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Completely positive Bloch-Boltzmann equations
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The density operator of the arbitrary physical system must be positive definite. Employing the general
master equation technique which preserves this property, we derive equations of motion for the density opera-
tor of an active atom which interacts collisionally with the reservoir of perturber atoms. The obtained general
relations applied to the two-level atom yield Bloch-Boltzmann equati8®&E) which, as it is the case with
master equation approach, are linear in the matrix elements of the active-atom density operator. The obtained
BBE guarantee that positivity is preserved, which needs not to be the case with the results known from
literature. We argue that our results are the correct ones and as such should be used in practical applications.
Moreover, the structure and the terms which appear in our set of BBE seem to allow simpler and more
straightforward physical interpretation.
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I. INTRODUCTION equations with suitably chosduderived collision rates and
kernels[1]. Since the perturber particles are thermalized, the
A lot of experiments in atomic physics and spectroscopyresulting BBE are linear in the active-atom density operator.
consists of investigating active atoms coupled to incidenHowever, we feel it necessary to stress that the nBhoeh-
(lase) radiation and immersed in the thermal bath of perturb-Boltzmann equationseed not be restricted to the two-level
ers which, typically, are the atoms of a noble gas. Variousatoms. Generalizations to more complex atomic models do
phenomena occurring in such a system as well as its propenot pose serious conceptual difficulties, though the form of
ties are then investigated. The amount of work devoted t@orresponding equations of motion might be much more
such studies is enormous, it is therefore quite impossibleomplicated.
even to list all relevant literature, except a few essential The main aim of this paper is to reexamine the origin and
monographs reviewing the subjddt,2]. form of the collision terms in Bloch-Boltzmann equations.
The theoretical description of the discussed system musi/e shall mostly study a simple two-level model, because it
account for two major aspects. First, the coupling of activeis formally the simplest, it allows the simplest interpreta-
atoms to the incoming radiation field and the radiative spontions, yet retaining the most importagt least in a qualita-
taneous phenomena must be properly described. This is ustive manney features of realistic physical situations and ex-
ally done by means of standard methods of quantum opticperiments. The motivation for our research is the following.
[3,4]. As a result, one obtains a set of equations of motion folFirst of all we note that the density operator of an arbitrary
the matrix elements of the atomic density operator. When th@hysical system must always be positive definite. It is not
atom is described within a two-level model, the obtainedclear whether the collision terms, used within the literature
equations are known as optical Bloch equations. Second, aerhich is known to us, have this property. Moreover, they
tive atoms undergo collisions both with perturbers andseem to exhibit other drawbacks or inconsistencies.
among themselves. The influence of collisions on physical These collision terms in the BBE are usually derived
properties of the system constituents is of paramount importquantum mechanically or classicallynder the assumption
tance and is in itself a separate field of experimental andhat the perturber gas is in the thermal equilibrium, thus by
theoretical studies. Discussion of these problems in their fularguments similar to those leading to collision rates and ker-
generality clearly goes beyond the scope of the present workiels stemming from the linear Boltzmann equatia]. We
Let us, however, mention that in spectroscopical applicationshall try to present a consistent theory which will, hopefully,
the effect of collisions is usually accounted for by suitablyallow us to clarify the question of positive definiteness as
derived (quantum-mechanically or classicallycollision  well as some more subtle points.
terms. Historically speaking, Boltzmann was the first to in-  The tools necessary to construct the proper form of BBE
troduce the collision terms into the equations of motion ofdescribing the systertactive atoms coupled to a reservoir
the probability distributions. Therefore, for a two-level atom, (perturber are provided by the quantum theory of dynami-
the combination of optical Bloch equations together withcal semigroups which entail the general master equation
collision terms might be called Bloch-Boltzmann equations(ME) methods. It is worth stressing that we have in mind
(BBE) which account for both kinds of the discussed inter-mathematically rigorous version of the ME theory based on
actions influencing the behavior of active atoms. The BBEcompletely positive quantum dynamical semigroups. The ex-
are usually obtained by augmentation of the optical Blochtensive review of this subject is given in monograpfs],
where the authors derive and discuss the most ge(srale-
times called the Lindblad formi7,8]) ME which preserves
*Electronic address: fizra@univ.gda.pl the positivity of the considered density operator. Section Il
Electronic address: fizsk@univ.gda.pl will, therefore, be devoted to a brief review of the essentials
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of this theory. In Sec. Ill, we discuss how the general theoryclass of open systems which can be called quantum-classical

can be formally adapted to describe a mixture of two gaseousnes. We study a quantum-mechanical open system, the

species when various models of internal structure of activestates of which span the Hilbert space

atoms can be employed. We outline the procedures necessary

to find explicit expressions for formal quantities introduced H=& H,. @

in the preceding section. We also try to identify physical . )

assumptions needed to validate the presented theory. We rébe indexa belongs to a setl which, for current purposes,

strict our attention to the two-level atoms and, hence, in SedS assumed to be discrete, but will subsequently be general-

