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Completely positive Bloch-Boltzmann equations

Robert Alicki* and Stanisław Kryszewski†

Institute of Theoretical Physics and Astrophysics, University of Gdan´sk, ul. Wita Stwosza 57, 80-952 Gdan´sk, Poland
~Received 30 January 2002; published 11 July 2003!

The density operator of the arbitrary physical system must be positive definite. Employing the general
master equation technique which preserves this property, we derive equations of motion for the density opera-
tor of an active atom which interacts collisionally with the reservoir of perturber atoms. The obtained general
relations applied to the two-level atom yield Bloch-Boltzmann equations~BBE! which, as it is the case with
master equation approach, are linear in the matrix elements of the active-atom density operator. The obtained
BBE guarantee that positivity is preserved, which needs not to be the case with the results known from
literature. We argue that our results are the correct ones and as such should be used in practical applications.
Moreover, the structure and the terms which appear in our set of BBE seem to allow simpler and more
straightforward physical interpretation.
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I. INTRODUCTION

A lot of experiments in atomic physics and spectrosco
consists of investigating active atoms coupled to incid
~laser! radiation and immersed in the thermal bath of pertu
ers which, typically, are the atoms of a noble gas. Vario
phenomena occurring in such a system as well as its pro
ties are then investigated. The amount of work devoted
such studies is enormous, it is therefore quite imposs
even to list all relevant literature, except a few essen
monographs reviewing the subject@1,2#.

The theoretical description of the discussed system m
account for two major aspects. First, the coupling of act
atoms to the incoming radiation field and the radiative sp
taneous phenomena must be properly described. This is
ally done by means of standard methods of quantum op
@3,4#. As a result, one obtains a set of equations of motion
the matrix elements of the atomic density operator. When
atom is described within a two-level model, the obtain
equations are known as optical Bloch equations. Second
tive atoms undergo collisions both with perturbers a
among themselves. The influence of collisions on phys
properties of the system constituents is of paramount imp
tance and is in itself a separate field of experimental
theoretical studies. Discussion of these problems in their
generality clearly goes beyond the scope of the present w
Let us, however, mention that in spectroscopical applicati
the effect of collisions is usually accounted for by suitab
derived ~quantum-mechanically or classically! collision
terms. Historically speaking, Boltzmann was the first to
troduce the collision terms into the equations of motion
the probability distributions. Therefore, for a two-level ato
the combination of optical Bloch equations together w
collision terms might be called Bloch-Boltzmann equatio
~BBE! which account for both kinds of the discussed int
actions influencing the behavior of active atoms. The B
are usually obtained by augmentation of the optical Blo
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equations with suitably chosen~derived! collision rates and
kernels@1#. Since the perturber particles are thermalized,
resulting BBE are linear in the active-atom density opera
However, we feel it necessary to stress that the nameBloch-
Boltzmann equationsneed not be restricted to the two-lev
atoms. Generalizations to more complex atomic models
not pose serious conceptual difficulties, though the form
corresponding equations of motion might be much m
complicated.

The main aim of this paper is to reexamine the origin a
form of the collision terms in Bloch-Boltzmann equation
We shall mostly study a simple two-level model, becaus
is formally the simplest, it allows the simplest interpret
tions, yet retaining the most important~at least in a qualita-
tive manner! features of realistic physical situations and e
periments. The motivation for our research is the followin
First of all we note that the density operator of an arbitra
physical system must always be positive definite. It is n
clear whether the collision terms, used within the literatu
which is known to us, have this property. Moreover, th
seem to exhibit other drawbacks or inconsistencies.

These collision terms in the BBE are usually deriv
~quantum mechanically or classically! under the assumption
that the perturber gas is in the thermal equilibrium, thus
arguments similar to those leading to collision rates and k
nels stemming from the linear Boltzmann equation@16#. We
shall try to present a consistent theory which will, hopeful
allow us to clarify the question of positive definiteness
well as some more subtle points.

The tools necessary to construct the proper form of B
describing the system~active atoms! coupled to a reservoir
~perturbers! are provided by the quantum theory of dynam
cal semigroups which entail the general master equa
~ME! methods. It is worth stressing that we have in mi
mathematically rigorous version of the ME theory based
completely positive quantum dynamical semigroups. The
tensive review of this subject is given in monographs@5,6#,
where the authors derive and discuss the most general~some-
times called the Lindblad form@7,8#! ME which preserves
the positivity of the considered density operator. Section
will, therefore, be devoted to a brief review of the essenti
©2003 The American Physical Society09-1
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R. ALICKI AND S. KRYSZEWSKI PHYSICAL REVIEW A 68, 013809 ~2003!
of this theory. In Sec. III, we discuss how the general the
can be formally adapted to describe a mixture of two gase
species when various models of internal structure of ac
atoms can be employed. We outline the procedures neces
to find explicit expressions for formal quantities introduc
in the preceding section. We also try to identify physic
assumptions needed to validate the presented theory. W
strict our attention to the two-level atoms and, hence, in S
IV, we give the derivation of the formal Bloch-Boltzman
equations in the above discussed sense. Finally, Sec.
devoted to the discussion of our results in the view of
facts known from the literature.

