.0.
~2!

The above initial condition may be visualized as a beam
particles of energyE5\2k2/2m, moving from the left, inter-
rupted atx502 by a perfectly absorbing shutter perpendic
lar to the beam@10#. At t50, the shutter is opened and th
transmitted probability density alongx.0 as t evolves is
©2003 The American Physical Society04-1
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investigated. To obtain the transmitted solution, we proc
along the same lines as in Ref.@11#. The Laplace trans-
formed solutionC̄(x,s) reads

C̄~x,k,s!5
im

\

eipx

~p1 ib!~p2k!
, ~3!

whereb5mb/\2 and p5A2ims/\. After a simple partial
fraction decomposition, the inverse Laplace transform yie
for x.0, the solution@12#

Cd~x,k,t !5T~k!M ~yk!1R~k!M ~y2 ib!, ~4!

whereT(k) andR(k) stand for the transmission and refle
tion amplitudes given, respectively, by

T~k!5
k

k1 ib
, ~5!

and

R~k!5
ib

k1 ib
. ~6!

The M ’s in Eq. ~4! represent the functionsM (yq), whereq
stands fork or 2 ib, that may be written in terms of th
function w for complex argument@13#,

w~ iyq!5eyq
2
er f c~yq!, ~7!

as

M ~yq!5
1

2
eimx2/2\tw~ iyq! ~8!

with the argumentyq defined as

yq5e2 ip/4S m

2\t D
1/2Fx2

\q

m
t G . ~9!

If the interaction vanishes, i.e.,b50, the solution given by
Eq. ~4! goes into the free propagating solution@10#,

C0~x,k,t !5M ~yk!. ~10!

Note that the solution forCd(x,k,t), given by Eq.~4!, is
formed by two terms. One of them is identical to the fr
solution multiplied by the transmission amplitudeT(k),
whereas the other term is related to the purely imagin
pole atka52 ib of the transmission~or reflection! ampli-
tude of the problem, see Eqs.~5! and ~6!. We mention here
that the general solution for an arbitrary potential also exh
its a free-type term and a contribution that is given as a s
over the complex poles of the corresponding transmiss
amplitude of the problem@8#.

The long time behavior of theM functions follows imme-
diately from the properties of the functionw( iyq) @13#. Thus
M (yk) goes as
01410
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M ~yk!'2eyk
2
1

1

p1/2yk

2
1

p1/2yk
3

1••• ~11!

andM (y2 ib) as

M ~y2 ib!'
1

p1/2y2 ib

2
1

p1/2y2 ib
3

1•••. ~12!

At asymptotically long times, Eq.~11! goes into the expo-
nential term 2 exp(yk)

2 and Eq.~12! tends to a vanishing
value. Using Eq.~9! in Eq. ~8!, with q5k, one sees that the
exact solution given by Eq.~4! becomes the stationary solu
tion to the problem,

C~x,k,t !5T~k!eikxe2 iEt/\. ~13!

Clearly, at long times, the free solutionC0(x,k,t) behaves as
Eq. ~13! with T51.

Using Eq.~4!, the corresponding probability density ma
be written as

uCd~x,k,t !u25uC f~x,k,t !u21uCb~x,k,t !u2

1I ~x,k;t !, ~14!

where

C f~x,k,t !5T~k!M ~yk!, ~15!

Cb~x,k,t !5R~k!M ~y2 ib!, ~16!

and

I ~x,k,t !52 Re@T~k!R* ~k!M ~yk!M* ~y2 ib!# ~17!

stands for the interference contribution.

III. EXAMPLE

We proceed to analyze the time evolution of the proba
ity density for both thed potential barrier and the free case
order to characterize the delay time. We use parameters
cal of semiconductor quantum structures@9#, namely an ef-
fective mass for the electronm50.067me , incidence energy
E50.08 eV, and we choose thed potential intensityb
50.427 eV nm@14#. Figure 1 illustrates the behavior of th
probability density for thed and free cases~continuous and
dashed lines, respectively! as a function of time for the fixed
positionx0520 nm. We can clearly appreciate the transie
behavior in each curve and a shift of both wavefronts w
respect to each other, which means that the particle tha
teracts with the potential takes a longer time to reach
position x0520 nm with respect to that evolving freely. A
similar behavior has been reported in Ref.@12#. It is also
worth noticing that the tunneling or transmitted probabil
density maintains a similar shape to that in the free case. T
is due to the quasimonochromatic nature of the incide
initial state, which implies that there are not enough ava
able k-space components to produce a transmitted w
packet suffering a noticeable deformation.
4-2
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Measuring the time difference of the maximum values
uCd(x0 ,k,t)u2 ~solid line! and uC f(x0 ,k,t)u2 ~dashed line!
given, respectively, bytmd andtm f , allows us to calculate the
dynamical delay time,

Dt5tmd2tm f , ~18!

as indicated also in Fig. 1. Repeating this procedure for
creasing values ofx5x0 yields different values ofDt.

