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Multipole interaction between atoms and their photonic environment
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Macroscopic field quantization is presented for a nondispersive photonic dielectric environment, both in the
absence and presence of guest atoms. Starting with a minimal-coupling Lagrangian, a careful look at functional
derivatives shows how to obtain Maxwell’s equations before and after choosing a suitable gauge. A Hamil-
tonian is derived with a multipolar interaction between the guest atoms and the electromagnetic field. Canoni-
cal variables and fields are determined and in particular, the field canonically conjugate to the vector potential
is identified by functional differentiation as minus the full displacement field. An important result is that inside
the dielectric a dipole couples to a field that is neither the~transverse! electric nor the macroscopic displace-
ment field. The dielectric function is different from the bulk dielectric function at the position of the dipole, so
that local-field effects must be taken into account.
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I. INTRODUCTION

Optical properties of atoms, such as spontaneo
emission rates, can be strongly influenced by their dielec
environment@1#. It is well known that near a mirror, emis
sion rates can be enhanced or diminished, depending on
distance to the mirror and the orientation of the atomic
pole moment@2,3#. Inside optical cavities, lifetime effect
are even stronger@4#. In three-dimensional photonic crysta
with a photonic band gap, spontaneous emission would e
be fully inhibited at any position in the crystal for atom
transition frequencies within the band gap@5#. Not only
single-atom properties but also properties of two or sev
of atoms, such as dipole-dipole interactions and superr
ance, will be influenced by the dielectric environme
Again, extreme changes compared to free space can o
for atoms positioned inside microcavities@6,7# or photonic
crystals@8,9#.

The above medium-modified processes must be descr
by a quantum optical theory of dielectrics. In this paper su
a theory will be given of guest atoms interacting with a ph
tonic dielectric environment that is characterized by a giv
spatially varying and real dielectric function«(r ). The guest
atoms, by definition, are the atoms which are not included
the dielectric function. These guests will be described mic
scopically, whereas the dielectric is described macrosc
cally in terms of the dielectric function only.

Dielectric mirrors and photonic crystals are usually d
scribed by a frequency-independent spatially varying refr
tive index. Optical components such as glass plates, len
and optical cavities are some more examples. In many ca
the refractive index can be considered as piecewise con
but not always; in the so-called graded-index optical fib
the refractive index in the core varies parabolically with t
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radius@10#. In this paper, the relative dielectric function«(r )
is left unspecified~but assume it to be piecewise contin
ously differentiable! so that the theory describes both piec
wise constant and continuously varying dielectric function

The quantization of the electromagnetic field in free spa
can be found in many textbooks on quantum optics@11–14#.
In Refs.@15–18#, the more general problem is addressed h
to quantize the electromagnetic field in a dielectric describ
by a given real dielectric function«(r ) that depends on po
sition. The term ‘‘macroscopic quantization’’ has been coin
for this procedure@17#. The special case of infinite photoni
crystals is treated in Ref.@19#.

Guest atoms can be described theoretically essentiall
two ways. The simplest way is to treat them as known pro
of the electromagnetic field in the medium. In that case,
electromagnetic fields are found from Maxwell’s equatio
in the absence of the guest atoms; the guests are introd
as atoms with given properties such as transition frequen
and dipole moments. The atoms are assumed to couple to
fields that were found in their absence. The second, and m
fundamental, way to introduce guest atoms into the theor
to start with Maxwell’s equations that also contain as sour
the charges that make up the guest atoms. In this sec
approach, a Hamiltonian for the combined system of char
and fields should be found, which leads to Maxwell’s equ
tions, both inside and outside the atoms.

Even for an atom in free space, the difference betwe
these two approaches has led to debates on how to inte
the field to which a dipole couples, either to the transve
part of the electric field or to the displacement field@20–24#.
The latter coupling is the correct~more fundamental! inter-
pretation@13# but for most observables, there are no nume
cal punishments when interpreting the field wrongly. Ho
ever, inside a dielectric, there would be a considera
difference between an atom coupling to the electric field
to the displacement field. In this paper, it will be shown
using the second, more fundamental, way of introduc
guest atoms that neither dipole coupling is correct in a

/
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WUBS, SUTTORP, AND LAGENDIJK PHYSICAL REVIEW A68, 013822 ~2003!
electric. Moreover, the need to consider local-field effe
will arise in a natural way.

Of course, one does not tell the whole truth about a
electric when describing it by a real, nondispersive, and s
tially varying dielectric function«(r ). In a macroscopic de
scription one forgets details of the microscopic constitue
of the dielectric. Also, material dispersion and absorption
light ~transitions to nonradiative states in the dielectrics! are
neglected. It is well known that the dielectric function is
response function that should be a dispersive and com
function of frequency so as to satisfy the Kramers-Kron
relations. Certain sum rules@25# for modified spontaneou
emission rates, when averaged over all frequencies
therefore not hold in the present formalism that violates th
relations. The question is whether dispersion and absorp
are important in a particular experiment that one has in m
Often, optical experiments are interesting only in a freque
range where absorption is indeed negligible, for exam
when measuring light emitted by excited atoms inside a p
tonic crystal. In such cases, it is common practice to neg
material dispersion and absorption in the theoretical desc
tion as well@16,26#.

Quantum optical descriptions exist where dielectric fun
tions do satisfy the Kramers-Kronig relations, both for h
mogeneous@27,28# and inhomogeneous dielectrics@29–32#.
Usually, the guest atoms are introduced into these theorie
the simpler of the two ways described above, as probe at
with known properties in a two- or three-level description.
would be interesting to introduce guest atoms in theories
inhomogeneous Kramers-Kronig dielectrics in the more f
damental way, starting with Maxwell’s equations with th
charges of the guest atoms as sources but this will no
done here. Nor will we look at more microscopic descr
tions of the dielectric@33–35# where dispersion shows u
naturally. It would be very challenging to derive optical pr
dictions from a microscopic description of light and the m
ter that builds up a complex dielectric such as a photo
crystal.

The goal of this paper is to derive a Hamiltonian wi
multipolar interaction between the guest atoms and the e
tromagnetic field inside the inhomogeneous and nondis
sive dielectric. The dipole Hamiltonian can then be found
an approximation. First, field quantization of a dielect
without guest atoms is described in Sec. II. Atoms are in
duced into the dielectric in Sec. III. The starting point will b
Maxwell’s equations and a minimal-coupling Lagrangi
that produces these equations. Special attention is pai
check whether Maxwell’s equations still hold after choosi
a gauge. This requires an interesting analysis of functio
differentiation after choosing a gauge, presented in Sec.
The minimal-coupling Lagrangian is then transformed
Sec. V into its multipolar form with use of the Powe
Zienau-Woolley transformation that is well known for fre
space@13#. Our careful analysis of functional differentiatio
allows us to use a transformation that is simpler and m
like the free-space case than presented in related w
@17,18#. After the transformation, canonical variables a
fields are determined. In particular, the important question
to which field in the dielectric is canonically conjugate to t
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vector potential can be answered more easily than in R
@17,18# and the answer will be different than that presen
in Ref. @17#. The multipolar Hamiltonian and its dipole ap
proximation are given in second-quantization notation. R
sults are compared to the free-space case. The free-s
dipole-coupling controversy and confusion is reviewed
Sec. VI and the results of this paper are discussed in
perspective. The quantum optics of dielectrics that also h
inhomogeneous magnetic properties are briefly discusse
Sec. VII, before concluding in Sec. VIII.

II. INHOMOGENEOUS DIELECTRIC WITHOUT GUEST
ATOMS

A. Classical Lagrangian and Hamiltonian

In this section, the quantization of the electromagne
field in inhomogeneous dielectrics@15,16# is reviewed. The
emphasis will be on concepts and results that will be e
ployed in the following sections when guest atoms are int
duced in the dielectric.

In SI units, the source-free Maxwell equations in mat
are

“•B50, “3E1Ḃ50, ~1a!

“•D50, “3H2Ḋ50. ~1b!

Here, and in the following, the dot denotes a partial tim
derivative. FieldsE, B, D, andH are the electric field and
the magnetic induction, the displacement field and the m
netic field vector, respectively. For nonmagnetic inhomo
neous dielectrics, the constitutive relations are simplyB
5m0H andD5«0«(r )E. ~The generalization of the presen
theory to inhomogeneous magnetic materials will be d
cussed in Sec. VII.! As for free space, the electric and ma
netic fields can be expressed in terms of a vector potentiaA
and a scalar potentialF:

E52“F2Ȧ, B5“3A. ~2!

There is gauge freedom in choosing pairs (A, F) that leads
to the same electric and magnetic fields. Now choose
generalized Coulomb gauge which is defined by the requ
ment that the vector potential satisfies

“•@«~r !A~r !#50. ~3!

The vector potential or any field satisfying this condition
called ‘‘generalized transverse’’ because it satisfies a ge
alized version of the Coulomb gauge condition“•A50 in
free space. In the generalized Coulomb gauge, the ve
potential must satisfy the wave equation

“3“3A1
«~r !

c2
Ä50 ~4!

in order to be consistent with Maxwell Eq.~1b!. The scalar
potential can be chosen identically zero (F[0) in the gen-
eralized Coulomb gauge.
2-2
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MULTIPOLE INTERACTION BETWEEN ATOMS AND . . . PHYSICAL REVIEW A68, 013822 ~2003!
Since the goal is to find a quantum optical Hamiltonian
the end, one should start with a Lagrangian formalism for
classical Maxwell fields. From the Lagrangian, the canon
fields and their conjugates can be identified, which will b
come pairs of noncommuting field operators in a later sta
The principle of least action states that fields~and particle
variables, when present! minimize the action@13#; the action
is defined as the time-integrated Lagrangian between s
initial and final times. The requirement that small variatio
in the fields do not change the action leads to the Eu
Lagrange equations for the canonical fields, in our case
the vector potential@12,13#:

dL

dA
2

d

dt

dL

dȦ
50. ~5!

