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Effective Hamiltonians for periodically driven systems
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The dynamics of classical and quantum systems, which are driven by a high-frequency (v) field, is inves-
tigated. For classical systems, the motion is separated into a slow part and a fast part. The motion for the slow
part is computed perturbatively in powers ofv21 to the orderv24, and the corresponding time independent
Hamiltonian is calculated. Such an effective Hamiltonian for the corresponding quantum problem is computed
to the orderv24 in a high-frequency expansion. Its spectrum is the quasienergy spectrum of the time depen-
dent quantum system. The classical limit of this effective Hamiltonian is the classical effective time indepen-
dent Hamiltonian. It is demonstrated that this effective Hamiltonian gives the exact quasienergies and quasien-
ergy states of some simple examples, as well as the lowest resonance of a nontrivial model for an atom trap.
The theory that is developed in this paper is useful for the analysis of atomic motion in atom traps of various
shapes.
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I. INTRODUCTION

The interaction of cold atoms with strong electromagne
fields results in many novel, interesting experimental obs
vations@1–3#. The relevant systems are characterized by
extremely high degree of control that enables one to exp
various problems of general physical interest. The respo
to a rapid oscillating force is such an issue, and will be
subject of the present paper.

Recently, in a series of experiments atomic billiards w
realized@4,5#. In these billiards atoms were confined by
standing wave of light to move in planes. The boundary
the billiards was generated by a laser beam, perpendicul
the plane of motion. This beam rapidly traverses a clo
curve, which acts as the boundary of the billiard. The bou
ary of the billiard is assumed to be approximated by the ti
average of this beam, and the force applied by the bound
on the particles is approximately the mean force applied
the beam. One expects that this approximation is valid w
the motion of the beam is fast relative to the typical velo
ties of the atoms in the billiard. The billiards generated
the rapidly moving light beam have motivated the pres
work. The more general physical problem, which is explo
here, is the description of the classical and quantum dyn
ics in presence of fields that oscillate with high frequenc

In traditional atomic physics, one typically assumes t
the fields which affect the atoms have an amplitude whic
constant in space and is time independent. This assumpti
justified since the wavelength of the light field is much larg
than the size of the atom and the electronic~internal! degrees
of freedom react to the periodic change in the field mu
faster than the external ones~center-of-mass coordinate an
momentum!. The main subject of traditional atomic physic
is the response of the internal degrees of freedom to
field. Atomic spectroscopy is the most spectacular resul
this line of research. The center-of-mass motion of the a
can be ignored in most laboratory experiments that exp
the dynamics of the internal degrees of freedom.

For the field of atom optics, the effect of the intern
1050-2947/2003/68~1!/013820~18!/$20.00 68 0138
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degrees of freedom on the center-of-mass motion is imp
tant, in particular, near resonance of the external field w
the internal motion~level spacing!. The force on the cente
of mass due to the internal degrees of freedom is given
proximately by a dipole force@2#. The sign of this force
depends on the sign of the detuning of the light frequen
from resonance~of the electronic levels!. The motion of the
atoms is manipulated by fields with amplitudes which va
spatially, resulting in a force on the center of mass of
atoms. In many cases, the amplitude of the field can be
sumed static. The atomic billiards described earlier consis
a time dependent field which results from the moving la
beam. Even at high frequencies of the motion of this bea
one might expect that this time dependence will have so
dynamical consequences. The question is most interes
when the wavelength of atoms is of the order of the size
the billiards. In this work, the effect of a laser on the cent
of-mass motion of the atoms will be modeled by a tim
dependent potential. For some situations of physical inter
this simpler model should still describe the dynamics in
high-frequency field without the need to specify the dyna
ics of the internal degrees of freedom or the quantum asp
of the light field. Therefore, in the present work the atom
are modeled by point particles moving in a rapidly oscilla
ing potential that varies in space. This description is relev
for a wide class of light-atom interactions and is not confin
to models of billiards, which motivated the present work.

The classical dynamics of particles influenced by a hig
frequency field was studied in several contexts. Kapitza
vestigated a classical pendulum with a periodically mov
point of suspension@6#. In this ‘‘Kapitza’s pendulum,’’ the
motion can be separated into a slow part and a fast
which consists of a rapid motion around the slow part. T
fast motion results in an effective potential for the slow m
tion. In some range of parameters this pendulum perfo
harmonic~slow! oscillations around the point where it poin
upwards. This point is unstable in the absence of the t
dependent perturbation. This phenomenon is called ‘‘
namical stabilization.’’ Later, Landau and Lifshitz genera
©2003 The American Physical Society20-1
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RAHAV, GILARY, AND FISHMAN PHYSICAL REVIEW A 68, 013820 ~2003!
ized this result for motion in the presence of a rapid perio
force with a spatially dependent amplitude@7# ~see also Ref.
@8#!, and calculated the leading term in an expansion in po
ers of the inverse frequency.

Dynamical stabilization is used to trap atoms in elect
magnetic fields. The most notable example is the Paul
@9#. In this trap, the time dependent electric fields are use
localize ions in the region where the field amplitude is mi
mal. The fields are well approximated by restoring forc
which are linear in the distance from the equilibrium poi
The resulting Hamiltonian is that of a time dependent os
lator. It is possible to find exact quantum-mechanical so
tions for this problem, which are based on the correspond
classical system. That is, the states are simply related to
ones of the harmonic oscillator. Therefore the states of
motion in the Paul trap are known@10–12#. It is of interest to
find some of the states of problems of a more general nat
even if only approximately.

The work of Kapitza was first extended to quantu
mechanical systems in a pioneering paper by Grozdanov
Raković @13#. They introduced a unitary gauge transform
tion resulting in an effective Hamiltonian that describes
slow motion and demonstrated that its eigenvalues are
quasienergies of the time dependent problem. The effec
Hamiltonian was calculated as an expansion in powers of
inverse frequency. In that paper, the analysis is restricted
driving potential that has a particularly simple time depe
dence. Moreover, the final results are restricted to forces
are uniform in space, a situation natural in standard spect
copy, but too restrictive for the interesting problems in ato
optics. These restrictions are avoided in the present wor

Other studies of quantum systems with periodic time
pendent fields were also published. Gavrila@14,15# devel-
oped a perturbation theory for the Floquet states and
quasienergies in terms of the states of the time-avera
problem. The scattering from a periodically driven barr
was studied by Vorobeichiket al. @16#, by Bagwell and Lake
@17#, and by Wagner@18#, while the quantum and classica
dynamics of some one-dimensional systems were inve
gated by Henseleret al. @19#. In the limit of high frequencies
the systems behave as if the particles were subject to
effective potential which is the time average of the time d
pendent one. Fredholm theory was used by Georgeot
Prange@20# to study quasiclassical scattering from vario
systems, including a one-dimensional periodically kicked
tential.

Another approach to time dependent systems~not neces-
sarily periodic! is to use the Magnus expansion@21# in order
to compute the propagator. Time periodic systems were u
as examples in order to check the convergence of this ex
sion @22–24#. For these time periodic systems, the Magn
expansion is of similar nature to the method presented h
and the differences are discussed in Sec. III.

There are numerous other works regarding periodic
driven systems. Here we mention few of them. Of spec
physical interest is the ionization of atoms by light~see Ref.
@25# and references therein!. Some toy models for ionization
that consist of one-dimensional time dependentd functions
were treated rigorously@26#. In particular, it was shown tha
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typically there is full ionization, namely, that at long time
the probability to be at the bound state~of the time-averaged
problem! approaches zero. For some arrangements of thd
functions, stable bound Floquet states exist. The trans
through driven mesoscopic devices@27#, and in the presence
of oscillating fields@28#, attracted some interest.

In the present work, we study the dynamics of classi
and quantum high-frequency driven systems. The class
problem is discussed in Sec. II, where the motion is se
rated into a ‘‘slow’’ and a ‘‘fast’’ part. A systematic perturba
tion theory is developed for the motion of the ‘‘slow’’ par
The equation of motion of the ‘‘slow’’ dynamics is then com
puted to the orderv24, which is an extension of the orde
v22 ~presented in Ref.@7#!. This slow motion is shown to
result from an effective Hamiltonian. In Sec. III, an adapti
of the Floquet theory to the problem is reviewed. An effe
tive ~time independent! Hamiltonian operator is defined fol
lowing and generalizing@13#. The eigenvalues of this opera
tor are the quasienergies of the system. This effec
Hamiltonian is then computed perturbatively~to the order
v24) in Sec. IV. The restrictions introduced in Ref.@13# are
avoided and consequently detailed expressions for the v
ous terms of the effective Hamiltonian are calculated exp
itly. The classical effective Hamiltonian of Sec. II is found
be the classical limit of this quantum effective Hamiltonia
A known exactly solvable simple example of the method
presented in Sec. V. In Sec. VI, the scattering from a ti
dependent potential is discussed. In particular, the resona
of the time dependent problem are found to agree with th
of the effective~time independent! Hamiltonian of Sec. IV.
Finally, the results, the implications, and some related o
problems are discussed in Sec. VII.