In Fig. 2 we plot Dt as a function of the positionx0
~circles!. The dynamical character ofDt is clearly evident.
One sees that as the position increases,Dt tends to a constan
value that corresponds precisely to thephase delay time
~dashed line! given by the exact analytic expression@15#,

tu5
bm2

\3k@k21~mb/\2!2#
. ~19!

If the interference term in Eq.~14! is eliminated, the delay
time does not appear. This is shown in Fig. 3, which illu
trates the behavior of the curvesuCd(x0 ,k,t)u22I (x0 ,k,t)
~solid line! and uC f(x0 ,k,t)u2 ~dashed line! at the fixed po-

FIG. 1. Plot of uCd(x0 ,k,t)u2 ~solid line! and uC f(x0 ,k,t)u2

~dashed line! as a function of the timet for a fixed value of the
positionx0520 nm. A delay timeDt53.831023 ps is appreciated
See text.

FIG. 2. This graph shows the delay time as a function of
positionx. The circles indicate the numerical results obtained us
Eq. ~18! and the dashed line shows the phase time calculated u
the analytic expression given by Eq.~19!. The parameters are give
in the text.
01410
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sition x0520 nm as a function of time. The maxima of bo
curves occur at the same time. Therefore, the contributio
the interference term to the probability densityuCd(x0 ,k,t)u2

is the one responsible for the delay time.
It is also of interest to investigate the delay time as

function of the intensityb of thed potential for a fixed value
of k5k0. Figure 4 provides an example of such a calcu
tion. One sees that there is a value ofb where thephase
delay timetu ~continuous line! exhibits a maximum. The
above value occurs atb5\2k0 /m. This is interesting be-
cause it suggests a connection between the antibound po
the transmission amplitude, Eq.~5!, at ka52 ik0 and maxi-
mum delay time. Figure 4 also exhibits a comparison of
above exact calculation with thedynamical delay timeDt for
different values of the distancex, 102 nm ~black squares!,
103 nm ~black triangles!, and 107 nm ~black dots!. One sees
that as the distance increases,Dt tends totu , as expected.

IV. CONCLUDING REMARKS

The main result of this work is that the interference b
tween the transient terms appearing in the exact analy

e
g
ng

FIG. 3. Plot of the transmitted probability density without th
interference term~solid line! and the free probability density
~dashed line! to illustrate that the delay time occurs due to t
interference termI (x0 ,k,t). See text.

FIG. 4. Plot oftu ~continuous line! as a function of the intensity
b of the d potential, for a fixed value ofk0, to show that there is a
maximum delay time atb5\2k0 /m and also to compare it withDt
evaluated at different distances:x5102 nm ~black squares!, x
5103 nm ~black triangles! andx5107 nm ~black dots!. See text.
4-3
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solution to the time-dependent Schro¨dinger equation for tun-
neling through ad potential accounts for the delay time wit
respect to the corresponding free solution. This result p
vides insight into the dynamical processes involving a tim
dependent description for tunneling using cutoff initial pla
waves. We have also obtained that thedynamical delay time
Dt given by Eq.~18! tends at asymptotically long times t
the phase timetu given by Eq.~19!. However, at short dis-
tances and times,Dt increases and departs from the val
given by thephase time. This result might be of interest in
connection with the tunneling time problem because it te
us thatphase delay delay timemay not be an appropriat
time scale near the interaction region. As a final remark,
worth emphasizing the role played by the antibound pole
.
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the transmission amplitude,ka52 imb/\2, on the dynamics
of the delay time. The exact analytic solution for more ge
eral potentials involves a summation over complex poles
the transmission amplitude@8,16,17#, and one should expec
using arguments similar to those discussed here, that the
responding transient interference terms will also be resp
sible for the delay time in these cases.
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