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Multipole interaction between atoms and their photonic environment
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Macroscopic field quantization is presented for a nondispersive photonic dielectric environment, both in the
absence and presence of guest atoms. Starting with a minimal-coupling Lagrangian, a careful look at functional
derivatives shows how to obtain Maxwell’s equations before and after choosing a suitable gauge. A Hamil-
tonian is derived with a multipolar interaction between the guest atoms and the electromagnetic field. Canoni-
cal variables and fields are determined and in particular, the field canonically conjugate to the vector potential
is identified by functional differentiation as minus the full displacement field. An important result is that inside
the dielectric a dipole couples to a field that is neither (th@ensversgelectric nor the macroscopic displace-
ment field. The dielectric function is different from the bulk dielectric function at the position of the dipole, so
that local-field effects must be taken into account.
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. INTRODUCTION radius[10]. In this paper, the relative dielectric functiefr)
is left unspecified(but assume it to be piecewise continu-
Optical properties of atoms, such as spontaneouseusly differentiablg so that the theory describes both piece-
emission rates, can be strongly influenced by their dielectrigvise constant and continuously varying dielectric functions.
environment 1]. It is well known that near a mirror, emis- The quantization of the electromagnetic field in free space
sion rates can be enhanced or diminished, depending on tlwan be found in many textbooks on quantum opitics-14].
distance to the mirror and the orientation of the atomic di-In Refs.[15-1§, the more general problem is addressed how
pole moment2,3]. Inside optical cavities, lifetime effects to quantize the electromagnetic field in a dielectric described
are even strongd#]. In three-dimensional photonic crystals by a given real dielectric functioa(r) that depends on po-
with a photonic band gap, spontaneous emission would evesition. The term “macroscopic quantization” has been coined
be fully inhibited at any position in the crystal for atomic for this procedurg17]. The special case of infinite photonic
transition frequencies within the band g@pl. Not only  crystals is treated in Ref19].
single-atom properties but also properties of two or several Guest atoms can be described theoretically essentially in
of atoms, such as dipole-dipole interactions and superradtwo ways. The simplest way is to treat them as known probes
ance, will be influenced by the dielectric environment.of the electromagnetic field in the medium. In that case, the
Again, extreme changes compared to free space can occelectromagnetic fields are found from Maxwell’s equations
for atoms positioned inside microcaviti¢s,7] or photonic  in the absence of the guest atoms; the guests are introduced
crystals[8,9]. as atoms with given properties such as transition frequencies
The above medium-modified processes must be describethd dipole moments. The atoms are assumed to couple to the
by a quantum optical theory of dielectrics. In this paper suclfields that were found in their absence. The second, and more
a theory will be given of guest atoms interacting with a pho-fundamental, way to introduce guest atoms into the theory is
tonic dielectric environment that is characterized by a giverto start with Maxwell’s equations that also contain as sources
spatially varying and real dielectric functier{r). The guest the charges that make up the guest atoms. In this second
atoms, by definition, are the atoms which are not included irapproach, a Hamiltonian for the combined system of charges
the dielectric function. These guests will be described microand fields should be found, which leads to Maxwell's equa-
scopically, whereas the dielectric is described macroscopitons, both inside and outside the atoms.
cally in terms of the dielectric function only. Even for an atom in free space, the difference between
Dielectric mirrors and photonic crystals are usually de-these two approaches has led to debates on how to interpret
scribed by a frequency-independent spatially varying refracthe field to which a dipole couples, either to the transverse
tive index. Optical components such as glass plates, lensesart of the electric field or to the displacement figk®—24.
and optical cavities are some more examples. In many caseBhe latter coupling is the corre¢inore fundamentalinter-
the refractive index can be considered as piecewise constaptetation[13] but for most observables, there are no numeri-
but not always; in the so-called graded-index optical fibresal punishments when interpreting the field wrongly. How-
the refractive index in the core varies parabolically with theever, inside a dielectric, there would be a considerable
difference between an atom coupling to the electric field or
to the displacement field. In this paper, it will be shown by
*Electronic address: c.m.wubs@tn.utwente.nl; URL: http:/using the second, more fundamental, way of introducing
tnweb.tn.utwente.nl/cops/ guest atoms that neither dipole coupling is correct in a di-
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electric. Moreover, the need to consider local-field effectsvector potential can be answered more easily than in Refs.
will arise in a natural way. [17,18 and the answer will be different than that presented
Of course, one does not tell the whole truth about a diin Ref.[17]. The multipolar Hamiltonian and its dipole ap-
electric when describing it by a real, nondispersive, and spaProximation are given in second-quantization notation. Re-
tially varying dielectric functione(r). In a macroscopic de- Sults are compared to the free-space case. The free-space
scription one forgets details of the microscopic constituentslipole-coupling controversy and confusion is reviewed in
of the dielectric. Also, material dispersion and absorption ofS€C. VI and the results of this paper are discussed in that
light (transitions to nonradiative states in the dielecirme ~ P€rspective. The quantum optics of dielectrics that also have
neglected. It is well known that the dielectric function is a iNhomogeneous magnetic properties are briefly discussed in
response function that should be a dispersive and complex€¢: VI, before concluding in Sec. VIII.
function of frequency so as to satisfy the Kramers-Kronig
relations. Certain sum rulg®5] for modified spontaneous Il. INHOMOGENEOUS DIELECTRIC WITHOUT GUEST
emission rates, when averaged over all frequencies will ATOMS
therefore not hold in the present formalism that violates these
relations. The question is whether dispersion and absorption
are important in a particular experiment that one has in mind. In this section, the quantization of the electromagnetic
Often, optical experiments are interesting only in a frequencyi€ld in inhomogeneous dielectri¢45,16 is reviewed. The
range where absorption is indeed negligible, for exampleemphasis will be on concepts and results that will be em-
when measuring light emitted by excited atoms inside a phoPloyed in the following sections when guest atoms are intro-
tonic crystal. In such cases, it is common practice to negleciuced in the dielectric.
material dispersion and absorption in the theoretical descrip- N SI units, the source-free Maxwell equations in matter

A. Classical Lagrangian and Hamiltonian

tion as well[16,26]. are
Quantum optical descriptions exist where dielectric func- .
tions do satisfy the Kramers-Kronig relations, both for ho- V-B=0, VXE+B=0, (1a
mogeneou$27,28 and inhomogeneous dielectrif29—-32. )
Usually, the guest atoms are introduced into these theories in V.-D=0, VXH-D=0. (1b)

the simpler of the two ways described above, as probe atoms
with known properties in a two- or three-level description. It Here, and in the following, the dot denotes a partial time
would be interesting to introduce guest atoms in theories oflerivative. FieldsE, B, D, andH are the electric field and
inhomogeneous Kramers-Kronig dielectrics in the more funihe magnetic induction, the displacement field and the mag-
damental way, starting with Maxwell's equations with the netic field vector, respectively. For nonmagnetic inhomoge-
charges of the guest atoms as sources but this will not beous dielectrics, the constitutive relations are simBly
done here. Nor will we look at more microscopic descrip-=toH andD=ge(r)E. (The generalization of the present
tions of the dielectrid33—35 where dispersion shows up theory to inhomogeneous magnetic materials will be dis-
naturally. It would be very challenging to derive optical pre- cussed in Sec. VIJ.As for free space, the electric and mag-
dictions from a microscopic description of light and the mat-netic fields can be expressed in terms of a vector potetial
ter that builds up a complex dielectric such as a photoni@nd a scalar potentiab:
crystal. )

The goal of this paper is to derive a Hamiltonian with E=—-Vd-A, B=VXA. ()
multipolar interaction between the guest atoms and the elec-
tromagnetic field inside the inhomogeneous and nondisperthere is gauge freedom in choosing paifs (P) that leads
sive dielectric. The dipole Hamiltonian can then be found ad0 the same electric and magnetic fields. Now choose the
an approximation. First, field quantization of a dielectric 9eneralized Coulomb gauge which is defined by the require-
without guest atoms is described in Sec. Il. Atoms are introment that the vector potential satisfies
duced into the dielectric in Sec. lll. The starting point will be
Maxwell's equations and a minimal-coupling Lagrangian V-[e(nNA(n)]=0. 3

that produces these equations. Special attention is paid tPh . ' L . e
check whether Maxwell’s equations still hold after choosing e vector pote_zntlal or any field satlsfymg th|§ c_ondltlon IS
(falled “generalized transverse” because it satisfies a gener-

a gauge. This requires an interesting analysis of functionaf . o P
differentiation after choosing a gauge, presented in Sec. I\/'leIZEd version of the Coulomb gauge condit®nA=0 in

The minimal-coupling Lagrangian is then transformed infree space. In the_: generalized Coulc_me gauge, the vector
Sec. V into its multipolar form with use of the Power- potential must satisfy the wave equation

Zienau-Woolley transformation that is well known for free

spaceg 13]. Our careful analysis of functional differentiation vaxAJrﬂA:O @)
allows us to use a transformation that is simpler and more c?