II. CLASSICAL MOTION IN A HIGH-FREQUENCY
POTENTIAL

In this section, the dynamics of a classical particle mov
in one dimension under the influence of a force which
periodic in time is studied. Typically, solutions for time d
pendent problems can only be attained numerically. Ho
ever, when the period of the force is small compared with
other time scales of the problem, it is possible to separate
motion of the particle into ‘‘slow’’ and ‘‘fast’’ parts. This
simplification is due to the fact that the particle does not ha
the time to react to the periodic force before this for
changes its sign, namely, the contribution of the perio
force to the acceleration in one period is negligible~com-
pared to the contribution of the effective force, in a sen
which will be specified in what follows!. Thus we will con-
sider the limit of small periods~or large frequencies! of the
driving field.

The leading order~with respect to 1/v) of the dynamics
was computed by Kapitza@6# for the ‘‘Kapitza’s pendulum,’’
namely a pendulum where the point of suspension is mo
periodically. It turns out to be very general@7#. Here the next
order is computed, and it is demonstrated that the equatio
motion of the slow part of the dynamics can be derived fro
a time independent Hamiltonian. This Hamiltonian will b
computed explicitly to the order 1/w4. Later, this Hamil-
0-2
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EFFECTIVE HAMILTONIANS FOR PERIODICALLY . . . PHYSICAL REVIEW A68, 013820 ~2003!
tonian will be compared with an effective Hamiltonian whic
will be derived for the corresponding quantum problem.

The existence of such a Hamiltonian might seem to c
tradict the fact that the time dependent dynamics do not p
sess a constant of motion. Moreover, the classical mo
may be chaotic. The existence of this effective time indep
dent Hamiltonian implies that a constant of motion exists
the slow dynamics~it is just the effective Hamiltonian!, and
for a one-dimensional system the slow dynamics is in
grable. To avoid confusion, it should be emphasized that
effective Hamiltonian depends on a coordinate which
scribes the ‘‘slow’’ part of the motion.This coordinate is not
the location of the particle~although they are almost ident
cal at high frequencies!. The actual motion consists of
rapid motion in the proximity of the trajectory of the slo
dynamics. The relation between the slow coordinate and
coordinate of the particle is nonlinear and extremely com
cated as will be demonstrated in what follows. We will de
onstrate that an effective Hamiltonian for the ‘‘slow’’ motio
may exist.

Newton’s equation for the motion in the periodic field
given by

m
d2x

dt2
52V08~x!2V18~x,vt !, ~1!

whereV1 is a periodic function ofvt of period 2p and its
average over a period vanishes. We denote derivatives
respect to coordinates by primes and with respect to time
dots. This separation of the potential to an average
V0(x) and a periodic part with vanishing average,V1(x,vt),
is natural and will simplify the following calculations. W
look for a solution of the form

x~ t !5X~ t !1j~X,Ẋ,vt !, ~2!

whereẊ5dX/dt and

j̄[
1

2pE0

2p

dtj~X,Ẋ,t!50. ~3!

The bar denotes in this paper the time average over
period. The fast part of the motion, which is nearly period
in time, is denoted byj. It will be shown later that it can be
chosen to depend only onX and Ẋ, but not on the higher-
order time derivatives. SinceX and Ẋ are slowly varying
functions of timet, j is not periodic in timet, in spite of Eq.
~3!. The coordinateX describes the slow part of the motio
and its equation of motion will be computed in the followin
Our method of solution is to choosej so that Eq.~1! will
lead to an equation forX which is time independent. An
exact solution using Eq.~2! is too complicated to obtain
However, at high frequencies, one can determinej order by
order in 1/v. In order to separate terms in powers of t
frequency, it is convenient to introduce the new time varia
t[vt. Using
01382
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5v

]j

]t
1

]j

]X
Ẋ1

]j

]Ẋ
Ẍ, ~4!

Newton’s equation~1! is given by

mS Ẍ1v2
]2j

]t2
12vF ]2j

]X]t
Ẋ1

]2j

]Ẋ]t
ẌG1

]j

]X
Ẍ1

]j

]Ẋ
X̂

1
]2j

]X2
Ẋ212

]2j

]X]Ẋ
ẊẌ1

]2j

]Ẋ2
Ẍ2D

52V08~X1j!2V18~X1j,t!. ~5!

The variablest and t will be treated as independent var
ables. This calculation is similar to the ones perform
within the method of multiple time scales. Indeed, the res
of the following calculation is equivalent to the one obtain
using the method of multiple time scales analysis, as dem
strated in the Appendix.

In the limit of high frequencies,j is going to be small~of
the orderv22) and therefore it is convenient to expan
V0(X1j) andV1(X1j,t) in powers ofj ~we assume tha
V0 andV1 are smooth functions of the coordinate!. Thenj is
expanded in powers of 1/v,

j5(
i 51

`
1

v i
j i . ~6!

Thej i are chosen so that the equation forX that results from
Eq. ~5! does not depend ont.

Before obtaining the slow equation of motion from E
~5!, order by order, there are two points regarding o
method of solution which should be discussed. First, we n
that the fast partj is expanded in powers of 1/v while X is
not expanded, which seems to be inconsistent. One may
expandX in powers of 1/v asX5( i 50

` (1/v i)Xi . When one
does so the equation of motion forX is then replaced by a
series of equations forXi . In this series of equations, eachXi
can be determined from the lower-order termsXj , where j
, i . This is the standard method of separation of time sca
and its application to the present problem is demonstrate
the Appendix. These equations are equivalent, in any or
to the equation of motion of~unexpanded! X, which will be
obtained in what follows. At a given orderv2n of the
present calculation,all contributions that are found by th
method of separation of time scales are included, butsomeof
the higher-order terms are included as well. Second, we n
that while we assumed thatj depends only onX andẊ, the
higher-order derivatives ofX with respect to time appear in
Eq. ~5!. In the leading order in 1/v, as will be demonstrated
one can replaceẌ by 2(1/m)V08(X). The error is of higher
order in 1/v, leading to the correct contribution toj i at the
order whereẌ appeared. Corrections of higher orders of 1v

to j i result from the corrections of higher orders toẌ. These
corrections will affectj j with j . i , since these are chosen
cancel thet dependence at any given order. The higher-or
derivatives ofX can be found by repeated differentiation
0-3
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RAHAV, GILARY, AND FISHMAN PHYSICAL REVIEW A 68, 013820 ~2003!
Ẍ. This enables us to obtain an expression forj which de-
pends onX andẊ, but not on the higher-order derivatives
X.

To proceed we gather all the terms in Eq.~5!, using Eq.
~6!, which are of the same order, sayv2n, and choosejn12
~which is still undetermined! so that the explicitt depen-
dence cancels. In the leading order (v), the only contribu-
tion is

]2j1

]t2
50. ~7!

Therefore we can choose

j150. ~8!

In the next order (v0), we find the contributions

mS Ẍ1
]2j2

]t2 D 52V08~X!2V18~X,t!. ~9!

Our goal is to balance thet dependence. To do this we hav
to solve

]2j2

]t2
52

1

m
V18~X,t!, ~10!

moreover, we also require thatj2 is periodic int. The inte-
gral over the right-hand side~RHS! of Eq. ~10! can have
terms which are time independent and thusj2 can grow lin-
early int. To ensure thatj2 is small even at long times suc
secular terms must be avoided. This can be done by requ
that the time integral has a vanishing average over a per
Let f (x,t) be any periodic function oft with a vanishing
average,f̄ 50. Assume that the Fourier expansion off is
given by f 5(nÞ0f neint, then we define the following inte
gral:

E t

@ f #[ (
nÞ0

1

in
f neint, ~11!

and its repeated application will be denoted by

E (2)t

@ f #5E tF E t

@ f #G ~12!

and j applications by

~13!

This definition, which is actually a specific choice of th
integration constant, is natural since it ensures that the re
is periodic even after repeated integrations. It also help
separate periodic terms~with vanishing average! and secular
terms~which will be time independent in the current calc
lation!. Integration of Eq.~10! implies
01382
ng
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j252
1

mE (2)t

@V18~X,t!#. ~14!

Note that we did not really find the general solution of E
~9!, but rather chosej so that it is satisfied. Substitutingj2 in
Eq. ~9! gives the leading-order equation for the slow coor
nateX. The terms in this equation are just the time indepe
dent terms which were not canceled byj2,

mẌ52V08~X!. ~15!

The contributions from Eq.~5! at the next orderv21 are

mS ]2j3

]t2
12Ẋ

]2j2

]X]t D 50, ~16!

which, with the help of Eq.~14!, is satisfied by

j35
2

m
ẊE (3)t

@V19~X,t!#. ~17!

The terms of orderv22 in Eq. ~5! are given by

mF ]2j4

]t2
12S Ẋ

]2j3

]X]t
1Ẍ

]2j3

]Ẋ]t
D 1Ẍ

]j2

]X
1Ẋ2

]2j2

]X2 G
52V09~X!j22V19~X,t!j2 . ~18!

Substituting Eqs.~14! and ~17! leads to

]2j4

]t2
5

V09

m2E (2)t

@V18#1
V19

m2E (2)t

@V18#

2
3

m
Ẋ2E (2)t

@V1
(3)~X,t!#2

3Ẍ

m E (2)t

@V19#. ~19!

