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Theory of the forces exerted by Laguerre-Gaussian light beams on dielectrics
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The classical theory of the electromagnetic field associated with paraxial Laguerre-Gaussian light is gener-
alized to apply to propagation in a bulk dielectric, and the theory is quantized to obtain expressions for the
electric and magnetic field operators. The forms of the Poynting vector and angular momentum density
operators are derived and their expectation values for a single-photon wave packet are obtained. The Lorentz
force operator in the dielectric is resolved into longitudinal, radial, and azimuthal components. The theory is
extended to apply to an interface between two semi-infinite dielectric media, one of which is transparent with
an incident single-photon pulse, and the other of which is weakly attenuating. For a pulse that is much shorter
than the attenuation length, the theory can separately identify the surface and bulk contributions to the Lorentz
force on the attenuating dielectric. Particular attention is given to the transfer of longitudinal and angular
momentum to the dielectric from light incident from free space. The resulting expressions for the shift and
rotation of a transparent dielectric slab are shown to agree with those obtained from Einstein box theories.
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I. INTRODUCTION

The main purpose of this paper is a calculation of
Lorentz forces on a dielectric produced by a pulse
Laguerre-Gaussian light. The calculation generalizes ea
work on the radiation pressure associated with a plane-w
pulse of uniform cross-sectional intensity@1#, which pro-
duces only a longitudinal force on the dielectric in the dire
tion of propagation of the light. Laguerre-Gaussian light a
exerts a longitudinal force but there are additional transve
forces in the radial and azimuthal directions. The longitu
nal force causes a radiation pressure when the pulse
pinges on a dielectric surface, with a corresponding tran
of linear momentum from light to dielectric material. Th
radial, or gradient, force acts towards the radius of maxim
intensity in the pulse cross section and it has a confining
trapping, effect on dielectric particles immersed in a liqu
The azimuthal force causes a torque on the dielectric, wi
corresponding transfer of angular momentum from pulse
dielectric. The longitudinal and azimuthal forces find prac
cal applications in the optical tweezers and spanners use
position and rotate biological specimens for examination
der a microscope. The azimuthal force is of strong curr
interest@2–4#.

The calculation presented here uses the simplest pos
optical and dielectric systems that preserve the character
properties of the three force components and illustrate t
natures and magnitudes. Thus the Laguerre-Gaussian m
function of zero radial index is assumed, with a beam wa
much larger than the wavelength, and the evaluations
restricted to longitudinal positions close to the focus. T
pulse is assumed to contain a single photon so that the
ous quantities are conveniently normalized per photon.
expectation values of interest are determined first for a lo
less isotropic dielectric of infinite extent and secondly fo
semi-infinite weakly attenuating dielectric with a flat surfac
The propagation direction of the pulse in the latter system
assumed to be perpendicular to the surface and the w
attenuation ensures that the pulse within the dielectric ne
1050-2947/2003/68~1!/013806~15!/$20.00 68 0138
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reaches any exit or reflecting surface. The pulse length
taken to be much smaller than the attenuation distance
that the calculation can separate the contributions to
forces from the passage of the pulse through the surface
from its subsequent attenuation in the bulk dielectric. P
ticular attenuation is given to the longitudinal and azimuth
forces, as they determine the transfers of linear and ang
momentum to the dielectric. The magnitudes of these m
menta have been a topic of controversy for some time@5#
and, as in previous work@1#, the calculations are restricte
here to determinations of the Lorentz forces, without a
assumptions of the photon momenta in dielectrics.

The classical properties of Laguerre-Gaussian light
summarized in Sec. II and the theory is extended to co
propagation within an infinite lossless dielectric mediu
The theory is quantized in Sec. III to provide expressions
the electric and magnetic field operators in the infinite diel
tric. The normalization of the field operators is verified b
determination of the expectation value of the Poynting vec
operator for a single-photon pulse. The angular momen
density operator is constructed in Sec. IV. The Lorentz fo
operator for an infinite isotropic dielectric is resolved in
longitudinal, radial, and azimuthal components in Sec.
The theory is generalized in Sec. VI to apply to an interfa
between two semi-infinite dielectric media, one of which
transparent, with an incident single-photon pulse, and
other of which is weakly attenuating. The surface and b
contributions to the Lorentz force on the attenuating diel
tric for a pulse incident from free space are calculated in S
VII. Particular attention is given to the transfers of longit
dinal and angular momentum from the light to the dielectr
The conclusions of the work are discussed in Sec. VIII a
the predicted shift and rotation of a dielectric slab are sho
to agree with the results of simple Einstein box theories.