IV, we give the derivation of the formal Bloch-Boltzmann ized to continuous one. A more physical interpretation of the

equations in the above discussed sense. Finally, Sec. v fPacesH, will be given later. We assume that within space

devoted to the discussion of our results in the view of the/l there exists a strong environmental decoherence mecha-

facts known from the literature. nism [9—11] which practically excludes quantum superposi-
As we have already stated, we focus our attention on th&ons of the form

collisional phenomena occurring in the active-atom-perturber

gaseous mixture. Therefore, we leave the radiative effects _ (a)] (

out of the picture. |¢>_§ Ek Gl i), ©

Il. THEORETICAL FRAMEWORK where|o{®), k=1,2, ... is abasis inH. This is a generally
. . . o . accepted explanation of the absence of superpositions of
_The physical system, we will consider in this work, is a macroscopically distinguishable  stateSchrainger cat
mixture of active atomgA) with densityN, and perturbers  proplerm) and emergence of classical properties, called dy-
(P) of densityN,. Throughout this work, we assume that namical superselection rules. The most effective physical
Na<N,. This assumption allows us to neglect (héA col-  mechanism leading to strong decoherence is provided by
lisions which are very rare. Moreover, it is usually safe tomany subsequent collisions of the particles of the investi-
assume thaP-P collisions are frequent enough to assuregated system with the environment particl6

rapid thermalization of the perturbers. This allows us to think™ on each spacet,,, we define a reduced density operator
of a perturber bath as being in thermal equilibrium, so that, ' The family of such operators

the velocity distribution ofP atoms is time independent and

given by a Maxwellian p={pataca (4)
32 ) , . . .
W (5)= 1 oxd — o 0 forms partially diagonal, quantum-classical density operator
ptv 7-ru,2) uer ' which describes the properties of the releviamten system.

The operatorg, have the following properties:
with uf,=2kBT/mp being the square of the most probable

velocity of perturber atoms with mass,,, at temperaturd-. Pa:Ha—Ha, (58
Thus, onlyA-P collisions can affect the motion of the active N o
atoms. We also assume that the density of perturbers is such p.=0, positive—definiteness, (5b)

that only binaryA-P collisions are of importance. The rela-
tively dense perturber gas acts as a reservoir of energy and o

momentum and influences the velocity distributions of the 20:4 Trp,=1, normalization. (50)
active atoms. The stated physical conditions are not really

very restrictive. They are fairly well satisfied by a great num-

o . The most general form of Markovian master equation for
ber of realistic experimentd].

quantum-classical density operator can be obtained from the
general form of the generator of the completely positive
A. Master equation for the quantum-classical system guantum dynamical semigroup (Lindblad-Gorini-

The master equation techniques stem from the theory df0SSakowski-Sudarshan fojmThe relevance of complete
quantum dynamical semigroups applied to an open systenﬁ’PS'“V'tY in the th.eory of quantum open systems is exten-
that is, to a system which interacts with another one whicteively discussed in Refg5,6]. The corresponding master
serves as a reservoir. The active atoms may be considered §guation derived along these lines, which governs the evolu-
the quantum-mechanical open system which is coupled tgon of the quar}tum—class!cal dgnsny operator_ of th.e relevant
the reservoir consisting of the perturbers. The interaction bedyStém due to its interaction with the reservoir, reddghe
tween the two subsystems is manifested by the collisionSChrainger picture
occurring betweer\ and P particles. The proper theoretical d i
framework for the description of an open system, which en- e ' & & Nt
sures the preservation of positivity of the reduced density dtPe” ﬁ[H“’p“H% Eg SapPp(Spa)
operator of the system of interggictive atomy is supplied
by ME approach5]. It is not our aim to review the theory or . }(é +p.B) ©6)
derivation of ME. We shall rather apply the general ME to a 2 PaPaT PaBals

013809-2



COMPLETELY POSITIVE BLOCH-BOLTZMANN EQUATIONS PHYSICAL REVIEW A68, 013809 (2003

where additional index allows full flexibility to describe atom. One may choose a multilevel model for which one has
various dissipation phenomena. The operators introduced i8,= S =|k)(I| with k,1=1,2, ... n, and with|k) being the

this equation are defined as mappings: energy eigenstates. Alternatively, spherical tensor operators
L might be taken as a basis which is appropriate for atoms with
H,= HL “H,—H, (Hamiltonian, (79 spatially degenerate energy levels. Later on, we will consider
a simple two-level model and we will explicitly define the
S Hg—H,, (7b)  necessary operator basis.
First, we analyze the Hamiltonian term in ). To this
(“Séa)‘r:Ha_}Hﬁ, amap dual t0§iﬁa (7o  end we expand it in the operator ba§&}, and we write
1 1
Bo=> > (585, (7d) FHa 7 H0) =2 ha(0)S,. (10
& B a