Equation~19! cannot be solved, ifj4 is required to be peri-
odic in t, since the RHS has a nonvanishing average wh
will lead to solutions that grow liket2 ~these are the secula
solutions that one wishes to avoid when using the multi
time scales analysis!. We will choosej4 so that it will bal-
ance thet dependent part of Eq.~19! and will be periodic in
t. The remainingt independent terms in Eq.~19! will be
included in the equation of motion of the slow coordinateX.
Defining

f 1~X,t![
1

m2
V19E (2)t

@V18#2
1

m2
V19E (2)t

@V18# ~20!

and choosing

j45
V09

m2E (4)t

@V18#1E (2)t

@ f 1#2
3Ẋ2

m E (4)t

@V1
(3)#

2
3Ẍ

m E (4)t

@V19# ~21!
0-4
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balances all thet dependent terms on the RHS of Eq.~19!
but leaves an extra term

1

m
V19E (2)t

@V18#,

which is not balanced. This is actually a term of orderv22

that is left on the RHS of Eq.~5! when we substitutej in Eq.
~5!. The resulting equation for the slow motion is then

mẌ52V08~X!1
1

mv2
V19E (2)t

@V18#1O~v23!. ~22!

This is the leading order correction due to the periodic
tential V1. It was calculated before in Refs.@6,7#. With the
help of Eq.~15! or of the leading term in Eq.~22!, Ẍ can be
eliminated from expression~21! for j4. This method allows
us to compute corrections order by order. We will contin
the calculation up to the orderv24.

The next order isv23. We do not need to computej5
explicitly since it can only change the slow equation in ord
v25. To obtain the next correction to Eq.~22!, one needs
only the average overt of the terms of orderv23. The
reason is thatj5 will be chosen in such a way that it wil
cancel all the periodic terms with vanishing average. T
further simplifies the calculation since all the terms~except
mẌ) on the LHS of Eq.~5! have a vanishing average~over
t), thus only the terms from the RHS can contribute to
equation of the slow coordinate. In this order, the contrib
tions to the equation of the slow coordinateX can result only
01382
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2V09j32V19j3. ~23!

The first term will vanish sinceV0 is t independent andj3
has a vanishing average. The second term can be comp
using Eq.~17!,

V19j35
2Ẋ

m
V19E (3)t

@V19#52
2Ẋ

m E t

@V19#E (2)t

@V19#50.

~24!

In the last calculation, we have used integration by parts
then the fact that the average of a derivative of a perio
function over a period must vanish. This leads to the conc
sion that one can choose a periodicj5 in such a way that all
t dependent terms of the orderv23 in Eq. ~5! are canceled.

We turn to the orderv24 that is the last order that will be
considered here. Again one can get the contributions to
equation ofX by averaging terms of this order in Eq.~5!. The
average overt of the LHS~excludingmẌ) vanishes and the
contribution of the terms on the RHS is

2V09j42
1

2
V0

(3)j2
22V19j42

1

2
V1

(3)j2
2. ~25!

The first term will vanish but the other terms have a non
nishing average. Using Eqs.~14!, ~21! and integration by
parts~in the averages! yields
ed
2
1

2
V0

(3)j2
22V19j42

1

2
V1

(3)j2
252

1

2m2
V0

(3)S E (2)t

@V18# D 2

2
1

m2
V09E (2)t

@V19#E (2)t

@V18#2
1

2m2
V1

(3)S E (2)t

@V18# D 2

2
1

m2
V19E (2)t

@V19#E (2)t

@V18#1
3Ẋ2

m E (2)t

@V19#E (2)t

@V1
(3)#2

3V08

m2 S E (2)t

@V19# D 2

. ~26!

In the last term,Ẍ in j4 was replaced by2V08/m resulting in errors that are of the orderv26 in the final result. Equation~26!
gives thev24 contribution to the equation for the slow coordinateX.

The equation forX to the orderv24 is obtained whenj is substituted into Eq.~5! and the remaining terms are averag
over t resulting in

mẌ52V082
1

mv2E t

@V18#E t

@V19#2
1

2m2v4
V0

(3)S E (2)t

@V18# D 2

2
1

m2v4
V09E (2)t

@V19#E (2)t

@V18#2
1

2m2v4
V1

(3)S E (2)t

@V18# D 2

2
1

m2v4
V19E (2)t

@V19#E (2)t

@V18#1
3Ẋ2

mv4E (2)t

@V19#E (2)t

@V1
(3)#2

3V08

m2v4S E (2)t

@V19# D 2

1O~v25!. ~27!

It is instructive to introduce the effective potential

Ve f f~X![V01
1

2mv2S E t

@V18# D 2

1
1

2m2v4
V19S E (2)t

@V18# D 2

1
1

2m2v4
V09S E (2)t

@V18# D 2

. ~28!
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Substituting Eq.~28! in Eq. ~27! results in the equation of th
slow motion

mẌ52Ve f f8 1
3Ẋ2

mv4E (2)t

@V19#E (2)t

@V1
(3)#

2
3V08

m2v4S E (2)t

@V19# D 2

1O~v25!. ~29!

Given a solution of this,X(t), the solution for the original
problem can be easily obtained~to the appropriate order o
1/v) sincej is known in terms ofX @see Eqs.~14!, ~17!, and
~21!#. From these equations, one sees that in the case w
the oscillating forceV18 is independent of positionX the fast

coordinatej is independent ofX and Ẋ to the orderv24

@note that in Eq.~21! only the orderv0 of X is required see
also Eq.~A16!#. The final result of Ref.@13# is confined to
the case whereV18 is independent ofX. Equation~29! can be
derived from the Hamiltonian

He f f5
P2

2m
1Ve f f~X!1

3

2m3v4S E (2)t

@V19# D 2

P21O~v25!,

~30!

whereP is the momentum conjugate toX.
We have shown that using the natural separation of t

scales, it is possible to separate the motion of a particle
high-frequency periodic field into ‘‘slow’’ and ‘‘fast’’ parts.
The slow dynamics can be derived from an effective Ham
tonian which is time independent. We turn to discuss
corresponding quantum problem.

III. FLOQUET THEORY AND THE EFFECTIVE
HAMILTONIAN

Consider a quantum system with a Hamiltonian that
periodic in time, Ĥ(t1T)5Ĥ(t). Such systems can b
treated using the Floquet theory@29–33#. The symmetry with
respect to discrete time translations implies that the solut
of the Schro¨dinger equation

i\
]

]t
c5Ĥc ~31!

are linear combinations of functions of the form

cl5e2 i (lt/\)ul~x,vt !, ~32!

whereul are periodic with respect tovt with period 2p,
that isul„x,v(t1T)…5ul(x,vt) with v52p/T. The states
ul are called the quasienergy or the Floquet states andl is
referred to as the quasienergy~we will also call the statescl

as the quasienergy states!. This is the content of the Bloch
Floquet theorem in time. The statesul are the eigenstates o
the Floquet Hamiltonian

ĤF52 i\
]

]t
1Ĥ. ~33!
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The quasienergy~or Floquet! states have a natural sep
ration into a ‘‘slow’’ part e2 i (lt/\) ~with the natural choice
0<l/\<v), which includes the information about th
quasienergies, and to a fast partul(x,vt) that depends only
on the ‘‘fast’’ time vt. It is expected that one will be able t
find an equation of motion for the slow part of the dynam
as was done for the classical systems in Sec. II. Such
equation will include information regarding the quasien
gies of the quantum system, and will be developed in w
follows. It establishes a natural link between the separa
into the fast and the slow motion in classical mechani
which can be formalized by the theory of separation of tim
scales, and Bloch-Floquet theory in quantum mechanics

It is known that one may write the propagator in the for
@33#

Û~ t !5P̂~ t !e2 i t Ĝ/\, ~34!

whereĜ is self-adjoint andP̂ is unitary and periodic with the
period of the Hamiltonian. The eigenvalues ofĜ are the
quasienergies of the system provided the eigenstates ofĜ are
in the domain ofĤ(0). SometimesĜ is called the quasien
ergy or Floquet operator. The actual calculation ofĜ might
be complicated. Such an operator was calculated in R
@22,13# by introducing expansions forP̂ and Ĝ. The result
turns out to depend on the phase of the periodic part of
Hamiltonian or on the initial time.@See for example Ref
@22#, Eqs.~25! and~26! and Ref.@13#, Eq. ~16!.# Inspired by
Eqs. ~31!–~34! an approach of a somewhat similar spirit
used.

The goal is to find a unitary gauge transformationeiF̂ (t),
where F̂(t) is a Hermitian operator~function of x̂ and p̂)
defined at a certain timet, which is a periodic function of
time with the same period asĤ, such that in the new gaug
the Hamiltonian in the Schro¨dinger equation istime indepen-
dent. Such a Hamiltonian was found by Grozdanov and R
ković @13# if the time dependent part is of the restricted for
VGR5Ṽ(x)sin(vt1u). It was analyzed with the furthe
strong restriction that for one dimension it takes the fo
dṼ/dx5const ~uniform force!. In what follows, a genera
analysis that is free of these restrictions is presented. Ap
ing eiF̂ to both sides of Eq.~31! and addingi\@(]/]t)eiF̂ #c
to both sides leads to

i\
]

]t
~eiF̂c!5eiF̂Ĥc1 i\S ]

]t
eiF̂ Dc. ~35!