As we have already stated, we focus our attention on
collisional phenomena occurring in the active-atom-pertur
gaseous mixture. Therefore, we leave the radiative eff
out of the picture.

II. THEORETICAL FRAMEWORK

The physical system, we will consider in this work, is
mixture of active atoms~A! with densityNA and perturbers
~P! of density Np . Throughout this work, we assume th
NA!Np . This assumption allows us to neglect theA-A col-
lisions which are very rare. Moreover, it is usually safe
assume thatP-P collisions are frequent enough to assu
rapid thermalization of the perturbers. This allows us to th
of a perturber bath as being in thermal equilibrium, so t
the velocity distribution ofP atoms is time independent an
given by a Maxwellian

Wp~vW !5S 1

pup
2D 3/2

expS 2
vW 2

up
2D , ~1!

with up
252kBT/mp being the square of the most probab

velocity of perturber atoms with massmp , at temperatureT.
Thus, onlyA-P collisions can affect the motion of the activ
atoms. We also assume that the density of perturbers is
that only binaryA-P collisions are of importance. The rela
tively dense perturber gas acts as a reservoir of energy
momentum and influences the velocity distributions of
active atoms. The stated physical conditions are not re
very restrictive. They are fairly well satisfied by a great nu
ber of realistic experiments@1#.

A. Master equation for the quantum-classical system

The master equation techniques stem from the theor
quantum dynamical semigroups applied to an open sys
that is, to a system which interacts with another one wh
serves as a reservoir. The active atoms may be consider
the quantum-mechanical open system which is coupled
the reservoir consisting of the perturbers. The interaction
tween the two subsystems is manifested by the collisi
occurring betweenA andP particles. The proper theoretica
framework for the description of an open system, which
sures the preservation of positivity of the reduced den
operator of the system of interest~active atoms!, is supplied
by ME approach@5#. It is not our aim to review the theory o
derivation of ME. We shall rather apply the general ME to
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class of open systems which can be called quantum-clas
ones. We study a quantum-mechanical open system,
states of which span the Hilbert space

H5 % aHa . ~2!

The indexa belongs to a setA which, for current purposes
is assumed to be discrete, but will subsequently be gene
ized to continuous one. A more physical interpretation of
spacesHa will be given later. We assume that within spa
H there exists a strong environmental decoherence me
nism @9–11# which practically excludes quantum superpo
tions of the form

uc&5(
a

(
k

Ck
(a)uwk

(a&, ~3!

whereuwk
(a&, k51,2, . . . is abasis inH. This is a generally

accepted explanation of the absence of superposition
macroscopically distinguishable states~Schrödinger cat
problem! and emergence of classical properties, called
namical superselection rules. The most effective phys
mechanism leading to strong decoherence is provided
many subsequent collisions of the particles of the inve
gated system with the environment particles@5#.

On each spaceHa , we define a reduced density operat
ra . The family of such operators

r5$ra%aPA ~4!

forms partially diagonal, quantum-classical density opera
which describes the properties of the relevant~open! system.
The operatorsra have the following properties:

ra :Ha→Ha , ~5a!

ra>0, positive—definiteness, ~5b!

(
a

Trra51, normalization. ~5c!

The most general form of Markovian master equation
quantum-classical density operator can be obtained from
general form of the generator of the completely posit
quantum dynamical semigroup ~Lindblad-Gorini-
Kossakowski-Sudarshan form!. The relevance of complete
positivity in the theory of quantum open systems is exte
sively discussed in Refs.@5,6#. The corresponding maste
equation derived along these lines, which governs the ev
tion of the quantum-classical density operator of the relev
system due to its interaction with the reservoir, reads~in the
Schrödinger picture!

d

dt
ra52

i

\
@Ĥa ,ra#1(

b
(

j
Ŝab

j rb~Ŝba
j !†

2
1

2
~B̂ara1raB̂a!, ~6!
9-2
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COMPLETELY POSITIVE BLOCH-BOLTZMANN EQUATIONS PHYSICAL REVIEW A68, 013809 ~2003!
where additional indexj allows full flexibility to describe
various dissipation phenomena. The operators introduce
this equation are defined as mappings:

Ĥa5Ĥa
† :Ha→Ha ~Hamiltonian!, ~7a!

Ŝab
j :Hb→Ha , ~7b!

~Ŝba
j !†:Ha→Hb , a map dual toŜab

j , ~7c!

B̂a5(
j

(
b

~Ŝab
j !†Ŝba

j . ~7d!

The specific form of the HamiltonianĤa depends on the
particular physical properties of the studied relevant syst
OperatorsŜab

j depend on the interaction between the r
evant subsystem and the reservoir. Recently, the equatio
this type has found its application in the quantum measu
ment theory~see the contribution of Blanchard and Jadcz
in Ref. @9#, where its properties are also widely discussed!.

B. Master equation for an atom immersed in perturber gas

General and rather formal master equation~6! has to be
adapted to describe the presently discussed system, th
the moving~with velocity vW ) atom which collides with the
perturbers. We shall proceed taking care of any additiona
simplifying assumptions which go beyond the ones adop
in the derivation of ME~6!. Moreover, we will proceed in a
manner, which may be useful when one considers active
oms with the internal structure more general than the sim
two-level model.