Here, functional derivatives are denoted with ‘‘d ’’ and more
will be said about them later.

A LagrangianL0 for the electromagnetic field in an inho
mogeneous medium is

L05E drL0[
1

2E dr @«0«~r !Ȧ22m0
21~“3A!2#. ~6!

The Lagrangian is the spatial integral of Lagrangian den
L0 over a large volumeV that will eventually be sent to
infinity. Subscript ‘‘0’’ is used to denote the absence of gu
atoms in the dielectric. The vector potential is a canoni
field variable and its canonically conjugate field can be fou
as a functional derivative of the Lagrangian density

P[
dL0

dȦ
5«0«~r !Ȧ52D. ~7!

~The functional derivative is used somewhat naively he
but the answer is correct, as a more detailed analysis in
IV will show.! In other words, the field canonically conjuga
to the vector potential equals minus of the displacem
field, which is a transverse field. Proceeding as for free sp
@13#, one finds that the Euler-Lagrange equation of mot
for the vector potential leads to wave equation~4! for the
vector potential in the medium. The Hamiltonian is

H05E dr ~P•Ȧ2L0!5
1

2E dr F P2

«0«~r !
1

~“3A!2

m0
G .

~8!

This is the Hamiltonian for the classical electromagne
field in an inhomogeneous dielectric, without guest atom

B. Complete sets and quantum Hamiltonian

For a quantum optical description of the dielectric, t
electromagnetic fields can best be expanded in terms of
monic solutions of wave equation~4!. With each of these
‘‘true modes’’ one can associate independent canonical v
ables for which commutation rules can be given. The se
true modes is not unique. This freedom will be used below
choose a particularly convenient set. For example, in vacu
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the true modes are transverse plane waves. For the p
waves, one can choose linear combinations of cosine
sine solutions cos(k•r ) and sin(k•r ). The complex exponen
tial exp(ik•r ) is only one such linear combination.

It will now be argued why the field can be expanded
terms of a set of real mode functions and the orthonorma
relations of the modes will be derived. The choice of re
modes will simplify the quantization procedure. The reas
not to start with complex mode functions is that the latter h
associated generalized coordinates and momenta that ar
Hermitian. This makes intermediate results more com
cated@16,17,36#. Real mode functions were also used in R
@15#, without the motivation given here.

Why does a complete set of real mode functions exist?
before, the electromagnetic fields are assumed to live in la
volume V. Let Q be an abstract operator in Hilbert spac
which has a local representation^r uQur 8&5d(r2r 8)Q(r ) in
configuration space:

Q~r ![
1

A«~r !
“3“3

1

A«~r !
. ~9!

OperatorQ is Hermitian under the normal inner produc
Eigenvalues ofQ are (vl /c)2 and thevl will be called
eigenfrequencies. All eigenfunctionsgl of Q have property
“•@A«(r )g(r )#50. Label l is understood to count both
continua and discrete sets of solutions. The subspace of f
tions in Hilbert space with the same transversality propert
spanned by the eigenfunctions ofQ. Now let C be the opera-
tor which is also local in configuration space, where its a
tion is to take the complex conjugate. The dielectric functi
in this context must also be viewed as an abstract operat«
with local representation in configuration space:^r u«ur 8&
5d(r2r 8)«(r ). The representations ofQ andC commute in
configuration space because«(r ) is real for all positionsr in
V. Then,Q andC commute in any representation. From th
fact thatQ and C commute, it follows that an orthonorma
basis of real eigenfunctions$gl% of Q can be chosen to spa
the subspace~with complex coefficients!.

The above analysis shows that vector potentialA can be
expanded in terms of a complete set ofreal vector mode
functions $hl(r )%[$A«(r )gl(r )%, which are the harmonic
solutions of wave equation~4!:

“3“3hl~r !2
«~r !vl

2

c2
hl~r !50. ~10!

These mode functions satisfy the same generalized trans
sality condition~3! as the vector potential. As is clear from
Eq. ~10!, unlike gl functionshl do not satisfy a Hermitian
eigenvalue equation.~To each type of modes corresponds
different density of states@37#.! From the orthonormality of
gl it follows that functionshl(r ) satisfy the generalized or
thonormality condition@15,16#:

E dr«~r !hl* ~r !•hl8~r !5dll8 . ~11!
2-3
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WUBS, SUTTORP, AND LAGENDIJK PHYSICAL REVIEW A68, 013822 ~2003!
The complex-conjugation symbol * was written for futu
reference since, of course,hl is real. Equation~11! will be
called a generalized inner product of modeshl andhl8 . The
spatial integral in Eq.~11! runs over volumeV, so that the
mode functions scale as (V)21/2.

In a scattering situation, where«(r ) is a space-filling di-
electric function plus a local modification within a scatteri
volumeVs, the contribution of the scattering volume to in
tegral~11! scales asVs/V. This fraction becomes zero whe
quantization volumeV is sent to infinity. As an example
mode functions of an infinite photonic crystal with a sing
point defect~extra or missing dielectric material! have the
same orthonormality relations as the mode functions in
absence of the defect.

Functionshl are complete in the sense that they form
basis for generalized transverse functions~such as the vecto
potential! that satisfy wave equation~4!. In other words, a
generalized transverse delta functiond«

T ~a distribution! can
be defined in terms of functionshl :

d«
T~r ,r 8![(

l
hl~r !hl~r 8!«~r 8!. ~12!

For «(r )[1, this expression reduces to the~real! free-space
transverse delta function~see Ref.@12#, p. 53!:

dT~r !5
2

3
d~r !I2

1

4pr 3
~ I23r̂ ^ r̂!, ~13!

whereI is the unit tensor in three dimensions andr̂ is the unit
vectorr /ur u. Evidently, the generalized transverse delta fu
tion ~12! is real because the mode functions are real. From
definition ~12! and normalization condition~11! of the
modes, it follows thatd«

T is idempotent:

E dr1d«
T~r ,r1!•d«

T~r1 ,r 8!5d«
T~r ,r 8!. ~14!

In other words,d«
T is a projector into the subspace of gene

alized transverse functions. The generalized transverse
function is not symmetric in its arguments because it is tra
verse in its second and generalized transverse in its first v
able:

“ r•@«~r !d«
T~r ,r 8!#505“ r8•@d«

T~r ,r 8!#. ~15!

The vector potential and its canonically conjugate fie
have normal-mode expansions:

A~r ,t !51/~A«0!(
l

ql~ t !hl~r !, ~16a!

P~r ,t !5A«0(
l

pl~ t !«~r !hl~r !, ~16b!

with generalized coordinatesql(t) and momentapl(t). At
this point, the choice of real mode functions pays off beca
the associated generalized coordinates and momenta are
real when the modes are real; only real coordinates and
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menta will become Hermitian operators in a quantum
scription. If the above two expansions are substituted
Hamiltonian ~8! and normalization condition~11! is used,
then it follows thatH5 1

2 (l(pl
21vl

2ql
2). The Hamiltonian

turns out to be a simple sum over the true modes of
inhomogeneous dielectric, where the energy of each m
corresponds to a one-dimensional harmonic oscillator w
positionql , momentumpl , and frequencyvl .

Now comes the quantization step. The independent
nonical pairs satisfy the standard equal-time commuta
relations @ql(t),pl8(t)#5 i\dll8 . With normal-mode ex-
pansions~16a! and ~16b!, the commutation relation for the
vector potential and its canonically conjugate field can
found immediately:

@A~r ,t !,P~r 8,t !#5 i\(
l

hl~r !hl~r 8!«~r 8!5 i\d«
T~r ,r 8!.

~17!

The commutator is a dyadic quantity. It turns out to be p
portional to the generalized transverse delta function.

Annihilation operators are introduced asal

5Avl /(2\)ql1 iA1/(2\vl)pl and creation operators a
their Hermitian conjugates. They have standard commuta
relations @al(t),al8

† (t)#5dll8 and all other inequivalen
commutators are zero. The Hamiltonian becomes the s
over contributions\vl(al

†al11/2) of individual modes.
Thus, the concept of a photon as elementary excitational

†u0&
of a mode is as useful for inhomogeneous dielectrics as
for free space. Number states, coherent and squeezed s
etc. can be defined analogously. The only difference for
homogeneous dielectrics is that their true modes are
plane waves.

The vector potential operator and its canonically con
gate field operator can be expressed in terms of creation
annihilation operators as

A~r ,t !5(
l
A \

2«0vl
@al~ t !hl~r !1H.c.#, ~18a!

P~r ,t !52 i«0«~r !(
l
A\vl

2«0
@al~ t !hl~r !2H.c.#.

~18b!

Here, ‘‘H.c.’’ denotes the Hermitian conjugate. The forms
the electric and magnetic fields as quantum-mechanical
erators as well as their commutation relations immediat
follow from Eq. ~2! and the above equation~18a!. The time
dependence of the operators is simply harmonic, for
ample,al(t)5a(0)exp(2ivlt).