In terms of the functions in the new gauge,f5eiF̂c, this
equation is

i\
]

]t
f5Ĝf, ~36!

where the Hamiltonian is

Ĝ5eiF̂Ĥe2 i F̂1 i\S ]eiF̂

]t
D e2 i F̂ . ~37!
0-6
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In the classical limit, it reduces to

G5H2\
]F

]t
. ~38!

Therefore in the classical limit2\F is the generating func
tion of the canonical transformation corresponding to
unitary transformatione2 i F̂ @34#.

Let us assume that such an operatorF̂ exists so thatĜ is
time independent. Then the eigenfunctions ofĜ are vl(x),
and their evolution takes the form

fl~ t,x!5e2 i (lt/\)vl~x!. ~39!

These states, in the original gauge, correspond to

cl~ t,x!5e2 i F̂fl5e2 i (lt/\)e2 i F̂vl~x!, ~40!

since F̂ does not include any time derivative. The functio
e2 i F̂vl is periodic in time with the period ofĤ and therefore
cl is a Floquet state with quasienergyl ~mod \v). It
should be compared with Eq.~32! with the identification
ul5e2 i F̂vl . It is assumed thateiF̂ ~ande2 i F̂) are such that
they map the domain ofĤ(t) into that ofĜ and vice versa.
This may not be true in general, and one cannot exclude
possibility that examples, where only some of the quasie
gies can be found using this method, exist. For exam
problems of this nature may occur if for a functionc in the
Hilbert space ofĤ, the functioneiF̂c is not in this space.
The limitations on the validity of the method should be su
ject to further mathematical studies.

To emphasize the difference between the effective Ham
tonianĜ andĜ given by Eq.~34!, let us write the propagato
in terms ofF̂, andĜ. To propagate any state in time usin
Ĝ, it has to be transformed to the time independent gau
then propagated, and finally transformed back. This result
the propagator

Û~ t !5e2 i F̂ (t)e2 i (tĜ/\)eiF̂ (0). ~41!

SinceĜ and F̂ do not commute,Ĝ generally differs fromĜ
of Eq. ~34!.

We note that an approximate solution of the time dep
dent problem in terms of an expansion ofF̂ andĜ has some
superior properties compared to the more customary ex
sion of P̂ and Ĝ of Eq. ~34!. For instance, ifF̂ is Hermitian
at any order theneiF̂ is manifestly unitary, while some care
needed to obtain unitary approximations forP̂. In addition,
Ĝ does not depend on the phase of the time dependent fi
while Ĝ does depend on this phase~see Refs.@13,22#!. There-
fore in the present work, a description in terms ofĜ andF̂ is
used rather than the one in terms ofP̂ and Ĝ.

In the following section, the derivation ofĜ andF̂ will be
presented explicitly as an expansion in powers of 1/v. It will
be shown that at high frequenciesF̂ can be chosen to b
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small, of the order of 1/v. In this limit, one can easily cal-
culate the matrix elements of an observableÔ between the
quasienergy~Floquet! states using the eigenvalues and eige
states of the effective HamiltonianĜ:

^cl1
uÔucl2

&5^fl1
ueiF̂Ôe2 i F̂ ufl2

&

5^fl1
uÔufl2

&1 i ^fl1
u@ F̂,Ô#ufl2

&

2
1

2
^fl1

u†F̂,@ F̂,Ô#‡ufl2
&1•••. ~42!

The result is an effective expansion in powers of 1/v. Since
observables have a meaningful classical limit\→0, their
expectation should reduce to the expansion in powers ofv
for the corresponding classical quantity as calculated in S
II and the Appendix. The expansion ofĜ presented in the
following section can be considered an extension of the m
tiple time scales analysis to quantum mechanics. The ef
tive Hamiltonian, which will be obtained, will be compare
with the classical Hamiltonian for the slow motion that w
computed in Sec. II.

IV. THE EFFECTIVE HAMILTONIAN OF QUANTUM
SYSTEMS WITH A HIGH-FREQUENCY POTENTIAL

In Sec. III, we demonstrated that the quasienergies and
Floquet states of a quantum system can be determined if
can find a gauge transformation so that the Hamiltonian
time independent. The transformation and the resulting ef
tive Hamiltonian are obtained here. TypicallyF̂ andĜ can-
not be computed exactly. For high frequencies, one can
termineF̂ andĜ order by order in 1/v. In the following, we
present a derivation ofF̂ andĜ accurate to the order 1/v4.

We consider the Hamiltonian~which is more general than
the one studied in Ref.@13#!

Ĥ5
p̂2

2m
1V̂0~x!1V̂1~x,vt !. ~43!

This is the quantum system which corresponds to the cla
cal system that was discussed in Sec. II. It should be no
that the method which is described in the present section
applies to the Hamiltonians that differ from Eq.~43!, for
example in the presence of magnetic fields and for spins~see
Sec. V!. We choose to examine the Hamiltonian~43! since it
is of interest to compare the resulting effective Hamiltoni
with its classical counterpart~30!. As mentioned in Sec. III
we are looking for a unitary transformationeiF̂ so that the
resulting Hamiltonian~37! is time independent. It is conve
nient to definet5vt, since the Hamiltonian depends o
time only throught. Using this definition, Eq.~37! is given
by

Ĝ5eiF̂Ĥe2 i F̂1 i\vS ]eiF̂

]t
D e2 i F̂ . ~44!
0-7
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At high frequencies,F̂ is assumed to be small, of th
order of 1/v, an assumption that will be explicitly satisfie
by the following calculation. This enables us to expandĜ

and F̂ in powers of 1/v and to chooseF̂ so thatĜ is time
independent in any given order. The expansions are give

Ĝ5 (
n50

`
1

vn
Ĝn ~45!

and

F̂5 (
n51

`
1

vn
F̂n . ~46!

The periodicityF̂(t12p)5F̂(t) is assumed. The calcula
tion is performed by computingĜl in terms ofF̂1 , . . . ,F̂ l 11

and then choosingF̂ l 11 so thatĜl is time independent. The
terms in Eq.~44! are calculated with the help of the operat
expansions~than can be obtained with the help of Re
@35,36#!,

eiF̂Ĥe2 i F̂5Ĥ1 i @ F̂,Ĥ#2
1

2!
†F̂,@ F̂,Ĥ#‡

2
i

3!
@ F̂,†F̂,@ F̂,Ĥ#‡#1••• ~47!

and

S ]eiF̂

]t
D e2 i F̂5 i

]F̂

]t
2

1

2!
F F̂,

]F̂

]t
G2

i

3!
FF̂,F F̂,

]F̂

]t
G G1•••.

~48!

In the leading order,O(v0), Ĝ0 is given by

Ĝ05
p̂2

2m
1V̂0~x!1V̂1~x,t!2\

]F̂1

]t
. ~49!

The potentialsV̂0 andV̂1 do not depend onp̂. To cancel any
time dependence, we choose

F̂15
1

\E
t

@V̂1~x,t!#. ~50!

It is easily computed in the coordinate representation. N
that F̂1 is determined only up to a Hermitian time indepe
dent operator. It was assumed to vanish here. Substitu
Eq. ~50! in Eq. ~49! leads to

Ĝ05
p̂2

2m
1V̂0~x!. ~51!

This is the leading order of the effective Hamiltonian. T
dynamics do not depend on the fast time dependent pote
V̂1 as expected. The corrections due toV̂1 will appear at
higher orders in 1/v.
01382
by

.

te

ng

ial

At the order 1/v, the effective Hamiltonian obtained from
Eqs.~44!–~48! is

Ĝ15 i @ F̂1 ,Ĥ#2\
]F̂2

]t
2

i\

2
F F̂1 ,

]F̂1

]t
G . ~52!

Note thatF̂1, given by Eq.~50!, depends only on the coor
dinate and therefore it commutes with its time derivative a
also with V̂0. If a periodicF̂2 can be chosen so that

]F̂2

]t
5

i

\
@ F̂1 ,Ĥ#5

i

\
F F̂1 ,

p̂2

2m
G , ~53!

thenĜ1 vanishes. Indeed, by choosing

F̂25
i

2mE (2)t

@V19#1
i

mE (2)t

@V18#
]

]x
, ~54!

we obtain

Ĝ150. ~55!

We have presentedF̂2 in the coordinate representation sin
the simple dependence ofĤ on the momentum makes it th
most natural representation. We will use it also when cal
lating higher orders.

At the next order,v22, Ĝ2 found from Eqs.~44!–~48! is

Ĝ25 i @ F̂2 ,Ĥ#2
1

2
†F̂1@ F̂1 ,Ĥ#‡2\

]F̂3

]t
2

i\

2
F F̂1 ,

]F̂2

]t
G

2
i\

2
F F̂2 ,

]F̂1

]t
G1

\

6
FF̂1F F̂1 ,

]F̂1

]t
G G. ~56!