The specific form of the Hamiltoniafl,, depends on the The particular form of the functioris,(v) need not be speci-
particular physical properties of the studied relevant systenfied now. By the proper choice of these functions, we can

OperatorsS,,; depend on the interaction between the rel-model various physical situations, some of which will be
evant subsystem and the reservoir. Recently, the equation giscussed Iatsr. For now, the fitstamiltonian term of mas-
this type has found its application in the quantum measurele" €quation becomes
ment theory(see the contribution of Blanchard and Jadczyk n
in Ref.[9], where its properties are also widely discugsed . - -

9] prop Y discug ~i 3 (@) [Se.p(0)]. (1)

e

B. Master equation for an atom immersed in perturber gas
It must be, however, noted that the Hamiltontdtw) should
adapted to describe the presently discussed system, that e Hermitian, so the functhrfsa(v) must sat|§fy some ad-
h . ith velocity o hich collid th th itional conditions, the particular form of which depend on
the moving(with velocity v) atom which collides with the =, choice of the operator basis. We shall illustrate this point

perturbers. We shall proceed taking care of any additional ofen applying the general formalism to the derivation of the
simplifying assumptions which go beyond the ones adOpte%loch-Boltzmann equations for a two-level atom.

in the derivation of ME(6). Moreover, we will proceed in a Since the indices and 3 are replaced by the “classical”

manner, which may be useful when one considers active afjorees of freedom, that is by velocities, when constructing
oms with the internal structure more general than the &mpl@ne second term of MES) we must replace the summation
two-level model. over the indexB by integration over velocities. Following

hThe CO||ISIﬁI.’IShWIth pr:arturt_)ehr ;?]amclt_n}s lead to_sltrg.ng .ge'the general rules given in Rdf], we may rewrite the sec-
coherence which together with the uniform spatial distribu-, 4 term in the ME as

tion of interacting particles justify the use of the density

operators which are diagonal in moment(wn velocity) rep-

resentation. Therefore, the discrete decomposition in(Eq. > > ASfYBpB(AS%a)T
can be replaced by a continuous one which is taken to be A

with respect to the velocity of an active atom. Thus, ER)

General and rather formal master equatién has to be

is modified and becomes H;) Jdﬁ'/Cab(UHﬁ’)Sap(ﬁ')Sg- (12)
’H=J’ dv H;  with veRd. (8) This term obviously has the sense of an operator which de-

scribes the transitions from a velocity group arourido the

We associate the spa@¢; with the state space of an active Velocity interval ¢,uv+dv). Hence, it can be called a
atom which possesses velocify The ensemble of active “gain” (or “in” ) term. We shall postpone the discussion of
particles is now described by an operat¢s), which in the the integral kernel to the further sections. At present, accord-
limit of continuousi and in the absence of any better name,ing to relation(12), we shall only require that for any veloci-
might be called a partially diagonal density operat¢g).  tiesv andu’

This operator is normalized as N o )
Kapn(v+0v')—positive definite matrix, (13

f dv Tr{p(v)}=1, ©) of the necessary dimensions. This matrix contains the details
of the collisional interaction between the active and perturber
as is implied by suitable adaptation of requirem@&t). Fur-  atoms which will also be discussed later.
thermore, we introduce a set of operat¢8}, which con- Following further the principles of the construction of the
stitutes a basis in the space of relevant operators acting dWiE as in Ref[5], we proceed to the third term in E). It
H;. The specific form of operator basis depends on thés an anticommutator and it is built similarly to the former
model chosen to describe the internal structure of an activene. Namely, it can be rewritten as
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1 . . 1 e ertheless, we stress that the presented (WB can be em-
—5(BapatpaBa)— =5 ;J j dv’ KZp(v' <) ployed for atomic models more general internal structure.
x{SlSy.p(0)}, (14

) ) IIl. MICROSCOPIC DERIVATION OF ICpg(0+0")
where the curly brackets denote an anticommutator. This

term also describes the transition—escape from a velocity The formalism so far presented is fairly general. We pro-
group @,v+dv) to any other velocity, so it is a “loss{or ceed with its further discussion and clarification. The gain

“out” ) term. term (12) and the loss onél4) which describe the irrevers-
Combining the discussed three terms, we now construdble evolution of the relevant system stem from its interac-
the master equation for a density operator of the movingion with environment. In our case, collisions are the mani-
active atom. We note that no approximatidrepart from festation of this interaction. The physical details concerning
those inherent in the derivation of the general M| were  collisions are hidden in, so far rather formal, collision ker-

made. Thus, we have nels K p(v<0') which were left unspecified. Certainly,
their structure and mathematical properties follow from
gp(ﬁ)Z—iZ ha(9)[Ss,p(3)] physical mechanisms underlying the collisional processes
dt a and from the procedures used for their derivation.

