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Quantum shutter transient solutions and the delay time for theé potential
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The analytical solution to the time-dependent Sdiger equation for tunneling using cutoff plane-wave
initial conditions is in general given by the sum of two types of terms that exhibit a transient behavior. The time
evolution of the probability density for thé potential is compared with the free case to investigate in this case
the role of these transient terms for the delay time. We find, by a dynamical calculation, that the delay time
arises from the interference between these transient terms and we show that at very long times it goes into the
phase delay timegiven by the energy derivative of the phase of the transmission amplitude.
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[. INTRODUCTION scription is closer to the above quantum shutter setup than
scattering by a Gaussian wave pack@l In general, the
It is well known that the notion of delay time originated transmitted solution exhibits two types of transient terms. At
more than 50 years ago in connection with scattering probasymptotically long times one of them goes into the station-
lems in nuclear physic§l,2]. This notion tell us that the ary solution to the problem, whereas the other tends to a
action of a potential on a propagating quantum particle is tovanishing valug8]. However, at finite times one may ask
produce a delay time relative to the free propagating situahow these transient terms contribute to the delay time. In this
tion. At asymptotically long times one may obtain an expreswork, we address the above question for the case of an ex-
sion for the delay time by using the time honored method ofactly solvable model, namely the barrier potential. We in-
the stationary phase. In one dimension this corresponds teestigate thedynamical delay timeAt for that potential.
the derivative with respect to the energy of the phéséthe  Since at long times the transient solutions go into the well-
transmission amplitude, namely,=#Ad6/dE [3]. We shall known stationary solution to the problem, we also compare
refer to this expression as thlaase delay timeClearly, since At with the corresponding exact analytical expression for the
the transmission amplitude may be obtained solving thgphase delay time,=#d6/dE.
time-independent Schadinger equation, it is not necessary to ~ The paper is organized as follows. Section Il presents the
perform a time-dependent analysis to obtain the above exsolution to the time-dependent ScHiager equation for the
pression4,5]. In a dynamical analysis the delay time is ob- 6 potential barrier using cutoff plane waves as the initial
tained as the time difference between the maxima of theondition. In Sec. lll it is shown that the delay time follows
peaks of the transmitted and free evolving probability densifrom the interference transient terms. Finally, Sec. IV pro-
ties. We shall refer to the result of this calculation as thevides the concluding remarks.
dynamical delay timeand denote it byAt. It requires to
solve the time-dependent Schinger equation as an initial Il. TIME-DEPENDENT SOLUTION
value problem. It has been customary to choose as initial ) . ) )
state a Gaussian wave packet and solve numerically the time- e consider the solution of the time-dependent Schro
dependent Schdinger equation to get the transmitted anddinger equation for tunneling through @barrier potential
free wave packets in order to calculai¢ [6]. In contrast Y(X)=bé(x),

with this, as discussed below, our approach considers ini- S0 w2 g2

. X!

tially cutoff waves[7]. . ' . i% _| _ +ba(x) | T(x,1), 1)
In recent work, an exact analytical solution to the time- at 2m px2

dependent Schrdinger equation was obtained for cutoff ini-

tial plane waves impinging on a potent&]. The dynamical with cutoff plane-wave initial conditions a&=0,

problem may be visualized asgedanken experimermon-

sisting of a shutter, situated sayat 0, that separates ini-

tially a beam of particles from a potential barrier. &0,

the shutter is opened and we follow the transmitted probabil-

ity density as it evolves in time througk>0. One may The above initial condition may be visualized as a beam of

envisage a whole class of problems whose dynamical departicles of energy = #2k?/2m, moving from the left, inter-
rupted atx=0_ by a perfectly absorbing shutter perpendicu-
lar to the beanj10]. At t=0, the shutter is opened and the