like the free-space case than presented in related works

[17,18. After the transformation, canonical variables andin order to be consistent with Maxwell E¢lb). The scalar
fields are determined. In particular, the important question apotential can be chosen identically ze®£0) in the gen-

to which field in the dielectric is canonically conjugate to the eralized Coulomb gauge.
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Since the goal is to find a quantum optical Hamiltonian inthe true modes are transverse plane waves. For the plane
the end, one should start with a Lagrangian formalism for thevaves, one can choose linear combinations of cosine and
classical Maxwell fields. From the Lagrangian, the canonicakine solutions co&( r) and sink-r). The complex exponen-
fields and their conjugates can be identified, which will be-tial exp(k-r) is only one such linear combination.
come pairs of noncommuting field operators in a later stage. It will now be argued why the field can be expanded in
The principle of least action states that fiel@sd particle terms of a set of real mode functions and the orthonormality
variables, when presentninimize the actiof13]; the action  relations of the modes will be derived. The choice of real
is defined as the time-integrated Lagrangian between sommaodes will simplify the quantization procedure. The reason
initial and final times. The requirement that small variationsnot to start with complex mode functions is that the latter has
in the fields do not change the action leads to the Eulerassociated generalized coordinates and momenta that are not
Lagrange equations for the canonical fields, in our case foHermitian. This makes intermediate results more compli-

the vector potentigl12,13: cated[16,17,38. Real mode functions were also used in Ref.
[15], without the motivation given here.
oL d 6L Why does a complete set of real mode functions exist? As
SA dt ga (5 before, the electromagnetic fields are assumed to live in large

volume V. Let Q be an abstract operator in Hilbert space,
Here, functional derivatives are denoted with™and more ~ Which has a local rgpresentat|QdQ|r’>= S(r—r")Q(r) in
will be said about them later. configuration space:
A LagrangianL  for the electromagnetic field in an inho- 1 1
mogeneous medium is Q(r)= VXV X _ (9)
Ve(r) Ve(r)

OperatorQ is Hermitian under the normal inner product.

Eigenvalues ofQ are (w,/c)? and thew, will be called

The Lagrangian is the spatial intggral of Lagrangian denSi%igenfrequencies. All eigenfunctioms of Q have property
_CO_ over a Iarge vqu_meV that will eventually be sent to V.[Jz(r)g(r)]=0. Label \ is understood to count both
infinity. Subscript “0” is used to denote the absence of guest,,tin 5 and discrete sets of solutions. The subspace of func-

atoms in the dielectric. The vector potential is a canonicaljyng in Hilbert space with the same transversality property is
field varlat_)le and its ca_nomcally conjugate field can be foun panned by the eigenfunctions@f Now letC be the opera-
as a functional derivative of the Lagrangian density tor which is also local in configuration space, where its ac-
tion is to take the complex conjugate. The dielectric function
= E . A— in this context must also be viewed as an abstract opegator
—=goe(r)A=—D. (7 : - , ;
with local representation in configuration spadele|r’)
=6(r—r")e(r). The representations € andC commute in
(The functional derivative is used somewhat naively hereconfiguration space becausr) is real for all positions in
but the answer is correct, as a more detailed analysis in Sev, Then,Q andC commute in any representation. From the
IV will show.) In other words, the field canonically conjugate fact thatQ and C commute, it follows that an orthonormal
to the vector potential equals minus of the displacemenbasis of real eigenfunctior{g,} of Q can be chosen to span
field, which is a transverse field. Proceeding as for free spacge subspacéwith complex coefficients
[13], one finds that the Euler-Lagrange equation of motion The above analysis shows that vector poteriatan be
for the vector potential leads to wave equati@ for the  expanded in terms of a complete setrefil vector mode
vector potential in the medium. The Hamiltonian is functions {h, (r)}={\e(r)g,(r)}, which are the harmonic
solutions of wave equatio@):

1 .
L0=f drcoszf drleoe(r)A%?— ug (VX A)?]. (6)

I1? +(V><A)2

goe(r) Mo | 2
(8) VXVth(r)—S(r)w}‘

. 1
HO:f dr(HA_Ko): Ef dr

= (D=0 (10)

This is the Hamiltonian for the classical electromagnetic
field in an inhomogeneous dielectric, without guest atoms. Thege mode functions satisfy the same generalized transver-
sality condition(3) as the vector potential. As is clear from
B. Complete sets and quantum Hamiltonian Eqg. (10), unlike g, functionsh, do not satisfy a Hermitian
For a quantum optical description of the dielectric, the€igenvalue equatiortTo each type of modes corresponds a

electromagnetic fields can best be expanded in terms of haglifferent density of statef37].) From the orthonormality of

monic solutions of wave equatio@). With each of these 9 it follows that functionsh, (r) satisfy the generalized or-

“true modes” one can associate independent canonical varithonormality conditior{15,16:

ables for which commutation rules can be given. The set of

true modes is not unique. This freedom will be used below to

choose a particularlchonvenient set. For example, in vacuum f dre(rhy(r)-hy(r)= 2oy . 1D
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The complex-conjugation symbol * was written for future menta will become Hermitian operators in a quantum de-
reference since, of coursh, is real. Equation(11) will be  scription. If the above two expansions are substituted in
called a generalized inner product of modgsandh, . The  Hamiltonian (8) and normalization conditiorf11) is used,
spatial integral in Eq(11) runs over volumeV, so that the then it follows thatH =13, (p?+ w2q?). The Hamiltonian
mode functions scale a&/| 2 turns out to be a simple sum over the true modes of the

In a scattering situation, whegg(r) is a space-filling di- inhomogeneous dielectric, where the energy of each mode
electric function plus a local modification within a scattering corresponds to a one-dimensional harmonic oscillator with
volume Vg, the contribution of the scattering volume to in- positionq, , momentump, , and frequencyw, .
tegral(11) scales a¥/,/V. This fraction becomes zero when = Now comes the quantization step. The independent ca-
guantization volumeV is sent to infinity. As an example, nonical pairs satisfy the standard equal-time commutation
mode functions of an infinite photonic crystal with a single relations [q,(t),py:(t)]=i% 6y, . With normal-mode ex-
point defect(extra or missing dielectric materjahave the pansions(16a and (16b), the commutation relation for the
same orthonormality relations as the mode functions in theector potential and its canonically conjugate field can be
absence of the defect. found immediately:

Functionsh, are complete in the sense that they form a
basis for generalized transverse functi¢sisch as the vector , . , Ny T
potentia) that satisfy wave equatiofd). In other words, a  LA(TD.II(r ’t)]z'ﬁ; h(D(r)e(r) =iz g, (r.r').
generalized transverse delta functiéh (a distribution can (17)
be defined in terms of functiorts, :

The commutator is a dyadic quantity. It turns out to be pro-
portional to the generalized transverse delta function.

Annihilation  operators are introduced asa,
=Jw,/(2h)q,+iV1/(2hw,)p, and creation operators as
Fore(r)=1, this expression reduces to tfreal free-space their Hermitian conjugates. They have standard commutation

5I<r,r'>z§ ha(Hhy(r)e(r’). (12)

transverse delta functiofsee Ref[12], p. 53: relations [ a,(t),a],(t)]=8,,. and all other inequivalent
9 1 commutators are zero. The Hamiltonian becomes the sum
5T(r):_5(r)|__3(|_3F®F)' (13 ~ over contributionst w, (a} @, +1/2) of individuall mpdes.
3 Aaqr Thus, the concept of a photon as elementary excnatﬂdﬁ)

. of a mode is as useful for inhomogeneous dielectrics as it is
wherel is the unit tensor in three dimensions and the unit  for free space. Number states, coherent and squeezed states,
vectorr/|r|. Evidently, the generalized transverse delta funcetc. can be defined analogously. The only difference for in-
tion (12) is real because the mode functions are real. From ithomogeneous dielectrics is that their true modes are not
definition (12) and normalization condition(11) of the plane waves.

modes, it follows thaﬁz is idempotent: The vector potential operator and its canonically conju-
gate field operator can be expressed in terms of creation and
j dri 8 (rry)- 81 (ry,r)=81(r,r"). (14) annihilation operators as
f
In other words,é! is a projector into the subspace of gener- A(r,t)=; N2 {an(Dhy(r)+H.c], (183
0w\

alized transverse functions. The generalized transverse delta
function is not symmetric in its arguments because it is trans-

L ; e . ) [hw,
verse in its second and generalized transverse in its first vari TI(r,t) = —Isos(r); Zgo[a)‘(t)h)‘(r)_ H.cl.

able:
(18b
Vi -[e(nal(r,r)]=0=V -[&(rr)]. (19
Here, “H.c.” denotes the Hermitian conjugate. The forms of
The vector potential and its canonically conjugate fieldthe electric and magnetic fields as quantum-mechanical op-

have normal-mode expansions: erators as well as their commutation relations immediately
follow from Eq. (2) and the above equatiqi8a. The time
Ar,1)=1Ue0) > gu(t)h,(r), (16g  dependence of the operators is simply harmonic, for ex-
\ ample,a, (t) = a(0)exp(—iw,t).

