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Effective Hamiltonians for periodically driven systems
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The dynamics of classical and quantum systems, which are driven by a high-frequentigld, is inves-
tigated. For classical systems, the motion is separated into a slow part and a fast part. The motion for the slow
part is computed perturbatively in powers of ! to the orderw ™4, and the corresponding time independent
Hamiltonian is calculated. Such an effective Hamiltonian for the corresponding quantum problem is computed
to the ordero ™~ # in a high-frequency expansion. Its spectrum is the quasienergy spectrum of the time depen-
dent quantum system. The classical limit of this effective Hamiltonian is the classical effective time indepen-
dent Hamiltonian. It is demonstrated that this effective Hamiltonian gives the exact quasienergies and quasien-
ergy states of some simple examples, as well as the lowest resonance of a nontrivial model for an atom trap.
The theory that is developed in this paper is useful for the analysis of atomic motion in atom traps of various
shapes.
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[. INTRODUCTION degrees of freedom on the center-of-mass motion is impor-
tant, in particular, near resonance of the external field with
The interaction of cold atoms with strong electromagneticthe internal motionlevel spacing The force on the center
fields results in many novel, interesting experimental obseref mass due to the internal degrees of freedom is given ap-
vations[1-3]. The relevant systems are characterized by amproximately by a dipole forcg¢2]. The sign of this force
extremely high degree of control that enables one to explordepends on the sign of the detuning of the light frequency
various problems of general physical interest. The responsieom resonancéof the electronic levels The motion of the
to a rapid oscillating force is such an issue, and will be theatoms is manipulated by fields with amplitudes which vary
subject of the present paper. spatially, resulting in a force on the center of mass of the
Recently, in a series of experiments atomic billiards wereatoms. In many cases, the amplitude of the field can be as-
realized[4,5]. In these billiards atoms were confined by a sumed static. The atomic billiards described earlier consist of
standing wave of light to move in planes. The boundary ofa time dependent field which results from the moving laser
the billiards was generated by a laser beam, perpendicular teeam. Even at high frequencies of the motion of this beam,
the plane of motion. This beam rapidly traverses a close@dne might expect that this time dependence will have some
curve, which acts as the boundary of the billiard. The bounddynamical consequences. The question is most interesting
ary of the billiard is assumed to be approximated by the timavhen the wavelength of atoms is of the order of the size of
average of this beam, and the force applied by the boundarye billiards. In this work, the effect of a laser on the center-
on the particles is approximately the mean force applied byf-mass motion of the atoms will be modeled by a time
the beam. One expects that this approximation is valid whedependent potential. For some situations of physical interest,
the motion of the beam is fast relative to the typical veloci-this simpler model should still describe the dynamics in a
ties of the atoms in the billiard. The billiards generated byhigh-frequency field without the need to specify the dynam-
the rapidly moving light beam have motivated the presenics of the internal degrees of freedom or the quantum aspects
work. The more general physical problem, which is exploredof the light field. Therefore, in the present work the atoms
here, is the description of the classical and quantum dynanare modeled by point particles moving in a rapidly oscillat-
ics in presence of fields that oscillate with high frequency. ing potential that varies in space. This description is relevant
In traditional atomic physics, one typically assumes thatfor a wide class of light-atom interactions and is not confined
the fields which affect the atoms have an amplitude which igo models of billiards, which motivated the present work.
constant in space and is time independent. This assumption is The classical dynamics of particles influenced by a high-
justified since the wavelength of the light field is much largerfrequency field was studied in several contexts. Kapitza in-
than the size of the atom and the electraimterna) degrees vestigated a classical pendulum with a periodically moving
of freedom react to the periodic change in the field muchpoint of suspensiofi6]. In this “Kapitza’s pendulum,” the
faster than the external onésenter-of-mass coordinate and motion can be separated into a slow part and a fast part
momentum. The main subject of traditional atomic physics which consists of a rapid motion around the slow part. The
is the response of the internal degrees of freedom to thifast motion results in an effective potential for the slow mo-
field. Atomic spectroscopy is the most spectacular result ofion. In some range of parameters this pendulum performs
this line of research. The center-of-mass motion of the atonmarmonic(slow) oscillations around the point where it points
can be ignored in most laboratory experiments that explorepwards. This point is unstable in the absence of the time
the dynamics of the internal degrees of freedom. dependent perturbation. This phenomenon is called “dy-
For the field of atom optics, the effect of the internal namical stabilization.” Later, Landau and Lifshitz general-
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ized this result for motion in the presence of a rapid periodidypically there is full ionization, namely, that at long times
force with a spatially dependent amplitudg (see also Ref. the probability to be at the bound stdt# the time-averaged
[8]), and calculated the leading term in an expansion in powproblem approaches zero. For some arrangements ofthe
ers of the inverse frequency. functions, stable bound Floquet states exist. The transport
Dynamical stabilization is used to trap atoms in electro-through driven mesoscopic devide], and in the presence
magnetic fields. The most notable example is the Paul tragf oscillating fields[28], attracted some interest. _
[9]. In this trap, the time dependent electric fields are used to N the present work, we study the dynamics of classical
localize ions in the region where the field amplitude is mini-&nd quantum high-frequency driven systems. The classical
mal. The fields are well approximated by restoring forcegProblem is discussed in Sec. Il, where the motion is sepa-
which are linear in the distance from the equilibrium point, rated into a “slow” and a “fast” part. A systematic perturba-
The resulting Hamiltonian is that of a time dependent oscilion theory is developed for the motion of the “slow” part.
lator. It is possible to find exact quantum-mechanical solu-The equation of motion of the “slow” dynamics is then com-
tions for this problem, which are based on the correspondinguted o the ordew °, which is an extension of the order
classical system. That is, the states are simply related to tfa -~ (Presented in Ref.7]). This slow motion is shown to
ones of the harmonic oscillator. Therefore the states of th&esult from an effective Hamiltonian. In Sec. Ill, an adaption
motion in the Paul trap are knowWa0—132. Itis of interestto  Of the Floquet theory to the problem is reviewed. An effec-

find some of the states of problems of a more general naturdVe (time independentHamiltonian operator is defined fol-
even if only approximately. lowing and generalizing13]. The eigenvalues of this opera-

The work of Kapitza was first extended to quantum-tor are Fhe .quasienergies of the system. This effective
mechanical systems in a pioneering paper by Grozdanov arfd@Miltonian is then computed perturbativelp the order
Rakovic[13]. They introduced a unitary gauge transforma-@ ) in Sec. IV. The restrictions introduced in R¢L3] are
tion resulting in an effective Hamiltonian that describes thedvoided and consequently detailed expressions for the vari-
slow motion and demonstrated that its eigenvalues are th@us terms of the effective Hamiltonian are calculated explic-
quasienergies of the time dependent problem. The effectivéily: The classical effective Hamiltonian of Sec. Il is found to
Hamiltonian was calculated as an expansion in powers of thB€ the classical limit of this quantum effective Hamiltonian.
inverse frequency. In that paper, the analysis is restricted to/4 known exactly solvable simple example of the method is
driving potential that has a particularly simple time depen-Presented in Sec. V. In Sec. VI, the scattering from a time
dence. Moreover, the final results are restricted to forces th&€pendent potential is discussed. In particular, the resonances
are uniform in space, a situation natural in standard spectro&f the time dependent problem are found to agree with those
copy, but too restrictive for the interesting problems in atomof the effective(time independentHamiltonian of Sec. IV.
optics. These restrictions are avoided in the present work. Finally, the results, the implications, and some related open

Other studies of quantum systems with periodic time deProblems are discussed in Sec. VII.
pendent fields were also published. Gavfilat,15 devel-

oped a perturbation theory for the Floquet states and the Il. CLASSICAL MOTION IN A HIGH-FREQUENCY

guasienergies in terms of the states of the time-averaged POTENTIAL
problem. The scattering from a periodically driven barrier
was studied by Vorobeichikt al.[16], by Bagwell and Lake In this section, the dynamics of a classical particle moving