Derivation of the master equation for an open quantum
+2 | 0" Kap(i0")Sap(3")S] system from the underlying fundamental Hamiltonian dy-
ab namics was the subject of many investigations. Although the
1 number of relevant literature sources is enormous, in only a
~3 a}:g f do’ K2(3"—0){S!Sy.p(7)}. few of th_em proper care is taken with respect to mathematl—
: cal consistency of the presented results. The density operator
(15) of an arbitrary systenfinteracting with the surroundings, or
. ) o not) should be positive definite. This can be ensured only by
Let us note that 'the integration over velocity in the last termhe carefully taken and properly conducted limiting proce-
affects only the integral kernel. Hence, we can introduce thejyres. It is not our aim to review these rigorous mathematical
rate techniques such as weak couplifigr van Hove method
[12], singular coupling(13], or low density limit[14], we
Yab= ygb(ﬁ)=J dv’ Ki(v'0), (16)  refer the reader to Ref5] for a survey of the subject.
We shall briefly discuss only the last of the mentioned
with the aid of which, our ME finally becomes limiting procedures—the low density limit which is designed
specially for the description of a quantum system interacting
d . . . collisionally with perturber gas. The density of the perturbers
&P("): -l Ea: ha(U)[Sa.p(v)] is assumed to be low enough that only binary collisions need
to be considered and that the duration of the collision is
2 * (ovsh - much shorter than the mean free-flight tiitikis latter con-
< Yab(0)1SaS,p(0)} dition is the essence of the so-called impact approximation
The reasoning leading to specific form of the collision ker-
nels is as follows. Let us temporarily assume that the con-
sidered active atom is confined within a finite voluMand,
therefore, is described by discrete stat@g) with discrete
The obtained ME is a linedmith respect top(v)] operator  velocities and with quantum numbgrdenoting its internal
equation. This is typical to ME techniques and agrees welbtate (note thatj may serve as a multi-index consisting of
with the linearity of the BBE known from literature. One several quantum numberdhese states span certain Hilbert
should notice that Eq17) together with Eq(16) ensure the space, which by an introduction of an energy cutoff can be
normalization of the density operator as in E§.. We also made finite dimensional. Let us say thdtis the (finite)
note that any linear equation fpi() which preserves nor- number of the basis vectol$,j). Then, we can use the
malization can be written in fornil?7) if Eq. (16) is also  completely positive generator obtained falatate quantum
satisfied. This is not, however, sufficient to ensure the posisystem interacting with dilute gas of perturbers in the low
tivity of p(v). Preservation of positivity is entirely due to density limit [14]. Finally, one takes the density operator
condition (13). which is partially diagonal in velocities, removes the energy
For practical purposes, it is convenient to expand the dencutoff and takes the limi¥/—« (a kind of a thermodynamic
sity operatorp(v) in suitably selected operator basis. Onelimit). Thus, one arrives at the master equation which for-
can then compute all the necessary operator commutatorsally coincides with Eq(17). The discussed procedure al-
and products, thus, obtaining the equations of motion for théows us to assign concrete meaning to all the terms which
matrix elements of the density operator. We shall do so in theppear in the master equation.
further section, by adopting a simple two-level model. Nev- The Hamiltonian of the active atom is of the form

N| -

+3 [ 05" K50 S(608) @7

o
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n n
- - - - N N ﬁ N >/
H(O):; Ej|J><J|:; hwj|]><]|a (18 fa(vr<—vr)=—(277)2—2 Ta(v,vy). (22)
"

where some eigenenergis=%w; may be degenerate and Hence, rewriting Eq(20), we alternatively have
wheren fixes the dimension of the space of internal states of

the active atom. This restricts the most general form of Kap(G—3")=uN,5 Jdﬁ’f d
Hamiltonian(10) to a diagonal one. Operato8 employed ab #po0,.0p ' '
earlier, may be specified as eigensolutions to the equation

X 665"~ (5~ 5/)
[H® S,1=%0,S,, a=12,...n2% (19) 2 2
MUy MU,

X 6! > o +hQ,

with ), denoting the differences between atomic eigenfre-
guencies. The full and rigorous derivation of the following XWp(J,—J;)fa(ﬁrHJ;)f;(ﬁrHljr’). (23
results is lengthy and complicated. Its details can be found in

the paper by Dincke[14] (see Eq. 1.2 The same results are Moreover, it might be also convenient to note that e
reviewed in Ref[5], see especially Egs. 111.3.13-16 and their function reflecting energy conservation can be written in sev-

derivation and discussion. eral forms, each of them being used by different authors.
The sketched reasoning in the low density limit in the These forms are