In practice, it can be convenient to use a set of complex
true mode functiongf,} instead of real mode functions
{h,}. Since the complex mode functions should also satisfy
wave equatior(10) and the generalized orthonormality con-
with generalized coordinates, (t) and momenta, (t). At  dition (11), the two sets of mode functions are related
this point, the choice of real mode functions pays off becaus¢hrough a unitary transformatidip =, U, h, that only re-
the associated generalized coordinates and momenta are ofdges mode functions with identical eigenfrequencléss a
real when the modes are real; only real coordinates and maitary matrix. Note that because of this unitary relation, the

TI(r,t) = \/8_0; pr(De(r)hy (), (16b)
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generalized transverse delta functigi?) can alternatively cal wavelengths that often “atoms” are identified with “di-
be expressed in terms of complex mode functifps Its  poles.”

effect is the substitution of one, by f, and the otheh, by The starting point is the minimal-coupling Lagrangian
f¥: &.(r,r') is also equal tc,f,(r)ff (r')e(r'). However, that produces the Maxwell equations and the equations of
after this substitution it is no longer obvious thd{(r,r’) is ~ motion for the charges that make up the guest atoms. The

real-valued. minimal-coupling Lagrangian can be used to find a minimal-
The field operators can also be expanded in terms of theoupling Hamiltonian and this procedure can be found in
complex mode function§, as Refs.[15,19. A clear exposition is also given in R€f38].

Here, the Lagrangian will first be transformed to the multi-

h ) polar form before constructing a Hamiltonian. The latter pro-
A(r,t)=; 2eqw [al’(Of(r)+H.c], (198  cedure was followed also in Refd7,18. The present work
» is different in some essential aspects that will be stressed
where appropriate.

I(r,t)= —isos(r); \/f%[a(xo)(t)fx(r)— H.c],

(19h) A. Choice of suitable Lagrangian

o 0) ) ] Guest atoms inside an inhomogeneous dielectric can be
where the annihilation operatah associated with the com- gescribed by a charge density, and a current density,

plex modef# is defined in terms of the “old” operators as which show up as sources in Maxwell's equati(ﬁmgylﬂ:
O=y y-1 Ot g | it i
a,’=2\U, e\ anda,’ is its Hermitian conjugate. The
i ; 0) (0)f : . V-B=0 (20a

commutation relations oail anda,”’" are again the stan .
dard relations becaude is a unitary transformation. To dis- ]
tinguisha? from operators to be defined later, superscript VXE+B=0, (20b)
(0) has been added, signifying that no guest atoms are
present. The time dependence of the operators is again har- eV [e(NE(r)]=0og, (200
monic.

This completes the quantization of the electromagnetic M(leXB—sos(r)E:Jg. (20d)

field in an inhomogeneous dielectric without guest atoms.

The reason to start the quantization procedure with real modeere, oy is the charge density andy the current density
functions was that the associated generalized coordinates apdoduced by the guest atoms alone, as stressed by subscript
momenta are real quantities that become Hermitian operatofg”; the dielectric is completely described by dielectric
in quantum mechanics. It is possible to start with complexfunction e5e(r) and magnetic permeability.y. Whatever
mode functions instead and to proceed with the noniagrangians and Hamiltonians are introduced for the inho-
Hermitian operator§l16,17,38 but it makes intermediate re- mogeneous dielectric plus guest atoms, they must lead to
sults unnecessarily more complicated. The unitary relationthese four Maxwell equations. Moreover, the electrons with
between complex and real mode functions and between thesharges—e and massesn, should respond to electric and
respective annihilation operators are purely formal unlessnagnetic fields as given in the equation of motion

both sets of mode functions are given explicitly. The above

guantization procedure only relies on the mere existence me'r'mjz—e[E(rmj)Hmjx B(rmj 1. (21
(rather than on an explicit constructjoof these unitary
mappings. We assume that there are no free charges. All electilans
beledj) are bound to atomic nucléiabelm) to form neutral
. INHOMOGENEOUS DIELECTRIC guest atoms. Theay andJ, are given by[39]

WITH GUEST ATOMS

In the preceding section it was described how to quantize ag<r,t):e2
the electromagnetic field in an inhomogeneous dielectric. "
Now, inside the inhomogeneous dielectric guest atoms are
introduced. Their optical response is not included in dielec- Jy(r,t)= —62
tric function (r) of the medium. The goal in the following m
sections is to find the quantum optical description of the ,
combined system, with a multipole interaction between thd1€r:Zm is the nuclear charge of atom. The guest atoms
electromagnetic field and the guest atoms. There are at lea&{¢ assumed to have fixed positions, their nuclei are their
two reasons why the multipolar Hamiltonian is to be pre-Centers of mass and are stationary at positiBgs From
ferred. In the first place, it is more convenient when onlythese explicit forms ofrg and J, follows the equation of
approximate calculations can be done, which, in thecontinuity or current conservatioW,- J,+ o,=0, which can
minimal-coupling formalism, would give gauge-dependentalso be found from Maxwell equatiort20c) and (20d).
results[11]; second, atoms are much smaller than optical Again, the electric and magnetic fields can be defined
wavelengths and in the multipole formalism this can be exthrough Eq.(2) in terms of a vector potentigd and a scalar
ploited well. Actually, atoms are so much smaller than opti-potential®. Then, the two homogeneous Maxwell equations

Znd(r—Rp)— >, 5(r—rmj)}, (223
]

. (22b)

2}_: (=T )
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(209 and (20b are automatically satisfied. The other two Clearly, the scalar potential cannot be chosen identically zero
Maxwell equations should follow from the Euler-Lagrange as in the situation without guest atoms. Gauge-fixing condi-
equations[Eq. (5)] for the scalar and the vector potential, tion (3) for the vector potential and E@26) for the scalar

respectively. The minimal-coupling Lagrangian is potential, together with the definition of electric figl#) in
terms of the two potentials, still lead to the third Maxwell
- equation(20¢).
Lmin:mEj Emermj+J dr Lein- (23 As in free space, the scalar potential is a function of the

positions of the charges that make up the guest af@B8isIn
other words, one can first solve the coupled equations of
motion for the vector potential and the charges and from
charge distributionoy(t) thus found, the scalar potential
d(t) can be found as the solution of E&6). Therefore, the

1 _ 1 scalar potential is not an independent canonical field. La-
ﬁmiHZESOS(r)[A+V¢]Z_ 2_M0(VXA)2+ JgA—agd. grangian(23) can then be simplified as

(29)

Here, Lagrangian densitg,,;, describes the electromagnetic
field energy and its minimal-coupling interaction with the
guest atoms:

' 1 .2 ’
L' min= 2, Emermj—vwf drL e, (27)
Indeed, Maxwell’s third and fourth equations can be found )

from the Euler-Lagrange equations for the scalar and thghere Eqs.(25) and (26) were used. Coulomb interaction
vector potentials, respectively. Moreover, the EU|er'Lagran9“?/c=(sOIZ)fdrs(r)(VQD)Z is a function of the guest atoms

equations for canonical variableg; give equations of mo-  5igne: the Lagrangian density in E@7) becomes
tion (21) for the charged particles. Note that the Lagrangian '

leads to these equations of motion, before choosing a gauge ) 1 L, 1 )
to fix A and ® with; the equations of motion are gauge- L min=5e0e(NA —ﬂ(VXA) +J3gA. (29
independent results that should not depend on the choice of 0
gauge. Which equation do we find for the vector potential after
choosing the generalized Coulomb gauge? Let us begin at
B. Fixing the gauge the other end; in order to be consistent with the fourth Max-

. - ) . well equation(20d), the vector potential should satis
The electric and magnetic fields are defined in terms of a a (209 P bt

scalar and a vector potential. But there is gauge freedom -1 A_ i

. ) ’ XV XA+ NA=J,— rNvao. 2
which means that the scalar and vector potentials are not Ho VXV goe(NA=Jgeoe(NV (29
uniquely defined by the requirement that measurable electr[i{i

and magnetic fields satisfy Maxwell's equations. We need t the right-hand side of this equation by functional differentia-

choose a gauge in order to find in the end a quantum: ; . .
gaug d tion of the Lagrangian with respect to the vector potential.

mechanical description of light interacting with the guest at—B ¢ hoosing th thi ¢ inated f
oms. As in the situation without guest atoms in Sec. I, the, elore choosing the gauge, this source term originated from

generalized Coulomb gauge is chosen so that the vector péﬁteraction tX][tm‘A‘f] [Eq. (2‘:’:]]’ which isl_ze(;ocafte;r chboosing
tential satisfies Eq(3). In this section, it will be checked '€ 9auge. Aller choosing the generaiized L.oulomb gauge, a

whether the equations of motion for the scalar and vecto ore careful a_nalysis is needed in order to find the fourth
potentials still lead to the third and fourth Maxwell equations axwell equation.