The collisions with perturber particles lead to strong d
coherence which together with the uniform spatial distrib
tion of interacting particles justify the use of the dens
operators which are diagonal in momentum~or velocity! rep-
resentation. Therefore, the discrete decomposition in Eq~2!
can be replaced by a continuous one which is taken to
with respect to the velocityvW of an active atom. Thus, Eq.~2!
is modified and becomes

H5E dvW HvW with vW PR3. ~8!

We associate the spaceHvW with the state space of an activ
atom which possesses velocityvW . The ensemble of active
particles is now described by an operatorr(vW ), which in the
limit of continuousvW and in the absence of any better nam
might be called a partially diagonal density operatorr(vW ).
This operator is normalized as

E dvW Tr$r~vW !%51, ~9!

as is implied by suitable adaptation of requirement~5c!. Fur-
thermore, we introduce a set of operators$Sa%, which con-
stitutes a basis in the space of relevant operators actin
HvW . The specific form of operator basis depends on
model chosen to describe the internal structure of an ac
01380
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atom. One may choose a multilevel model for which one h
Sa5Skl5uk&^ l u with k,l 51,2, . . . ,n, and withuk& being the
energy eigenstates. Alternatively, spherical tensor opera
might be taken as a basis which is appropriate for atoms w
spatially degenerate energy levels. Later on, we will consi
a simple two-level model and we will explicitly define th
necessary operator basis.

First, we analyze the Hamiltonian term in Eq.~6!. To this
end we expand it in the operator basis$Sa%, and we write

1

\
Ha→1

\
H~vW !5(

a
ha~vW !Sa . ~10!

The particular form of the functionsha(vW ) need not be speci
fied now. By the proper choice of these functions, we c
model various physical situations, some of which will b
discussed later. For now, the first~Hamiltonian! term of mas-
ter equation becomes

2 i (
a51

n

ha~vW !@Sa ,r~vW !#. ~11!

It must be, however, noted that the HamiltonianH(vW ) should
be Hermitian, so the functionsha(vW ) must satisfy some ad
ditional conditions, the particular form of which depend o
the choice of the operator basis. We shall illustrate this po
when applying the general formalism to the derivation of t
Bloch-Boltzmann equations for a two-level atom.

Since the indicesa andb are replaced by the ‘‘classical’
degrees of freedom, that is by velocities, when construc
the second term of ME~6! we must replace the summatio
over the indexb by integration over velocities. Following
the general rules given in Ref.@5#, we may rewrite the sec
ond term in the ME as

(
b

(
j

Ŝab
j rb~Ŝba

j !†

→(
a,b

E dvW 8Kab~vW←vW 8!Sar~vW 8!Sb
† . ~12!

This term obviously has the sense of an operator which
scribes the transitions from a velocity group aroundvW 8 to the
velocity interval (vW ,vW 1dvW ). Hence, it can be called a
‘‘gain’’ ~or ‘‘in’’ ! term. We shall postpone the discussion
the integral kernel to the further sections. At present, acco
ing to relation~12!, we shall only require that for any veloci
ties vW andvW 8

Kab~vW←vW 8!—positive definite matrix, ~13!

of the necessary dimensions. This matrix contains the de
of the collisional interaction between the active and pertur
atoms which will also be discussed later.

Following further the principles of the construction of th
ME as in Ref.@5#, we proceed to the third term in Eq.~6!. It
is an anticommutator and it is built similarly to the form
one. Namely, it can be rewritten as
9-3
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R. ALICKI AND S. KRYSZEWSKI PHYSICAL REVIEW A 68, 013809 ~2003!
2
1

2
~B̂ara1raB̂a!→2

1

2 (
a,b

E dvW 8Kab* ~vW 8←vW !

3$Sa
†Sb ,r~vW !%, ~14!

where the curly brackets denote an anticommutator. T
term also describes the transition—escape from a velo
group (vW ,vW 1dvW ) to any other velocity, so it is a ‘‘loss’’~or
‘‘out’’ ! term.

Combining the discussed three terms, we now const
the master equation for a density operator of the mov
active atom. We note that no approximations@apart from
those inherent in the derivation of the general ME~6!# were
made. Thus, we have

d

dt
r~vW !52 i(

a
ha~vW !@Sa ,r~vW !#

1(
a,b

E dvW 8 Kab~vW←vW 8!Sar~vW 8!Sb
†

2
1

2 (
a,b

E dvW 8 Kab* ~vW 8←vW !$Sa
†Sb ,r~vW !%.

~15!

Let us note that the integration over velocity in the last ter
affects only the integral kernel. Hence, we can introduce
rate

gab* [gab* ~vW !5E dvW 8 Kab* ~vW 8←vW !, ~16!

with the aid of which, our ME finally becomes

d

dt
r~vW !52 i(

a
ha~vW !@Sa ,r~vW !#

2
1

2 (
a,b

gab* ~vW !$Sa
†Sb ,r~vW !%

1(
a,b

E dvW 8 Kab~vW←vW 8!Sar~vW 8!Sb
† . ~17!