Substituting Ĥ5Ĝ01\(]F̂1 /]t) and using Eq.~53! to
eliminate the commutation relation@ F̂1 ,Ĥ# results in

Ĝ25 i @ F̂2 ,Ĝ0#2\
]F̂3

]t
1

i\

2
F F̂2 ,

]F̂1

]t
G . ~57!

We can choose a periodicF̂3 in order to balance the time
dependence ofĜ2. Note thatĜ2 has some time independen
part that cannot be canceled by a periodicF̂3. Therefore we
separateĜ2 into a t independent part and a part that is p
riodic with vanishing average and chooseF̂3 so that the latter
vanishes@in Eq. ~57!#. For this purpose,F̂3 must satisfy

]F̂3

]t
5

i

\
@ F̂2 ,Ĝ0#1

i

2
S F F̂2 ,

]F̂1

]t
G2F F̂2 ,

]F̂1

]t
G D , ~58!

whereĜ0 is given by Eq.~51! and an average over a perio
is denoted by bar. After some algebraic manipulations,F̂3 is
found to be
0-8
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F̂352
\

m2E (3)t

@V19#
]2

]x2
2

\

m2E (3)t

@V1
(3)#

]

]x

2
\

4m2E (3)t

@V1
(4)#2

1

m\
V08E (3)t

@V18#

1
1

2m\E
t

@P1#1 f̂ 3~ x̂,p̂!, ~59!

where

P1~x,t![ im\S F F̂2 ,
]F̂1

]t
G2F F̂2 ,

]F̂1

]t
G D

5V18E (2)t

@V18#2V18E (2)t

@V18#. ~60!

The constant of the integration overt is the Hermitian op-
erator f̂ 3 that depends only onx̂ and p̂, and will be deter-
mined at the next order. We will use the freedom to cho
2 4

01382
e

f̂ 3 to causeĜ3 to have a simple form. Using Eq.~59! in Eq.
~57! will cancel the time dependent terms, resulting in

Ĝ25
i\

2
F F̂2 ,

]F̂1

]t
G52

1

2m
V18E (2)t

@V18#5
1

2mS E t

@V18# D 2

,

~61!

where we have used integration by parts.
The calculation ofĜ3 and Ĝ4 can be performed along

similar lines. This calculation is tedious but straightforwa
and only the main results are presented. Using the freedo
the choice off̂ 3, we choose it to satisfy

f 38~x!52
1

m\E
t

@V18#E (2)t

@V19#. ~62!

This choice forf̂ 3 leads to

Ĝ350. ~63!

Then F̂4 is found to satisfy
F̂452
\2i

m3E (4)t

@V1
(3)#

]3

]x3
2

3\2i

2m3E (4)t

@V1
(4)#

]2

]x2
2

3\2i

4m3E (4)t

@V1
(5)#

]

]x
2

\2i

8m3E (4)t

@V1
(6)#2

i

2m2 S E t

@P 38#1E t

@P 28#

12E t

@P3#
]

]x
12E t

@P2#
]

]xD1
i

4m2 S E (2)t

@P 19#12E (2)t

@P 18#
]

]xD1 f̂ 4~ x̂,p̂!, ~64!

where

P2~x,t![V18E (3)t

@V19#2V18E (3)t

@V19#, P3~x,t![V09E (3)t

@V18#13V08E (3)t

@V19#. ~65!

The time independent part ofF̂4 is denoted byf̂ 4. Using the freedom in the choice of gauge, we choosef̂ 4 so that in the
classical limit the effective HamiltonianĜ reduces to its classical counterpart~30!. To achieve thisf̂ 4 is chosen to satisfy

f̂ 45g̃~x! p̂1 p̂g̃~x!52
\

i
g̃~x!

]

]x
1

\

i
g̃8~x!, ~66!

where

g̃~x!52
3

4m2\
E (2)t

@V18#E (2)t

@V19#. ~67!

This results in

Ĝ45
1

2m2
V09S E (2)t

@V18# D 2

1
1

2m2
V19S E (2)t

@V18# D 2

2
\2

2m3 H 3S E (2)t

@V19# D 2 ]2

]x2
16E (2)t

@V19#E (2)t

@V1
(3)#

]

]x

1
3E (2)t

@V19#E (2)t

@V1
(4)#1

5S E (2)t

@V1
(3)# D 2J . ~68!
0-9
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This is the highest order ofĜ that is computed here.
The freedom in the choice of gauge was used here and

time independent parts of theF̂ i were chosen in a specifi
way. Generally, this choice is arbitrary. In the present work
choice was made so that in the classical limit the effect
Hamiltonian reduces to the specific classical counterp
~30!, which resulted in a natural way within the derivation
Sec. II. In Ref.@13#, on the other hand, the choice of the tim
independent parts of theF̂ i is made so that the average of th
fast variables over a period reduces to the slow variab
within an orderv24 calculation. It is found there that with
this choice, the requirement can be satisfied only if the
cillating force is independent of the position~in one dimen-
sion!.

We have used a perturbation theory~in 1/v) to obtain a
periodic gauge transformationeiF̂ and an effective Hamil-
tonianĜ so that the quasienergies are the eigenvalues oĜ.
Its eigenstates are related to the quasienergy states by
~40!. For a Hamiltonian of form Eq.~43!, this effective
Hamiltonian is given by Eqs.~44!, ~45!, ~51!, ~55!, ~61!, ~63!
and ~68!. Collecting all contributions, one finds

Ĝ5
p̂2

2m
1V̂e f f1

1

4v4
„p̂2g~x!12p̂g~x! p̂1g~x! p̂2

…

1
\2

v4
V̂q1O~v25!, ~69!

where

Ve f f~x!5V0~x!1
1

2mv2S E t

@V18# D 2

1
1

2m2v4
V09S E (2)t

@V18# D 2

1
1

2m2v4
V19S E (2)t

@V18# D 2

~70!

is the effective potential corresponding to Eq.~28!,

g~x!5
3

2m3S E (2)t

@V19# D 2

~71!

is the coefficient ofP2 in Eq. ~30!, while

V̂q5
1

8m3S E (2)t

@V1
(3)# D 2

~72!

is a quantum correction to the classical Hamiltonian@its form
obviously depends on the ordering of operators in Eq.~69!#.

The effective Hamiltonian is the main result of this se
tion. The classical limit of Eq.~69! is the classical effective
Hamiltonian~30!. The freedom in the choice of gauge in th
quantum problem was used, andf̂ 3 and f̂ 4 were chosen spe
cifically to achieve this. We did not use the freedom of
01382
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canonical transformation in the classical calculation. T
specific canonical transformation from the Hamiltonian~43!
to the Hamiltonian~30! is generated by the classical limit o
2\F̂ with the specific choice of the time independent par
which was made in the present work.

The perturbation theory that was developed here ena
one to calculate not only the quasienergies but also the
responding Floquet states. If the eigenfunctions ofĜ are
known, then the quasienergy~or Floquet! states can be com
puted up to the orderv24 using Eq.~40! with

F̂5
1

\vE
t

@V1#1
i

2mv2E (2)t

@V19#1
i

mv2E (2)t

@V18#
]

]x

1
1

v3
F̂31

1

v4
F̂41O~v25!, ~73!

where F̂3 is given by Eqs.~59!, ~60!, and ~62! while F̂4 is
given by Eqs.~64!, ~65!, ~66!, and~67!.

For the driven harmonic oscillator whereV0(x)
5 1

2 mv0
2x2 andV1(x,t)5Ex cos(t) ~69!–~72! yield

Ĝ52
\2

2m

]2

]x2
1

1

2
mv0

2x21
E 2

4mv2
1

E 2

4mv2

v0
2

v2
1O~v25!.

~74!

This simple model is exactly solvable. The effective Ham
tonian of this model was calculated in Ref.@13#. It is given
by

Ĝ5
p̂2

2m
1

1

2
mv0

2x21
E 2

4m~v22v0
2!

. ~75!

The expansion of the exact result~75! to the fourth order~in
1/v) leads to Eq.~74! as expected.

V. DYNAMICS OF SPINS IN TIME DEPENDENT
MAGNETIC FIELDS

A simple example that demonstrates the methods p
sented in this work is a spin in a field, which is a combin
tion of a static and a periodic time dependent magnetic fie
This example demonstrates that also Hamiltonians that
not of the formp̂2/2m1V̂(x) can be treated in the way pre
sented in Secs. III and IV. The systems that are conside
here consist of a spin in a constant magnetic field combi
with a perpendicular periodic field linear or with circula
polarization. The Hamiltonian for the linearly polarized fie
is given by

Ĥ l52v0Î z1v1 cos~vt ! Î x , ~76!

while for the circularly polarized field it is

Ĥc52v0Î z1v1„cos~vt ! Î x1sin~vt ! Î y…. ~77!

For a spin in a circularly polarized field, the problem w
solved exactly by Rabi@37#. This system also appears i
0-10
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textbooks as a paradigm of time dependent two-level s
tems @38#. Our goal is to demonstrate that for this simp
system, the quasienergies can be computed exactly usin
method presented in Secs. III and IV. First, we derive so
results that are valid for any Hamiltonian linear in the sp
operators.