interaction terms leads to the following expressions for the

collision kernels: wv?  uwl? 2 260
_ — 2_ 12 a
5( 5 5 Hi0a| =7 5(vr 0P+ )
_ . (2m)*n? - 1 2hQ
Kan(0—0v")= ——F— Np50.a,ﬂbf dvrf du; = 5( vi+ a—vr’).
% MU, M
2 12 (24)
MUF U
x &% 5—5'— S (5,—5") 5( r +ma) , , . .
m 2 2 Equation(17), together with the Hamiltonian specified in
. e w Eq. (18) and with collision kernels given by E¢20) or Eq.
XWp(0" =0¢) Ta(vy—=0) Ty (0r-07), (20 (23) govern the evolution of the density operator of active

atom interacting collisionally with perturbers. Positivity and

wherev (orv’) are the velocities of an active atom, afigl _normallzatl_on of the partially diagonal density opera#7)
(or ;) of the perturber aftefor beforg collision. 7,=v is automatically preserved.

p P CoT Master equation(17) [together with relationg18) and

_ - Edi — A _ a4 H o '- . . .
~Up (Oru;=v g Upzj are thehcorrespondlr}g rr]elatlv_e Veloci- 50)] has an important feature that the thermal equilibrium
ties.m, m,, and u denote the masses of the active atom.gengiy operator

perturber, and the reduced mass, respecti\m{y(v*,’)) de-

scribes the equilibrium velocity distribution of the perturber

atoms, so in most cases it is just a Maxwellian as given in peq(zf):Z‘lex% -
Eqg. (1). The functionsT,(v,«u/) are related to the matrix

elements of the standard scatteringnatrix evaluated in the s its stationary solution with temperatufethe same as that

center-of-mass reference frame. They are given via the opf the perturber bath. This is so, provided the microrevers-
erator relations ibility condition

mg2  HO
(25

2kgT  kgT

n <Jr7j|T|Jr,1k>=<_5r,vk|T|_Jraj> (26)

; Ta(0r—0r)Sa j,k2=1 (e ilTlorJolixkl. 2D is satisfied, which is the case in atomic physics. Moreover,

the system evolves towards equilibriym absence of exter-

nal driving), that is,p(7,t) — peq(v) With t—ee, for any ini-

Due to the presence of the Kronecker defig o, the re-  tjg distributionp(s,0) if some ergodicity conditions are met.

sulting matrix KCap(v+—0") is block diagonal and clearly Namely, for any pair of statesi(|k)) and @’,|k’)) of the

positively definite. active atom there exists nonzero transition probability be-
For practical purposes, it is convenient to express matrixween these states. Such transitions may occur via a sequence

Kan(v+0") by standard scattering amplitudes. From quan-of collisions involving intermediate statess§,|Km,)), m

tum scattering theory15], we recall that the scattering am- =1,2, ... .This latter condition may not be satisfied for sim-

plitudes and function3 ,(v,<v,) are connected by the re- plified models, e.g., with disregarded inelastic collisions. The

lation fundamental ideas underlying the above given statements can
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be found in Ref[14] (see Theorem 6)4and in Ref[5] (see  where the first row gives the populations, while the second

Eq. lll.4.14 with its discussion one—the coherences. Finally, we note that relatib®) re-
stricts the general form of the Hamiltonian to
IV. BLOCH-BOLTZMANN EQUATIONS 1 0
w1
A. Introductory remarks —HO= , (31
h 0 Wy

Our considerations presented in previous sections can be
applied to multilevel atoms with complex internal structure.whereg;=fw;, (j=1,2), are the eigenenergies of the cor-
This is done by a suitable definition of operat@g intro- responding levels of the active atom. Furthermore, it is
duced in Eq.(19). Such a choice also specifies the form of straightforward to see that operatdg defined in Eq.(28)
the collision kernels. We shall, however, illustrate the generasatisfy relationg19) with Hamiltonian(31). The eigenvalue
approach by its application to a two-level atom which is af2;=Q,=0 is doubly degenerate, whil@;=w,; and Q4
typical model for many quantum-optical phenomena. The re= — w,;, (Wheref w,1=%(w,— w,)>0 is the energy differ-
sulting equations are, as we already mentioned, called Blocrence between two atomic levgls
Boltzmann equations. In this case, the spageof an atom
having velocity v is isomorphic withC2. We denote the B. General form of Bloch-Boltzmann equations
ground state by1) and the excited state §2). Taking them
to form a basis inH;, we adopt the following identifica-
tions:

Next step of our derivation consists in the expansion of
the density operator of a two-level atom according to Eq.
(29). Doing so in the both sides of E(L7), we then perform

0 1 all the necessary operator computations. As a result, we ar-
|1)= ( 1) , |2>=( ) (27) rive at the following set of equations for each matrix element
(30) of the density operator:

The space of operators acting Hi; is thus spanned by 2 d R . R R
X 2 matrices. As a basis in this space, we choose the follow- g;P1(0) =~ (Y11t ¥39)p1(0) = 5 (¥art ¥25) p3(0)
ing four operatorgpseudospin matricges