The obtained ME is a linear@with respect tor(vW )] operator
equation. This is typical to ME techniques and agrees w
with the linearity of the BBE known from literature. On
should notice that Eq.~17! together with Eq.~16! ensure the
normalization of the density operator as in Eq.~5!. We also
note that any linear equation forr(vW ) which preserves nor
malization can be written in form~17! if Eq. ~16! is also
satisfied. This is not, however, sufficient to ensure the p
tivity of r(vW ). Preservation of positivity is entirely due t
condition ~13!.

For practical purposes, it is convenient to expand the d
sity operatorr(vW ) in suitably selected operator basis. O
can then compute all the necessary operator commuta
and products, thus, obtaining the equations of motion for
matrix elements of the density operator. We shall do so in
further section, by adopting a simple two-level model. Ne
01380
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ployed for atomic models more general internal structure

III. MICROSCOPIC DERIVATION OF KAB„v¢]v¢ 8…

The formalism so far presented is fairly general. We p
ceed with its further discussion and clarification. The ga
term ~12! and the loss one~14! which describe the irrevers
ible evolution of the relevant system stem from its intera
tion with environment. In our case, collisions are the ma
festation of this interaction. The physical details concern
collisions are hidden in, so far rather formal, collision ke
nels Kab(vW←vW 8) which were left unspecified. Certainly
their structure and mathematical properties follow fro
physical mechanisms underlying the collisional proces
and from the procedures used for their derivation.

Derivation of the master equation for an open quant
system from the underlying fundamental Hamiltonian d
namics was the subject of many investigations. Although
number of relevant literature sources is enormous, in on
few of them proper care is taken with respect to mathem
cal consistency of the presented results. The density ope
of an arbitrary system~interacting with the surroundings, o
not! should be positive definite. This can be ensured only
the carefully taken and properly conducted limiting proc
dures. It is not our aim to review these rigorous mathemat
techniques such as weak coupling~or van Hove method!
@12#, singular coupling@13#, or low density limit @14#, we
refer the reader to Ref.@5# for a survey of the subject.

We shall briefly discuss only the last of the mention
limiting procedures—the low density limit which is designe
specially for the description of a quantum system interact
collisionally with perturber gas. The density of the perturbe
is assumed to be low enough that only binary collisions n
to be considered and that the duration of the collision
much shorter than the mean free-flight time~this latter con-
dition is the essence of the so-called impact approximatio!.
The reasoning leading to specific form of the collision ke
nels is as follows. Let us temporarily assume that the c
sidered active atom is confined within a finite volumeV and,
therefore, is described by discrete statesuvW , j & with discrete
velocities and with quantum numberj denoting its internal
state~note thatj may serve as a multi-index consisting
several quantum numbers!. These states span certain Hilbe
space, which by an introduction of an energy cutoff can
made finite dimensional. Let us say thatN is the ~finite!
number of the basis vectorsuvW , j &. Then, we can use the
completely positive generator obtained for aN-state quantum
system interacting with dilute gas of perturbers in the lo
density limit @14#. Finally, one takes the density operat
which is partially diagonal in velocities, removes the ener
cutoff and takes the limitV→` ~a kind of a thermodynamic
limit !. Thus, one arrives at the master equation which f
mally coincides with Eq.~17!. The discussed procedure a
lows us to assign concrete meaning to all the terms wh
appear in the master equation.

The Hamiltonian of the active atom is of the form
9-4
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H (0)5(
j

n

Ej u j &^ j u5(
j

n

\v j u j &^ j u, ~18!

where some eigenenergiesEj5\v j may be degenerate an
wheren fixes the dimension of the space of internal states
the active atom. This restricts the most general form
Hamiltonian~10! to a diagonal one. OperatorsSa employed
earlier, may be specified as eigensolutions to the equatio

@H (0),Sa#5\VaSa , a51,2, . . . ,n2, ~19!

with Va denoting the differences between atomic eigenf
quencies. The full and rigorous derivation of the followin
results is lengthy and complicated. Its details can be foun
the paper by Du¨mcke@14# ~see Eq. 1.2!. The same results ar
reviewed in Ref.@5#, see especially Eqs. III.3.13-16 and the
derivation and discussion.

The sketched reasoning in the low density limit in t
interaction terms leads to the following expressions for
collision kernels:

Kab~vW←vW 8!5
~2p!4\2

m3
NpdVa ,Vb

E dvW r8E dvW r

3d3FvW 2vW 82
m

m
~vW r2vW r8!GdS mv r

2

2
2

mv r8
2

2
1\VaD

3Wp~vW 82vW r8! Ta~vW r←vW r8!Tb* ~vW r←vW r8!, ~20!

wherevW ~or vW 8) are the velocities of an active atom, andvW p

~or vW p8) of the perturber after~or before! collision. vW r5vW
2vW p ~or vW r85vW 82vW p8) are the corresponding relative veloc
ties. m, mp , and m denote the masses of the active ato
perturber, and the reduced mass, respectively.Wp(vW p8) de-
scribes the equilibrium velocity distribution of the perturb
atoms, so in most cases it is just a Maxwellian as given
Eq. ~1!. The functionsTa(vW r←vW r8) are related to the matrix

elements of the standard scatteringT̂ matrix evaluated in the
center-of-mass reference frame. They are given via the
erator relations

(
a

Ta~vW r←vW r8!Sa5 (
j ,k51

n

^vW r , j uT̂uvW r8 ,k&u j &^ku. ~21!