These spin problems turn out to be simple since the s
operators have a closed algebra,

@ Î x , Î y#5 i\ Î z , @ Î y , Î z#5 i\ Î x , @ Î z , Î x#5 i\ Î y .
~78!

The effective Hamiltonian~44! is obtained with the help o
the expansions in commutation relations~47! and~48!. For a
Hamiltonian andF̂ that are linear in the spin operators, the
expansions can be summed. Consider a transformation
erated by

F̂5A~t! Î x1B~t! Î y1C~t! Î z , ~79!

wheret5vt andA, B, andC are the real functions of time
Let Q̂ be an arbitrary operator which is linear inÎ i . A
straightforward calculation shows that

@ F̂,†F̂,@ F̂,Q̂#‡#5a2@ F̂,Q̂# ~80!

with

a5\AA21B21C2. ~81!

Therefore for any Hamiltonian linear in the spin operato
any commutation relation in Eq.~47! can be reduced to

@ F̂,Ĥ# or to †F̂,@ F̂,Ĥ#‡, and the series is given by

eiF̂Ĥe2 i F̂5Ĥ2
1

2!
†F̂,@ F̂,Ĥ#‡1

1

4!
a2

†F̂,@ F̂,Ĥ#‡

2
1

6!
a4

†F̂,@ F̂,Ĥ#‡1•••1 i @ F̂,Ĥ#

2
i

3!
a2@ F̂,Ĥ#1

i

5!
a4@ F̂,Ĥ#1•••

5Ĥ1
cosa21

a2
†F̂,@ F̂,Ĥ#‡1

sina

a
i @ F̂,Ĥ#.

~82!

The operatorF̂ of Eq. ~79! is linear in the spin operators and
therefore, such is also]F̂/]t. In a similar manner, Eq.~48!
can be summed to

S ]F̂

]t
D e2 i F̂5 i

]F̂

]t
1

sina2a

a3
i F F̂,F F̂,

]F̂

]t
G G

1
cosa21

a2 F F̂,
]F̂

]t
G . ~83!

The Hamiltonian in the new gauge is thus given by
01382
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the
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Ĝ5Ĥ1
cosa21

a2
†F̂,@ F̂,Ĥ#‡1

sina

a
i @ F̂,Ĥ#2\v

]F̂

]t

1\v
cosa21

a2
i F F̂,

]F̂

]t
G2\v

sina2a

a3
FF̂,F F̂,

]F̂

]t
G G.
~84!

The problem of finding the effective Hamiltonian is thus r
duced to finding three functions of time, i.e.,A(t), B(t),
andC(t) so that Eq.~84! is time independent. Equation~84!
is valid for any Hamiltonian which is linear in the spin op
erators. Therefore, the problem is reduced to the solution
three coupled nonlinear differential equations, that is a w
defined mathematical problem. Generally, this may be h
to do sinceĜ is not linear in terms of these functions. W
turn now to examine the simplest case, i.e., of a circula
polarized field~77!.

For the spin in a circularly polarized field, a perturbati
solution in powers of 1/v for F̂ and Ĝ can be found. The
computation is done exactly as the one in Sec. IV. Thus o
a brief outline of the calculation is presented. At the ord
v0,

Ĝ05Ĥ2\
]F̂1

]t
52v0Î z1v1~cost Î x1sint Î y!2\

]F̂1

]t
~85!

and therefore

F̂15
v1

\
~sint Î x2cost Î y! ~86!

and

Ĝ052v0Î z . ~87!

Note that here@ F̂1 ,(]F̂1 /]t)#Þ0, which changes some o
the expressions obtained in Sec. IV.

At order v21 a straightforward calculation leads to

Ĝ152\v0

]F̂1

]t
2\

]F̂2

]t
2

v1
2

2
Î z , ~88!

which results in

F̂252v0F̂152
v0v1

\
~sint Î x2cost Î y!, ~89!

while

Ĝ152
v1

2

2
Î z . ~90!

A similar calculation at the next order leads to

F̂35S v0
22

v1
2

3 D F̂1 ~91!

and
0-11
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Ĝ25
1

2
v0v1

2Î z . ~92!

The expansions forF̂ andĜ are obtained by collecting al
the terms from Eqs.~85!–~92!. These expansions are give
by

Ĝc5S 2v02
v1

2

2v
1

v0v1
2

2v2
1O~v23!D Î z ~93!

and by

F̂c5
v1

\v S 12
v0

v
1

v0
2

v2
2

v1
2

3v2
1O~v23!D

3~sint Î x2cost Î y!, ~94!

where the subscriptc denotes that this result is obtained f
the circularly polarized field.

An examination of Eq.~94! suggests thatF̂c may have the
exact form

F̂c5
a~v!

\
~sint Î x2cost Î y!. ~95!

It turns out thatF̂c of this form leads to a time independe
Hamiltonian ifa is chosen appropriately. SubstitutingF̂c and
Ĥ5Ĥc of Eq. ~77! in Eq. ~84! leads to

Ĝc5~v1 cosa2v0 sina2v sina!~cost Î x1sint Î y!

1~2v0 cosa2v1 sina1v cosa1v! Î z . ~96!

The HamiltonianĜc is time independent if

v1 cosa2v0 sina2v sina50. ~97!

Solving for a the Hamiltonian in the new gauge, Eq.~96!
reduces to

Ĝc5~v2Av1
21~v01v!2! Î z , ~98!

and is time independent. The quasienergies of the spin
circularly polarized field are the eigenvalues of Eq.~98!.
They are given by

Es5„v2Av1
21~v01v!2

…\s, ~99!

where s52S,2S11, . . . ,1S (S is the magnitude of the
spin!.

For spinS51/2, not only the quasienergies but also t
quasienergy states can be computed rather easily. The
operator can be represented by the Pauli matrices

Î x5
\

2 S 0 1

1 0D , Î y5
\

2 S 0 2 i

i 0 D , Î z5
\

2 S 1 0

0 21D .

~100!

The Hamiltonian is then given by
01382
a

pin

Ĥc5
\

2 S 2v0 v1e2 ivt

v1eivt v0
D . ~101!

The unitary transformationÛc5e2 i F̂ c, which transforms the
eigenstates of the effective Hamiltonian~98! to the quasien-
ergy states of Eq.~101!, can be obtained by calculating th
various powers ofF̂c . For S51/2,

F̂c5
a

2i S 0 2e2 ivt

eivt 0 D . ~102!

SinceĜc is proportional toÎ z its eigenstates are the eige
states ofÎ z . Thus, the quasienergy states of the Hamilton
~101!, corresponding to the quasienergies

E656
\

2
„v2Av1

21~v01v!2
…, ~103!

are

u15ÛcS 1

0D 5S cos
a

2

2eivt sin
a

2

D ~104!

and

u25ÛcS 0

1D 5S e2 ivtsin
a

2

cos
a

2

D . ~105!

This is exactly the problem that was solved by Rabi@37#, and
is discussed in Ref.@38#. The physical quantity of interest i
typically the number of spins that flip~if all spins are polar-
ized initially!, rather than the Floquet states. We note that
termAv1

21(v01v)2 in the expression for the quasienergi
is the Rabi frequency. It is the frequency of oscillations
these ‘‘spin flips.’’

For the spin in a linearly polarized field, a perturbati
computation ofĜ leads to

Ĝl5S 2v01
v0v1

2

4v2
1

v0
3v1

2

4v4
2

v0v1
4

64v4
1O~v25!D Î z .

~106!

To the best of our knowledge, an exact expression for
quasienergies of this system is not known. If one substitu
F̂ of the form ~79! in Eq. ~84!, the problem of finding the
effective time independent Hamiltonian reduces to the pr
lem of finding the three functions of time,A(t), B(t), and
C(t), so that the new Hamiltonian is time independe
These satisfy first-order nonlinear differential equatio
Typically solutions to such equations exist but it is not ea
to find them explicitly. It is possible to choose parameters
that also the exactĜc is proportional toÎ z . The approximate
effective Hamiltonian~106!, which was obtained in a simila
way as Eq.~93!, can be compared to the previously pu
0-12



f t
ne

q

in
el
Se
e
,

ns

t

re
or
b
c
th
ri

te
ia

fin
e
-
is

om
o

t a
-
i

.

os-

l
the

ces.
Each

r
eful

ent

of

e
the

ree-
mil-

e
il-

ex-

of

lto-
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lished results. While we are not aware of any 1/v expansion
for the quasienergies, some expansions in the strength o
time dependent field have been published. If one exami
for instance, the expansion given by Eq.~2.10! and Appendix
A of Ref. @39# ~which is valid for spinS51/2) and expands
it in powers of 1/v, one obtains the quasienergies of E
~106!.

In this section, we have studied some problems involv
spins in crossed constant and time dependent magnetic fi
We have shown that the perturbation theory presented in
IV can be used for such systems. For a circularly polariz
field, we were able to compute the quasienergies exactly
agreement with the previously published results.

VI. SCATTERING FROM AN OSCILLATING GAUSSIAN
POTENTIAL

The system considered in Sec. V is simple, in the se
that the spectrum of the effective HamiltonianĜ is discrete
and simply related to the one of the time independent par
the original HamiltonianĤ0. Moreover, for this example
also the eigenfunctions of these Hamiltonians are simply
lated. It is of interest to examine examples that are m
complicated and where such simple relations cannot
found. In this section, we examine such a system, the os
lating Gaussian, where an additional difference is that
spectrum is continuous and one is interested in the scatte
states.