1
0 O ‘ _§(7§2+ Y1) pa(0)
=|, ,|=si=sl, (289
+ [ a5 pa(")
1 0
= = == T g >/ >/ g >/ >/
|2><2|—(0 0)—82 S, (28 + Kad 65" )pa(6") + Kar(6—5")pa(d")
0 1 + K10 —=0")pa(v")], (329
|2><1|=(O O)=S+Esg=8*, (280 .
apz(ﬁ) = —(V52t Y p2(0) — E( Yart v33)pa(v)
11)(2| (o O) S_=S,=5] (280 1
“l1 o) TS TR ~ S (¥ YiDpa(d)
which satisfy obvious commutation relations. The right-hand ) o R
sides of these equations also fix the notation we will use in +f dv'[Kaz(ve0")p1(0")
this paper. Any operator orfH; can be expressed by the
basis ones, while its matrix elements would be parameterized F+ Kol T—0")pa(0')+ Kog(0—0") p3(0")
by velocityo. In particular, the density operator is expanded ., -,
oy Cocye e Y op g + Koo 65" )pa(")], (32b)
p(5)= p1a(8) | 1)(L]+p1A9)[ 1)(2] d

1
m%(ﬁ) =—iwyp3(v)— 5( Y32t ¥idp1(0)
+ p2a(0)[2)(1] + poo0)[2)(2]

1
=p1(0)S1+ p2(0) S+ p3(0)S3+ pa(v)S,. (29 - 5(7§2+ Y1) p2(0)
Hence, we can identify the matrix elements 1 R
- E( Y11t Voot Vst vag ps(v)
p1(0)=p11(U),  p2A0)=p2V), (303
pa(0)=po(0),  pa®)=pid), (30D *f A0’ [Kar(0=0")pa(0")
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+ Kps(0—0")po(0) + Koy(G—0" ) p3(7") secular approximation is clearly justified, which entails con-
o, _ siderable simplification of the general Bloch-Boltzmann
T Kl 00")pa(v")], (320 equations. Thus, we obtain

d ) 1 aP1(5)= —[711(0) + ¥33(0) 1p2(0)
594(5) =iwypa(V)— 5[733“‘ Ya1) P1(0)

) + [ a5 )pa(")
— 5 (¥t ¥21)p2(0) o i
a5 )], (33

1
— 5 (Y11t Voot Vst Vi pa(v) - . - -
2 apz(v)=—[y§2(v)+ Yad0)1p2(0)

+fd5'[Kl3(5HJ')pl(5') +fd5'[/c (53" pal7)
33U 1

T Ka0—0")pa(v") + Kag(v—=0") p3(v")
T K10 —0")pa(v’)]. (320

+ Ko v—v")p2(0')], (33b)

d . - 1 - - -
—=p3(0) = —iwap3(v) — E[V’fl@)*‘ VoA U) + ¥340)
This set of equations is the most general one, describing the

evolution of active atomswithin a two-level model due to . - . -, ., -,
the interaction with environment—collisions with the per- +7’44(U)]P3(U)+f dv’ Koy(v—v")ps(v’),
turber atoms. Since these equations are derived directly from

the general ME which preserves the positivity of the reduced (330

density operator ofA atoms, we may be certain that this
property is unchanged.

By inspection of definition(21) of the functionsT (v,
—v,) and from Eqs(28) specifyingS, operators one sees

. o1 . - .
ap4(l7)=lw21p4(v)— E[?’Il(UH' Y20) + v34(0)

that T3 and T, correspond to inelastic scattering, that is to + yj4(17)]p4(17)+J dv’ Kio(0—0")pa(v’).

the collisions in which the internal state of the two-level

atom is changed. Hence, collision kernétnd the corre- (330
sponding ratgshaving one of the indices equal to 3 or 4, ) ) o
describe inelastic processes. It should be noted that if the active atoms are also irradiated

In the following sections, we will briefly present some DY incident radiation Hamiltonian31) will be modified by
frequently used additional approximations which allow somehe suitable coupling terms. Moreover, one has also to ac-
simplifications of the general forif82) of BBE. We will first ~ count for spontaneous emission, i.e., for the coupling to the
consider the so-called secular approximation and afterwardyacuum field. This would lead to the appearance of addi-
we will assume that inelastic collisions can be neglected?'onal terms describing radiative effects. In such a case, the

However, it seems that the sequence of these approximatioN@lidity of the secular approximation must be separately in-

is irrelevant and that each of them can be used independentigstigated.

of the other one.
D. No inelastic collisions

The energy transfer during the typical collision between
the atoms in the gaseous mixture is of the ordekgf.