after choosing the gauge. This must be the case because the
choice of gauge should not change the physical predictions V. FUNCTIONAL DIFFERENTIATION AFTER

is not obvious how source termsos(r)V(i) can appear at

of the theory. Still, the check was not performed in Refs. CHOOSING THE GAUGE
Ee?réla and as we shall see, it will be very useful t0 do SO ager choosing the gauge, the vector potential is general-

ized transverse. The Euler-Lagrange equation for the vector
potential is therefore an equation of motion of a constrained
system, where the constraint is gauge conditi@h One
LA(IDESOJ’ dre(r)A- Vo (250 could try and solve this problem using the method of
Lagrange multiplier$40] but this is not the route that will be

. . . pursued here. Instead, the appropriate mathematical defini-
of Lagrangian(23). The term becomes identically zero be- tion and computation of functional derivatives after choosing

cause in the generalized Coulomb gauge it has become aangauge will be studied in the following sections IV A and

inner_p_roduct of atransverse anq a I(_)ngitu_dinal function. Thefv B, respectively. The results will be applied to our physical
remaining terms in the Lagrangian involving the scalar po- f

; . : roblem in .IVC.
tential lead to an Euler-Lagrange equation that is the geneF2 oble Sec. IVC
alized Poisson equation for the scalar potential in the Cou-
lomb gauge:

The gauge affects interaction term

A. Two definitions of functional derivatives

Let us generalize the problem somewhat by considering a
gV [e(n)VO(r)]=—oay. (26)  functional F=[drF with a functional densityF that de-
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pends on the three-dimensional vector fieklsind Y. As- B. Simple rules to compute constrained functional derivatives

sume also that at some stage, the generalized Coulomb gaugenow the goal is to find simple rules to compute the con-
will be chosen for the fieldr. This gauge is defined by the strained functional derivativé31) with respect to general-
requirement thaV - [e(r)Y(r)] equals zero. ized transverse functions, just like the normal functional de-

Before choosing the gauge, the functional derivative ofrivative (30) can simply be calculated as a partial derivative.
functional F with respect to vector fieltf is defined as With that goal in mind, first some properties of generalized
transverse functions are derived.

With every transverse functiok’(r), a generalized trans-
verse functiorf XT(r)/e(r)] can be associated. From section
Il B we know that the latter function has an expansion in
terms of generalized transverse modigér), so thatX'(r)
can be expanded in terms ofr)h,(r). This simple fact, in
combination with Eqs(11) and (12), leads to the following
projection properties 051:

oF

= lim
oY(r) 70

J dr' {FLY (r") +yo(r—r")I=FY(r")1}
” :

(30

(The X-dependence of was dropped for brevity.The func-
tional derivative ofF with respect toY describes the relative
changes ofF when small variations proportional té(r
—r')l are added to vector functio. Here,5(r—r’) is the
Dirac delta function in three dimensions; as befdres the
unit tensor. It turns out that the right-hand side of E2D)
can be computed as the partial derivative of functional den-
sity F with respect toY. While doing this, theF can simply

be considered as a function ai¥das one of its variables.

J dr/XT(r)- 81" ,r) =XT(r), (329

a(r)fdr'51(r,r')-xT(r')/s(r')sz(r), (32b

Before choosing the generalized Coulomb gauge, (B) J P ST eyl ) —
correctly defines the functional derivative Bfwith respect dr’o,(r.r’)-XH(r)=0, (329
toY.
Now suppose for the moment th&t is defined asF ol T
= [drX - Y. Suppose also that field is the product of(r) f drie(r’)X=(r")- 8,(r",r)=0, (329

with some longitudinal vector field. Thefk, becomes iden-

tically zero in the generalized Coulomb gauge because it ig,, any transverse functiok (zero divergenceand longi-
the inner product of a transverse and a longitudinal vectof,qinal functionXt (zero cur).
field. Still, functional derivative Eq(30) of F would give a With the use of Eqs(328 and(32d), functional derivative

nonzero answer. This can only mean that B{) does not d(31) is simple in the following two important cases:
define the functional derivative with respect to generalize

transverse functions correctly. The reason is that the function

space in which fieldf lives has become smaller by choosing f dr'XT(r")-Y(r")=XT(r), (339
the gauge; it now lives in the subspace of functions that are sY1(r)

generalized transverse. This also means that functional varia-

tions of Y should stay inside this subspace. In functional s

derivative (30), variations in the whole function space are J dr'e(r’ )X (r’)-Y(r')=0, (33b)
allowed and clearlyV,-[e(r’)8(r—r')I] is nonzero. sYI(r)

In general, with every set of constraints a new functional
derivative can be associated. Here, only the gauge constraimthere X™ and X' are arbitrary transverse and longitudinal
will be considered that functions be generalized transversdunctions, respectively. The second cd488h makes clear
Functional differentiation with respect to generalized transthat the constrained functional derivative of inner products of
verse functions can be defined @ge[36], p. 20 transverse and longitudinal fields indeed gives zero; the first
case(33g shows that the partial-derivative-@f-computa-
tion rule still gives the correct answers for inner products of
Y[ with transverse functions.

How can the constrained functional derivative be calcu-
lated in the more general situation

jdf’{f[Y(f'HVﬁl(r’,f)]—f[Y(f')]}

=|im ,

y—0
31

oF
Y (1)

Y

_ . i i fdr'X(r')-Y(r’), (34
with the generalized transverse delta functi@inas defined

in Eq. (12). In this functional derivative, the functional varia-

tions do stay inside the generalized transverse subspagghereX is a general vector function? It will now be shown

since &, is the projector into the subspace andthatany vector fielK can be decomposed such that the only

8Y (1)

V. -[e(r')éi(r',r)]=0. Derivative(31) will be called the
“constrained functional derivative” in the following.

two rules of computation needed are the simple cé4383
and(33b).
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Given vector fieldX, construct scalar fieldy=—V - X.
Now, find potentialy, given “charge distribution”ox and
dielectric functionege(r), from the following generalized
Poisson equation:

goV-[e(r)Vx(r)]=—ox(r).

This is a well-known problem in electrostatics. There is a
unique solution fory of this inhomogeneous problem, given

(35

the charge distribution and the boundary condition that th({

potential be zero at infinity. With potentig} thus found,
define two vector fieldX; and X, as

X1=X(r)=eoe(r)Vx(r), (368

Xa=g0e(r)Vx(r), (36b)

so that evidentlyX =X+ X,. Vector field X, is transverse
by construction of potentiay; field [ X,/e(r)] is of course
longitudinal. In summary, the following theorem was proven:

PHYSICAL REVIEW A68, 013822 (2003

terest, where the functional is Lagrangibh,, Eq. (27),
and where the generalized Coulomb gauge applies to vector
potential A.

Before choosing the gauge, the “ordinary” functional de-
rivative (30) of the Lagrangian of Eq24) with respect toA
leads to the fourth Maxwell equatio(20d), as it should.
After choosing the gauge, interaction tetmyg [Eq. (25)] in
the Lagrangian becomes identically zero. Its functional de-
ivative with respect taA should also be zero. This is indeed
he case because constrained derivat®® is the correct
one to use rather than ordinary functional derivat{2®)
after choosing the gauge. Note that the constrained func-
tional derivative must also be used for free space after choos-
ing the Coulomb gauge, with! equal toé' [Eq. (13)]. For
free space, the machinery of functional derivatives usually is
not introduced and the derivative is taken implicitly, for ex-
ample, in Ref[13], p. 289.

The naive calculation of the canonical field in E@) of
Sec. Il can now be justified:

An arbitrary vector field can be uniquely decomposed into a

part which, after division b (r) is longitudinal and a trans-
verse part.This theorem is useful for evaluating the con-
strained functional derivative because it leads to

é

SY (1)

[ arx v == eqen V),
@)

where the unique decomposition of was used and the
simple derivatives Eq9333 and (33b) were applied toX;
andX,, respectively. The problem of computing a functional

1)
SAL(r)

fdr’s(r')Az(r')=2s(r)A(r). (38)

One can find this result by realizing that the functional on the
left-hand side is a special case of E§3a with fields X and
Y equal toe(r)A andA, respectively.

In the special case that vector fieXdis current densityl,
produced by the guest atoms in the dielectric, current conser-
vation implies that scalar field-Jg, as constructed in Sec.

IV B equals the time derivative of physical charge density

derivative with respect to a generalized transverse functioffg- BY the uniqueness of the solution of the generalized
has thus been reduced to a problem in electrostatics. Nof20isson equation, potentiglmust then be identified with the

that the constrained functional derivativ87) produces a

time derivative of physical scalar potentil Therefore, the

field that is always transverse. That transverse field is equ&onstrained functional derivative gfdrJy-A can now be

to the transverse part oX if X itself is transverse or if
e(r)=1.