*Electronic address: gaston@fisica.unam.mx transmitted probability density along>0 ast evolves is

ek x<0

0, x>0. @

\If(x,k,t=0)=i
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investigated. To obtain the transmitted solution, we proceed

along the same lines as in Rédfl1]. The Laplace trans-

formed solution¥ (x,s) reads
im e'Px

A (p+iB)(p—K)’

where B=mb/%2 and p=\2img/#. After a simple partial

W(x,K,s)= (3)
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M(yk)~2eY§+7TT2yk—7TTZyE+--- (11)
andM(y_ig) as
M(Y )~ e~k (12
m ZY—iB m nyiﬁ

fraction decomposition, the inverse Laplace transform yields,

for x>0, the solution12]
4

whereT (k) andR(k) stand for the transmission and reflec-
tion amplitudes given, respectively, by

W 5(x, kD) =TK)M(y) +RIKM(Y_ip),

k
T0=1175 ®
and
RO~ i ©

The M’s in Eq. (4) represent the functionsl (y,), whereq
stands fork or —iB, that may be written in terms of the
function w for complex argumenfl13],

W(iyq) = e%aerfc(yq), (7)
as
M(ya)= 5™ P uiyg) ®
with the argumeny, defined as
yq=e‘i”"‘(ﬁ ﬂz[x— ﬁ%t ©)

If the interaction vanishes, i.eb=0, the solution given by
Eq. (4) goes into the free propagating solutift0],
Wo(x,k,t)=M(yi). (10)

Note that the solution foiV s5(x,k,t), given by Eq.(4), is

At asymptotically long times, Eq1) goes into the expo-
nential term 2 expf,)? and Eq.(12) tends to a vanishing
value. Using Eq(9) in Eq. (8), with g=k, one sees that the
exact solution given by Eq4) becomes the stationary solu-
tion to the problem,
W(x,k,t)=T(k)e e EVA, (13

Clearly, at long times, the free solutidhny(x,k,t) behaves as
Eq. (13) with T=1.

Using Eq.(4), the corresponding probability density may
be written as

W 5(x,K, 1) 2= W (%K, 1) |2+ [ W 5(x, K, 1) |?

+1(x,k;t), (14
where
(XK, 1) =T(KYM(yy), (15
V(XK ) =RKM(y_ip), (16)
and
l(xk,)=2 RET(KR* (KM(yl)M*(y_ig)] (17

stands for the interference contribution.

I1l. EXAMPLE

We proceed to analyze the time evolution of the probabil-
ity density for both the5 potential barrier and the free case in
order to characterize the delay time. We use parameters typi-
cal of semiconductor quantum structuf@®s, namely an ef-
fective mass for the electran=0.067n,, incidence energy
E=0.08 eV, and we choose thé potential intensityb
=0.427 eV nm[14]. Figure 1 illustrates the behavior of the
probability density for thes and free case&ontinuous and

formed by two terms. One of them is identical to the freedashed lines, respectivelgs a function of time for the fixed

solution multiplied by the transmission amplitudgk),

positionxy,=20 nm. We can clearly appreciate the transient

whereas the other term is related to the purely imaginar@ehavior in each curve and a shift of both wavefronts with

pole atk,=—iB of the transmissiorfor reflectionn ampli-
tude of the problem, see Eq®%) and (6). We mention here

respect to each other, which means that the particle that in-
teracts with the potential takes a longer time to reach the

that the general solution for an arbitrary potential also exhibP0sition x,=20 nm with respect to that evolving freely. A
its a free-type term and a contribution that is given as a surgimilar behavior has been reported in REf2]. It is also

over the complex poles of the corresponding transmissiotvorth noticing that the tunneling or transmitted probability
amplitude of the problerf8]. density maintains a similar shape to that in the free case. This

is due to the quasimonochromatic nature of the incidence
initial state, which implies that there are not enough avail-
able k-space components to produce a transmitted wave
packet suffering a noticeable deformation.

The long time behavior of th®l functions follows imme-
diately from the properties of the function(iy) [13]. Thus
M (yy) goes as
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FIG. 3. Plot of the transmitted probability density without the
interference term(solid line and the free probability density
(dashed ling to illustrate that the delay time occurs due to the
interference termi(xq,k,t). See text.