Secular approximation is recognized as a useful tool irSince the typical temperatures of spectroscopical experi-
the analysis of master equation technique applied to a maniments are of the order of several hundred of kelvins, the
fold of physical systems. Its validity in quantum-optical energy available during the collision is by two orders of
problems is thoroughly discussed by Cohen-Tanno[gfi magnitude smaller than the typical separation of the levels of
and by Puri[4]. The essence of this approximation consiststhe active atom. Hence, the probability that the collision
in neglecting the coupling between quantities for which thewould excite or deexcite the active atom is negligible. From
free evolution is governed by different frequencigg. In  the previous discussion, it follows that restricting attention to
other words, under the secular approximation, the populaelastic collisions only is equivalent to neglectirigss(v
tions are coupled only to populatiorisince Q;=0,=0), ') andK,(v+—7v’'). Hence, from Eqs(33), we get
while each of the coherences is coupled only to its€lf (
=w,=—{,). So far, we have considered active atoms ko - - - o, -,
which are n43t subjected to any other interactions apart from giPr0)=- 711(U)Pl(v)+J dv’ Kyy(v=v")p1(v"),
the collisions. Since we have taken Hamiltonigd1), the (343

C. Bloch-Boltzmann equations and secular approximation
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d quantum numbers representing atomic internal states. In such
giP2v)=- 752(17)P2(5)+J dv’ Koxvv")pa(v"), a manner, one arrives at the equation of motion for the two-
(34b) particle density operataifor A and P atoms—two collision
partners. The initial time is taken to be— —«, when theA
1 andP atoms are assumed to be uncorrelated. This allows one
qiP3(0) = ~102103(0) = 5[ 711(0) + ¥2(0) p3(v) to factorize the two-particle density operator. Next, the evo-
lution operator is reexpressed in terms of time-dependent
analogs of Mder operators. This entails the emergence of
the scatteringl matrix and, subsequently, of the scattering
amplitudes. This procedure results in a very complicated and
. ) o1 . - . rather unwieldy equations, so some additional approxima-
ap4(v) =+iwyps(0)— E[ ¥11(0) + ¥25(0) 1pa(v) tions are necessary. Considerable simplification follows from
the very reasonable assumption that the gas of perturbing
particles is spatially homogeneous. Further simplification is
achieved by adopting a quasiclassical description of the
) o _translational degrees of freedom. The final form of the ki-
Bloch-Boltzmann equations in this form seem to be used inygiic equation obtained by Rautian and Shalagin is formally
quantu_m-optlc_a_l applications which are known to us. OUlgantical to our general ME given in E4L7). Moreover, the

It al ifios th hods allowi i ONBasic physical assumptions underlying their result seem to be
t also specifies the methods allowing explicit CompUtat'onessentially the same as those adopted by us.

bgzth C;f rc]:olléslécl)zn kernels and rates. Mo][eﬁver, g'e.n.eral fforzm There are, however, some more subtle differences in the
(32) of the ensures preservation of the positivity of the i, cqre of the collision kerels and rates. Rautian and

density operator of active atoms due to conditi¢h®) and  gpajagin obtain the kernels with time-dependent factors of
(16) which seem not to be used in the literature. the type of expfAE/A). They argue that only the terms for
which AE~0 contribute significantly. This reasoning allows
V. DISCUSSION them to manipulate the arguments of #héunctions respon-

The theoretical models emploved to describe atofie sible for the energy conservation which leads to fiiélinc-
ploy tion corresponding to our first term in the second line of Eq.

collisions which tend to thermalize the velocity states of ac- . .
tive atoms are usually based on the suitable adaptation of th(go)' Nevertheless, Rautian and Shalagin are aware'émat

: : ; . suin Iculation errors hav r knowl n n
quantum-mechanical or classical linear Boltzmann equatloﬁu g calculation errors have, to our knowledge, not yet bee

(linear, in the common case when the perturbers can be ag_naly_zed, so that the validity of such a procedure is open to
sumed to be in the thermal equilibrium, hence when the"questlon (Ref. [1], p. 42. Our approach leads, on the other