The unique decomposition€36a and (36b) of vector
fields is a generalization of the Helmholtz theorffi] but
the name “generalized Helmholtz theorem” was already
given to a slightly different statemef18], namely: Every

vector fieldZ can be uniquely decomposed as the sum of ith this result. the Euler-

generalized transverse vector fielh and a longitudinal
field Z,. (The proof of this theorem in Refl8] begs the

is the case.As a corollary of decomposition§36g and
(36b), another short proof can be given of the generalize
Helmholtz theorem. The proof is simple: givén defineX

=¢(r)Z. Then, apply the previous unique decomposition toS

X, as in Eqs(369 and(36h). DefineZ,=X,/e(r) andZ,

=X,/e(r). Then, it follows thatz=2,+Z,, whereZ, is a
generalized transverse ay is a longitudinal field. This
completes the proof.

C. Functional derivatives of the minimal-coupling Lagrangian

computed as

fdr’Jg(r’)-A(r’)=Jg(r)—sos(r)V<i>(r).
(39

SAL(T)

Lagrange equation for the vector
potential from Lagrangiari27) precisely becomes E¢29)

CEquation (20d) also holds after choosing the generalized

oulomb gauge. Interestingly, before choosing the gauge, the

ource term—gpe(r)V® in Eq. (29) came from thel 5q
interaction term(25) in the Lagrangian. After choosing the
gauge, however, the source term is produced by the con-
strained functional derivative of the minimal-coupling inter-
action termfdrJ4- A.

The left-hand side of wave equatiai29) is certainly

transverse in the generalized Coulomb gauge. The right-hand
side is also transverse. A mathematical reason is that the

The definition of the constrained functional derivative andwave equation is found by functional differentiation with re-
its computation rules can now be applied to our case of inspect to generalized transverse functions. In Sec. IV B it was
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shown that these derivatives are always transverse. Phydi-was assumed as before that the dielectric is nonmagnetic
cally, the source term must be transverse because of curres that the magnetic permeability equals vajug of free

conservation[Use Eq.(26).] space. Note that dielectric functiaer(r) is a property of the
dielectric alone, independent of the guest atoms. On the other
V. THE QUANTUM MULTIPOLAR INTERACTION hand, displacement fiel#2) does depend on the guest at-
HAMILTONIAN oms because it includes the polarization field produced by

them. The displacement field defined here is therefore differ-

In the preceding sections it was shown that the minimalent (although the same symbol is ugedom the displace-
coupling Lagrangian produces the Maxwell-Lorentz equament field that was defined in Sec. Il A, where no guest
tions for the eleCtromagnetiC.fieldS and the gUeSt Charge%toms were present_ In that case, the transversa”D’ whs
before and also after choosing the generalized Coulom@yident. The displacement field is also transverse when guest
gauge. Now the goal is to transform the gauge-dependenfioms are present, according to E(0c) and (40) in com-
minimal-coupling Lagrangiari27) in order to obtain a La-  pjnation with Eq.(42).
grangian with multipole interaction between the electromag-
netic field and the guest atoms. The multipolar Lagrangian
must lead to the same equations for the fields and charges, of . ] ]
course. Candidate transformations are transformations where Minimal-coupling Lagrangian(27) will now be trans-
a total time derivative of a function of the canonical vari- formed to a multipolar Lagrangian by adding to it the total
ables is added to the Lagrangian. Such transformations leajéne derivative
the action unchangdd 3]. A particular transformation of this d
sort will be used shortly but first some fields must be intro- - _f drP 4(r,t)-A(r,1). (43)
duced. dt ’

B. Classical multipolar Lagrangian and Hamiltonian

This is the Power-Zienau-WoolleyPZW) transformation
and its effect is well known for free spaf#3]. The reason to

In the following, it is useful to describe the guest atoms inchoose this transformation will be givenposteriori when
terms of a polarization densify, and a magnetization den- discussing the multipolar Hamiltonian. The difference with
sity My, rather than in terms of the charge and current denthe free-space PZW transformation is that now the vector

A. Polarization, magnetization, and displacement fields

sities. The former and latter pairs are related throL&8§): potential satisfies the generalized rather than the usual Cou-
) lomb gauge. The transformation was already applied to in-
0g=—V Py, Jg=PygtVXM,. (40) homogeneous dielectrics before, in Rgf7]. There, it was

stated that polarization densiBy in the Lagrangian density
In terms of the introduced variables, the equation of continushould be replaced by a “reduced polarization density” at
ity is automatically satisfied. The polarization and magneti-this point, in order to stick to the generalized Coulomb gauge
zation fields have the following integral representatil88:  for the vector potential. However, as will be clear shortly,
such replacements are not necessary if functional derivatives
P(r,t)= _ez 1du(r R yvith respect to the ge_neralized transverse vector potential are
g o Jo mpoom identified as constrained functional differentiations and if
computation rules as presented in Sec. IV are used accord-
><5("_Rm_u(rmj_Rm))r (413 mgly
After adding term(43), Lagrangiarl,,,; can be rewritten

1
My(r,)=—e>, | duu(rp—Rpy) as
mj JO

1 .
. ol |
XTmid(r—Rp=U(rm—Rp)).  (41b L muti % 5 Ml mj Vc+J dr £ - (44)

These polarization and magnetization fields are simply thé.agrangian density,; has form
sums of fieldPy,, andM g, produced by the individual guest L .
atoms. Finite-order multipole expansions of the polarization - A2 2 _ P
and magnetization fields can be found by truncating the Tay- cm“'"‘z g0e(NA ZMO(VXA) Mg VXA=Pg A,
lor expansion inu of the integrands on the right-hand sides (45)

of the above equations. Such approximations will be made in o o .
Sec. VD. where the definition of the magnetization densigjtb) was

Displacement fieldD and magnetic-field vectoH are used as well as Gauss's theorem. The derivation is identical
given by the following constitutive relations: to the free-space case. _
In order to find a Hamiltonian, first the canonically con-
D=gge(r)E+Py, HEM(;lB_ M. (42 jugate variables must be determined. By reasoning as in Sec.
IV C, the constrained functional differentiation of Lagrang-
Electric fieldE and magnetic fiel@ are again defined by Eq. ian L, with respect toA produces the following field that
(2) in terms of a scalar potentid} and a vector potentid. is canonically conjugate to the vector potential:
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L mut ) The total Hamiltonian consist of a radiative and an atomic
HE—.m;J.U:sOs(r)A—[Pg—sos(r)VCD]:—D. (46) part, plus electric and magnetic interactions between field
oA, and matter. The radiative part of the Hamiltonian is

1K B2

Zo0e() " Zptg)’ 51

Here, the definition of electric field2) and displacement Hrad:j dr
field (42) were used. As in the case without guest atoms, the

field canonically conjugate to the vector potential equals mi- . . _
nus of the displacement field. The difference is that now th&CNSISting of an electric and magnetic field-energy term, re-

displacement field also contains the polarization field pro—SpeCt'Vely' The form of the radiative Hamiltonian has not

duced by the guest atoms. The canonically conjugate ﬁelgh_an_ge_d ?‘“er add|r_lg th_e guest atoms b.Ut there is a Sl'ght
would have been different if the minimal-coupling Lagrang- shift in its interpretation since the polarization of the atoms is

ian had been used. included in the conjugate field. The atomic polarization field

The resulting Eq(46) that the canonically conjugate field of atom m interacts with the electromagnetic field as de-
of the vector potential is the full displacement field of the scribed by
medium including guest atoms, is an important generaliza- Pgm- 1T
tion of the free-space resylt3]. In our formalism, it could Vgn):f drm- (52
be found rather easily, by realizing that functional derivatives 0
must be redefined after choosing a gauge. In RET], @  |n most cases, this is the dominant interaction between field
canonically conjugate field was identified, which was statedand matter. The usually weaker magnetic interaction consists
to be different from the displacement field; in REE8], the  of two terms:
matter was reconsidered and the displacement field was 5
found as the canonically conjugate field after all but only V= _ M ~B+E mj
because polarization fiel@; in PZW transformation(43) Mo gm o 2mg’
was replaced by a reduced polarization field for reasons that
remain somewhat unclear. The effect of the replacemerithe first term is linear in the magnetic field and represents
seems to be that functional derivatives with respect to thehe paramagnetic energy. Instead of magnetizaliigp,, a
vector potential can be calculated as partial derivatives, geduced magnetizatiol ,, has been used in this first term.
computation rule that in general is valid only before choos-The reduced magnetization is defined as the magnetization

ing the gauge. In contrast, our PZW transformatié8) fea- [see Eq(41b] with ther ,; replaced by, /m.[13,17. The
tures the usual polarization field of the guest atoms, wheth€littarence has been corlrected for by é sign change of the
we choose to do the transformation before or after fixing theecond term, which is quadratic in the magnetic field. This is

gauge. We think that our approach is more transparent angl diamagnetic energy of the guest atoms in the nonmag-

more widely applicable. , _ _netic dielectric. It can be safely ignored from now on since it
Canonical momentpy, corresponding to coordinate vari- js mych smaller than the other two interactiofsee Ref.