[17], and by Wagnef18], while the quantum and classical in one dimension under the influence of a force which is
dynamics of some one-dimensional systems were investperiodic in time is studied. Typically, solutions for time de-
gated by Henseleat al.[19]. In the limit of high frequencies, pendent problems can only be attained numerically. How-
the systems behave as if the particles were subject to agwver, when the period of the force is small compared with the
effective potential which is the time average of the time de-other time scales of the problem, it is possible to separate the
pendent one. Fredholm theory was used by Georgeot amdotion of the particle into “slow” and “fast” parts. This
Prange[20] to study quasiclassical scattering from varioussimplification is due to the fact that the particle does not have
systems, including a one-dimensional periodically kicked pothe time to react to the periodic force before this force
tential. changes its sign, namely, the contribution of the periodic
Another approach to time dependent systénms neces- force to the acceleration in one period is negligibd®m-
sarily periodig is to use the Magnus expansif#i] in order  pared to the contribution of the effective force, in a sense
to compute the propagator. Time periodic systems were useghich will be specified in what follows Thus we will con-
as examples in order to check the convergence of this expasider the limit of small periodgor large frequencigsof the
sion [22—-24. For these time periodic systems, the Magnusdriving field.
expansion is of similar nature to the method presented here, The leading ordefwith respect to 1)) of the dynamics
and the differences are discussed in Sec. Ill. was computed by KapitZ#®] for the “Kapitza's pendulum,”
There are numerous other works regarding periodicallynamely a pendulum where the point of suspension is moved
driven systems. Here we mention few of them. Of speciaperiodically. It turns out to be very genefdl]. Here the next
physical interest is the ionization of atoms by lighee Ref.  order is computed, and it is demonstrated that the equation of
[25] and references thergirSome toy models for ionization motion of the slow part of the dynamics can be derived from
that consist of one-dimensional time dependé&ritinctions  a time independent Hamiltonian. This Hamiltonian will be
were treated rigorousl§26]. In particular, it was shown that computed explicitly to the order Wwf. Later, this Hamil-
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tonian will be compared with an effective Hamiltonian which dé¢ 9E 9. OF.

will be derived for the corresponding quantum problem. — =w—+ X+ —X, (4)
The existence of such a Hamiltonian might seem to con- dt dr X X

tradict the fact that the time dependent dynamics do not pos-

sess a constant of motion. Moreover, the classical motio

may be chaotic. The existence of this effective time indepen-

ewton’s equatior(1) is given by

(aTHE TR ; , . 9%¢ PPE . PPE | 9. OE..
dent Hamiltonian implies that a constant of motion exists for | X+ 42— + 20 Xt — X+ =X+ =X
the slow dynamicit is just the effective Hamiltoniagn and a7 IXIT oXor axX gXx
for a one-dimensional system the slow dynamics is inte- ) ) )
grable. To avoid confusion, it should be emphasized that the E L E I,

. . . . . —X+2—XX+ —X
effective Hamiltonian depends on a coordinate which de- X2 IXIX X2
scribes the “slow” part of the motionThis coordinate is not
the location of the particléalthough they are almost identi- =—=Vo(X+&—-Vi(X+E& 7). (5)

cal at high frequencigs The actual motion consists of a

rapid motion in the proximity of the trajectory of the slow The variablesr andt will be treated as independent vari-
dynamics. The relation between the slow coordinate and thables. This calculation is similar to the ones performed
coordinate of the particle is nonlinear and extremely compli-within the method of multiple time scales. Indeed, the result
cated as will be demonstrated in what follows. We will dem-of the following calculation is equivalent to the one obtained
onstrate that an effective Hamiltonian for the “slow” motion using the method of multiple time scales analysis, as demon-

may exist. strated in the Appendix.
Newton’s equation for the motion in the periodic field is  In the limit of high frequencies is going to be smal{of
given by the orderw2) and therefore it is convenient to expand
Vo(X+¢) andV,(X+&,7) in powers of¢ (we assume that
d?x V, andV; are smooth functions of the coordinat€hen¢ is
mﬁz —V{(X) = Vi(X,wt), (1) expanded in powers of &/
501
whereV, is a periodic function ofwt of period 27 and its 522 in : ©

average over a period vanishes. We denote derivatives with

respect to coordinates by primes and with respect to time byhe ¢ are chosen so that the equation ¥othat results from
dots. This separation of the potential to an average partq. (5) does not depend on

Vo(x) and a periodic part with vanishing averaye(x, »t), Before obtaining the slow equation of motion from Eq.
is natural and WI” Slmpllfy the followmg calculations. We (5), order by order, there are two points regarding our
look for a solution of the form method of solution which should be discussed. First, we note
that the fast part is expanded in powers of &/while X is
X(t)=X(t) + &(X, X, ot), (2)  nhot expanded, which seems to be inconsistent. One may also

expandX in powers of 1o asX=Ei°°:0(1/w‘)Xi . When one
does so the equation of motion f&ris then replaced by a
series of equations fof; . In this series of equations, eakh

can be determined from the lower-order terKXjs wherej

<i. This is the standard method of separation of time scales,
and its application to the present problem is demonstrated in
the Appendix. These equations are equivalent, in any order,
o the equation of motion ofunexpandedX, which will be
obtained in what follows. At a given ordev " of the
present calculationall contributions that are found by the
method of separation of time scales are includedsbuateof
the higher-order terms are included as well. Second, we note
that while we assumed thgtdepends only ofX and X, the
higher-order derivatives of with respect to time appear in
Eq. (5). In the leading order in &/, as will be demonstrated,

whereX=dX/dt and

_ 1 2 X
§Eﬂfo d7é(X,X,7)=0. (3

The bar denotes in this paper the time average over o
period. The fast part of the motion, which is nearly periodic
in time, is denoted by. It will be shown later that it can be

chosen to depend only ax and X, but not on the higher-

order time derivatives. Sinc¥ and X are slowly varying
functions of timet, £ is not periodic in timet, in spite of Eq.
(3). The coordinateX describes the slow part of the motion

and its equation of motion will be computed in the following. .. , . .
Our method of solution is to chooseso that Eq.(1) will one can replacX by —(1/m)Vp(X). The error is of higher

lead to an equation foX which is time independent. An order in 11»," leading to the correct contribution % at the
exact solution using Eq(2) is too complicated to obtain. order whereX appeared. Corrections of higher orders ab 1/
However, at high frequencies, one can deterngirarder by  to & result from the corrections of higher ordersXo These
order in 1bv. In order to separate terms in powers of thecorrections will affec; with j>i, since these are chosen to
frequency, it is convenient to introduce the new time variablecancel ther dependence at any given order. The higher-order
T=wt. Using derivatives ofX can be found by repeated differentiation of
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X. This enables us to obtain an expression garhich de-

pends orX andX, but not on the higher-order derivatives of

X.

To proceed we gather all the terms in E§), using Eq.
(6), which are of the same order, say ", and choos&,,, »
(which is still undeterminedso that the explicitr depen-
dence cancels. In the leading ordes)( the only contribu-
tion is

P?E
Frs

0. (7)

Therefore we can choose

£1=0. (8
In the next order °), we find the contributions
. 0%
m| X+ — =—Vy(X)—Vi(X,7). 9
aT

Our goal is to balance the dependence. To do this we have The terms of ordets—

to solve

9*&,
a7

1
=— EV&(X,T), (10

moreover, we also require théj is periodic in7. The inte-
gral over the right-hand sideRHS of Eq. (10) can have
terms which are time independent and tlyscan grow lin-
early in 7. To ensure thaf, is small even at long times such

secular terms must be avoided. This can be done by requiring
that the time integral has a vanishing average over a period.

Let f(x,ai be any periodic function of with a vanishing
average,f=0. Assume that the Fourier expansion fofs
given by f=3,.,f,e""", then we define the following inte-
gral:

[=3, ot (1
nzo IN
and its repeated application will be denoted by
2)r 7| T
f [f]=j U [f] (12
andj applications by
(H7 T T
["t=[1 [t 19

j times

This definition, which is actually a specific choice of the
integration constant, is natural since it ensures that the result
is periodic even after repeated integrations. It also helps to

separate periodic term@ith vanishing averageand secular

terms(which will be time independent in the current calcu-

lation). Integration of Eq(10) implies
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1 (@7
§z=—af [Vi(X,7)]. (14

Note that we did not really find the general solution of Eq.
(9), but rather chosé so that it is satisfied. Substitutirdg in

Eq. (9) gives the leading-order equation for the slow coordi-
nateX. The terms in this equation are just the time indepen-
dent terms which were not canceled 8y

mX=—V{(X). (15)
The contributions from Eq(5) at the next ordet ™! are
2 2
m( 'ij +2X;x§27 =0, (16)
which, with the help of Eq(14), is satisfied by
2. ()7
fa=1X f [Vi(X,7)]. (17)
2in Eq. (5) are given by
m (?:f;+2 X;;iiﬂ'(;;i )”(i—inr)'(Z%
=—Vo(X) &= VI(X, 1) &,. (18)

Substituting Eqs(14) and (17) leads to

2 " "
P _Vo(@r o Vi @
gr?  m? Yo !