In practice, it can be convenient to use a set of comp
true mode functions$fm% instead of real mode function
$hl%. Since the complex mode functions should also sati
wave equation~10! and the generalized orthonormality co
dition ~11!, the two sets of mode functions are relat
through a unitary transformationfm5(lUmlhl that only re-
lates mode functions with identical eigenfrequencies;U is a
unitary matrix. Note that because of this unitary relation,
2-4
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MULTIPOLE INTERACTION BETWEEN ATOMS AND . . . PHYSICAL REVIEW A68, 013822 ~2003!
generalized transverse delta function~12! can alternatively
be expressed in terms of complex mode functionsfl . Its
effect is the substitution of onehl by fl and the otherhl by
fl* : d«

T(r ,r 8) is also equal to(lfl(r )fl* (r 8)«(r 8). However,
after this substitution it is no longer obvious thatd«

T(r ,r 8) is
real-valued.

The field operators can also be expanded in terms of
complex mode functionsfl as

A~r ,t !5(
l
A \

2«0vl
@al

(0)~ t !fl~r !1H.c.#, ~19a!

P~r ,t !52 i«0«~r !(
l
A\vl

2«0
@al

(0)~ t !fl~r !2H.c.#,

~19b!

where the annihilation operatoram
(0) associated with the com

plex modefm is defined in terms of the ‘‘old’’ operators a
am

(0)[(lUml
21al and am

(0)† is its Hermitian conjugate. The
commutation relations ofam

(0) and am
(0)† are again the stan

dard relations becauseU is a unitary transformation. To dis
tinguish am

(0) from operators to be defined later, superscr
(0) has been added, signifying that no guest atoms
present. The time dependence of the operators is again
monic.

This completes the quantization of the electromagn
field in an inhomogeneous dielectric without guest atom
The reason to start the quantization procedure with real m
functions was that the associated generalized coordinates
momenta are real quantities that become Hermitian opera
in quantum mechanics. It is possible to start with comp
mode functions instead and to proceed with the n
Hermitian operators@16,17,36# but it makes intermediate re
sults unnecessarily more complicated. The unitary relati
between complex and real mode functions and between
respective annihilation operators are purely formal unl
both sets of mode functions are given explicitly. The abo
quantization procedure only relies on the mere existe
~rather than on an explicit construction! of these unitary
mappings.

III. INHOMOGENEOUS DIELECTRIC
WITH GUEST ATOMS

In the preceding section it was described how to quan
the electromagnetic field in an inhomogeneous dielect
Now, inside the inhomogeneous dielectric guest atoms
introduced. Their optical response is not included in diel
tric function «(r ) of the medium. The goal in the following
sections is to find the quantum optical description of
combined system, with a multipole interaction between
electromagnetic field and the guest atoms. There are at
two reasons why the multipolar Hamiltonian is to be p
ferred. In the first place, it is more convenient when on
approximate calculations can be done, which, in
minimal-coupling formalism, would give gauge-depende
results @11#; second, atoms are much smaller than opti
wavelengths and in the multipole formalism this can be
ploited well. Actually, atoms are so much smaller than op
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cal wavelengths that often ‘‘atoms’’ are identified with ‘‘d
poles.’’

The starting point is the minimal-coupling Lagrangia
that produces the Maxwell equations and the equations
motion for the charges that make up the guest atoms.
minimal-coupling Lagrangian can be used to find a minim
coupling Hamiltonian and this procedure can be found
Refs. @15,19#. A clear exposition is also given in Ref.@38#.
Here, the Lagrangian will first be transformed to the mu
polar form before constructing a Hamiltonian. The latter p
cedure was followed also in Refs.@17,18#. The present work
is different in some essential aspects that will be stres
where appropriate.

A. Choice of suitable Lagrangian

Guest atoms inside an inhomogeneous dielectric can
described by a charge densitysg and a current densityJg
which show up as sources in Maxwell’s equations@11,17#:

“•B50, ~20a!

“3E1Ḃ50, ~20b!

«0“•@«~r !E~r !#5sg , ~20c!

m0
21

“3B2«0«~r !Ė5Jg . ~20d!

Here, sg is the charge density andJg the current density
produced by the guest atoms alone, as stressed by subs
‘‘g’’; the dielectric is completely described by dielectri
function «0«(r ) and magnetic permeabilitym0. Whatever
Lagrangians and Hamiltonians are introduced for the in
mogeneous dielectric plus guest atoms, they must lea
these four Maxwell equations. Moreover, the electrons w
charges2e and massesme should respond to electric an
magnetic fields as given in the equation of motion

mer̈m j52e@E~rm j!1 ṙm j3B~rm j!#. ~21!

We assume that there are no free charges. All electrons~la-
beledj ) are bound to atomic nuclei~labelm) to form neutral
guest atoms. Thensg andJg are given by@39#

sg~r ,t !5e(
m

FZmd~r2Rm!2(
j

d~r2rm j!G , ~22a!

Jg~r ,t !52e(
m

F(
j

ṙm jd~r2rm j!G . ~22b!

Here,Zm is the nuclear charge of atomm. The guest atoms
are assumed to have fixed positions, their nuclei are t
centers of mass and are stationary at positionsRm . From
these explicit forms ofsg and Jg follows the equation of
continuity or current conservation,“•Jg1ṡg50, which can
also be found from Maxwell equations~20c! and ~20d!.

Again, the electric and magnetic fields can be defin
through Eq.~2! in terms of a vector potentialA and a scalar
potentialF. Then, the two homogeneous Maxwell equatio
2-5
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~20a! and ~20b! are automatically satisfied. The other tw
Maxwell equations should follow from the Euler-Lagran
equations@Eq. ~5!# for the scalar and the vector potentia
respectively. The minimal-coupling Lagrangian is

Lmin5(
m, j

1

2
meṙm j

2 1E drLmin . ~23!

Here, Lagrangian densityLmin describes the electromagnet
field energy and its minimal-coupling interaction with th
guest atoms:

Lmin5
1

2
«0«~r !@Ȧ1“F#22

1

2m0
~“3A!21Jg•A2sgF.

~24!

Indeed, Maxwell’s third and fourth equations can be fou
from the Euler-Lagrange equations for the scalar and
vector potentials, respectively. Moreover, the Euler-Lagra
equations for canonical variablesrm j give equations of mo-
tion ~21! for the charged particles. Note that the Lagrang
leads to these equations of motion, before choosing a ga
to fix A and F with; the equations of motion are gaug
independent results that should not depend on the choic
gauge.

B. Fixing the gauge

The electric and magnetic fields are defined in terms o
scalar and a vector potential. But there is gauge freed
which means that the scalar and vector potentials are
uniquely defined by the requirement that measurable ele
and magnetic fields satisfy Maxwell’s equations. We need
choose a gauge in order to find in the end a quantu
mechanical description of light interacting with the guest
oms. As in the situation without guest atoms in Sec. II,
generalized Coulomb gauge is chosen so that the vector
tential satisfies Eq.~3!. In this section, it will be checked
whether the equations of motion for the scalar and vec
potentials still lead to the third and fourth Maxwell equatio
after choosing the gauge. This must be the case becaus
choice of gauge should not change the physical predict
of the theory. Still, the check was not performed in Re
@17,18# and as we shall see, it will be very useful to do
here.

The gauge affects interaction term

LAF[«0E dr«~r !Ȧ•“F ~25!

of Lagrangian~23!. The term becomes identically zero b
cause in the generalized Coulomb gauge it has becom
inner product of a transverse and a longitudinal function. T
remaining terms in the Lagrangian involving the scalar p
tential lead to an Euler-Lagrange equation that is the ge
alized Poisson equation for the scalar potential in the C
lomb gauge:

«0“•@«~r !“F~r !#52sg . ~26!
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Clearly, the scalar potential cannot be chosen identically z
as in the situation without guest atoms. Gauge-fixing con
tion ~3! for the vector potential and Eq.~26! for the scalar
potential, together with the definition of electric field~2! in
terms of the two potentials, still lead to the third Maxwe
equation~20c!.

As in free space, the scalar potential is a function of
positions of the charges that make up the guest atoms@13#. In
other words, one can first solve the coupled equations
motion for the vector potential and the charges and fr
charge distributionsg(t) thus found, the scalar potentia
F(t) can be found as the solution of Eq.~26!. Therefore, the
scalar potential is not an independent canonical field.
grangian~23! can then be simplified as

L8min5(
m, j

1

2
meṙm j

2 2VC1E drL8min , ~27!

where Eqs.~25! and ~26! were used. Coulomb interactio
VC5(«0/2)*dr«(r )(“F)2 is a function of the guest atom
alone; the Lagrangian density in Eq.~27! becomes

L8min5
1

2
«0«~r !Ȧ22

1

2m0
~“3A!21Jg•A. ~28!

Which equation do we find for the vector potential aft
choosing the generalized Coulomb gauge? Let us begi
the other end; in order to be consistent with the fourth Ma
well equation~20d!, the vector potential should satisfy

m0
21

“3“3A1«0«~r !Ä5Jg2«0«~r !“Ḟ. ~29!