(53

ablesqy,; of the guest charges are [11], Sec. 8.6
. Only the atomic part Hamiltoniafb0) must still be dis-
Pmj= Mel mj— Fmj» (47 cussed. It has form
2 2
where fieldF; stems from magnetization densi#1b) and > Pinj +J dr Py _ (54)
is defined as m 2Me 2¢epe(r)

1 The first term in the atomic Hamiltoniai®4) represents the
ijzef duuB[ Ry — u(rpj— Ry IX(rmj—Rm). (48) kinetic energy of the guest charges; the second term is the
0 potential energy of the guest atoms, expressed as a polariza-
tion energy. The Coulomb teri; is absent in the Hamil-
Note that unlikeA andqy,;, their canonically conjugate vari- tonian, because it cancels against the other term quadratic in

ableslI andpy,; are not fully electromagnetic or fully atomic v ¢ which one gets when solving E(6) for A and substi-

in nature, respectively. _ tuting the result in Hamiltonia50).
All canonical momenta have now been determined so that It is natural to Sp“t the po'arization energy in Hao) into

the multipolar HamiltoniarH ., can be given in terms of  an intra-atomic and an interatomic polarization energy, re-
the canonical variablesrg;,py;) and canonical fields spectively[13,18:

i P? p2 Py P
J dr28 sg(r) =2 Jers Zn(]r)+ > fdr ggn;(rgn'
Hmultiz% pmj-rmj+j drIT- A—L i (49 0 m 0 m#n 0 -

The intra-atomic polarization energy is the potential energy
_ Hrad+Hat+2 [V(pm)+V§v|m)]- (50) that k_eeps an ato_m toge_ther; the interatomic polarization en-
m ergy is the only interaction term between neutral atoms in
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multipolar Hamiltonian(50). The Hamiltonian is still classi- annihilation and creation operators with standard anticom-

cal, so that polarization fielBy,(r) [Eq. (413] is identically =~ mutation relations. These operators become the atomic ca-

zero outside the smallest sphere surrounding all charges thaonical variables in the second-quantization pictu@ne

make up(neutra) atomm. For that reason, the classical in- could even go back and start with a Lagrangian that identi-

teratomic polarization energilso known as contact enejgy fies ¥, and ¥} as canonical conjugat¢&2].) The atomic

is identically zero unless bounding spheres of distinct guestperators can be written as sums over matrix elements. For

atoms overlap. In the quantum-mechanical description thaéxample, the atomic Hamiltonian of atom in standard

will be given shortly, the expectation value of the polariza-second-quantization notation i#{™ ==, E{™c! c ..

tion energy will not be identically zero. The atomic wave  The vector potential was again chosen generalized trans-

functions of distinct guest atoms have a nonvanishing overyerse and its canonically conjugate fié#) turned out to be

lap. However, the overlap falls off exponentially with inter- transverse again so that these field operators can be expanded

atomic distance and is negligible unless the distance is of thg terms of generalized transverse modes, as in Eifa

order of the size of the atoms. and (19b). The creation and annihilation operators are writ-
In the rest of this paper, the guest atoms are assumed Mofgn asa! anda, , respectively, now that atoms are present.

than a few nanometers apart and their contact energies afg,diative part (51) of the Hamiltonian becomeH .4
neglected. Then, the atomic Hamiltonian for all guest atoms_ S\iwy(alay+1).

is simply the sum of single-atom Hamiltonians Interaction termsv{™ and V(™ in second-quantization

- 2 prznj gm notation become
HMW = +f — (56)
T 2m, 2e08(r) i~ JdrPgm(r)'D(r)
(m— _gm s A
The total Hamiltonian Eq(50) becomes g0e (1)
ﬁw)\
_ t
=—i —— a,c /
Hmulti:Hrad+% [HgT)+V|(:>m)+V§\/|m)]- (57) ; kzk’ 2, ACmiCmk
Just like in the free-space ca$&3], in multipole Hamil- xfdrPgm,kk,(r)~fA(r)—H.c. , (593

tonian(57) for inhomogeneous dielectrics, there is no instan-

taneous interaction term left between well-separated neutral

guest atoms. This means that in the multipolar representa- valm)z —f drm ém(r)'B(r)
tion, atoms notice each other only because they interact with

the same(retardedl electromagnetic field®/[eqe(r)] and

B. Of course, the multipolar and the minimal-coupling rep- = —E
resentations should give identical physical predictions; in Nk 2800y
Refs.[12,13 the equivalence is proved for several observ-

ables in free space. The absence of direct interatomic inter- Xj drM émvkk,(r)-[fo)\(r)]+H.c.]. (59b
actions often makes calculations simpler in the multipolar

representation. This justifies the choice of PZW transforma
tion (43) out of many candidate transformations.

+
a)\cm ka k’

Quantity Py, i (1) in Eq. (599 is the matrix element of
polarization fieldPy,(r) with respect to stateg,,, and
of atom m. The polarization field couples to field
C. Quantum multipolar Hamiltonian —DI[eqe(r)], which is unequal to- E/e,. The interpreta-
The goal is now to rewrite Hamiltoniai57) into a tion of the interaction is subtle since in definitioh2) of the
second-quantization form, where macroscopic quantizatioflisplacement field the polarization of the guest atoms is in-
has been applied to the electromagnetic field and microcluded. Interactior\/(P”‘) therefore includes a self-interaction
scopic quantization to the guest atoms. of the polarization field. However, in the expansion in Eq.
First start with atomic Hamiltonian Eq56). Following (598 of the interaction in terms of the optical modes, dielec-
(standargl quantum mechanics, electron coordinatgg(t) tric functione(r) drops out and the coupling becomes rather
and their canonical momenta,(t) [Eq. (47)], as well as  simple.
polarization fieldPy, become operators that work on the — There are no analogous self-interactions in magnetic in-
atomic wave functions. The single-atom wave functions carteractionV{!” . The magnetic field and the reduced magneti-
be expanded in terms of eigenfunctiofiabeledk) of the  zation field are canonically independent am@ is not in-

single-atom Hamiltonian: cluded in the definition oB. All four terms in the quantum
multipolar Hamiltonian(57) have now been given in second-
W(re,ro, ... ,rzm;t)zE Crk D) Umi(r1,r5, ... ’er)' quantization notation.
k
(58)

D. Dipole approximation

Second-quantization notation can now be introduced by pro- An atom is much smaller than an optical wavelength; its
moting probability amplitudes,,(t) andcy,,(t) to become spatial structure cannot be probed with light. One can make

013822-11



WUBS, SUTTORP, AND LAGENDIJK PHYSICAL REVIEW A68, 013822 (2003

the well-known assumption that the polarization and magnelevels and wave functions will be different in a dielectric.
tization fields associated with the atom are concentrated in it¥his point is missed if one starts with a second-quantized
center of mas®RR,, (the nucleus, sgy Mathematically, this description, for example, when introducing in the medium a
means that the integrands in Edd413g and (41b) are ap- “two-level atom” with known transition frequency and di-
proximated by their values in=0. These two values are the pole moment.

first terms of two infinite Taylor expansions in terms of vari-  First suppose that the dielectric function is a macroscopi-
able u. The dipole approximation is made by keeping onlycally averaged quantity that does not change on atomic
the first term. length scales. Them,(r) must be unchanged by introducing

Incidentally, the next terms in the Taylor expansionsa guest atom and HamiltonigB6) can be approximated by
would describe quadrupole interactions, which can be impor-
tant when the guest atoms are not real atoms but other H(m)%iE p2 + ;f drp? (63)
(largep quantum systems in interaction with the electromag- &2me § M 2608(Ry) om
netic field. For example, quantum ddgstificial atoms are
much larger than real atoms and so their dipole moments cajfithe guest atom were a hydrogen atom then its Bohr radius
be much larger as wefl2]. Quadrupole moments are more gpq dipole moments would increase by a factéR,,) and
important for quantum dots than for real atoms, especiallyig energy levels would be reduced by the same factor, ac-
when excited in their near field by a scanning near-field 0pzording to this Hamiltonian. Any visible line in free space
tical microscopg43]. In the following, however, quadrupole yould then be shifted to the infrared in a dielectric. The
and higher-order moments are neglected. consequences of approximati®83) would be that the di-

In the dipole approximation, the magnetizatioeduced  gjectric has a huge effect on the atom’s electronic properties.
or noh becomes identically zero and the polarization fieldngw the reduction of the Coulomb potenti@s well as its
becomes screening as a function of distands a well-studied subject

in solid-state physicf44]. Sometimes one finds the full re-
Pgm(r)=5(r—Rm)E Cka,LE.lnk]?kar, (60) duction [as described by Hamiltonia(63)] while in other
kK’ cases no reduction is found at all.
o ) m) In general, outer electronic states of atoms will be more
where the atomic dipole matrix elementy,, of guest atom  agacted by the dielectric than the core electrons. An impor-

m are defined as tant reason for this is the dispersive interaction of the guest
atoms with the atoms that make up the medium. However,
ﬂ(kT)E —e( ¢mk|; (Fmj— R [ #hmic ) (61)  such frequency dispersion in the medium is neglected in the

present formalism. We should therefore not have the ambi-

) ) . . o tion to find an atomic Hamiltonian that leads to correct inner

With Eqg. (593, it follows that in the dipole approximation anq outer electronic states, including medium effects. A mod-
the interaction energy of an atom with the electromagnetiGst model is needed that meets the requirement that energy

field in an inhomogeneous dielectric equals levels taking part in the optical transitions under study

should come out right. Such a model might be obtained by

V((jfig): -> Ckaka/ ,Lf(’lf(‘) ‘D(Rp)/[e0e(R)] assum_ing t_hat th(_e atom _sits inside an atom—sizen_j cavity with
Kk’ a relative dielectric functior (R,,) that is constant inside the