FIG. 1. Plot of | ¥ 5(Xo.k,t)|? (solid line and |¥(xg.k,t)|?
(dashed ling as a function of the time for a fixed value of the
positionxy=20 nm. A delay timeAt=3.8x 102 ps is appreciated.

See text.

Measuring the time difference of the maximum values ofSition X,=20 nm as a function of time. The maxima of both
|W 5(Xo.k,t)|2 (solid line) and |W¥(xq,k,t)|2 (dashed ling  curves occur at the same time. Therefore, the contribution of

given, respectively, byis andty;, allows us to calculate the the interference term to the probability dengify;(xo,k,t)|?
dynamical delay time is the one responsible for the delay time.
It is also of interest to investigate the delay time as a
(18  function of the intensityp of the § potential for a fixed value
of k=k,. Figure 4 provides an example of such a calcula-
as indicated also in Fig. 1. Repeating this procedure for intion. One sees that there is a valuelbfvhere thephase
creasing values of=x, yields different values oAt. delay time 7, (continuous ling exhibits a maximum. The
In Fig. 2 we plotAt as a function of the positiox,  above value occurs di=7%2k,/m. This is interesting be-
(circle. The dynamical character dft is clearly evident. cause it suggests a connection between the antibound pole of
One sees that as the position increadggends to a constant the transmission amplitude, E€), atk,= —iky and maxi-
value that corresponds precisely to thbease delay time mum delay time. Figure 4 also exhibits a comparison of the

At=t,5—tm,

(dashed linggiven by the exact analytic expressiftb], above exact calculation with tldynamical delay timét for
different values of the distance 10° nm (black squares
bm? 10° nm (black triangley and 13 nm (black dot$. One sees

To= . (19 ; ;
0 3K K2+ (mbi7i2)2] that as the distance increasds, tends tor,, as expected.
If the interference term in Eq14) is eliminated, the delay IV CONCLUDING REMARKS

time does not appear. This is shown in Fi9-2 3, which illus-  The main result of this work is that the interference be-
trates the behavior of the curvé¥ s5(xo.k,t)[°—1(xo.k,t)  tween the transient terms appearing in the exact analytical

(solid line) and | W (xo,k,t)|? (dashed lingat the fixed po- 50
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FIG. 2. This graph shows the delay time as a function of the FIG. 4. Plot ofr, (continuous ling¢as a function of the intensity
positionx. The circles indicate the numerical results obtained usingb of the § potential, for a fixed value df;,, to show that there is a
Eq. (18) and the dashed line shows the phase time calculated usingiaximum delay time av=72k,/m and also to compare it witht

the analytic expression given by Bd9). The parameters are given evaluated at different distancegs=10° nm (black squargs x
in the text. =10° nm (black triangles andx=10" nm (black dot3. See text.
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solution to the time-dependent ScHilger equation for tun-  the transmission amplitud&,= —imb/#2, on the dynamics
neling through & potential accounts for the delay time with of the delay time. The exact analytic solution for more gen-
respect to the corresponding free solution. This result proeral potentials involves a summation over complex poles of
vides insight into the dynamical processes involving a timethe transmission amplitud®,16,17, and one should expect,
dependent description for tunneling using cutoff initial planeusing arguments similar to those discussed here, that the cor-
waves. We have also obtained that thenamical delay time responding transient interference terms will also be respon-
At given by Eq.(18) tends at asymptotically long times to sible for the delay time in these cases.

the phase timer, given by Eqg.(19). However, at short dis-

tances and timesAt _increa_ses and d_eparts fror_n the vqlue ACKNOWLEDGMENTS

given by thephase timeThis result might be of interest in

connection with the tunneling time problem because it tells The authors thank J. Villavicencio for useful discussions,
us thatphase delay delay timmay not be an appropriate and for the same reason A.H thanks R. Romo. G.G.C. ac-
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