It is not obvious how source term2«0«(r )“Ḟ can appear at
the right-hand side of this equation by functional different
tion of the Lagrangian with respect to the vector potent
Before choosing the gauge, this source term originated fr
interaction termLAF @Eq. ~25!#, which is zero after choosing
the gauge. After choosing the generalized Coulomb gaug
more careful analysis is needed in order to find the fou
Maxwell equation.

IV. FUNCTIONAL DIFFERENTIATION AFTER
CHOOSING THE GAUGE

After choosing the gauge, the vector potential is gene
ized transverse. The Euler-Lagrange equation for the ve
potential is therefore an equation of motion of a constrain
system, where the constraint is gauge condition~3!. One
could try and solve this problem using the method
Lagrange multipliers@40# but this is not the route that will be
pursued here. Instead, the appropriate mathematical de
tion and computation of functional derivatives after choos
a gauge will be studied in the following sections IV A an
IV B, respectively. The results will be applied to our physic
problem in Sec. IV C.

A. Two definitions of functional derivatives

Let us generalize the problem somewhat by considerin
functional F5*drF with a functional densityF that de-
2-6
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pends on the three-dimensional vector fieldsX and Y. As-
sume also that at some stage, the generalized Coulomb g
will be chosen for the fieldY. This gauge is defined by th
requirement that“ r•@«(r )Y(r )# equals zero.

Before choosing the gauge, the functional derivative
functionalF with respect to vector fieldY is defined as

dF

dY~r !
[ lim

g→0

E dr 8$F@Y~r 8!1gd~r2r 8!I#2F@Y~r 8!#%

g
.

~30!

~TheX-dependence ofF was dropped for brevity.! The func-
tional derivative ofF with respect toY describes the relative
changes ofF when small variations proportional tod(r
2r 8)I are added to vector functionY. Here,d(r2r 8) is the
Dirac delta function in three dimensions; as before,I is the
unit tensor. It turns out that the right-hand side of Eq.~30!
can be computed as the partial derivative of functional d
sity F with respect toY. While doing this, theF can simply
be considered as a function andY as one of its variables
Before choosing the generalized Coulomb gauge, Eq.~30!
correctly defines the functional derivative ofF with respect
to Y.

Now suppose for the moment thatF is defined asF
5*drX •Y. Suppose also that fieldX is the product of«(r )
with some longitudinal vector field. Then,F becomes iden-
tically zero in the generalized Coulomb gauge because
the inner product of a transverse and a longitudinal vec
field. Still, functional derivative Eq.~30! of F would give a
nonzero answer. This can only mean that Eq.~30! does not
define the functional derivative with respect to generaliz
transverse functions correctly. The reason is that the func
space in which fieldY lives has become smaller by choosin
the gauge; it now lives in the subspace of functions that
generalized transverse. This also means that functional v
tions of Y should stay inside this subspace. In function
derivative ~30!, variations in the whole function space a
allowed and clearly,“ r8•@«(r 8)d(r2r 8)I# is nonzero.

In general, with every set of constraints a new functio
derivative can be associated. Here, only the gauge const
will be considered that functions be generalized transve
Functional differentiation with respect to generalized tra
verse functions can be defined as~see@36#, p. 20!

dF

dY«
T~r !

[ lim
g→0

E dr 8$F@Y~r 8!1gd«
T~r 8,r !#2F@Y~r 8!#%

g
,

~31!

with the generalized transverse delta functiond«
T as defined

in Eq. ~12!. In this functional derivative, the functional varia
tions do stay inside the generalized transverse subs
since d«

T is the projector into the subspace a
“ r8•@«(r 8)d«

T(r 8,r )#50. Derivative~31! will be called the
‘‘constrained functional derivative’’ in the following.
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B. Simple rules to compute constrained functional derivatives

Now the goal is to find simple rules to compute the co
strained functional derivative~31! with respect to general
ized transverse functions, just like the normal functional d
rivative ~30! can simply be calculated as a partial derivativ
With that goal in mind, first some properties of generaliz
transverse functions are derived.

With every transverse functionXT(r ), a generalized trans
verse function@XT(r )/«(r )# can be associated. From sectio
II B we know that the latter function has an expansion
terms of generalized transverse modeshl(r ), so thatXT(r )
can be expanded in terms of«(r )hl(r ). This simple fact, in
combination with Eqs.~11! and ~12!, leads to the following
projection properties ofd«

T :

E dr 8XT~r 8!•d«
T~r 8,r !5XT~r !, ~32a!

«~r !E dr 8d«
T~r ,r 8!•XT~r 8!/«~r 8!5XT~r !, ~32b!

E dr 8d«
T~r ,r 8!•XL~r 8!50, ~32c!

E dr 8«~r 8!XL~r 8!•d«
T~r 8,r !50, ~32d!

for any transverse functionXT ~zero divergence! and longi-
tudinal functionXL ~zero curl!.

With the use of Eqs.~32a! and~32d!, functional derivative
~31! is simple in the following two important cases:

d

dY«
T~r !

E dr 8XT~r 8!•Y~r 8!5XT~r !, ~33a!

d

dY«
T~r !

E dr 8«~r 8!XL~r 8!•Y~r 8!50, ~33b!

where XT and XL are arbitrary transverse and longitudin
functions, respectively. The second case~33b! makes clear
that the constrained functional derivative of inner products
transverse and longitudinal fields indeed gives zero; the
case~33a! shows that the partial-derivative-of-F computa-
tion rule still gives the correct answers for inner products
Y«

T with transverse functions.
How can the constrained functional derivative be calc

lated in the more general situation

d

dY«
T~r !

E dr 8X~r 8!•Y~r 8!, ~34!

whereX is a general vector function? It will now be show
that any vector fieldX can be decomposed such that the on
two rules of computation needed are the simple cases~33a!
and ~33b!.
2-7
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WUBS, SUTTORP, AND LAGENDIJK PHYSICAL REVIEW A68, 013822 ~2003!
Given vector fieldX, construct scalar fieldsX[2“•X.
Now, find potentialx, given ‘‘charge distribution’’sX and
dielectric function«0«(r ), from the following generalized
Poisson equation:

«0“•@«~r !“x~r !#52sX~r !. ~35!

This is a well-known problem in electrostatics. There is
unique solution forx of this inhomogeneous problem, give
the charge distribution and the boundary condition that
potential be zero at infinity. With potentialx thus found,
define two vector fieldsX1 andX2 as

X1[X~r !2«0«~r !“x~r !, ~36a!

X2[«0«~r !“x~r !, ~36b!

so that evidently,X5X11X2. Vector fieldX1 is transverse
by construction of potentialx; field @X2 /«(r )# is of course
longitudinal. In summary, the following theorem was prove
An arbitrary vector field can be uniquely decomposed int
part which, after division by«(r ) is longitudinal and a trans-
verse part.This theorem is useful for evaluating the co
strained functional derivative because it leads to

d

dY«
T~r !

E dr 8X~r 8!•Y~r 8!5X~r !2«0«~r !“x~r !,

~37!

where the unique decomposition ofX was used and the
simple derivatives Eqs.~33a! and ~33b! were applied toX1
andX2, respectively. The problem of computing a function
derivative with respect to a generalized transverse func
has thus been reduced to a problem in electrostatics. N
that the constrained functional derivative~37! produces a
field that is always transverse. That transverse field is eq
to the transverse part ofX if X itself is transverse or if
«(r )[1.

The unique decompositions~36a! and ~36b! of vector
fields is a generalization of the Helmholtz theorem@41# but
the name ‘‘generalized Helmholtz theorem’’ was alrea
given to a slightly different statement@18#, namely:Every
vector fieldZ can be uniquely decomposed as the sum o
generalized transverse vector fieldZ1 and a longitudinal
field Z2. ~The proof of this theorem in Ref.@18# begs the
question whether the part of the decomposition that is ca
longitudinal indeed has zero curl but one can show that
is the case.! As a corollary of decompositions~36a! and
~36b!, another short proof can be given of the generaliz
Helmholtz theorem. The proof is simple: givenZ, defineX
5«(r )Z. Then, apply the previous unique decomposition
X, as in Eqs.~36a! and ~36b!. DefineZ1[X1 /«(r ) andZ2
[X2 /«(r ). Then, it follows thatZ5Z11Z2, whereZ1 is a
generalized transverse andZ2 is a longitudinal field. This
completes the proof.

C. Functional derivatives of the minimal-coupling Lagrangian

The definition of the constrained functional derivative a
its computation rules can now be applied to our case of
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terest, where the functional is LagrangianL8min , Eq. ~27!,
and where the generalized Coulomb gauge applies to ve
potentialA.

Before choosing the gauge, the ‘‘ordinary’’ functional d
rivative ~30! of the Lagrangian of Eq.~24! with respect toA
leads to the fourth Maxwell equation~20d!, as it should.
After choosing the gauge, interaction termLAF @Eq. ~25!# in
the Lagrangian becomes identically zero. Its functional
rivative with respect toA should also be zero. This is indee
the case because constrained derivative~31! is the correct
one to use rather than ordinary functional derivative~30!
after choosing the gauge. Note that the constrained fu
tional derivative must also be used for free space after cho
ing the Coulomb gauge, withd«

T equal todT @Eq. ~13!#. For
free space, the machinery of functional derivatives usuall
not introduced and the derivative is taken implicitly, for e
ample, in Ref.@13#, p. 289.

The naive calculation of the canonical field in Eq.~7! of
Sec. II can now be justified:

d

dȦ«
T~r !