Due to the presence of the Kronecker deltadVa ,Vb
, the re-

sulting matrix Kab(vW←vW 8) is block diagonal and clearly
positively definite.

For practical purposes, it is convenient to express ma
Kab(vW←vW 8) by standard scattering amplitudes. From qua
tum scattering theory@15#, we recall that the scattering am
plitudes and functionsTa(vW r←vW r8) are connected by the re
lation
01380
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f a~vW r←vW r8!52~2p!2
\

m2
Ta~vW r←vW r8!. ~22!

Hence, rewriting Eq.~20!, we alternatively have

Kab~vW←vW 8!5mNpdVa ,Vb
E dvW r8E dvW r

3d3FvW 2vW 82
m

m
~vW r2vW r8!G

3dS mv r
2

2
2

mv r8
2

2
1\VaD

3Wp~vW 82vW r8! f a~vW r←vW r8! f b* ~vW r←vW r8!. ~23!

Moreover, it might be also convenient to note that thed
function reflecting energy conservation can be written in s
eral forms, each of them being used by different autho
These forms are

dS mv r
2

2
2

mv r8
2

2
1\VaD 5

2

m
dS v r

22v r8
21

2\Va

m D
5

1

mv r
dSAv r

21
2\Va

m
2v r8D .

~24!

Equation~17!, together with the Hamiltonian specified i
Eq. ~18! and with collision kernels given by Eq.~20! or Eq.
~23! govern the evolution of the density operator of acti
atom interacting collisionally with perturbers. Positivity an
normalization of the partially diagonal density operatorr(vW )
is automatically preserved.

Master equation~17! @together with relations~18! and
~20!# has an important feature that the thermal equilibriu
density operator

req~vW !5Z21expS 2
mvW 2

2kBT
2

H (0)

kBT D ~25!

is its stationary solution with temperatureT the same as tha
of the perturber bath. This is so, provided the microreve
ibility condition

^vW r , j uT̂uvW r8 ,k&5^2vW r8 ,kuT̂u2vW r , j & ~26!

is satisfied, which is the case in atomic physics. Moreov
the system evolves towards equilibrium~in absence of exter-
nal driving!, that is,r(vW ,t)→req(vW ) with t→`, for any ini-
tial distributionr(vW ,0) if some ergodicity conditions are me
Namely, for any pair of states (vW ,uk&) and (vW 8,uk8&) of the
active atom there exists nonzero transition probability
tween these states. Such transitions may occur via a sequ
of collisions involving intermediate states (vW m ,ukm&), m
51,2, . . . .This latter condition may not be satisfied for sim
plified models, e.g., with disregarded inelastic collisions. T
fundamental ideas underlying the above given statements
9-5
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be found in Ref.@14# ~see Theorem 6.4! and in Ref.@5# ~see
Eq. III.4.14 with its discussion!.

IV. BLOCH-BOLTZMANN EQUATIONS

A. Introductory remarks

Our considerations presented in previous sections ca
applied to multilevel atoms with complex internal structu
This is done by a suitable definition of operatorsSa intro-
duced in Eq.~19!. Such a choice also specifies the form
the collision kernels. We shall, however, illustrate the gene
approach by its application to a two-level atom which is
typical model for many quantum-optical phenomena. The
sulting equations are, as we already mentioned, called Blo
Boltzmann equations. In this case, the spaceHvW of an atom
having velocity vW is isomorphic withC2. We denote the
ground state byu1& and the excited state byu2&. Taking them
to form a basis inHvW , we adopt the following identifica-
tions:

u1&5S 0

1D , u2&5S 1

0D . ~27!

The space of operators acting inHvW is thus spanned by 2
32 matrices. As a basis in this space, we choose the foll
ing four operators~pseudospin matrices!:

u1&^1u5S 0 0

0 1D[S15S1
† , ~28a!

u2&^2u5S 1 0

0 0D[S25S2
† , ~28b!

u2&^1u5S 0 1

0 0D 5S1[S35S4
† , ~28c!

u1&^2u5S 0 0

1 0D 5S2[S45S3
† . ~28d!

which satisfy obvious commutation relations. The right-ha
sides of these equations also fix the notation we will use
this paper. Any operator onHvW can be expressed by th
basis ones, while its matrix elements would be parameter
by velocityvW . In particular, the density operator is expand
as

r~vW !5r11~vW !u1&^1u1r12~vW !u1&^2u

1r21~vW !u2&^1u1r22~vW !u2&^2u

5r1~vW !S11r2~vW !S21r3~vW !S31r4~vW !S4 . ~29!

Hence, we can identify the matrix elements

r1~vW !5r11~vW !, r2~vW !5r22~vW !, ~30a!

r3~vW !5r21~vW !, r4~vW !5r12~vW !, ~30b!
01380
be
.

f
al

-
h-

-

d
n

ed

where the first row gives the populations, while the seco
one—the coherences. Finally, we note that relation~18! re-
stricts the general form of the Hamiltonian to

1

\
H (0)5S v1 0

0 v2
D , ~31!

whereEj5\v j , ( j 51,2), are the eigenenergies of the co
responding levels of the active atom. Furthermore, it
straightforward to see that operatorsSa defined in Eq.~28!
satisfy relations~19! with Hamiltonian~31!. The eigenvalue
V15V250 is doubly degenerate, whileV35v21 and V4
52v21 ~where\v215\(v22v1).0 is the energy differ-
ence between two atomic levels!.