3.,(@ (s X (@7
- X f V(X7 Ff [Vil. (19
Equation(19) cannot be solved, if, is required to be peri-
odic in 7, since the RHS has a nonvanishing average which
will lead to solutions that grow like? (these are the secular
solutions that one wishes to avoid when using the multiple
time scales analysisWe will choose¢, so that it will bal-
ance ther dependent part of Eq19) and will be periodic in
7. The remainingr independent terms in Eq19) will be
included in the equation of motion of the slow coordinXte
Defining

1 (@ 1 (@7
fl(XyT)E_Zvlf [Vl]__2 1f [Vi] (20
m m
and choosing

Vo (@ @ 3X2 ()
€= 5 [V1]+f [fal—

[vi]

3X (@)
-— (21
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balances all the dependent terms on the RHS of E49)  from
but leaves an extra term

1T —Vpés—Viés. (23
m The first term will vanish sinc#/, is 7 independent and;

which is not balanced. This is actually a term of ordef? has a vanishing average. The second term can be computed

that is left on the RHS of Eq5) when we substituté in Eq.  Sn9 417,
(5). The resulting equation for the slow motion is then O —
. 1 Tor 16s= V"f == —f ’]f [Vil=
mik==vy00+ —vi [ Vi ote ). (22 ”
w

This is the leading order correction due to the periodic podn the last calculation, we have used integration by parts and

tential V. It was calculated before in Reff6,7]. With the  then the fact that the average of a derivative of a periodic
help of Eq.(15) or of the leading term in Eq22), X can be function over a period must vanish. This leads to the conclu-

eliminated from expressiofR1) for £,. This method allows sion that one can choose a periogicin such a way that all

_3 .
us to compute corrections order by order. We will continue” dependent terms of th7e4order. in Eq. (5) are cancgled.
the calculation up to the ordes*. We turn to the ordetw ™ that is the last order that will be

The next order isw3. We do not need to computé considered here. Again one can get the contributions to the

epr|C|tIy since it can only change the slow equation in orderequ":ltIon ofX by averaging terms of this order in E@). The

. To obtain the next correction to E2), one needs average over of the LHS (excludingmX) vanishes and the
only the average over of the terms of order 3. The  contribution of the terms on the RHS is
reason is thats will be chosen in such a way that it will
cancel all the periodic terms with vanishing average. This
further simplifies the calculation since all the terfexcept

mX) on the LHS of Eq(5) have a vanishing averagever

7), thus only the terms from the RHS can contribute to theThe first term will vanish but the other terms have a nonva-
equation of the slow coordinate. In this order, the contribu-nishing average. Using Eq$14), (21) and integration by
tions to the equation of the slow coordinatean result only  parts(in the averagesyields

1 1
~Voéa— SVE 6 Vigs— VP8, (25)

1 1 1 @r 21 @) 2
8- ViE- ;v08=- vl [va| - v [ Vi [V v el [V iva)

1 (@ (@ X (@r @ o 3Vl (@ 2
_?Vlj Vl]f [Vil+ [Vl]J [Vi ]_FJ [Vil| . (26)

In the last termX in &, was replaced by- V{/m resulting in errors that are of the order © in the final result. Equatiof26)
gives thew ~* contribution to the equation for the slow coordinate

The equation foiX to the orderw ™ * is obtained whert is substituted into Eq(5) and the remaining terms are averaged
over 7 resulting in

1 (2)r 2 1 (2)r )7 1 )7 2
T ey e vy vy
(2)r () 3X2 [(2)7 @7 3V 2

J ]f [vil+ — ]f vi¥]- "U [’1’]) +0(w®). (27)

It is instructive to introduce the effective potential

ait0=Ver o [vin] s ] [P v s v [Pva 28
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Substituting Eq(28) in Eq. (27) results in the equation of the The quasienergyor Floque} states have a natural sepa-

slow motion ration into a “slow” part e '®Y") (with the natural choice
) O0s=MN/f<w), which includes the information about the

. , 3X2 ((@r oL (3) quasienergies, and to a fast pag{x, wt) that depends only

MX= =Vt me? [Vil [Vi7] on the “fast” time wt. It is expected that one will be able to

find an equation of motion for the slow part of the dynamics
V[ (@7 \2 as was done for the classical systems in Sec. Il. Such an
- 4(f [V]]] +O(w®). (290  equation will include information regarding the quasiener-
m-w

gies of the quantum system, and will be developed in what

. ) ) ) . follows. It establishes a natural link between the separation
Given a solution of thisX(t), the solution for the original j ¢, the fast and the slow motion in classical mechanics,
problem can be easily obtaineth the appropriate order of \hich can be formalized by the theory of separation of time
1/w) since¢ is known in terms oiX [see Eqs(14), (17), and  gseajes; and Bloch-Floguet theory in quantum mechanics.
(21)]. From these equations, one sees that in the case where |1 is known that one may write the propagator in the form
the oscillating forceV; is independent of positioK the fast [33]
coordinate¢ is independent oiX and X to the ordero ™ * R R .
[note that in Eq(21) only the orders® of X is required see U(t)=P(t)e 9", (34)
also Eq.(A16)]. The final result of Ref[13] is confined to R R
the case wher¥] is independent oK. Equation(29) can be ~ whereg is self-adjoint andP is unitary and periodic with the

derived from the Hamiltonian period of the Hamiltonian. The eigenvalues Gfare the
- quasienergies of the system provided the eigenstatésaoé
p2 3 2)r 2 . . ~ . o .
Horr=n—+Vor(X)+ —0—— f [V!]] P24+0(w9), in the domain ofH(0). SometimesJ is called the quasien-
2m 2m*e* ergy or Floquet operator. The actual calculationGofight

(30 be complicated. Such an operator was calculated in Refs.
whereP is the momentum conjugate % [22,13 by introducing expansions foP and G. The result

We have shown that using the natural separation of tim&U"ns out to depend on the phase of the periodic part of the
scales, it is possible to separate the motion of a particle in Giamiltonian or on the initial time[See for example Ref.
high-frequency periodic field into “slow” and “fast” parts. 122l EGs.(25 and(26) and Ref[13], Eq. (16).] Inspired by
The slow dynamics can be derived from an effective Hamil-E9S: (31)—~(34) an approach of a somewhat similar spirit is
tonian which is time independent. We turn to discuss the'S€d-

corresponding quantum problem. The goal is to find a unitary gauge transformat&h(",
where IE(t) is a Hermitian operatoffunction of x and E))
[Il. FLOQUET THEORY AND THE EFFECTIVE defined at a certain timg which is a periodic function of
HAMILTONIAN time with the same period @4, such that in the new gauge

Consider a quantum system with a Hamiltonian that isthe Hamiltonian in the Schdtinger equation iime indepen-
T q . y - dent Such a Hamiltonian was found by Grozdanov and Ra-
penodéc in t'T]e'Il'I'(HT):H(t)- 3SUCThh systems can rt])e kovic [13] if the time dependent part is of the restricted form
treated using the Floquet theq#9—33. The symmetry wit Ver=V(X)sin(wt+6). It was analyzed with the further

respect to g|§crete time Franslatlons implies that the Sc’quong'trong restriction that for one dimension it takes the form
of the Schrdinger equation

dV/dx=const (uniform force. In what follows, a general
9 N analysis that is free of these restrictions is presented. Apply-
ih - y=Hy (8D ing & to both sides of Eq(31) and adding#[(a/dt)eiF i
to both sides leads to
are linear combinations of functions of the form

iﬁi(ei%):eiﬁﬂwm %eiﬁ)w. (35)