Consider a system which consists of a particle that in
acts with an oscillatory Gaussian potential. The Hamilton
is given by

Ĥ5
p̂2

2m
1ge2bx2

cos~vt !. ~107!

The system is of interest for two reasons. First, whenx
→` the potential vanishes and therefore one expects to
scattering quasienergy states. Second, the average of th
tential vanishes, namelyV0(x)50, consequently any inter
esting effect is due to the rapidly oscillating potential. Th
system describes trapping by an oscillating field, a phen
enon that is of physical interest. The physical properties
this system and the numerical methods used to analyze i
discussed elsewhere@40#. Here we only state briefly the re
sults that are related to the properties of the effective Ham
tonian.

The effective Hamiltonian~69!, which corresponds to Eq
~107!, is

Ĝ5
p̂2

2m
1

b2g2x2

mv2
e22bx2

1
3b2g2

m3v4
~122bx2!2e22bx2

p̂2

2
12i\g2b2x

m3v4
~2bx221!~322bx2!e22bx2

p̂

2
\2b3g2

m3v4
~29199bx22114b2x4144b3x6!e22bx2

1O~v25!. ~108!
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We examine separately the leading correction due to the
cillating field, which is given by the Hamiltonian

Ĝ(2)[Ĝ01Ĝ11Ĝ25
p̂2

2m
1

b2g2x2

mv2
e22bx2

, ~109!

where the error is of the orderv24. It has a simple physica
meaning as the potential consists of a double barrier and
spectrum is continuous.

Since the effective potential of Eq.~109! is a double bar-
rier one expects to find that this system exhibits resonan
These resonances describe long-lived unstable states.
resonance is characterized by a complex energyE2 iG/2.
The real partE is the location of the resonance, whileG is
the width which is inversely proportional to the lifetime. Fo
a review on the relevant properties of resonances and us
methods to compute them, see Ref.@41#.

For any resonance of Eq.~108! and ~109!, it is natural to
look for the corresponding resonance of the time depend
original Hamiltonian~107!. More precisely, one looks for the
resonances of the Floquet Hamiltonian~33! with Ĥ of Eq.
~107!. This is done numerically by using a combination
the (t,t8) method and complex scaling@41#.

The energyE0 and the widthG0 of the lowest~corre-
sponding to the smallest real partE0) quasienergy resonanc
of Eq. ~107! are compared with the lowest resonance of
effective Hamiltonians~108! and~109! in Figs. 1 and 2. It is
clear that for large frequencies there is an excellent ag
ment between the resonance of the time dependent Ha
tonian~107! and the ones of the effective Hamiltonians~108!
and~109!. At low frequencies, the location and width of th
exact resonance differ from those of the effective Ham
tonian. The deviation for the orderv24 Hamiltonian~108! is
large indicating that the expansion is asymptotic. This is

FIG. 1. The energyE0 of the lowest quasienergy resonance
the Hamiltonian~107! as a function of the driving frequency~solid
line!, compared to the lowest resonance of the effective Hami
nians~109!—dashed line, and~108!—dotted line, forg59 andb
50.02. The ‘‘atomic units’’m5\5e51 are used here.
0-13



. I
th
im

i
o
d

de
s

an
e
n

tu
b

n
s
th
ba
r-
it

al

i

e
te
to

ve
a

s-

it o

. II.

an
f
a-
e

of
Eq.
ge

by
s
ny
d

n

ld
sion
l.
in

ting
ich
ther
that
rre-

sed
be

icles

hat
lso
her

ch
ller
on-
ian
se,
es of
hly

e

RAHAV, GILARY, AND FISHMAN PHYSICAL REVIEW A 68, 013820 ~2003!
pected since the perturbation theory developed in Sec
assumes high frequencies. A more complete study of
specific system and a discussion regarding the physical
plications of this resonance are given in Ref.@40#.

In this section, we demonstrated that the effective Ham
tonian Ĝ can be used to obtain some physical properties
systems that are more complicated than those presente
Sec. V. In particular, the resonances of a periodic time
pendent system were found to be given by the resonance
the corresponding time independent effective Hamiltoni
Resonances for oscillating barriers were computed num
cally in Refs.@17,18#. The calculation of the present sectio
demonstrates the physical origin of the results.

VII. SUMMARY AND DISCUSSION

In this paper we investigated the classical and quan
motion in high-frequency fields. The classical motion can
treated by separation of time scales. In Sec. II, this motio
separated into a slow part and a fast part, which consist
rapid oscillations around the slow part. The fast part and
resulting equation for the slow motion are solved pertur
tively to the orderv24. This perturbation series is a gene
alization of the calculation presented by Landau and Lifsh
@7#. We also demonstrated that this perturbation theory
equivalent~to the orderv24) to the standard mathematic
method of multiple time scales analysis@42#, which is more
complicated. The resulting equation for the slow motion
found to result from a time independent Hamiltonian.

Following a review of the Floquet theory in Sec. III, th
corresponding effective quantum Hamiltonian is compu
explicitly, using a high-frequency perturbation theory up
the orderv24, in Sec. IV. The resulting Hamiltonian~69! is
rather simple. Its classical limit is the classical effecti
Hamiltonian ~30!. This effective Hamiltonian is therefore
generalization of the classical results of Kapitza@6# and of
Landau and Lifshitz@7# to quantum mechanics. In the cla
sical limit, the unitary gauge transformatione2 i F̂ reduces to
a canonical transformation generated by the classical lim

FIG. 2. Same as Fig. 1 forG0, the width of the lowest resonanc
~‘‘atomic units’’ m5\5e51).
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2\F̂ @see Eq.~38! and Ref.@13##. The Hamiltonian~30! for
the slow variables was obtained in a natural way in Sec
The freedom in the choice of gauge was used to chooseF̂ so
that in the classical limit the effective quantum Hamiltoni
~69! reduces to Eq.~30!. Consequently, the classical limit o
2\F̂ is the generating function of the canonical transform
tion from the original time dependent Hamiltonian to th
time independent Hamiltonian~30!. This limit explains the
fact that the classical dynamics of the slow coordinateX is
generated by a Hamiltonian. Using the freedom of choice
gauge, one can generate Hamiltonians that differ from
~30! and~69!, but are related to them by canonical and gau
transformations. The present work extends@13# to general
driving potentials and is not restricted to the driving given
Eq. ~6a! of Ref. @13#. The perturbation theory which wa
developed can, in principle, be used to compute it to a
given order in 1/v. This is a significant extension beyon
@13# in the spirit of separation of time scales@42# that enables
a systematic expansion in powers ofv21. For this, the re-
quirement~23! of Ref. @13# is avoided and the expansion ca
be performed for any driving potentialV1 and is not re-
stricted to driving forces that are uniform in space. It shou
be emphasized that this perturbation theory is an expan
in 1/v and not in powers of the time dependent potentia
The potentialV1 does not have to be small in order to obta
a good approximation of the original system.

Several examples were discussed. The spin in a rota
magnetic field is a simple, exactly solvable example, wh
was used as a demonstration for the method. For ano
system, the oscillating Gaussian, we showed numerically
its lowest resonance is given by the resonance of the co
sponding effective Hamiltonian~69! of Sec. VI. Thus, for
time dependent traps, such as the atomic billiards discus
earlier, the time independent effective Hamiltonian can
used to compute the resonances and the lifetimes of part
in these traps.

While the examples presented in this work indicate t
this effective potential is a meaningful concept and is a
useful for calculations, there are points that require furt
research. The convergence properties of the 1/v expansions
for F̂ andĜ are not clear. There may be situations in whi
the perturbation theory fails to converge or where sma
than any power corrections are of physical importance. C
sider for example a system similar to the oscillating Gauss
whereV1 vanishes outside some finite domain. In this ca
one may expect to find scattering states as the eigenstat
Ĝ. In the limit of high energies, such a state may be roug
approximated by the plane waveeipx/\ ~with large p). The
leading momentum contributions toF̂ are of the form

1

\vE
t

@V1#2
1

\mv2E (2)t

@V18# p̂1
1

\m2v3E (3)t

@V19# p̂2

2
1

\m3v4E (4)t

@V1
(3)# p̂3,

as one can see from Eq.~73! with Eq. ~59! and ~64!. While
0-14
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EFFECTIVE HAMILTONIANS FOR PERIODICALLY . . . PHYSICAL REVIEW A68, 013820 ~2003!
the general structure of the series forF̂ is unknown, it seems
that for states with momentum which scales asva with a
.1 the series do not converge.

Even taking into account all the questions concerning
validity and the convergence of the perturbation expansi
presented in this work, we find the effective potential to
useful for the following reasons. The perturbation theo
leads to a time independent effective Hamiltonian. Phy
cists, who are used to working with the time independ
systems, have developed an intuition for such systems,
thus the effective Hamiltonian may give physical insight th
is absent when examining the corresponding time depen
problem. In addition, all the calculations used to obtain
effective Hamiltonian are straightforward. There are no d
ferential equations or any complicated iterative schemes
may appear in more sophisticated perturbation theories.
comparison see Ref.@43#. Finally, one may use all the well
developed techniques for the time independent quantum
tems to compute the eigenvalues ofĜ. In particular, one can
use the time independent perturbation theory in the c
where the eigenvalues and eigenstates ofĜ0 are known.