B. General form of Bloch-Boltzmann equations

Next step of our derivation consists in the expansion
the density operator of a two-level atom according to E
~29!. Doing so in the both sides of Eq.~17!, we then perform
all the necessary operator computations. As a result, we
rive at the following set of equations for each matrix eleme
~30! of the density operator:

d

dt
r1~vW !52~g11* 1g33* !r1~vW !2

1

2
~g41* 1g23* !r3~vW !

2
1

2
~g32* 1g14* !r4~vW !

1E dvW 8@K11~vW←vW 8!r1~vW 8!

1K44~vW←vW 8!r2~vW 8!1K41~vW←vW 8!r3~vW 8!

1K14~vW←vW 8!r4~vW 8!#, ~32a!

d

dt
r2~vW !52~g22* 1g44* !r2~vW !2

1

2
~g41* 1g23* !r3~vW !

2
1

2
~g32* 1g14* !r4~vW !

1E dvW 8@K33~vW←vW 8!r1~vW 8!

1K22~vW←vW 8!r2~vW 8!1K23~vW←vW 8!r3~vW 8!

1K32~vW←vW 8!r4~vW 8!#, ~32b!

d

dt
r3~vW !52 iv21r3~vW !2

1

2
~g32* 1g14* !r1~vW !

2
1

2
~g32* 1g14* !r2~vW !

2
1

2
~g11* 1g22* 1g33* 1g44* !r3~vW !

1E dvW 8@K31~vW←vW 8!r1~vW 8!
9-6
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1K24~vW←vW 8!r2~vW 8!1K21~vW←vW 8!r3~vW 8!

1K34~vW←vW 8!r4~vW 8!#, ~32c!

d

dt
r4~vW !5 iv21r4~vW !2

1

2
@g23* 1g41* !r1~vW !

2
1

2
~g23* 1g41* !r2~vW !

2
1

2
~g11* 1g22* 1g33* 1g44* !r4~vW !

1E dvW 8@K13~vW←vW 8!r1~vW 8!

1K42~vW←vW 8!r2~vW 8!1K43~vW←vW 8!r3~vW 8!

1K12~vW←vW 8!r4~vW 8!#. ~32d!

This set of equations is the most general one, describing
evolution of active atoms~within a two-level model! due to
the interaction with environment—collisions with the pe
turber atoms. Since these equations are derived directly f
the general ME which preserves the positivity of the redu
density operator ofA atoms, we may be certain that th
property is unchanged.

By inspection of definition~21! of the functionsTa(vW r

←vW r8) and from Eqs.~28! specifyingSa operators one see
that T3 and T4 correspond to inelastic scattering, that is
the collisions in which the internal state of the two-lev
atom is changed. Hence, collision kernels~and the corre-
sponding rates! having one of the indices equal to 3 or
describe inelastic processes.

In the following sections, we will briefly present som
frequently used additional approximations which allow so
simplifications of the general form~32! of BBE. We will first
consider the so-called secular approximation and afterwa
we will assume that inelastic collisions can be neglect
However, it seems that the sequence of these approxima
is irrelevant and that each of them can be used independe
of the other one.

C. Bloch-Boltzmann equations and secular approximation

Secular approximation is recognized as a useful too
the analysis of master equation technique applied to a m
fold of physical systems. Its validity in quantum-optic
problems is thoroughly discussed by Cohen-Tannoudji@3#
and by Puri@4#. The essence of this approximation consi
in neglecting the coupling between quantities for which
free evolution is governed by different frequenciesVa . In
other words, under the secular approximation, the pop
tions are coupled only to populations~since V15V250),
while each of the coherences is coupled only to itself (V3
5v2152V4). So far, we have considered active atom
which are not subjected to any other interactions apart fr
the collisions. Since we have taken Hamiltonian~31!, the
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secular approximation is clearly justified, which entails co
siderable simplification of the general Bloch-Boltzma
equations. Thus, we obtain

d

dt
r1~vW !52@g11* ~vW !1g33* ~vW !#r1~vW !

1E dvW 8@K11~vW←vW 8!r1~vW 8!

1K44~vW←vW 8!r2~vW 8!#, ~33a!

d

dt
r2~vW !52@g22* ~vW !1g44* ~vW !#r2~vW !

1E dvW 8@K33~vW←vW 8!r1~vW 8!

1K22~vW←vW 8!r2~vW 8!#, ~33b!

d

dt
r3~vW !52 iv21r3~vW !2

1

2
@g11* ~vW !1g22* ~vW !1g33* ~vW !

1g44* ~vW !#r3~vW !1E dvW 8 K21~vW←vW 8!r3~vW 8!,

~33c!

d

dt
r4~vW !5 iv21r4~vW !2

1

2
@g11* ~vW !1g22* ~vW !1g33* ~vW !