Py =e 1Ny, (X, wt), (32 ot
whereu, are periodic with respect tat with period 2, In terms of the functions in the new gaugg= eiﬁzp, this
that isu, (X, w(t+T))=u,(X,wt) with o=27/T. The states equation is
u, are called the quasienergy or the Floquet stateshaied
referred to as the quasienerfye will also call the stateg,

as the quasienergy state¥his is the content of the Bloch- 'hﬁd’:('w" (36)
Floguet theorem in time. The states are the eigenstates of
the Floquet Hamiltonian where the Hamiltonian is
~ . d ~ ~ Eo—if é’ei'e _if
HF:—IﬁE'i‘H. (33 G=e"He " +i# S e '". (37)
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In the classical limit, it reduces to small, of the order of . In this limit, one can easily cal-
F culate the matrix elements of an observablebetween the
G=H-% ‘9_ (39) quasienergyFloque} states using the eigenvalues and eigen-
at’

states of the effective Hamiltonia@:

Therefore in the classical limit #F is the generating func- N _ T
tion of the canonical transformation corresponding to the (1,0)\1|O|1,0)\2>—(¢M|e Oe |¢>\2>

unitary transformatiore ¥ [34]. ~ . A
. N = O +i F,O
Let us assume that such an operdtoexists so thaG is <¢)‘1| |¢>‘2> <¢M|[ ]|¢x2>

time independent. Then the eigenfunctionsénhrevk(x), 1 PPN
and their evolution takes the form — (O [F.[F.Olhy )+ (42
Pr(t,x)=e My, (x), (39

The result is an effective expansion in powers ab.15ince
observables have a meaningful classical lifhit-0, their
expectation should reduce to the expansion in powerswf 1/
for the corresponding classical quantity as calculated in Sec.

Il and the Appendix. The expansion &f presented in the
following section can be considered an extension of the mul-
tiple time scales analysis to quantum mechanics. The effec-
tive Hamiltonian, which will be obtained, will be compared
with the classical Hamiltonian for the slow motion that was
computed in Sec. Il

These states, in the original gauge, correspond to
p(tx)=e"Fp=e I 0Me=Fy (x),  (40)

sinqef: does not include any time derivative. The function

e P, is periodic in time with the period dfl and therefore
¢, is a Floquet state with quasienergy (mod fw). It
should be compared with Eq32) with the identification

uy,=e Fu,. Itis assumed tha'" (ande 'F) are such that

they map the domain dfi(t) into that of G and vice versa. IV, THE EFFECTIVE HAMILTONIAN OF QUANTUM

This may not be true in general, and one cannot exclude the gysTEMS WITH A HIGH-FREQUENCY POTENTIAL
possibility that examples, where only some of the quasiener-

gies can be found using this method, exist. For example, In Sec. lll, we demonstrated that the quasienergies and the
problems of this nature may occur if for a functignin the ~ Floquet states of a quantum system can be determined if one
Hilbert space ofd, the functione’™ ¢ is not in this space. ¢an find a gauge transformation so that the Hamiltonian is
The limitations on the validity of the method should be sub-time independent. The transformation and tbe resglting effec-
ject to further mathematical studies. tive Hamiltonian are obtained here. Typicalyand G can-

To emphasize the difference between the effective Hamilnot be computed exactly. For high frequencies, one can de-
tonianG andg given by Eq.(34), let us write the propagator termineF andG order by order in L. In the following, we
in terms of F, andG. To propagate any state in time using present a derivation df andG accurate to the order a&*.
G, it has to be transformed to the time independent gauge, Ve consider the Hamiltoniagwhich is more general than
then propagated, and finally transformed back. This results ithe one studied in Ref13))
the propagator
"2
. . . .~ Pt . -
U(t)=e " Fg i(te/A)giF(0), (41) H:ﬁJFVo(X)JFVl(X,wI)- (43

SinceG andF do not commuteG generally differs fromG  This is the quantum system which corresponds to the classi-

of Eq. (34). _ . . cal system that was discussed in Sec. II. It should be noted
We note that an approximate solution of the time depenthat the method which is described in the present section also

dent problem in terms of an expansionfoandG has some applies to the Hamiltonians that differ from E3), for

superior properties compared to the more customary expamexample in the presence of magnetic fields and for s{sies

sion of P and§ of Eq. (34). For instance, i is Hermitian ~ Sec. V). We choose to examine the Hamiltonie#8) since it

at any order ther'* is manifestly unitary, while some care is is of interest to compare the resulting effective Hamiltonian

. . L - . with its classical counterpatB0). As mentioned in Sec. I
needed to obtain unitary approximations fer In addition, ) . . F
e are looking for a unitary transformatia@™ so that the

G (_joeAS not depend on the_ phase of the time dependent ﬁel&ésulting Hamiltonian37) is time independent. It is conve-
while G does depend on this phasee Refs[13,22). There-  pjent to definer=wt, since the Hamiltonian depends on

fore in the present work, a description in terms®andF is  time only throughr. Using this definition, Eq(37) is given

used rather than the one in terms/fandg. by
In the following section, the derivation & andF will be
presented explicitly as an expansion in powers af. 1t will A BB —iE L ge'f L
be shown that at high frequenciéscan be chosen to be G=e"He THife ?)e ’ (44
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At high frequenc|esF is assumed to be small, of the At the order 1b, the effective Hamiltonian obtained from
order of 1k, an assumption that will be explicitly satisfied Eds.(44)—(48) is
by the following calculation. This enables us to expa'.hd

andF in powers of 1k and to choosé so thatG is time Gy =i[F A]-rZ2 -2

. . , . . (52
independent in any given order. The expansions are given by ' ar 2

Y or

R aﬁl}

A Note thatF,, given by Eq.(50), depends only on the coor-
G= E w_ (45 dinate and therefore it commutes with its time derivative and

n=0 ~ A
also withV,. If a periodicF, can be chosen so that

and . A
Fa_ | (B, A= | = p2 (53)
oo 1 —_— -—,
E— 2 il (46) ar h f
n=1 a) .
. . thenG, vanishes. Indeed, by choosing
The periodicityF(7+27)=F(7) is assumed. The calcula- _ _
tion is performed by computinG, in terms ofF 4, ... Fj.q ﬁzzl_f(zh "y '_J(Z)T[V,]i (54
and then choosing, . ; so thatG, is time independent. The 2m ! Hax
terms in Eq.(44) are calculated with the help of the operator
expansions(than can be obtained with the help of Refs.We obtain
[35,36)), .
|l5|:| —|IE:|:H_ |”:,|:| _ |”:l |A:,|:| A L . . .
e ne 1L ] 2! (R 1 We have presenteld, in the coordinate representation since
i the simple dependence Bf on the momentum makes it the
— _I[|‘:,[|“:,[f:,|i|]]]+ . 47 most natural representation. We will use it also when calcu-
3! lating higher orders.
and At the next orderw 2, Gz found from Eqs(44)—(48) is
oeF\ . 9F 1. aF] i { . oF PO oFy ih|. OF,
AN e e e Sl i+ .. G,=i[F,,A1- S[Fy[F,,H h———F,—
(&7) FPY ey F, F'ar + . 2=1[F2,H] [ [F1,H]I- 2|1,
(49 ) . .
in| . JFq +h Ele dF, (56)
In the leading orderQ(w®), G, is given by 2 Zoar] 6l Y Voar
. PP - 9F1 Substituting H=Gy+#%(dF,/d7) and using Eq.(53) to
=—+ + —h—. o . A~ .
Go=om T Vo) +Vilx ) —f = (49) eliminate the commutation relatidit; ,H] results in
The potentiald/, andV; do not depend op. To cancel any . oFs ih[. oF,
time dependence, we choose Go=i[F2,Gol—h——+ 5| Fa,—— (57)
.17 A .
:%J [Vi(x,7)]. (50 We can choose a periodie; in order to balance the time

dependence ob,. Note thatG, has some time independent
It is easily computed in the coordinate representation. Not@art that cannot be canceled by a periodlic Therefore we
that F, is determined only up to a Hermitian time indepen- separatefsz into a 7 independent part and a part that is pe-
dent Operator It was assumed to vanish here. SUbStltUtlngodK; with Van|sh|ng average and Chodé@so that the latter
Eq. (50) in Eq. (49) leads to vanishegin Eq. (57)]. For this purposef; must satisfy
L oF; i i
Gy 2m+V0(x). (51 &—fz;i—['iz,éo“%