E dr 8«~r 8!Ȧ2~r 8!52«~r !Ȧ~r !. ~38!

One can find this result by realizing that the functional on
left-hand side is a special case of Eq.~33a! with fieldsX and
Y equal to«(r )Ȧ and Ȧ, respectively.

In the special case that vector fieldX is current densityJg
produced by the guest atoms in the dielectric, current con
vation implies that scalar fieldsJg

, as constructed in Sec
IV B equals the time derivative of physical charge dens
sg . By the uniqueness of the solution of the generaliz
Poisson equation, potentialx must then be identified with the
time derivative of physical scalar potentialF. Therefore, the
constrained functional derivative of*drJg•A can now be
computed as

d

dA«
T~r !

E dr 8Jg~r 8!•A~r 8!5Jg~r !2«0«~r !“Ḟ~r !.

~39!

With this result, the Euler-Lagrange equation for the vec
potential from Lagrangian~27! precisely becomes Eq.~29!
for the vector potential that we were looking for. Only by th
careful computation of functional derivatives, as presente
Secs. IV A and IV B, one can prove that the fourth Maxw
equation ~20d! also holds after choosing the generaliz
Coulomb gauge. Interestingly, before choosing the gauge

source term2«0«(r )“Ḟ in Eq. ~29! came from theLAF

interaction term~25! in the Lagrangian. After choosing th
gauge, however, the source term is produced by the c
strained functional derivative of the minimal-coupling inte
action term*drJg•A.

The left-hand side of wave equation~29! is certainly
transverse in the generalized Coulomb gauge. The right-h
side is also transverse. A mathematical reason is that
wave equation is found by functional differentiation with r
spect to generalized transverse functions. In Sec. IV B it w
2-8
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MULTIPOLE INTERACTION BETWEEN ATOMS AND . . . PHYSICAL REVIEW A68, 013822 ~2003!
shown that these derivatives are always transverse. Ph
cally, the source term must be transverse because of cu
conservation.@Use Eq.~26!.#

V. THE QUANTUM MULTIPOLAR INTERACTION
HAMILTONIAN

In the preceding sections it was shown that the minim
coupling Lagrangian produces the Maxwell-Lorentz eq
tions for the electromagnetic fields and the guest char
before and also after choosing the generalized Coulo
gauge. Now the goal is to transform the gauge-depend
minimal-coupling Lagrangian~27! in order to obtain a La-
grangian with multipole interaction between the electrom
netic field and the guest atoms. The multipolar Lagrang
must lead to the same equations for the fields and charge
course. Candidate transformations are transformations w
a total time derivative of a function of the canonical va
ables is added to the Lagrangian. Such transformations le
the action unchanged@13#. A particular transformation of this
sort will be used shortly but first some fields must be int
duced.

A. Polarization, magnetization, and displacement fields

In the following, it is useful to describe the guest atoms
terms of a polarization densityPg and a magnetization den
sity Mg , rather than in terms of the charge and current d
sities. The former and latter pairs are related through@39#:

sg52“•Pg , Jg5Ṗg1“3Mg . ~40!

In terms of the introduced variables, the equation of conti
ity is automatically satisfied. The polarization and magne
zation fields have the following integral representations@39#:

Pg~r ,t !52e(
m j

E
0

1

du~rm j2Rm!

3d„r2Rm2u~rm j2Rm!…, ~41a!

Mg~r ,t !52e(
m j

E
0

1

duu~rm j2Rm!

3 ṙm jd„r2Rm2u~rm j2Rm!…. ~41b!

These polarization and magnetization fields are simply
sums of fieldsPgm andMgm produced by the individual gues
atoms. Finite-order multipole expansions of the polarizat
and magnetization fields can be found by truncating the T
lor expansion inu of the integrands on the right-hand sid
of the above equations. Such approximations will be mad
Sec. V D.

Displacement fieldD and magnetic-field vectorH are
given by the following constitutive relations:

D[«0«~r !E1Pg , H[m0
21B2Mg . ~42!

Electric fieldE and magnetic fieldB are again defined by Eq
~2! in terms of a scalar potentialF and a vector potentialA.
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It was assumed as before that the dielectric is nonmagn
so that the magnetic permeability equals valuem0 of free
space. Note that dielectric function«(r ) is a property of the
dielectric alone, independent of the guest atoms. On the o
hand, displacement field~42! does depend on the guest a
oms because it includes the polarization field produced
them. The displacement field defined here is therefore dif
ent ~although the same symbol is used! from the displace-
ment field that was defined in Sec. II A, where no gu
atoms were present. In that case, the transversality ofD was
evident. The displacement field is also transverse when g
atoms are present, according to Eqs.~20c! and ~40! in com-
bination with Eq.~42!.

B. Classical multipolar Lagrangian and Hamiltonian

Minimal-coupling Lagrangian~27! will now be trans-
formed to a multipolar Lagrangian by adding to it the to
time derivative

2
d

dtE drP g~r ,t !•A~r ,t !. ~43!

This is the Power-Zienau-Woolley~PZW! transformation
and its effect is well known for free space@13#. The reason to
choose this transformation will be givena posteriori, when
discussing the multipolar Hamiltonian. The difference w
the free-space PZW transformation is that now the vec
potential satisfies the generalized rather than the usual C
lomb gauge. The transformation was already applied to
homogeneous dielectrics before, in Ref.@17#. There, it was
stated that polarization densityPg in the Lagrangian density
should be replaced by a ‘‘reduced polarization density’’
this point, in order to stick to the generalized Coulomb gau
for the vector potential. However, as will be clear short
such replacements are not necessary if functional derivat
with respect to the generalized transverse vector potentia
identified as constrained functional differentiations and
computation rules as presented in Sec. IV are used acc
ingly.

After adding term~43!, LagrangianLmulti can be rewritten
as

Lmulti5(
m j

1

2
meṙm j

2 2VC1E drL multi . ~44!

Lagrangian densityLmulti has form

Lmulti5
1

2
«0«~r !Ȧ22

1

2m0
~“3A!21M g•“3A2Pg•Ȧ,

~45!

where the definition of the magnetization density~41b! was
used as well as Gauss’s theorem. The derivation is iden
to the free-space case.

In order to find a Hamiltonian, first the canonically co
jugate variables must be determined. By reasoning as in
IV C, the constrained functional differentiation of Lagran
ian Lmulti with respect toȦ produces the following field tha
is canonically conjugate to the vector potential:
2-9
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WUBS, SUTTORP, AND LAGENDIJK PHYSICAL REVIEW A68, 013822 ~2003!
P[
dLmulti

dȦ«
T

5«0«~r !Ȧ2@Pg2«0«~r !“F#52D. ~46!

Here, the definition of electric field~2! and displacemen
field ~42! were used. As in the case without guest atoms,
field canonically conjugate to the vector potential equals
nus of the displacement field. The difference is that now
displacement field also contains the polarization field p
duced by the guest atoms. The canonically conjugate fi
would have been different if the minimal-coupling Lagran
ian had been used.

The resulting Eq.~46! that the canonically conjugate fiel
of the vector potential is the full displacement field of t
medium including guest atoms, is an important general
tion of the free-space result@13#. In our formalism, it could
be found rather easily, by realizing that functional derivativ
must be redefined after choosing a gauge. In Ref.@17#, a
canonically conjugate field was identified, which was sta
to be different from the displacement field; in Ref.@18#, the
matter was reconsidered and the displacement field
found as the canonically conjugate field after all but on
because polarization fieldPg in PZW transformation~43!
was replaced by a reduced polarization field for reasons
remain somewhat unclear. The effect of the replacem
seems to be that functional derivatives with respect to
vector potential can be calculated as partial derivatives
computation rule that in general is valid only before cho
ing the gauge. In contrast, our PZW transformation~43! fea-
tures the usual polarization field of the guest atoms, whe
we choose to do the transformation before or after fixing
gauge. We think that our approach is more transparent
more widely applicable.

Canonical momentapm j corresponding to coordinate var
ablesqm j of the guest charges are

pm j5meṙm j2Fm j , ~47!

where fieldFm j stems from magnetization density~41b! and
is defined as

Fm j[eE
0

1

duuB@Rm2u~rm j2Rm!#3~rm j2Rm!. ~48!

Note that unlikeA andqm j , their canonically conjugate vari
ablesP andpm j are not fully electromagnetic or fully atomi
in nature, respectively.

All canonical momenta have now been determined so
the multipolar HamiltonianHmulti can be given in terms o
the canonical variables (rm j ,pm j) and canonical fields
(A,P):

Hmulti5(
m j

pm j• ṙm j1E drP•Ȧ2Lmulti ~49!

5H rad1Hat1(
m

@VP
(m)1VM

(m)#. ~50!
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The total Hamiltonian consist of a radiative and an atom
part, plus electric and magnetic interactions between fi
and matter. The radiative part of the Hamiltonian is

H rad5E dr F P2

2«0«~r !
1

B2

2m0
G , ~51!

consisting of an electric and magnetic field-energy term,
spectively. The form of the radiative Hamiltonian has n
changed after adding the guest atoms but there is a s
shift in its interpretation since the polarization of the atoms
included in the conjugate field. The atomic polarization fie
of atom m interacts with the electromagnetic field as d
scribed by

VP
(m)5E dr

Pgm•P

«0«~r !
. ~52!