P cavity; in general,e(R,,) will be different both from the

——i> > A lz_[axCLkak’ﬂf(Tr)'fx(Rm)_H-C-]- macroscopic dielectric function just outside the cavity, and
N kK €0 unity (the free-space vallleMore ambitious descriptions of

(62) medium effects on atomic Hamiltonians require at least that

dispersion of the dielectric is taken into account, perhaps

This gives the important result that inside an inhomogeneougtarting from a microscopic model of the dielecf@3-35.
dielectric, a dipole couples to field D/[oe(r)]. This gen- A Wwell-known case, where reduction of potential energy is
eralization of the free-space dipole couplifi,22,23 was ~ Important, occurs when doping solid silicon with phosphorus
also found in Refs[17,18. As we shall see in the following to make ann-type semiconductor. The high dielectric con-

section V E, local-field effects can have a strong influence or$tant of Si €=11.7) reduces the potential energy between
this interaction. Still, local-field effects are often neglected inthe outermost electron and the rest of the P-atom, so that the

macroscopic quantization theorigks,17—19. electron can enter the conduction band relatively easily, leav-
ing aP* ion [45]. As said before, modifications other than
(63) of the atomic Hamiltonian are possible. An important
example of the other extreme case, where a reduction of the
In Sec. V C it was not stressed that atomic HamiltonianCoulomb interaction is absent, will be given shortly.
(56), in general, is different for an atom in a dielectric and in ~ We are interested in atomic lifetime changes and line
free space. The potential energy in E§6), which includes  shifts caused by the medium. In general, the medium induces
the Coulomb potential, is reduced by a facigr) as com- changes both in atomic Hamiltonigh6) and in the atom-
pared to free spacéSuch a reduction factor is well known field interactions, as compared to free space. Effects of the
for dielectric-filled capacitorg.As a consequence, energy medium, which are caused by changes in the atomic Hamil-

E. In need of a local-field model
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tonian will be called electronic effects. Changes in atomictor \/ is further enhanced by the square of a so-called local-
dipole moments are an example of electronic effects. On théeld factor. Here, the term between the square brackets is the
other hand, effects due to modified interactidmg") and empty-cavity local-field factor.
V(" between field and atom will be called photonic effects. In a recent study[49] of refractive-index dependent
It is the photonic effects, the changes due to altered propespontaneous-emission rates, atoms were embedded in a low-
ties of the electromagnetic field, which are of primary inter-index molecular complex so as to electronically separate
est here and in photonics at large. However, only if the electhem from the medium. For the interpretation of the results,
tronic changes of the atoms are somehow either absent drwas important that atomic spectra and dipole moments did
accounted for, can one study the photonic effects. In thigiot change appreciably while varying the refractive index.
respect, it is fortunate that line shifts due to changes in thdhe empty-cavity local-field factor was indeed observed
interactions(radiative or Lamb shiftsin a medium usually [49]. This result is a justification for the macroscopic quan-
are too small to be observable and electronic line shiftgization theory for nondispersive dielectrics.
dominate. Line shifts can therefore be used to estimate For inhomogeneous dielectrics, it is in general not easy to
medium-induced changes in the atomic Hamiltonian. Givertalculate local-field factors, either in the empty-cavity model
a line shift, one could assign an effective dielectric function(64) or in other models. The simplest assumption in the
e(Ryy) for the atomic cavity that produces the observed tranempty-cavity model is that the position-dependent local-field
sition frequency when inserted in the atomic Hamiltonianfactors will have values &(Rp)/[2e,(Rm)+ 1], where
Eq. (63). ep(Ry) is the bulk dielectric function around atom. The
The distinction between photonic and electronic effects isassumption will probably break down wheny(R) varies
also very important in the interpretation of experiments. Forstrongly on the scale of the wavelength of light.
example, the recently observed fivefold reduction of The atomic Hamiltonian can be changed in many ways
spontaneous-emission rates inside photonic crypd@lsis a  and consequently, empty-cavity factors are not the only
photonic effect since possible changes in dipole momentlocal-field factors that can be obtained from the present mac-
were divided out by choosing a reference sample with idenroscopic quantization formalism. One could give up the mac-
tical electronic effectd47]. Some earlier observations of roscopic quantization as being too phenomenological and in-
long lifetimes in photonic crystals must be attributed to elec-stead, describe the microscopic constituents of the dielectric
tronic effects[48]. in the vicinity of the guest atom. This could lead to other
When studying photonic effects of a medium, the guestocal-field factors, depending on the question whether the
atoms ideally are electronically the same as in free space, iguest atom sits inside a real cavity inside the dieledivic
particular, with the same eigenfrequencies and transition diwhich empty cavity(64) is a special cageor not. For homo-
pole moments. In that ideal case, which we refer as thgeneous dielectrics, see Ref833,50,5] and references

empty-cavity modelwe have therein. However, for inhomogeneous dielectrics it will be
hard to tie a local microscopic approach to the macroscopic
e(Rp=1 Vm. (64) description of the inhomogeneous medium on a larger scale.
The atomic Hamiltonian is as in approximation H&3), VI. DIPOLE-COUPLING CONTROVERSY

now with e(R,,) equal to 1. In other words, guest atoms can
only be ideal if the dielectric function is locally changed to  Many papers appeared in the 1980s about the equivalence
the free-space value 1. The atom, as in free space, sits insi@ the minimal-coupling and the multipolar Hamiltonian in
an empty cavity inside the dielectric. A reduction of the intra-free space, for example Refi20-24. The Hamiltonians
atomic Coulomb interaction is completely absent in thissometimes lead to different results in calculations. Some au-
empty-cavity model. The formation of such a cavity is be-thors argued that the minimal-coupling Hamiltonian was to
yond the scope of the present macroscopic theory. Thige preferred, while others proposed to refrain from using
would require microscopic theories of the dielectric, involv- gauge-dependent equations to stop the confusion. In the mul-
ing the Pauli exclusion principle for electrons of both thetipolar picture, a controversy arose whether a dipole in free
dielectric and the guest atoms. space couples to minus of the displacement field,
The empty-cavity model captures the observed absence of u-D/gg, or to the transverse part of the electric field,
large electronic effects of the dielectric on atomic properties— u-E'. The first answer is correct and the book by Cohen-
of interest but at the same time, the model has consequenc&snnoudijiet al. helped to settle the argumdri3]. It may be
for photonic properties: the local changessimwill give local  useful to give two sources of confusion even for an atom in
changes in mode functiorfg and therefore in dipole cou- free space and to compare the free-space dipole coupling
pling Eqg. (62). Atomic spontaneous-emission rates will getwith its in-medium generalization E¢62).
local-field corrections. These predictions can be tested ex- The main source of confusion is related to approxima-
perimentally. An important example is the emission rate oftions. It was found in Sec. V D that a dipole couples to minus
an atom inside an atomic-sized empty cavity in an otherwis®f the displacement field:
homogeneous medium. To be preciséR)=¢ for R not

coinciding with any of theR,,. The emission rate is DR/ R _ [e(RmE(Rm) +Py(Ry)]
[3e/(2e+1)]?\el',, whereT, is the free-space emission (Rm)/L802(Rm) ]= g0e(Rpm) :
rate[16]. The well-known in-medium enhancement by a fac- (65)
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wherePy is the polarization field of the guest atom itself. In VIl. INHOMOGENEOUS MAGNETIC MEDIA
free space, or when assuming an empty-cavity model, a di-
pole couples to field-D/ey. Still, one can find references

stating that in free space or in a dielectfit6], a dipole maanetic permeability becom (r) rather tha (So
couples to minus of the electric field. The origin of this mis- 9 . P Y B p . o '
here does not represent the magnitude of a dipple

taken interpretation can be traced back to the normal-modguch K

. . . . S generalizations are even more interesting now that so-
expansion of the displacement field operator for the dlelecCalleol left-handed material§2] have become the subject of

intense scientific discussions, after a prediction that a perfect
z lens could be made with thefs3]. Both e(r) and u(r) of
_ e _otek left-handed materials are negative. Index of refractior) is
b(r) |gog(r); 280[a"f>‘(r) afk(nl. (66 also negative and this leads to many peculiar properties.
Left-handed materials will influence spontaneous-emission
ates of nearby guest atoms in different ways than their right-
anded counterpar{&4].