1g44* ~vW !#r4~vW !1E dvW 8 K12~vW←vW 8!r4~vW 8!.

~33d!

It should be noted that if the active atoms are also irradia
by incident radiation Hamiltonian~31! will be modified by
the suitable coupling terms. Moreover, one has also to
count for spontaneous emission, i.e., for the coupling to
vacuum field. This would lead to the appearance of ad
tional terms describing radiative effects. In such a case,
validity of the secular approximation must be separately
vestigated.

D. No inelastic collisions

The energy transfer during the typical collision betwe
the atoms in the gaseous mixture is of the order ofkBT.
Since the typical temperatures of spectroscopical exp
ments are of the order of several hundred of kelvins,
energy available during the collision is by two orders
magnitude smaller than the typical separation of the level
the active atom. Hence, the probability that the collisi
would excite or deexcite the active atom is negligible. Fro
the previous discussion, it follows that restricting attention
elastic collisions only is equivalent to neglectingK33(vW
←vW 8) andK44(vW←vW 8). Hence, from Eqs.~33!, we get

d

dt
r1~vW !52g11* ~vW !r1~vW !1E dvW 8 K11~vW←vW 8!r1~vW 8!,

~34a!
9-7



i
u

on
ion
rm
he

ac
f t
tio

a
e

c-
ity

r-
ua
e

a
a
at
a

efl
h
le

b
f
rn
f
W

n

t
g
a

uch
o-

one
vo-
ent
of

ng
and

a-
om
bing

is
the
ki-
ally

be

the
nd
of

r
s

q.

en
to

er

d
ster
-
ec-

sity
hat
ca-

n-

pli-

and
stic
re-

to
h a
es.
are
s in
gin.
vel
n
a

R. ALICKI AND S. KRYSZEWSKI PHYSICAL REVIEW A 68, 013809 ~2003!
d

dt
r2~vW !52g22* ~vW !r2~vW !1E dvW 8 K22~vW←vW 8!r2~vW 8!,

~34b!

d

dt
r3~vW !52 iv21r3~vW !2

1

2
@g11* ~vW !1g22* ~vW !#r3~vW !

1E dvW 8 K21~vW←vW 8!r3~vW 8!, ~34c!

d

dt
r4~vW !51 iv21r4~vW !2

1

2
@g11* ~vW !1g22* ~vW !#r4~vW !

1E dvW 8 K12~vW←vW 8!r4~vW 8!. ~34d!

Bloch-Boltzmann equations in this form seem to be used
quantum-optical applications which are known to us. O
derivation clarifies the procedures leading to these equati
It also specifies the methods allowing explicit computat
both of collision kernels and rates. Moreover, general fo
~32! of the BBE ensures preservation of the positivity of t
density operator of active atoms due to conditions~13! and
~16! which seem not to be used in the literature.

V. DISCUSSION

The theoretical models employed to describe atomicA-P
collisions which tend to thermalize the velocity states of
tive atoms are usually based on the suitable adaptation o
quantum-mechanical or classical linear Boltzmann equa
~linear, in the common case when the perturbers can be
sumed to be in the thermal equilibrium, hence when th
distribution is Maxwellian!. Many authors discuss and pra
tically employ the kinetic equation for the reduced dens
operator of active atoms interacting with perturber gas~see,
for example, Refs.@17–21#!. The most extensive and tho
ough review of the derivation of the necessary kinetic eq
tion for the atomic density operator is, to our knowledg
given in the monograph by Rautian and Shalagin@1#. These
authors present quite general formalism which can be
plied to describe various physical situations concerning
tive atoms with complex, multilevel structure of degener
energy eigenstates. Moreover, general expressions can
treat both elastic and inelastic collisions. Since we are chi
concerned with a simple two-level atom, we will discuss t
problem restricting our attention mainly to such a simp
model.

The derivation of the collisional terms, as presented
Rautian and Shalagin in Ref.@1# is performed by means o
the truncation of the quantum-mechanical Bogoliubov-Bo
Green-Kirkwood-Yvon~BBGKY! hierarchy of equations o
motion to only one- and two-particle density operators.
note that the truncated BBGKY equations are also used
derive the standard Boltzmann equation. Such a truncatio
justified for not too dense gases, when only binaryA-P col-
lisions are of importance. Atoms of both types are allowed
possess internal degrees of freedom so the correspondin
ements of the density operator are labeled by momenta
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quantum numbers representing atomic internal states. In s
a manner, one arrives at the equation of motion for the tw
particle density operator~for A andP atoms—two collision
partners!. The initial time is taken to bet→2`, when theA
andP atoms are assumed to be uncorrelated. This allows
to factorize the two-particle density operator. Next, the e
lution operator is reexpressed in terms of time-depend
analogs of Mo¨ller operators. This entails the emergence
the scatteringT matrix and, subsequently, of the scatteri
amplitudes. This procedure results in a very complicated
rather unwieldy equations, so some additional approxim
tions are necessary. Considerable simplification follows fr
the very reasonable assumption that the gas of pertur
particles is spatially homogeneous. Further simplification
achieved by adopting a quasiclassical description of
translational degrees of freedom. The final form of the
netic equation obtained by Rautian and Shalagin is form
identical to our general ME given in Eq.~17!. Moreover, the
basic physical assumptions underlying their result seem to
essentially the same as those adopted by us.