In most cases, this is the dominant interaction between fi
and matter. The usually weaker magnetic interaction cons
of two terms:

VM
(m)52Mgm8 •B1(

m j

Fm j
2

2me
. ~53!

The first term is linear in the magnetic field and represe
the paramagnetic energy. Instead of magnetizationMgm , a
reduced magnetizationMgm8 has been used in this first term
The reduced magnetization is defined as the magnetiza
@see Eq.~41b!# with the ṙm j replaced bypm j /me @13,17#. The
difference has been corrected for by a sign change of
second term, which is quadratic in the magnetic field. This
the diamagnetic energy of the guest atoms in the nonm
netic dielectric. It can be safely ignored from now on since
is much smaller than the other two interactions~see Ref.
@11#, Sec. 8.6!.

Only the atomic part Hamiltonian~50! must still be dis-
cussed. It has form

(
m j

pm j
2

2me
1E dr

Pg
2

2«0«~r !
. ~54!

The first term in the atomic Hamiltonian~54! represents the
kinetic energy of the guest charges; the second term is
potential energy of the guest atoms, expressed as a pola
tion energy. The Coulomb termVC is absent in the Hamil-
tonian, because it cancels against the other term quadrat
“F which one gets when solving Eq.~46! for Ȧ and substi-
tuting the result in Hamiltonian~50!.

It is natural to split the polarization energy in Eq.~50! into
an intra-atomic and an interatomic polarization energy,
spectively@13,18#:

E dr
Pg

2

2«0«~r !
5(

m
E dr

Pgm
2

2«0«~r !
1 (

mÞn
E dr

Pgm•Pgn

«0«~r !
.

~55!

The intra-atomic polarization energy is the potential ene
that keeps an atom together; the interatomic polarization
ergy is the only interaction term between neutral atoms
2-10
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MULTIPOLE INTERACTION BETWEEN ATOMS AND . . . PHYSICAL REVIEW A68, 013822 ~2003!
multipolar Hamiltonian~50!. The Hamiltonian is still classi-
cal, so that polarization fieldPgm(r ) @Eq. ~41a!# is identically
zero outside the smallest sphere surrounding all charges
make up~neutral! atomm. For that reason, the classical in
teratomic polarization energy~also known as contact energy!
is identically zero unless bounding spheres of distinct gu
atoms overlap. In the quantum-mechanical description
will be given shortly, the expectation value of the polariz
tion energy will not be identically zero. The atomic wav
functions of distinct guest atoms have a nonvanishing ov
lap. However, the overlap falls off exponentially with inte
atomic distance and is negligible unless the distance is of
order of the size of the atoms.

In the rest of this paper, the guest atoms are assumed m
than a few nanometers apart and their contact energies
neglected. Then, the atomic Hamiltonian for all guest ato
is simply the sum of single-atom Hamiltonians

Hat
(m)5(

j

pm j
2

2me
1E dr

Pgm
2

2«0«~r !
. ~56!

The total Hamiltonian Eq.~50! becomes

Hmulti5H rad1(
m

@Hat
(m)1VP

(m)1VM
(m)#. ~57!

Just like in the free-space case@13#, in multipole Hamil-
tonian~57! for inhomogeneous dielectrics, there is no insta
taneous interaction term left between well-separated neu
guest atoms. This means that in the multipolar represe
tion, atoms notice each other only because they interact
the same~retarded! electromagnetic fieldsD/@«0«(r )# and
B. Of course, the multipolar and the minimal-coupling re
resentations should give identical physical predictions;
Refs. @12,13# the equivalence is proved for several obse
ables in free space. The absence of direct interatomic in
actions often makes calculations simpler in the multipo
representation. This justifies the choice of PZW transform
tion ~43! out of many candidate transformations.

C. Quantum multipolar Hamiltonian

The goal is now to rewrite Hamiltonian~57! into a
second-quantization form, where macroscopic quantiza
has been applied to the electromagnetic field and mic
scopic quantization to the guest atoms.

First start with atomic Hamiltonian Eq.~56!. Following
~standard! quantum mechanics, electron coordinatesrm j(t)
and their canonical momentapm j(t) @Eq. ~47!#, as well as
polarization fieldPg , become operators that work on th
atomic wave functions. The single-atom wave functions c
be expanded in terms of eigenfunctions~labeledk) of the
single-atom Hamiltonian:

Cm~r1 ,r2 , . . . ,rZm
;t !5(

k
cmk~ t !cmk~r1 ,r2 , . . . ,rZm

!.

~58!

Second-quantization notation can now be introduced by p
moting probability amplitudescmk(t) andcmk* (t) to become
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annihilation and creation operators with standard antico
mutation relations. These operators become the atomic
nonical variables in the second-quantization picture.~One
could even go back and start with a Lagrangian that ide
fies Cm and Cm* as canonical conjugates@22#.! The atomic
operators can be written as sums over matrix elements.
example, the atomic Hamiltonian of atomm in standard
second-quantization notation isHat

(m)5(kEk
(m)cmk

† cmk .
The vector potential was again chosen generalized tra

verse and its canonically conjugate field~46! turned out to be
transverse again so that these field operators can be expa
in terms of generalized transverse modes, as in Eqs.~19a!
and ~19b!. The creation and annihilation operators are wr
ten asal

† andal , respectively, now that atoms are prese
Radiative part ~51! of the Hamiltonian becomesH rad

5(l\vl(al
†al1 1

2 ).
Interaction termsVP

(m) and VM
(m) in second-quantization

notation become

VP
(m)52E dr

Pgm~r !•D~r !

«0«~r !

52 i(
l

(
k,k8

A\vl

2«0
Falcmk

† cmk8

3E drPgm,kk8~r !•fl~r !2H.c.G , ~59a!

VM
(m)52E drM gm8 ~r !•B~r !

52(
l

(
k,k8

A \

2«0vl
Halcmk

† cmk8

3E drM gm,kk8
8 ~r !•@“3fl~r !#1H.c.J . ~59b!

Quantity Pgm,kk8(r ) in Eq. ~59a! is the matrix element of
polarization fieldPgm(r ) with respect to statescmk andcmk8
of atom m. The polarization field couples to field
2D/@«0«(r )#, which is unequal to2E/«0. The interpreta-
tion of the interaction is subtle since in definition~42! of the
displacement field the polarization of the guest atoms is
cluded. InteractionVP

(m) therefore includes a self-interactio
of the polarization field. However, in the expansion in E
~59a! of the interaction in terms of the optical modes, diele
tric function«(r ) drops out and the coupling becomes rath
simple.

There are no analogous self-interactions in magnetic
teractionVM

(m) . The magnetic field and the reduced magne
zation field are canonically independent andMg8 is not in-
cluded in the definition ofB. All four terms in the quantum
multipolar Hamiltonian~57! have now been given in second
quantization notation.

D. Dipole approximation

An atom is much smaller than an optical wavelength;
spatial structure cannot be probed with light. One can m
2-11
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WUBS, SUTTORP, AND LAGENDIJK PHYSICAL REVIEW A68, 013822 ~2003!
the well-known assumption that the polarization and mag
tization fields associated with the atom are concentrated i
center of massRm ~the nucleus, say!. Mathematically, this
means that the integrands in Eqs.~41a! and ~41b! are ap-
proximated by their values inu50. These two values are th
first terms of two infinite Taylor expansions in terms of va
able u. The dipole approximation is made by keeping on
the first term.

Incidentally, the next terms in the Taylor expansio
would describe quadrupole interactions, which can be imp
tant when the guest atoms are not real atoms but o
~larger! quantum systems in interaction with the electroma
netic field. For example, quantum dots~artificial atoms! are
much larger than real atoms and so their dipole moments
be much larger as well@42#. Quadrupole moments are mo
important for quantum dots than for real atoms, especi
when excited in their near field by a scanning near-field
tical microscope@43#. In the following, however, quadrupol
and higher-order moments are neglected.

In the dipole approximation, the magnetization~reduced
or not! becomes identically zero and the polarization fie
becomes

Pgm~r !5d~r2Rm!(
k,k8

cmk
† mnk8

(m)cmk8 , ~60!

where the atomic dipole matrix elementsmkk8
(m) of guest atom

m are defined as

mkk8
(m)[2e^cmku(

j
~rm j2Rm!ucmk8&. ~61!

With Eq. ~59a!, it follows that in the dipole approximation
the interaction energy of an atom with the electromagn
field in an inhomogeneous dielectric equals

Vdip
(m)52(

kk8
cmk

† cmk8mkk8
(m)

•D~Rm!/@«0«~Rm!#

52 i(
l

(
kk8
A\vl

2«0
@alcmk

† cmk8mkk8
(m)

•fl~Rm!2H.c.#.

~62!

This gives the important result that inside an inhomogene
dielectric, a dipole couples to field2D/@«0«(r )#. This gen-
eralization of the free-space dipole coupling@13,22,23# was
also found in Refs.@17,18#. As we shall see in the following
section V E, local-field effects can have a strong influence
this interaction. Still, local-field effects are often neglected
macroscopic quantization theories@15,17–19#.

E. In need of a local-field model

In Sec. V C it was not stressed that atomic Hamilton
~56!, in general, is different for an atom in a dielectric and
free space. The potential energy in Eq.~56!, which includes
the Coulomb potential, is reduced by a factor«(r ) as com-
pared to free space.~Such a reduction factor is well know
for dielectric-filled capacitors.! As a consequence, energ
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levels and wave functions will be different in a dielectri
This point is missed if one starts with a second-quantiz
description, for example, when introducing in the medium
‘‘two-level atom’’ with known transition frequency and di
pole moment.