The effective Hamiltonian~69! can be useful to predic
the qualitative behavior without complicated numerical c
culations. Assume first that the frequency is sufficiently h
so that only terms of order up to 1/v2 should be included and
denoteV2(x)[(1/2mv2)(*tV18)

2. Let V0 take the form de-
picted in Fig. 3~a!. It exhibits resonances. A natural questi
is whether the linewidth increases or decreases as a resu
the time dependent potential. It is clear that for a situation
in Fig. 3~b! the linewidth decreases, since the particle has
tunnel through the effective barriers which are higher th
those of V0 because the effective potential isVe f f5V0
1V2, while for Fig. 3~c! the linewidth~typically! increases
since the energy of the resonances is shifted upwards by
time dependent perturbation. Numerical calculations of
type presented in Sec. VI and in Refs.@17,18# should confirm

FIG. 3. Qualitative effect of driving on trapping times:~a! the
average potentialV0; ~b! the position dependence of the drivin
potential V1 ~dashed line! results in the effective potentialVe f f

~solid line!; ~c! as in ~b! with driving mainly inside the trap. The
units are arbitrary.
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these results. If the terms of the orderv24 are important,
more subtle considerations concerning the kinetic ene
(1/2m)^ p̂2& and the semiclassical limit are required.

Since there are some physical situations where one
pects that the perturbation theory fails, it is of importance
find ways to improve it. The goal is to be able to descri
terms that are smaller than any power in the perturbatio
This might be possible by using a superconvergent pertu
tion theory that was recently applied to the time depend
quantum systems@44#. In this perturbation theory, the sma
parameter is the size of the time dependent potential. It i
interest to modify it to a perturbation theory in 1/v. Note
that while these superconvergent perturbation schemes
superior convergence properties, they may turn out to
complicated for explicit calculations. Thus, one may lose
main advantage of the perturbation theory presented in
work, its simplicity. In addition, it is of interest to generaliz
the results of this work to systems of higher dimension. Su
a generalization should be straightforward.

In conclusion, we have investigated the dynamics of hig
frequency driven classical and quantum systems. A hi
frequency perturbation theory was used to obtain an effec
time independent Hamiltonian for the slow part of the cla
sical and quantum motion. For quantum systems, the s
trum of this Hamiltonian is the quasienergy spectrum of
time dependent system. This effective Hamiltonian is co
puted in a high-frequency systematic perturbation theory
is demonstrated that the effective Hamiltonian gives the
act quasienergies and quasienergy states of some simpl
amples as well as the lowest resonance~including the life-
time! for a time dependent atom trap.
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APPENDIX: MULTIPLE TIME SCALES ANALYSIS

The derivation given in Sec. II was, in some sense,
explicitly consistent. For example the slow motion was n
solved by expanding its coordinates in orders of 1/v. The
terms of the order 1/vn included all contributions up to tha
order, and also some contributions of higher order. It is
interest to show that the same result can be obtained usi
standard method, namely the method of multiple time sca
analysis@42#. In this appendix, we show how to derive th
equations of motion of the slow dynamics using multip
time scales analysis. We will present only the first few ord
in 1/v since this method turns out to be more complica
than the method used in Sec. II. While the two metho
differ in details, they are equivalent and lead to the sa
results, when consistently expanded order by order in 1/v.
0-15
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RAHAV, GILARY, AND FISHMAN PHYSICAL REVIEW A 68, 013820 ~2003!
In order to use the multiple time scales analysis, it
convenient to transform equation~1! to a standard form@42#.
This can be done by definingt[vt, e[1/v, and y
[dx/dt5vdx/dt. The first-order equations of motion ar
then given by

d

dt
zW5e fW~t,zW !, ~A1!

where

zW5S x

yD ~A2!

and

fW5S y

2
1

m
„V08~x!1V18~x,t!…D . ~A3!

Then one introduces the following expansion of the soluti

zW5 (
n50

`

enzWn~t,t !, ~A4!

wheret5et andt are treated as independent variables. U
ing this expansion together with

d

dt
5

]

]t
1e

]

]t
, ~A5!

results in

]zW0

]t
1e

]zW0

]t
1e

]zW1

]t
1•••5e fW~t,zW01ezW11••• !. ~A6!

The solution is obtained by expandingfW , matching powers of
e, and solving forzW order by order. This is the standar
multiple time scales analysis, see Ref.@42# for a detailed
description of the method.~Note that in Ref.@42# the role of
t andt is opposite to the one in the present work.! We pro-
ceed to solve the first few orders ine.

At order e0, the leading order of Eq.~A3! results in

]x0

]t
50,

]y0

]t
50. ~A7!

Thereforex0 andy0 can be any functions of the slow timet:

x05 x̄0~ t !,

y05 ȳ0~ t !. ~A8!

Note that at the leading order the solution is found to dep
only on the slow time scale, as expected. We will denote
t independent slow part of the solution byx̄i and ȳi at any
01382
s
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order. Additional conditions~A10! on x̄0 and ȳ0 will be ob-
tained from the requirement that the solution is not secula
the next order.

At order e, Eq. ~A3! results in

]x1

]t
52

] x̄0

]t
1 ȳ0~ t !,

]y1

]t
52

] ȳ0

]t
2

1

m
V08~ x̄0!2

1

m
V18~ x̄0 ,t!, ~A9!

where we have used Eq.~A8!. We are interested in the solu
tions of Eq.~A9! which are not secular, namely, they do n
grow with the fast time scalet. The RHS of Eq.~A9! can be
decomposed into periodic functions oft ~with vanishing av-
erage! andt independent terms. Anyt independent term will
result in a secular contribution. Therefore, to avoid su
terms we demand

] x̄0

]t
5 ȳ0~ t !,

] ȳ0

]t
52

1

m
V08„x̄0~ t !…. ~A10!

This is the leading order of the equation which governs
slow time scale. The nonsecular equation of ordere is now

]x1

]t
50,

]y1

]t
52

1

m
V18~ x̄0 ,t! ~A11!

and its solution is

x1~t,t !5 x̄1~ t !,

y1~t,t !52
1

mE t

@V18~ x̄0~ t !,t!#1 ȳ1~ t !. ~A12!

This process can be repeated order after order. At e
order, all the terms with the same power ofe are gathered.
The resulting equation may be secular and therefore an
ditional condition on the slow part of the solution is e
forced. Then, one can solve forx and y at that order. The
calculation is rather tedious and will not be presented he
We only give the secularity conditions that result when t
next two orders are computed:

] x̄1

]t
5 ȳ1~ t !,

] ȳ1

]t
52

1

m
x̄1~ t !V09„x̄0~ t !…, ~A13!

and
0-16



f

e

e
ture.
nt
ich

ing
w-
at
on

ted
not
e

EFFECTIVE HAMILTONIANS FOR PERIODICALLY . . . PHYSICAL REVIEW A68, 013820 ~2003!
] x̄2

]t
5 ȳ2~ t !,

] ȳ2

]t
5

1

m2
V19„x̄0~ t !,t…E (2)t

@V18„x̄0~ t !,t…#

2
1

m
x̄2~ t !V09„x̄0~ t !…2

x̄1
2~ t !

2m
V0

(3)
„x0̄~ t !…. ~A14!

Equations~A10!, ~A13!, and~A14! are the first orders o
an expansion of the following system of equations:

]X̄

]t
5Ȳ~ t !,

]Ȳ

]t
52

1

m
V08„X̄~ t !…1

e2

m2

3V19„X̄~ t !,t…E (2)t

@V18„X̄~ t !,t…# ~A15!

in powers ofe, where
n

ys

.

,

er

.

tt.

01382
X̄~ t ![ x̄0~ t !1e x̄1~ t !1e2x̄2~ t !1•••,

Ȳ~ t ![ ȳ0~ t !1e ȳ1~ t !1e2ȳ2~ t !1•••. ~A16!

Equations~A15! are accurate to the ordere2 and are identical
to the slow equation~22!. We have used the multiple tim
scales analysis up to the ordere4 and found that the resulting
slow equations analogous to Eq.~A15! are equivalent to Eq.
~27! in Sec. II, with the identificationX̄5X and Ȳ5Ẋ.

The method presented in Sec. II and the multiple tim
scales analysis used in this appendix have a similar struc
Both separate the motion intot dependent and independe
parts, and both lead to equations for the slow motion wh
have to be satisfied to avoid solutions that grow witht. The
main difference between the methods is that when us
multiple time scales the slow coordinate is expanded in po
ers of e51/v. This leads to a large number of terms th
result from the fact that the functions in the slow equati
are evaluated atx̄0(t) rather than atX̄(t). Consequently, the
derivation in Sec. II is much simpler than the one presen
in this appendix. This is also the reason that here we did
present explicitly the calculation using the multiple tim
scales analysis up to the ordere4.
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