There are, however, some more subtle differences in
structure of the collision kernels and rates. Rautian a
Shalagin obtain the kernels with time-dependent factors
the type of exp(itDE/\). They argue that only the terms fo
which DE'0 contribute significantly. This reasoning allow
them to manipulate the arguments of thed functions respon-
sible for the energy conservation which leads to finald func-
tion corresponding to our first term in the second line of E
~20!. Nevertheless, Rautian and Shalagin are aware that‘‘en-
suing calculation errors have, to our knowledge, not yet be
analyzed, so that the validity of such a procedure is open
question’’ ~Ref. @1#, p. 42!. Our approach leads, on the oth
hand, to kernel~20! or ~23! which explicitly includes the
factor dVa ,Vb

. This factor originates from well known an
extensively discussed theory of quantum-mechanical ma
equation. The termdVa ,Vb

arises from consistent and math
ematically sound averaging over oscillatory terms and is n
essary to assure positivity of the matrixKab(vW←vW 8) and,
therefore, to preserve the positivity of the reduced den
operatorr(vW ) describing active atoms. Hence, it seems t
our approach and the derived results give a sound clarifi
tion of the doubts raised by Rautian and Shalagin.

The collisional rates derived within our approach are co
nected to collision kernels by relation~16! and, therefore, by
corresponding integral over the products of scattering am
tudes, as it follows by insertion of Eq.~23! into Eq.~16!. On
the other hand, the collisional rates obtained by Rautian
Shalagin are expressed by the differences of the ela
forward-scattering amplitudes. This fact seems to be the
sult of the employed approximations. It is not fully clear
us why the collision rates should be expressed in suc
manner and not by the products of scattering amplitud
Moreover, in the general case when inelastic collisions
taken into account, the general structure of the out term
our case differs from that presented by Rautian and Shala
This is seen even in the very simple case of the two-le
atom. Our Eqs.~32! contain a quite complicated combinatio
of collisional rates the shape of which is different from
9-8
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simple sum presented by Rautian and Shalagin. In the ca
elastic collisions, the differences between scattering am
tudes reduce to their imaginary parts and then, due to
optical theorem, to cross sections. In our case, the prod
of scattering amplitudes also produce cross sections. He
for elastic collisions both approaches coincide. This follo
from the fact that for elastic collisions the terms correspo
ing to variousVa are ~in our case! decoupled. The delta
function dVa ,Vb

in Eq. ~23! becomes trivial, and thus bot
methods lead to the same final result. Nevertheless, in
general case, we do not see whether the kinetic equatio
Rautian and Shalagin guarantees the positivity of the den
operator of active atoms, while in our approach it is certai
ensured.

We also note that the starting point of the derivation
Rautian and Shalagin~RS! clearly ensures the normalizatio
of the density operatorr(vW ). Further approximations leadin
to the final kinetic equation may not preserve the requi
normalization. This comment concerns the general c
when inelastic collisions are allowed. Our rates are giv
directly by the collision kernels@see Eq.~16!# in all cases,
thus proper normalization is always preserved. It is not cl
to us whether requirement~16! is, in the most general case
satisfied by the rates and kernels derived by Rautian
Shalagin and hence, we are not certain whether their kin
equation preserves normalization in all cases when inela
collisions are taken into account.

We would also like to point out that our approach allow
a straightforward classical limit. The populations become
velocity distributions of atoms being in each of the allow
internal atomic states. The coherences have no clas
counterparts, they describe quantum-mechanical correlat
between atomic states and usually are left out of the class
picture. The diagonal kernels and rates are real and ma
given the classical interpretation. The productsf af a* of scat-
s

d

z,

th

ua

01380
of
li-
e
ts

ce,
s
-

he
of

ity
y

d
se
n

r

d
tic
tic

e

cal
ns
al
be

tering amplitudes are then replaced by classical collisio
cross sections and thus one arrives at the linear Boltzm
equation which is well known from the literature@16#. More-
over, the structure and the features of the general ma
equation entail the proper behavior of the active-atom d
sity operator witht→`. In the absence of external perturb
tions, any initial distributionr(vW ) tends to the equilibrium
state~25!. We are not certain, whether the approach of RS
its general scope, also ensures this behavior.

Finally, we note that the main properties of our approa
@that is preservation of normalization and positivity ofr(vW )]
remain unaffected when one employs approximate meth
to estimate the scattering amplitudes. This is guaranteed
the general structure of our kinetic equation~17! together
with the necessary requirement~16!.

We conclude this work, by saying that we believe th
Bloch-Boltzmann equations expressed by set~34! should be
constructed with collision kernels defined by formula~20! or
~23! and with collision rates connected to kernels by relat
~16!. The proposed proper structure of BBE ensures that
required normalization and positivity of the atomic dens
operator are always preserved due to the very structure o
master equation~17!. We also hope that our approach will b
helpful in clarifying the doubts concerning the derivatio
known from literature. We believe that our approach ens
ing necessary mathematical properties of the active-a
density operator will be useful in the interpretation of vario
collisional terms and in mathematically sound description
various phenomena occurring in the not too dense binary
mixtures.
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