distribution is Maxwellian. Many authors discuss and prac- ?ar:d, ;O kerm_erl(hZ'O)fort(23) W.hlc? e>;pI|C|tIy 'HC&UdeS thed
tically employ the kinetic equation for the reduced density' 20" 20, .0, 1 NIS Taclor onginates from weil known an
operator of active atoms interacting with perturber ¢gee, ~ €Xtensively discussed theory of quantum-mechanical master
for example, Refs[17-21)). The most extensive and thor- €quation. The ternd, o arises from consistent and math-
ough review of the derivation of the necessary kinetic equaematically sound averaging over oscillatory terms and is nec-
tion for the atomic density operator is, to our knowledge,essary to assure positivity of the mati&,,(v—v') and,
given in the monograph by Rautian and Shalddih These therefore, to preserve the positivity of the reduced density
authors present quite general formalism which can be apeperatorp(v) describing active atoms. Hence, it seems that
plied to describe various physical situations concerning aceur approach and the derived results give a sound clarifica-
tive atoms with complex, multilevel structure of degeneratetion of the doubts raised by Rautian and Shalagin.
energy eigenstates. Moreover, general expressions can alsoThe collisional rates derived within our approach are con-
treat both elastic and inelastic collisions. Since we are chieflpected to collision kernels by relatigh6) and, therefore, by
concerned with a simple two-level atom, we will discuss thecorresponding integral over the products of scattering ampli-
problem restricting our attention mainly to such a simpletudes, as it follows by insertion of E3) into Eq.(16). On
model. the other hand, the collisional rates obtained by Rautian and
The derivation of the collisional terms, as presented byShalagin are expressed by the differences of the elastic
Rautian and Shalagin in Rdfl] is performed by means of forward-scattering amplitudes. This fact seems to be the re-
the truncation of the quantum-mechanical Bogoliubov-Born-sult of the employed approximations. It is not fully clear to
Green-Kirkwood-Yvon(BBGKY) hierarchy of equations of us why the collision rates should be expressed in such a
motion to only one- and two-particle density operators. Wemanner and not by the products of scattering amplitudes.
note that the truncated BBGKY equations are also used tMoreover, in the general case when inelastic collisions are
derive the standard Boltzmann equation. Such a truncation igken into account, the general structure of the out terms in
justified for not too dense gases, when only bin&r? col-  our case differs from that presented by Rautian and Shalagin.
lisions are of importance. Atoms of both types are allowed toThis is seen even in the very simple case of the two-level
possess internal degrees of freedom so the corresponding etom. Our Eqs(32) contain a quite complicated combination
ements of the density operator are labeled by momenta amaf collisional rates the shape of which is different from a

+ [ a5 a5 5 pat, (349

+ [ a5 a5 5 put). (349
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simple sum presented by Rautian and Shalagin. In the case tdring amplitudes are then replaced by classical collisional
elastic collisions, the differences between scattering amplieross sections and thus one arrives at the linear Boltzmann
tudes reduce to their imaginary parts and then, due to thequation which is well known from the literatuf&6]. More-
optical theorem, to cross sections. In our case, the productsver, the structure and the features of the general master
of scattering amplitudes also produce cross sections. Hencequation entail the proper behavior of the active-atom den-
for elastic collisions both approaches coincide. This followssity operator witht—co. In the absence of external perturba-
from the fact that for elastic collisions the terms correspondiions, any initial distributiono(v) tends to the equilibrium

ing to variousQ), are (in our cas¢ decoupled. The delta state(25). We are not certain, whether the approach of RS, in
function 5Qavﬂb in Eq. (23) becomes trivial, and thus both its general scope, also ensures this behavior.

methods lead to the same final result. Nevertheless, in the Finally, we note that the main properties of our approach
general case, we do not see whether the kinetic equation that is preservation of normalization and positivityst)]
Rautian and Shalagin guarantees the positivity of the densitiemain unaffected when one employs approximate methods
operator of active atoms, while in our approach it is certainlyto estimate the scattering amplitudes. This is guaranteed by
ensured. the general structure of our kinetic equatittiv) together

We also note that the starting point of the derivation byWwith the necessary requiremefi).
Rautian and ShalagifR9) clearly ensures the normalization =~ We conclude this work, by saying that we believe that
of the density operatqs(v). Further approximations leading Bloch-Boltzmann equations expressed by (84 should be
to the final kinetic equation may not preserve the requirecconstructed with collision kernels defined by form(2) or
normalization. This comment concerns the general cas&23) and with collision rates connected to kernels by relation
when inelastic collisions are allowed. Our rates are giver{16). The proposed proper structure of BBE ensures that the
directly by the collision kernelfsee Eq.(16)] in all cases, required normalization and positivity of the atomic density
thus proper normalization is always preserved. It is not cleaPPerator are always preserved due to the very structure of the
to us whether requiremeiité) is, in the most general case, master equatio(iL7). We also hope that our approach will be
satisfied by the rates and kernels derived by Rautian an@elpful in clarifying the doubts concerning the derivations
Shalagin and hence, we are not certain whether their kinetiknown from literature. We believe that our approach ensur-
equation preserves normalization in all cases when inelasti®d necessary mathematical properties of the active-atom
collisions are taken into account. density operator will be useful in the interpretation of various

We would also like to point out that our approach allows collisional terms and in mathematically sound description of
a straightforward classical limit. The populations become th¢/arious phenomena occurring in the not too dense binary gas
velocity distributions of atoms being in each of the allowedMixtures.
internal atomic states. The coherences have no classical
counterparts, they describe quantum-mechanical correlations
between atomic states and usually are left out of the classical
picture. The diagonal kernels and rates are real and may be Partial support by Gdak University through Grant No.
given the classical interpretation. The produit} of scat- BW/5400-5-0158-1 is gratefully acknowledged.
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