. dF;
Py

. oF,
Foror |-

) . (59

This is the leading order of the effective Hamiltonian. The
dynamlcs do not depend on the fast time dependent potentlwhereGo is given by Eq.(51) and an average over a period

V1 as expected. The corrections due\t@ will appear at is denoted by bar. After some algebraic manipulatidhsis
higher orders in k. found to be
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3)r v (92 h (@ o 9 f5 to causeG; to have a simple form. Using E¢59) in Eq.
3=~ —f TS E [Vi ]5 (57) will cancel the time dependent terms, resulting in
. ik, oF 1 @ 1/ (- 2
h 3)r 1 3)r :I _1 — N\ e ’
] e [ o312 ) =z | Mil=g [
4m (61)
1 where we have used integration by parts.
+3 ﬁfmm(x P, (59) Lset megraion oy p
The calculation ofG; and G, can be performed along

similar lines. This calculation is tedious but straightforward,

where and only the [’nain results are presented. Using the freedom in
Pl(X,T)Eimh< [,&2,'9_':1 _[ “2"9_':1}) the choice off3, we choose it to satisfy
Y " noo=— e [var[Tvi @
—v; J O vi-v; J v, (60) o
This choice forf4 leads to
The constant of the integration overis the Hermitian op- é3=0 (63)

erator f that depends only om andp, and will be deter- R
mined at the next order. We will use the freedom to choos&henF, is found to satisfy

e A (A)T[v“)] 7 3hd (A)T[v“)] 9> 3hd (4)7[\/(5)] g hA (4)7[\/(6)] i UT[P’HJT[P’]
Yo tiax® 2m3 Yax? am’ tiax gm3 Yoom? $ 2
zfr d zfr d i f(Z)T , Zf(zﬁ 2 61
2] [Pl +2) [Pl +m [Pil+ [Pl]— +H4(x.p), (64)
where

)

3)r 3)7 3)7
PZ(X,T)EV1J [Vil- V1J [Vi], P3(X,T)EVSJ [V1]+3V(’)J [Vi]. (65

The time independent part d§f4 is denoted byf4. Using the freedom in the choice of gauge, we choﬁsso that in the
classical limit the effective Hamiltonia® reduces to its classical counterp&0). To achieve thif, is chosen to satisfy

e e fie 9 he
=g(x)p+ pg(X)=2i—g(x)5 + i—g’(x), (66)

where

~ (2)r (2)r
G00--—5[ vl [ Tva 67)

Am?h,

This results in

. 1 @) 2 1 @ 2 p? @)r &2 @)r @)r d
" ! o\ ! o . (3) R
Ga=— 2VOU [vl]) +2m2v1(f [vl]) st[s(f [ ]) +6f ]f [Vl
3@ (2)r 5/ r@)r 2
+5 f [vil f [va“’]+z( f [V‘f')]) ] (68)
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This is the highest order db that is computed here. canonical transformation in the classical calculation. The

The freedom in the choice of gauge was used here and tHPecific canonical transformation from the Hamilton(@8)
time independent parts of tHe were chosen in a specific to trle Hamiltonian(30) is generated by the classical limit of
way. Generally, this choice is arbitrary. In the present work, a~ tF with the specific choice of the time independent parts,
choice was made so that in the classical limit the effectivavhich was made in the present work.
Hamiltonian reduces to the specific classical counterpart The perturbation theory that was developed here enables
(30), which resulted in a natural way within the derivation of One to calculate not only the quasienergies but also the cor-
Sec. II. In Ref[13], on the other hand, the choice of the time responding Floquet states. If the eigenfunctionsGofare
independent parts of tHe, is made so that the average of the known, then the quasienerggr Floque} states can be com-
fast variables over a period reduces to the slow variableButed up to the ordes* using Eq.(40) with
within an orderw* calculation. It is found there that with 1 @ ) @ 5

H H H H H H - ~ T T I T
this choice, the requirement can be satisfied only if the os- & _ _J [Vy]+ f van m_wzf Vi

cillating force is independent of the positidim one dimen- hw 2mw?
sion).
We have used a perturbation thediy 1/w) to obtain a 1. 1. s
periodic gauge transformatiogl™ and an effective Hamil- +EF3+ EF‘VLO(‘” ): (73

tonianG so that the quasienergies are the eigenvaluds. of . A
Its eigenstates are related to the quasienergy states by BghereF; is given by Eqgs(59), (60), and(62) while F, is
(40). For a Hamiltonian of form Eq(43), this effective given by Eqs(64), (65), (66), and(67).

Hamiltonian is given by Eqg44), (45), (51), (55), (61), (63) For the driven harmonic oscillator wheré/q(x)
and (68). Collecting all contributions, one finds = %mngz andV,(x,7)=Ex cosf) (69—(72) yield
A 1. L . n2 2 1 g2 &2 Wl
G=~—+Veii+ — (p%g(X) +2pg(x)p+g(x)p?) B —— T mwx2 -0 -5
om * Vertt 5 (P7g00 +2pg(x)p+g(x)p G=om ez T2 Tt — 0w
52 (74
Y -5
T qu+0(w ), (69 This simple model is exactly solvable. The effective Hamil-
tonian of this model was calculated in REL3]. It is given
where by
1 . 2 S S £2
= ’ G= =+ sMogX+ —————. 7
Vei(X)=Vo(X) + mez( f [vl]) om "2 WD) (75)
1 T @ \2 The expansion of the exact res(il) to the fourth ordefin
+— 4V8(f [Vi]> 1/w) leads to Eq(74) as expected.
2Mm‘w
1 2)r 2 V. DYNAMICS OF SPINS IN TIME DEPENDENT
+ —V’l’( f [Vi]) (70 MAGNETIC FIELDS
2m2p* )
A simple example that demonstrates the methods pre-
is the effective potential corresponding to Eg8), sented in this work is a spin in a field, which is a combina-
tion of a static and a periodic time dependent magnetic field.
3 @ 2 This example demonstrates that also Hamiltonians that are
9(x)= om3 f [Vil (71) not of the formp2/2m+V(x) can be treated in the way pre-
sented in Secs. lll and IV. The systems that are considered
is the coefficient ofP? in Eq. (30), while here consist of a spin in a constant magnetic field combined
with a perpendicular periodic field linear or with circular
. 1 ()7 @) 2 polarization. The Hamiltonian for the linearly polarized field
VqZR f [Vi”] (72) s given by

is a quantum correction to the classical Hamiltor{ids form H =~ wol ;+ w; Cog o), (76

obviously depends on the ordering of operators in B8)].
The effective Hamiltonian is the main result of this sec-
tion. The classical limit of Eq(69) is the classical effective B o= — oot o (cog o).+ sin( o) 7
Hamiltonian(30). The freedom in the choice of gauge in the o=~ wolH wr(Cog @t sin(wDly). 77
quantum problem was used, afglandf, were chosen spe- For a spin in a circularly polarized field, the problem was
cifically to achieve this. We did not use the freedom of asolved exactly by Rabf37]. This system also appears in

while for the circularly polarized field it is
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textbooks as a paradigm of time dependent two-level sys- oo, 1 sina . . 9F
tems[38]. Our goal is to demonstrate that for this simple G=H+ ——[F[FH]+ —i[FH]-fio—
system, the quasienergies can be computed exactly using the a @ a7

method presented in Secs. Il and IV. First, we derive some . ) .

results that are valid for any Hamiltonian linear in the spin +ﬁw003a—1i{r: oF e e {“ JF

operators. a? "ot ad T
These spin problems turn out to be simple since the spin (84)

operators have a closed algebra,

A A R A o n A The problem of finding the effective Hamiltonian is thus re-
[holyl=ialz, [yl ]=inl, [z L]=ihly. duced to finding three functions of time, i.é(7), B(7),

(78) andC(7) so that Eq(84) is time independent. EquatidB4)
is valid for any Hamiltonian which is linear in the spin op-
erators. Therefore, the problem is reduced to the solution of
three coupled nonlinear differential equations, that is a well-
defined mathematical problem. Generally, this may be hard
to do sinceG is not linear in terms of these functions. We
turn now to examine the simplest case, i.e., of a circularly