First suppose that the dielectric function is a macrosco
cally averaged quantity that does not change on ato
length scales. Then,«(r ) must be unchanged by introducin
a guest atom and Hamiltonian~56! can be approximated by

Hat
(m)'

1

2me
(

j
pm j

2 1
1

2«0«~Rm!
E drPgm

2 . ~63!

If the guest atom were a hydrogen atom then its Bohr rad
and dipole moments would increase by a factor«(Rm) and
its energy levels would be reduced by the same factor,
cording to this Hamiltonian. Any visible line in free spac
would then be shifted to the infrared in a dielectric. T
consequences of approximation~63! would be that the di-
electric has a huge effect on the atom’s electronic propert
Now the reduction of the Coulomb potential~as well as its
screening as a function of distance! is a well-studied subjec
in solid-state physics@44#. Sometimes one finds the full re
duction @as described by Hamiltonian~63!# while in other
cases no reduction is found at all.

In general, outer electronic states of atoms will be mo
affected by the dielectric than the core electrons. An imp
tant reason for this is the dispersive interaction of the gu
atoms with the atoms that make up the medium. Howev
such frequency dispersion in the medium is neglected in
present formalism. We should therefore not have the am
tion to find an atomic Hamiltonian that leads to correct inn
and outer electronic states, including medium effects. A m
est model is needed that meets the requirement that en
levels taking part in the optical transitions under stu
should come out right. Such a model might be obtained
assuming that the atom sits inside an atom-sized cavity w
a relative dielectric function«(Rm) that is constant inside the
cavity; in general,«(Rm) will be different both from the
macroscopic dielectric function just outside the cavity, a
unity ~the free-space value!. More ambitious descriptions o
medium effects on atomic Hamiltonians require at least t
dispersion of the dielectric is taken into account, perha
starting from a microscopic model of the dielectric@33–35#.

A well-known case, where reduction of potential energy
important, occurs when doping solid silicon with phosphor
to make ann-type semiconductor. The high dielectric co
stant of Si («511.7) reduces the potential energy betwe
the outermost electron and the rest of the P-atom, so tha
electron can enter the conduction band relatively easily, le
ing a P1 ion @45#. As said before, modifications other tha
~63! of the atomic Hamiltonian are possible. An importa
example of the other extreme case, where a reduction of
Coulomb interaction is absent, will be given shortly.

We are interested in atomic lifetime changes and l
shifts caused by the medium. In general, the medium indu
changes both in atomic Hamiltonian~56! and in the atom-
field interactions, as compared to free space. Effects of
medium, which are caused by changes in the atomic Ha
2-12



i
th

ts
pe
er
lec
t

th
th

ift
a
e
on
an
an

s i
o
o

n
en
f

ec

es
e,

d
th

an
to
s
a

his
e
h

lv-
he

e
ie
n

-
e
e
o
is

n
c

al-
the

t
low-
ate
lts,
did
x.

ed
n-

to
el

he
eld

ys
nly
ac-
ac-
in-
tric

er
the

be
pic
ale.

nce
in

au-
to

ing
mul-
ree
ld,
d,
n-

in
ling

a-
us

MULTIPOLE INTERACTION BETWEEN ATOMS AND . . . PHYSICAL REVIEW A68, 013822 ~2003!
tonian will be called electronic effects. Changes in atom
dipole moments are an example of electronic effects. On
other hand, effects due to modified interactionsVP

(m) and
VM

(m) between field and atom will be called photonic effec
It is the photonic effects, the changes due to altered pro
ties of the electromagnetic field, which are of primary int
est here and in photonics at large. However, only if the e
tronic changes of the atoms are somehow either absen
accounted for, can one study the photonic effects. In
respect, it is fortunate that line shifts due to changes in
interactions~radiative or Lamb shifts! in a medium usually
are too small to be observable and electronic line sh
dominate. Line shifts can therefore be used to estim
medium-induced changes in the atomic Hamiltonian. Giv
a line shift, one could assign an effective dielectric functi
«(Rm) for the atomic cavity that produces the observed tr
sition frequency when inserted in the atomic Hamiltoni
Eq. ~63!.

The distinction between photonic and electronic effect
also very important in the interpretation of experiments. F
example, the recently observed fivefold reduction
spontaneous-emission rates inside photonic crystals@46# is a
photonic effect since possible changes in dipole mome
were divided out by choosing a reference sample with id
tical electronic effects@47#. Some earlier observations o
long lifetimes in photonic crystals must be attributed to el
tronic effects@48#.

When studying photonic effects of a medium, the gu
atoms ideally are electronically the same as in free spac
particular, with the same eigenfrequencies and transition
pole moments. In that ideal case, which we refer as
empty-cavity model, we have

«~Rm!51 ;m. ~64!

The atomic Hamiltonian is as in approximation Eq.~63!,
now with «(Rm) equal to 1. In other words, guest atoms c
only be ideal if the dielectric function is locally changed
the free-space value 1. The atom, as in free space, sits in
an empty cavity inside the dielectric. A reduction of the intr
atomic Coulomb interaction is completely absent in t
empty-cavity model. The formation of such a cavity is b
yond the scope of the present macroscopic theory. T
would require microscopic theories of the dielectric, invo
ing the Pauli exclusion principle for electrons of both t
dielectric and the guest atoms.

The empty-cavity model captures the observed absenc
large electronic effects of the dielectric on atomic propert
of interest but at the same time, the model has conseque
for photonic properties: the local changes in« will give local
changes in mode functionsfl and therefore in dipole cou
pling Eq. ~62!. Atomic spontaneous-emission rates will g
local-field corrections. These predictions can be tested
perimentally. An important example is the emission rate
an atom inside an atomic-sized empty cavity in an otherw
homogeneous medium. To be precise,«(R)5« for R not
coinciding with any of theRm . The emission rate is
@3«/(2«11)#2A«G0, whereG0 is the free-space emissio
rate@16#. The well-known in-medium enhancement by a fa
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tor A« is further enhanced by the square of a so-called loc
field factor. Here, the term between the square brackets is
empty-cavity local-field factor.

In a recent study@49# of refractive-index dependen
spontaneous-emission rates, atoms were embedded in a
index molecular complex so as to electronically separ
them from the medium. For the interpretation of the resu
it was important that atomic spectra and dipole moments
not change appreciably while varying the refractive inde
The empty-cavity local-field factor was indeed observ
@49#. This result is a justification for the macroscopic qua
tization theory for nondispersive dielectrics.

For inhomogeneous dielectrics, it is in general not easy
calculate local-field factors, either in the empty-cavity mod
~64! or in other models. The simplest assumption in t
empty-cavity model is that the position-dependent local-fi
factors will have values 3«b(Rm)/@2«b(Rm)11#, where
«b(Rm) is the bulk dielectric function around atomm. The
assumption will probably break down when«b(R) varies
strongly on the scale of the wavelength of light.

The atomic Hamiltonian can be changed in many wa
and consequently, empty-cavity factors are not the o
local-field factors that can be obtained from the present m
roscopic quantization formalism. One could give up the m
roscopic quantization as being too phenomenological and
stead, describe the microscopic constituents of the dielec
in the vicinity of the guest atom. This could lead to oth
local-field factors, depending on the question whether
guest atom sits inside a real cavity inside the dielectric@of
which empty cavity~64! is a special case# or not. For homo-
geneous dielectrics, see Refs.@33,50,51# and references
therein. However, for inhomogeneous dielectrics it will
hard to tie a local microscopic approach to the macrosco
description of the inhomogeneous medium on a larger sc

VI. DIPOLE-COUPLING CONTROVERSY

Many papers appeared in the 1980s about the equivale
of the minimal-coupling and the multipolar Hamiltonian
free space, for example Refs.@20–24#. The Hamiltonians
sometimes lead to different results in calculations. Some
thors argued that the minimal-coupling Hamiltonian was
be preferred, while others proposed to refrain from us
gauge-dependent equations to stop the confusion. In the
tipolar picture, a controversy arose whether a dipole in f
space couples to minus of the displacement fie
2m•D/«0, or to the transverse part of the electric fiel
2m•ET. The first answer is correct and the book by Cohe
Tannoudjiet al.helped to settle the argument@13#. It may be
useful to give two sources of confusion even for an atom
free space and to compare the free-space dipole coup
with its in-medium generalization Eq.~62!.

The main source of confusion is related to approxim
tions. It was found in Sec. V D that a dipole couples to min
of the displacement field:

2D~Rm!/@«0«~Rm!#52
@«~Rm!E~Rm!1Pg~Rm!#

«0«~Rm!
,

~65!
2-13
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WUBS, SUTTORP, AND LAGENDIJK PHYSICAL REVIEW A68, 013822 ~2003!
wherePg is the polarization field of the guest atom itself.
free space, or when assuming an empty-cavity model, a
pole couples to field2D/«0. Still, one can find reference
stating that in free space or in a dielectric@16#, a dipole
couples to minus of the electric field. The origin of this m
taken interpretation can be traced back to the normal-m
expansion of the displacement field operator for the die
tric with guest atoms

D~r !5 i«0«~r !(
l
A\vl

2«0
@alfl~r !2al

†fl* ~r !#. ~66!