The present formalism can be generalized to dielectrics
with inhomogeneous magnetic properties as well, where the

tric with guest atoms

The expanded form of the displacement operator is almo
the same as in a dielectric without guest atdmsénus Eq. N . . .
(19b)] but the two differences will now be discussed. The Generalizations to magnetic media were already consid-

first difference, which also plays a role for free space, is thaf"®d I Refs[17,18 and it is relatively straightforward to

the equations of motion of the creation and annihilation op"COTPOrate position-dependent permeabilities in the formal-

erators in Eq(66) have terms involving the atomic variables ST Of this paper, as we will see now. When becomes
that the equations of motion of their counterpaaﬁg) and Position dependent, then the only term that will change in the

ag\O)Tfor the field without guests do not have. If one approxi_classmal multipolar Hamiltoniari57) is magnetic-field en-

. . . p ergy [drB2(r)/[2uoum(r)]. The quantum-mechanical de-
mates displacement fiel@6) by replacing all thea, anda, scription can again be carried out by choosing the general-

(0) (0)t ; i oo, . .
by a\” anday™", respectively, then in free space the dis-jzeq Coulomb gauge for the vector potential. Without guest

placement field66) is equal to the electric field in the ab- atoms, the vector potential satisfies the source-free wave
sence of the guest atoms. In other words, if the guest ato”@quation

are taken into account in Maxwell’s equations, then one finds
a dipole coupling to the displacement field, whereas a cou-
pling to the electric field is found when guest atoms are left V X
out of Maxwell’s equations. It depends on the observable
under study whether the difference between the two dipole
couplings can be neglected or not.

LV><A +ﬂA
() VAT AN

0. (67)

. . The electromagnetic field can be expanded in terms of true
The second difference between displacement (&) modesm, different from moded, . These modes are the

(with guest$ and its counterparfno guests is that mode . ) .
functions will be changed locally when guest atoms areharmonlc solutions of wave equatid7) and so, they are

present, as discussed previously. This difference does ng@ne_ralized transverse, just like modesf the nonmagnetic
sho Up i he ree-space dscussion,of course. I  ieled 0T, CAErIaL Tt ean b fln by cauiing con,
tric, the above approximation of replacing the creation and’ Sec. IV A It is this point that makes the en):aralizpation o
annihilation operators does not make the displacement fiel T P . 9 e

equal to the electric field. The replacement would only hav agnetic media relatively simple. In second-quantization no-

this effect for positions in the medium where(r) equals 1 Eau;n, d:fzeJr lelect:]omadgpgtmth field i energy tbec?mes
and where local-field effects can be neglected. Ho,(dd,+3), whered, is the creation operator of a

Apart from the main source of confusion, there is anothefPhoton in modem,(r). These modes can have mode profiles
reason why the interpretation of the dipole coupling can b hat d|ffer much f_fOT“ any of modef§(r)3 - otherW|sg the
confusing: there are two essentially different procedures tdneoretical description of the medium is not much different.
go from a minimal-coupling Hamiltonian to a dipole Hamil- I €lectric and magnetic interactioits9a and (59b) of the
tonian. The first procedure is to rewrite a minimal-coupling &l€ctromagnetic field with guest(?)toms,(}r?g mofiesan just
Hamiltonian as a multipolar or dipole Hamiltonian by ca- P€ replaced byn, and operators; ™ by d,” in order to take
nonical transformations of its variablédifferent variables, ~both the electric and magnetic properties of the medium into
same Hamiltonian and stajesThe second procedure is a account. As for nonmagnetic media, in the dipole approxi-
unitary change of picturédifferent Hamiltonian, different Mation magnetic interactiofb9b) is zero; electric dipole in-
states, same expectation valugsnlike canonical transfor- teractlpn(Sga dominates, exce_zpt for optical transitions with
mations, picture changes have no classical analogues. Cofero dipole moments. When dipole moments are nonzero, the
fusion is likely to arise when after a canonical change, anain effect of the dielectric becoming magnetic comes from
Hamiltonian has exactly the same form as after a picturdh® change in the mode functions.
change. The differences between the two procedures are ex-
cellently presented in Ref23] for an atom in free space.
Either of the two procedures could be chosen for dielectrics
as well; in this paper, the PZW transformation of the La- The aim of the paper was to find a Hamiltonian of guest
grangian was used instead. atoms in an inhomogeneous dielectric, with a multipolar in-

VIIl. SUMMARY AND DISCUSSION
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teraction between the atoms and the electromagnetic fielelectric function will also change the dipole coupling, giving
The multipolar Hamiltonian is simpler than the minimal- rise to local-field effects in spontaneous-emission rates. If
coupling Hamiltonian because in the former all interactionsone would start with a two- or three-level description for the
between the atoms are mediated by the retarded electromaguest atoms, then one implicitly already assumes a local-field
netic field. The main results are therefore the quantum mulmodel for the dielectric function. Consistency requires one to
tipolar interaction Hamiltoniar57) together with its dipole ~ also choose that local-field model when calculating the mode
approximation(62). With this Hamiltonian, one can study functions in the dipole interactio(62).
how an inhomogeneous dielectric environment can change 'he application of the Power-Zienau-Woolley transforma-
quantum optical processes of resonant atoms. tion to the m|n|mal-coupl|ng I__agrang|an was shovvn to pro-
In order to obtain the central results, first the electromagduce the multipolar Lagrangian, after the generalized Cou-
netic field was quantized in the absence of guest atoms. ThI§MP gauge had been chosen. Actually, the gauge was chosen
has certainly been carried out befdre5—17,38 but after earlier than strictly necessary: the choice could have been

explaining why real optical mode functions can be useopostponed until the canonical momenta were determined

whenevek(r) is real, the quantization becomes simpler than‘crom the multipolar Lagrangian. The story would have been

found in Refs[16,17,3@. In particular, only when real mode simpler up to that point. The difficulty to find all Maxwell's

functions are chosen are the associated generalized positio?.‘igu""t'onS WOUI.d then show up only ajter obtaining the mul-
and momenta Hermitiafsee Eq.(16)]. tipolar Lagrangian. The reason to first choose the gauge and

Guest atoms were introduced into the theory such thamen do the PZW transformation is that it shows more clearly
at the difficulty to find all Maxwell's equations was a con-

Maxwell’'s equations hold with the atomic charge and current :
densities as source terms. A minimal-coupling Lag;;rangiar?‘equence of choosing the gauge rather than a consequence of

that gives rise to these equations was easily written dowrF.he PZW transformation. . . .
More generally, the presentation given here is one among

However, after choosing a generalized Coulomb gauge, it ibilities. Wh ing f lassical minimal
was not directly clear how to obtain all Maxwell's equations many POSSIDIILES. €n going from a classical minimal-

in this particular gauge. In Sec. 1V, it was explained that thecoupling Lagrangian to a quantum mechanical multipolar

usual functional derivative must be replaced by a “Con_Hamlltoman, one has to make four steps: one step is to

strained functional derivative” after choosing a gauge. ThisChoc.)Se a gauge,'another step is to tran;;form the theory to the
ultipolar formalism. Yet another step is made when going

is for mathematical reasons rather than a matter of taste ) L A
convenience. Simple rules are given to actually compute oM @ Lagrangian to a Hamiltonian and quantization and

these constrained functional derivatives. As a result, '[héecom_j qua}ntization tog_ether_are step number f_our. _These are
gauge-independent Maxwell's equations were found to innow given in the order in which they occurred in this paper

deed hold in the generalized Coulomb gauge as [get Eq. bu_t the steps can b_e interchanged. Not all of the 24 permu-
(39)]. tations are convenient, but all routes should lead to the

There is a second advantage of our careful treatment quivalent final results. It was shown in detail in Refl]
functional differentiation. In the multipolar formalism, the that step two and three can be interchanged for free space:

field in the dielectric canonically conjugate to the vector po-f[he PZ.W transformat_lon of the m|n|mal-coupl!ng Lagrang[an
tential could relatively easily and unambiguously be identi-'S eq_uwa_lent to a p|c_ture change of the m|n|m_al-coupllng
fied as minus of the full displacement fieldee Eq.(46)]. Hamlltonlan. The equivalence will also hold for inhomoge-
This field contains the polarization fields produced by both€0US dielectrics.

the dielectric and the guest atoms.

Another important result is that the macroscopic descrip-
tion of the dielectric could only be tied up to the microscopic  We would like to thank Allard Mosk, Rudolf Sprik, and
description of the atoms by assuming that the dielectric funcWillem Vos for stimulating discussions. This work was part
tion is locally modified by the presence of the guest atomsof the research program of the Stichting voor Fundamenteel
In particular, in the empty-cavity mod€Eq. (64)], the di-  Onderzoek der Materie, which was financially supported by
electric function has value 1 where wave functions of thethe Nederlandse Organisatie voor Wetenschappelijk Onder-
guest atoms are nonzero. The local modification of the dizoek.
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