E=A(DT, +B(nl,+C(I, . 79 polarized field(77).
(DA B+, 79 For the spin in a circularly polarized field, a perturbative

wherer=wt andA, B, andC are the real functions of time. solution in powers of ¥ for F and G can be found. The
Let Q be an arbitrary operator which is linear i\rl] A Computation is done exaCtly as the one in Sec. IV. Thus Only

The effective Hamiltoniar{44) is obtained with the help of
the expansions in commutation relatiddd) and(48). For a
Hamiltonian andF that are linear in the spin operators, these
expansions can be summed. Consider a transformation gen-
erated by

straightforward calculation shows that a brief outline of the calculation is presented. At the order
0
w 1
[F.[F.[F.QIII=a’[F.Q] (80) . e
A~ ") 1
with Go= —ﬁ—— wol + wy(costl +sin7l v~ ﬁ—T
(85)
a=Hh+A?*+B?+C?, (81)

and therefore
Therefore for any Hamiltonian linear in the spin operators

any commutation relation in Eq47) can be reduced to £ =ﬂ(sinrf —cosl,) (86)
[F,A] or to [F,[F,A]], and the series is given by Yoh X y
SO SR 1 o and
eFHe F=H— 5 [F.[F.H]]+ 77 o’[F.[F H]] i X
’ : Goz_wolz. (87)
1 PPN SN . .
- Ea4[F,[F,H]]+ - +i[F,H] Note that herd F,(dF,/d7)]#0, which changes some of

the expressions obtained in Sec. IV.
i o At order » ! a straightforward calculation leads to
— 57 @lF, H]+ pat[F A+

C - 2
(7Fl (9F2 (OFPN

Gi=—thog——h———I,, (88)
. coex—1 . . . _ sina . . ! o7 or 27
=R+ ——I[F [F.AT1+ —i[F.A].
@ which results in
(82) ~ ~ (Uo(,()l ~ ~
R Fo=—woFi=— (sin7l,—cosrl,), (89
The operatoF of Eq.(79) is linear in the spin operators and,
therefore, such is alséF/dr. In a similar manner, Eq48)  while
can be summed to
L ok
aF . 9F sina—a |.|. oF GCi=— 51z (90)
— e F=j—4+ ——i|F,|E,—
ar aT o3 ar
A similar calculation at the next order leads to
cosa—1|. oF i 02|
e [ S
The Hamiltonian in the new gauge is thus given by and
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Go=5 wowil,. (92 Ae=5| ot (101

1 ~ ~ ﬁ —wWo wle_i“’t
wle (O]

The expansions fdf andG are obtained by collecting all The unitary transformatioﬁlc=e‘iﬁ0, which transforms the
the terms from Eqs(85)—(92). These expansions are given eigenstates of the effective Hamiltonié®B) to the quasien-
by ergy states of Eq(101), can be obtained by calculating the

various powers of:C. ForS=1/2,

2 2
A w wWow ~
Go=| —wp— o=+ — 21+O(w_3))lz (93 al 0 —eiot
20 20 E=—1] (102
€ 2ileet 0
and by . .
) ) Since G, is proportional tol, its eigenstates are the eigen-
E 91, @0 @Wo ﬂ-ﬁ-O( -3 states ofl,. Thus, the quasienergy states of the Hamiltonian
¢ ho ® 02 32 @ (101, corresponding to the quasienergies
LA 0 h
X(sinTl,—cosly), (94) Et=i§(w—\/w§+(wo+w)2), (103
where the subscript denotes that this result is obtained for
the circularly polarized field. are
An examination of Eq(94) suggests tha%c may have the a
exact form 1 cosz
. alw) | . - U= C(O)_ L« (109
F.= = (sin7l,—cosrly). (95) —e'et i

It turns out that . of this form leads to a time independent and
Hamiltonian if « is chosen appropriately. Substitutiﬁg and

a a —iota; @
H=H_ of Eq. (77) in Eq. (84) leads to (0 e’ smi
~ N . UZU()( 1) = (105)
G¢= (w1 COSa— wq Sina— w sina)(cosrl+sin7ly) cos?
2

+(— wo COSa— w; Sina+ w cosa+ w)l,. 96
(Zwocosa—wssina+w cosatw)l, (%6) This is exactly the problem that was solved by Ra#f|, and

is discussed in Ref38]. The physical quantity of interest is
typically the number of spins that fligf all spins are polar-
w1 COSa— wy Sina— w sina=0. (97)  ized initially), rather than the Floquet states. We note that the

. o term \/w21+ (wo+ w)? in the expression for the quasienergies
Solving for « the Hamiltonian in the new gauge, E@Q6)  is the Rabi frequency. It is the frequency of oscillations of

The HamiltonianG, is time independent if

reduces to these “spin flips.”
. 5o For the spin in a linearly polarized field, a perturbative
Cc=(0—Voit(wgtw))l, 98 computation of6 leads to

and is time independent. The quasienergies of the spinina wow?  wiw?  wow? R

circularly polarized field are the eigenvalues of E9). G =| —wp+t 5 T 7 +0(w ) |1,.

They are given by 4o fo oo (106

(o [ 2a 1 7

Es=(0— Vort+ (0ot w))hs, 99 15 the best of our knowledge, an exact expression for the

Wheres=—S. —S+1 +S (S is the magnitude of the quasienergies of this system is not known. If one substitutes

spin. F of the form (79 in Eq. (84), the problem of finding the
For spinS=1/2, not only the quasienergies but also the€ffective time independent Hamiltonian reduces to the prob-

quasienergy states can be computed rather easily. The spggm of finding the three functions of timéy(r), B(r), and

operator can be represented by the Pauli matrices C(), so that the new Hamiltonian is time independent.
These satisfy first-order nonlinear differential equations.
. A({0 1 . A[{0 —i . h(1l O Typically solutions to such equations exist but it is not easy
x=§< 1 0), y_§( i 0 ) Z_E(O _1)- to find them expligitly. It is possible tq choose parameters so
(100  thatalso the exads, is proportional td ,. The approximate
effective Hamiltonian106), which was obtained in a similar
The Hamiltonian is then given by way as Eq.(93), can be compared to the previously pub-
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lished results. While we are not aware of any Bxpansion 0.20 T T T T

for the quasienergies, some expansions in the strength of th ‘\

time dependent field have been published. If one examines \ — Time dependent
for instance, the expansion given by .10 and Appendix 015 | X T Eg:ﬁ:&g 8 |

A of Ref. [39] (which is valid for spinS=1/2) and expands \
it in powers of 1, one obtains the quasienergies of Eq.
(106).

In this section, we have studied some problems involvingEs o0.10 |
spins in crossed constant and time dependent magnetic field:
We have shown that the perturbation theory presented in Sec
IV can be used for such systems. For a circularly polarized

field, we were able to compute the quasienergies exactly, ir 0.05 r
agreement with the previously published results.
VI. SCATTERING FROM AN OSCILLATING GAUSSIAN 0-000_2 12 52 32 22
POTENTIAL @

The system considered in Sec. V is simple, in the sense FiG. 1. The energyE, of the lowest quasienergy resonance of
that the spectrum of the effective Hamiltoniénis discrete  the Hamiltonian(107) as a function of the driving frequendgolid
and simply related to the one of the time independent part offne), compared to the lowest resonance of the effective Hamilto-

the original HamiltonianH,. Moreover, for this example ”'3”5(109)_?a5hed line, and108—dotted line, fory=9 ands

also the eigenfunctions of these Hamiltonians are simply re=0-02. The “atomic units’m=#=e=1 are used here.

lated. It is of interest to examine examples that are more

complicated and where such simple relations cannot b¥V/e examine separately the leading correction due to the os-

found. In this section, we examine such a system, the oscikillating field, which is given by the Hamiltonian

lating Gaussian, where an additional difference is that the

spectrum is continuous and one is interested in the scattering

states. AP 1A LA —
Consider a system which consists of a particle that inter- CH=Cot G1tGo=

acts with an oscillatory Gaussian potential. The Hamiltonian

2 2 2
ﬂ —ZBx

0 . (109
w

is given b
g Y where the error is of the ordes*. It has a simple physical
. p2 meaning as the potential consists of a double barrier and the
H=5_+ve 5 cog wt). (107 spectrum is continuous.