The expanded form of the displacement operator is alm
the same as in a dielectric without guest atoms@minus Eq.
~19b!# but the two differences will now be discussed. T
first difference, which also plays a role for free space, is t
the equations of motion of the creation and annihilation
erators in Eq.~66! have terms involving the atomic variable
that the equations of motion of their counterpartsal

(0) and
al

(0)† for the field without guests do not have. If one appro
mates displacement field~66! by replacing all theal andal

†

by al
(0) and al

(0)† , respectively, then in free space the d
placement field~66! is equal to the electric field in the ab
sence of the guest atoms. In other words, if the guest at
are taken into account in Maxwell’s equations, then one fi
a dipole coupling to the displacement field, whereas a c
pling to the electric field is found when guest atoms are
out of Maxwell’s equations. It depends on the observa
under study whether the difference between the two dip
couplings can be neglected or not.

The second difference between displacement field~66!
~with guests! and its counterpart~no guests! is that mode
functions will be changed locally when guest atoms
present, as discussed previously. This difference does
show up in the free-space discussion, of course. In a die
tric, the above approximation of replacing the creation a
annihilation operators does not make the displacement
equal to the electric field. The replacement would only ha
this effect for positionsr in the medium where«(r ) equals 1
and where local-field effects can be neglected.

Apart from the main source of confusion, there is anot
reason why the interpretation of the dipole coupling can
confusing: there are two essentially different procedures
go from a minimal-coupling Hamiltonian to a dipole Ham
tonian. The first procedure is to rewrite a minimal-coupli
Hamiltonian as a multipolar or dipole Hamiltonian by c
nonical transformations of its variables~different variables,
same Hamiltonian and states!. The second procedure is
unitary change of picture~different Hamiltonian, different
states, same expectation values!. Unlike canonical transfor-
mations, picture changes have no classical analogues.
fusion is likely to arise when after a canonical change
Hamiltonian has exactly the same form as after a pict
change. The differences between the two procedures are
cellently presented in Ref.@23# for an atom in free space
Either of the two procedures could be chosen for dielect
as well; in this paper, the PZW transformation of the L
grangian was used instead.
01382
i-

e
-

st

t
-

-

s
s

u-
ft
e
le

e
ot
c-
d
ld
e

r
e
to

n-
a
e
ex-

s
-

VII. INHOMOGENEOUS MAGNETIC MEDIA

The present formalism can be generalized to dielect
with inhomogeneous magnetic properties as well, where
magnetic permeability becomesm0m(r ) rather thanm0. ~So,
here ‘‘m ’’ does not represent the magnitude of a dipolem.!
Such generalizations are even more interesting now that
called left-handed materials@52# have become the subject o
intense scientific discussions, after a prediction that a per
lens could be made with them@53#. Both «(r ) andm(r ) of
left-handed materials are negative. Index of refractionn(r ) is
also negative and this leads to many peculiar propert
Left-handed materials will influence spontaneous-emiss
rates of nearby guest atoms in different ways than their rig
handed counterparts@54#.

Generalizations to magnetic media were already con
ered in Refs.@17,18# and it is relatively straightforward to
incorporate position-dependent permeabilities in the form
ism of this paper, as we will see now. Whenm becomes
position dependent, then the only term that will change in
classical multipolar Hamiltonian~57! is magnetic-field en-
ergy *drB2(r )/@2m0m(r )#. The quantum-mechanical de
scription can again be carried out by choosing the gene
ized Coulomb gauge for the vector potential. Without gu
atoms, the vector potential satisfies the source-free w
equation

“3F 1

m~r !
“3A~r !G1

«~r !

c2
Ä~r !50. ~67!

The electromagnetic field can be expanded in terms of
modesmn different from modesfl . These modes are th
harmonic solutions of wave equation~67! and so, they are
generalized transverse, just like modesfl of the nonmagnetic
medium. Canonical fields can be found by calculating co
strained functional derivatives in the same way as prese
in Sec. IV A. It is this point that makes the generalization
magnetic media relatively simple. In second-quantization
tation, the electromagnetic field energy becom
(n\vn(dn

†dn1 1
2 ), where dn

† is the creation operator of a
photon in modemn(r ). These modes can have mode profil
that differ much from any of modesfl(r ), but otherwise the
theoretical description of the medium is not much differe
In electric and magnetic interactions~59a! and ~59b! of the
electromagnetic field with guest atoms, the modesfl can just
be replaced bymn and operatorscl

(†) by dn
(†) in order to take

both the electric and magnetic properties of the medium i
account. As for nonmagnetic media, in the dipole appro
mation magnetic interaction~59b! is zero; electric dipole in-
teraction~59a! dominates, except for optical transitions wi
zero dipole moments. When dipole moments are nonzero
main effect of the dielectric becoming magnetic comes fr
the change in the mode functions.

VIII. SUMMARY AND DISCUSSION

The aim of the paper was to find a Hamiltonian of gue
atoms in an inhomogeneous dielectric, with a multipolar
2-14



e
l-
n

m
u

y
ng

ag
Th

e
a
e
iti

th
en
ia
w
,

ns
th
n
hi
e
u
th
in

t
e
o
ti

ot

rip
ic
nc

th
d

g
. If
he
eld
to

ode

a-
o-
ou-
osen
een
ned
en

ul-
and
rly

n-
ce of

ong
l-

lar
to
the

ing
nd
are

er
mu-
the

ace:
an
ng
e-

d
rt

teel
by

der-

MULTIPOLE INTERACTION BETWEEN ATOMS AND . . . PHYSICAL REVIEW A68, 013822 ~2003!
teraction between the atoms and the electromagnetic fi
The multipolar Hamiltonian is simpler than the minima
coupling Hamiltonian because in the former all interactio
between the atoms are mediated by the retarded electro
netic field. The main results are therefore the quantum m
tipolar interaction Hamiltonian~57! together with its dipole
approximation~62!. With this Hamiltonian, one can stud
how an inhomogeneous dielectric environment can cha
quantum optical processes of resonant atoms.

In order to obtain the central results, first the electrom
netic field was quantized in the absence of guest atoms.
has certainly been carried out before@15–17,36# but after
explaining why real optical mode functions can be us
whenever«(r ) is real, the quantization becomes simpler th
found in Refs.@16,17,36#. In particular, only when real mod
functions are chosen are the associated generalized pos
and momenta Hermitian@see Eq.~16!#.

Guest atoms were introduced into the theory such
Maxwell’s equations hold with the atomic charge and curr
densities as source terms. A minimal-coupling Lagrang
that gives rise to these equations was easily written do
However, after choosing a generalized Coulomb gauge
was not directly clear how to obtain all Maxwell’s equatio
in this particular gauge. In Sec. IV, it was explained that
usual functional derivative must be replaced by a ‘‘co
strained functional derivative’’ after choosing a gauge. T
is for mathematical reasons rather than a matter of tast
convenience. Simple rules are given to actually comp
these constrained functional derivatives. As a result,
gauge-independent Maxwell’s equations were found to
deed hold in the generalized Coulomb gauge as well@see Eq.
~39!#.

There is a second advantage of our careful treatmen
functional differentiation. In the multipolar formalism, th
field in the dielectric canonically conjugate to the vector p
tential could relatively easily and unambiguously be iden
fied as minus of the full displacement field@see Eq.~46!#.
This field contains the polarization fields produced by b
the dielectric and the guest atoms.

Another important result is that the macroscopic desc
tion of the dielectric could only be tied up to the microscop
description of the atoms by assuming that the dielectric fu
tion is locally modified by the presence of the guest atom
In particular, in the empty-cavity model@Eq. ~64!#, the di-
electric function has value 1 where wave functions of
guest atoms are nonzero. The local modification of the
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electric function will also change the dipole coupling, givin
rise to local-field effects in spontaneous-emission rates
one would start with a two- or three-level description for t
guest atoms, then one implicitly already assumes a local-fi
model for the dielectric function. Consistency requires one
also choose that local-field model when calculating the m
functions in the dipole interaction~62!.

The application of the Power-Zienau-Woolley transform
tion to the minimal-coupling Lagrangian was shown to pr
duce the multipolar Lagrangian, after the generalized C
lomb gauge had been chosen. Actually, the gauge was ch
earlier than strictly necessary: the choice could have b
postponed until the canonical momenta were determi
from the multipolar Lagrangian. The story would have be
simpler up to that point. The difficulty to find all Maxwell’s
equations would then show up only after obtaining the m
tipolar Lagrangian. The reason to first choose the gauge
then do the PZW transformation is that it shows more clea
that the difficulty to find all Maxwell’s equations was a co
sequence of choosing the gauge rather than a consequen
the PZW transformation.

More generally, the presentation given here is one am
many possibilities. When going from a classical minima
coupling Lagrangian to a quantum mechanical multipo
Hamiltonian, one has to make four steps: one step is
choose a gauge, another step is to transform the theory to
multipolar formalism. Yet another step is made when go
from a Lagrangian to a Hamiltonian and quantization a
second quantization together are step number four. These
now given in the order in which they occurred in this pap
but the steps can be interchanged. Not all of the 24 per
tations are convenient, but all routes should lead to
equivalent final results. It was shown in detail in Ref.@21#
that step two and three can be interchanged for free sp
the PZW transformation of the minimal-coupling Lagrangi
is equivalent to a picture change of the minimal-coupli
Hamiltonian. The equivalence will also hold for inhomog
neous dielectrics.
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