Since the effective potential of ELO9) is a double bar-
rier one expects to find that this system exhibits resonances.

.o the potential vanishes and therefore one expects to fInEhese resonances describe long-lived unstable states. Each
scattering quasienergy states. Second, the average of the g§°nance is_characterized by a complex endtgy1'/2.

tential vanishes, namely,(x) =0, consequently any inter- The rgal par!E 'S. the location of th? resonance, whlrels
esting effect is due to the rapidly oscillating potential. Thlsthe width which is inversely proportional to the lifetime. For
system describes trapping by an oscillating field, a phenon e review on the relevant properties of resonances and useful
enon that is of physical interest. The physical properties O]methods to compute them, see Refl]. .

this system and the numerical methods used to analyze it a‘ For any resonance of EGL08) and(109), it is natural to

discussed elsewhefd0]. Here we only state briefly the re- ok for the corresponding resonance of the time dependent
sults that are related to the properties of the effective HamllOrlglnal Hamiltonian(107). More precisely, one looks for the

The system is of interest for two reasons. First, when

tonian. resonances of the Floquet Hamiltonié8) with H of Eq.
The effective Hamiltoniari69), which corresponds to Eq. (107). This is done numerically by using a combination of
(107), is the (t,t’) method and complex scalirig1].
The energyE, and the widthl'y of the lowest(corre-
. B?y?x? ope, 382y 22252 sponding to the smallest real p&g) quasienergy resonance
G=5m e Y — 5 (1-2px%)% p of Eq. (107 are compared with the lowest resonance of the
effective Hamiltoniang108) and (109 in Figs. 1 and 2. Itis
12%72/32 A clear that for large frequencies there is an excellent agree-
(2Bx*=1)(3—2Bx*)e”**p ment between the resonance of the time dependent Hamil-
tonian(107) and the ones of the effective Hamiltoniaii$8)
ﬁ233»y2 ) and(109. At low frequencies, the location and width of the
— 5 (—9+998x*— 1148°x"+ 448°x®) e 2P exact resonance differ from those of the effective Hamil-
mw tonian. The deviation for the order~ 4 Hamiltonian(108) is
+0(w ). (108 large indicating that the expansion is asymptotic. This is ex-
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A.d ' ' ' —#E [see Eq(38) and Ref[13]]. The Hamiltonian30) for
) the slow variables was obtained in a natural way in Sec. Il.
—— Time dependent ] . . £
——- Effective The freedom in the choice of gauge was used to chéose
003 F e Effective o” . that in the classical limit the effective quantum Hamiltonian

(69) reduces to Eq30). Consequently, the classical limit of

—#F is the generating function of the canonical transforma-
tion from the original time dependent Hamiltonian to the
time independent Hamiltonia(80). This limit explains the
fact that the classical dynamics of the slow coordinétis
generated by a Hamiltonian. Using the freedom of choice of
0.01 |- ] gauge, one can generate Hamiltonians that differ from Eq.
(30) and(69), but are related to them by canonical and gauge
transformations. The present work exterid§] to general
0.00 J h i driving potentials and is not restricted to the driving given by
0.0 1.0 20 3.0 4.0 Eq. (68 of Ref. [13]. The perturbation theory which was
@ developed can, in principle, be used to compute it to any
FIG. 2. Same as Fig. 1 fdf,, the width of the lowest resonance given order in 1b. This is a significant extension beyond
(“atomic units” m=f=e=1). [13] in the spirit of separation of time scalg®2] that enables
a systematic expansion in powers of 1. For this, the re-
pected since the perturbation theory developed in Sec. Nuirement(23) of Ref.[13] is avoided and the expansion can
assumes high frequencies. A more complete study of thi§e performed for any driving potential; and is not re-
specific system and a discussion regarding the physical inftricted to driving forces that are uniform in space. It should
plications of this resonance are given in Reio]. be emphasized that this perturbation theory is an expansion
In this section, we demonstrated that the effective Hamilin 1/w and not in powers of the time dependent potential.

tonianG can be used to obtain some physical properties the potentlahll_ doe_s no'; hﬁve t_o _be Ismall in order to obtain
systems that are more complicated than those presented $9°0d approximation of the original system. .
Sec. V. In particular, the resonances of a periodic time de- S€veral examples were discussed. The spin in a rotating

pendent system were found to be given by the resonances B}agnetic field is a simple, exactly solvable example, which

the corresponding time independent effective HamiltonianVaS Useéd as a demonstration for the method. For another

Resonances for oscillating barriers were computed numer?yStem’ the oscillating Gaussian, we showed numerically that

cally in Refs.[17,18. The calculation of the present section 'S lowest resonance is given by the resonance of the corre-
demonstrates the physical origin of the results. sponding effective Hamiltoniak69) of Sec. V1. Thus, for
time dependent traps, such as the atomic billiards discussed

earlier, the time independent effective Hamiltonian can be
VII. SUMMARY AND DISCUSSION used to compute the resonances and the lifetimes of particles

In this paper we investigated the classical and quanturil! these traps. o o
motion in high-frequency fields. The classical motion can be  WWhile the examples presented in this work indicate that
treated by separation of time scales. In Sec. I, this motion i{iS €ffective potential is a meaningful concept and is also
separated into a slow part and a fast part, which consists dseful for calculations, there are points that requwe'further
rapid oscillations around the slow part. The fast part and th&€S€arch. The convergence properties of the éxpansions
resulting equation for the slow motion are solved perturbafor F andG are not clear. There may be situations in which
tively to the ordero . This perturbation series is a gener- the perturbation theory fails to converge or where smaller
alization of the calculation presented by Landau and LifshitZhan any power corrections are of physical importance. Con-
[7]. We also demonstrated that this perturbation theory isider for example a system similar to the oscillating Gaussian
equivalent(to the orderw %) to the standard mathematical WhereV; vanishes outside some finite domain. In this case,
method of multiple time scales analy$#2], which is more ~ 0ne may expect to find scattering states as the eigenstates of
complicated. The resulting equation for the slow motion isG. In the limit of high energies, such a state may be roughly
found to result from a time independent Hamiltonian. approximated by the plane wae®*'" (with large p). The

Following a review of the Floquet theory in Sec. Ill, the jeading momentum contributions  are of the form
corresponding effective quantum Hamiltonian is computed
explicitly, using a high-frequency perturbation theory up to 1 (- 1 2)r 1 @)
the ordero ™ *, in Sec. IV. The resulting Hamiltoniaf©9) is _J [Vi]— —J [Vi]p+ —J [V4]p?

. . Lo . . how 1 2 1 2 3 1

rather simple. Its classical limit is the classical effective fimw hmw
Hamiltonian (30). This effective Hamiltonian is therefore a
generalization of the classical results of Kapif& and of 1 J(4)T[V(13)]f>3

Iy 002

Landau and Lifshit47] to quantum mechanics. In the clas- Am3w?

sical limit, the unitary gauge transformatien'™ reduces to
a canonical transformation generated by the classical limit o&s one can see from E3) with Eq. (59) and(64). While
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these results. If the terms of the order 4 are important,
more subtle considerations concerning the kinetic energy

(1/2m)(p?) and the semiclassical limit are required.

Since there are some physical situations where one ex-
pects that the perturbation theory fails, it is of importance to
find ways to improve it. The goal is to be able to describe
terms that are smaller than any power in the perturbations.
This might be possible by using a superconvergent perturba-
tion theory that was recently applied to the time dependent
guantum systempi4]. In this perturbation theory, the small
C) FEN parameter is the size of the time dependent potential. It is of

/ " interest to modify it to a perturbation theory inal/ Note
\ that while these superconvergent perturbation schemes have
1 N superior convergence properties, they may turn out to be
complicated for explicit calculations. Thus, one may lose the
main advantage of the perturbation theory presented in this

FIG. 3. Qualitative effect of driving on trapping time&) the  work, its simplicity. In addition, it is of interest to generalize
average potential/y; (b) the position dependence of the driving the results of this work to systems of higher dimension. Such
potential V,; (dashed ling results in the effective potentidV¥q¢; a generalization should be straightforward.

(solid line); (c) as in(b) with driving mainly inside the trap. The In conclusion, we have investigated the dynamics of high-
units are arbitrary. frequency driven classical and quantum systems. A high-
frequency perturbation theory was used to obtain an effective
time independent Hamiltonian for the slow part of the clas-
sical and quantum motion. For quantum systems, the spec-
trum of this Hamiltonian is the quasienergy spectrum of the
éime dependent system. This effective Hamiltonian is com-

validity and the convergence of the perturbation expansion?,su;idm'gnztg?:(;fiﬁg??ﬁgiégi:ﬁgﬂ;ﬁﬁgﬁ{ :ﬁt'?ce;hfﬁéy'eﬁ
presented in this work, we find the effective potential to be 9

useful for the following reasons. The perturbation theoryaCt quasienergies and quasienergy states Of. some si_mple ex-
leads to a time independent effective Hamiltonian. Physi-amples as yveII as the lowest resonaeeluding the life-
cists, who are used to working with the time independentt'me) for a time dependent atom trap.
systems, have developed an intuition for such systems, and

thus the effective Hamiltonian may give physical insight that ACKNOWLEDGMENTS
is absent when examining the corresponding time dependent

problem. In addition, all the calculations used to obtain theNir\r/l\:ﬁ dwl\ellélige!lkeevtgrgze:?eliel\glf?h:ril-ll/éc?;rr%r gltlirmz?a\\/tliﬁsoar\]r; d
effective Hamiltonian are straightforward. There are no dif- Yev, 9

ferential equations or any complicated iterative schemes thag=Ping discussions. We also thank Nimrod Moiseyev for

may appear in more sophisticated perturbation theories. Fdrg\gz:rec?evr\]/;smsTangrtgg t?ne f:inrf Sett?]'és L(J)fs-tlhslrsaé\lloéli(ﬁ;ir:)lial
comparison see Reffi43]. Finally, one may use all the well- PP P y

. AT cience FoundatioBSH, by the Fund for Promotion of
developed techniques for the time independent quantum sy esearch at Technilgn z)nd gy the Minerva Center of Nonlin-

tems to compute the eigenvalues®f In particular, one can ear Physics of Complex Systems.
use the time independent perturbation theory in the case
where the eigenvalues and eigenstateé@fare known.

The effective Hamiltoniar(69) can be useful to predict
the qualitative behavior without complicated numerical cal- The derivation given in Sec. Il was, in some sense, not
culations. Assume first that the frequency is sufficiently hlghexp||c|t|y consistent. For example the slow motion was not
so that only terms of order up todl? should be included and  solved by expanding its coordinates in orders ab.1The
denoteV,(x)=(1/2mw?)(fV})?. LetV, take the form de- terms of the order " included all contributions up to that
picted in Fig. 3a). It exhibits resonances. A natural question order, and also some contributions of higher order. It is of
is whether the linewidth increases or decreases as a result imterest to show that the same result can be obtained using a
the time dependent potential. It is clear that for a situation astandard method, namely the method of multiple time scales
in Fig. 3(b) the linewidth decreases, since the particle has tanalysis[42]. In this appendix, we show how to derive the
tunnel through the effective barriers which are higher tharequations of motion of the slow dynamics using multiple
those of V, because the effective potential .;=V, time scales analysis. We will present only the first few orders
+V,, while for Fig. 3c) the linewidth(typically) increases in 1l/w since this method turns out to be more complicated
since the energy of the resonances is shifted upwards by thban the method used in Sec. Il. While the two methods
time dependent perturbation. Numerical calculations of thaliffer in details, they are equivalent and lead to the same
type presented in Sec. VI and in Ref$7,18 should confirm  results, when consistently expanded order by orderdn 1/

the general structure of the series fois unknown, it seems
that for states with momentum which scales«$ with «
>1 the series do not converge.

Even taking into account all the questions concerning th

APPENDIX: MULTIPLE TIME SCALES ANALYSIS
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In order to use the multiple time scales analysis, it isprder. Additional condition$A10) on x, andy, will be ob-

convenient to transform equatidh) to a standard forrf42].
This can be done by defining=owt, e=1l/w, and y
=dx/dt=wdx/d7. The first-order equations of motion are
then given by

d. . .
—z=€f(1,2), (A1)
dr
where
2
7=
y
and
y
f= (A3)

1
— S (Vg +Vi(x,7)

Then one introduces the following expansion of the solution:

z= ZO €"z,(7,1), (A4)

tained from the requirement that the solution is not secular at
the next order.
At order €, Eq. (A3) results in

%1 ax

0
9 +YO(t)
ay,  dyo 1., — L
E —W—EVO(XO)——Vl(XO,T), (Ag)

where we have used EGA8). We are interested in the solu-
tions of Eq.(A9) which are not secular, namely, they do not
grow with the fast time scale. The RHS of Eq(A9) can be
decomposed into periodic functions efwith vanishing av-
erage and 7 independent terms. Anyindependent term will
result in a secular contribution. Therefore, to avoid such
terms we demand

ayo 1
o=~ Vikol). (A10)

o

wheret=e7 and 7 are treated as independent variables. Us-

ing this expansion together with

d J Jd A5
dr  or f&t’ (AS)
results in
7% &Z°+ azl+ f(r,20+ €z, + A6
O ot 6_ =ef(7,20+€z;+---). (A6)

The solution is obtained by expandilﬁgmatching powers of

€, and solving forz order by order. This is the standard
multiple time scales analysis, see Rpt2] for a detailed
description of the methodNote that in Ref[42] the role of
t and 7 is opposite to the one in the present woNkle pro-
ceed to solve the first few orders &

At order €°, the leading order of EqA3) results in

X
9Xo ~0,
077'

d

2o (A7)

Thereforex, andy, can be any functions of the slow tinte
Xo=Xo(1),

(A8)

Yo=Yo(l).

Note that at the leading order the solution is found to depend

This is the leading order of the equation which governs the
slow time scale. The nonsecular equation of orelés now

Xy _
or
ay ,—
a—: — = Vi(X0,7) (A11)
and its solution is
X1(7,t) =X4(1),
1(7 — —
yl(T,t)=—Ef [ViXo(t), 1) ]+yi(t).  (Al2)

This process can be repeated order after order. At each
order, all the terms with the same power eofire gathered.
The resulting equation may be secular and therefore an ad-
ditional condition on the slow part of the solution is en-
forced. Then, one can solve farandy at that order. The
calculation is rather tedious and will not be presented here.
We only give the secularity conditions that result when the
next two orders are computed:

(A13)

only on the slow time scale, as expected. We will denote the

 independent slow part of the solution Byandy; at any

and
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Xy —

W-Yz(t),
(9_ 1 o 2)r _
%:E g(xo(t),T)f [Vi(Xo(1),7)]

1 _ X2t .
_Exz(t)VS(XO(t))_%Vgs)(xo(t))- (A14)

Equations(A10), (A13), and(A14) are the first orders of
an expansion of the following system of equations:

aX—Vt
o (1),

Y 1
E——EVo(X(t)H

2

€
m2

_ 2)r _
X VIR(1), ) f VIX(t),9]  (AL5)

in powers ofe, where

PHYSICAL REVIEW A68, 013820 (2003

X(1)=Xo(t) + exy (1) + €2x,(t) + - - -,

Y(t)=yo(t) +eys(t) + €y, (1) +---.  (Al6)

EquationgA15) are accurate to the ordef and are identical
to the slow equatiorf22). We have used the multiple time
scales analysis up to the ordérand found that the resulting
slow equations analogous to E4\15) are equivalent to Eq.

(27) in Sec. Il, with the identificatiorK=X andY=X.

The method presented in Sec. Il and the multiple time
scales analysis used in this appendix have a similar structure.
Both separate the motion intodependent and independent
parts, and both lead to equations for the slow motion which
have to be satisfied to avoid solutions that grow withThe
main difference between the methods is that when using
multiple time scales the slow coordinate is expanded in pow-
ers of e=1/w. This leads to a large number of terms that
result from the fact that the functions in the slow equation

are evaluated aty(t) rather than aX(t). Consequently, the
derivation in Sec. Il is much simpler than the one presented
in this appendix. This is also the reason that here we did not
present explicitly the calculation using the multiple time
scales analysis up to the ordef.
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