II. PARAXIAL MODE FUNCTIONS AND
ELECTROMAGNETIC FIELDS IN DIELECTRICS

The positive-frequency part of the Lorentz-gauge vec
potential in a material with real refractive indexh~v! for
©2003 The American Physical Society06-1
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Laguerre-Gaussian light in the form of a paraxial wave
frequencyv that travels in the positivez direction is

AL
1~r ,t !5A0~a x̃1b ỹ!uk,l~r !exp~2 ivt1 ikz!, ~2.1!

whereA0 is a complex amplitude,x̃ and ỹ are unit vectors,
u
u

-
fr
rs
th

t a
v

tie

th

01380
f k5h~v!v/c and uau21ubu251. ~2.2!

We consider only the simplest form of mode function, for
radial indexp50, given approximately by
uk,l~r !5
1

Apu l u!
S&w0

D u l u11

r u l u expH 2
r2

w0
2 1

ikzr2

2zR
2 1 i l f2 i ~ u l u11!

z

zR
J , l 50,61,62,..., ~2.3!

wherer5(r,f,z) in cylindrical polar coordinates andzR is the Rayleigh range, related to the beam waistw0 by

zR5 1
2 kw0

2. ~2.4!

The z coordinate is measured from the position of the waist and the form~2.3! is valid whenz!zR so that terms involving
(z/zR)2 and higher powers can be neglected. The mode function is normalized,

E
0

`

drE
0

2p

df ruuk,l~r !u251, ~2.5!

and it satisfies the paraxial wave equation

H ]2

]x2 1
]2

]y2 12ik
]

]zJ uk,l~r !5H ]2

]r2 1
1

r

]

]r
1

1

r2

]2

]f2 12ik
]

]zJ uk,l~r !50, ~2.6!
um-
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in a
where the paraxial assumption

u]uk,l~r !/]zu!kuk,l~r ! ~2.7!

or

k@1/w0 ~2.8!

applies. In words, the beam waist is assumed to be m
larger than its wavelength. In considering the paraxial eq
tion after substitution of the approximate solution~2.3!, the
definition ~2.4! and the limitz!zR are used. The above re
lations reduce to those for Laguerre-Gaussian modes in
space@6,7# for h(v)51, except that several previous pape
have the wrong signs for the second and fourth terms in
exponent in Eq.~2.3! when the form exp(2ivt) is used for
the time dependence. These two terms in the exponen
needed for the mode function to satisfy the paraxial wa
equation but they do not contribute to most of the quanti
calculated below.

The strength of the mode function is given by

uuk,l~r !u25
2u l u11

pu l u!w0
2~ u l u11! r2u l u exp~22r2/w0

2!, ~2.9!

independent off andz. The mode clearly has zero streng
on thez axis atr50, except forl 50, and its peak strength
occurs at the radial coordinater0 given by

r0
25 1

2 u l uw0
2. ~2.10!
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The coefficients in the polarization factor in Eq.~2.1! can
be used to form the spin angular-momentum quantum n
ber of the beam@8#,

s5 i ~ab* 2a* b!, ~2.11!

which takes the values61 for right and left circularly polar-
ized light and 0 for linearly polarized light. The mode fun
tion ~2.3! has the property

]uk,l~r !

]f
5 i lu k,l~r ! ~2.12!

and l is identified as the orbital angular-momentum quant
number of the beam@2,9#. These contributions to the angula
momentum of the beam, defined relative to its direction
propagation, are considered in Sec. IV.

Maxwell’s equations for the positive-frequency fields in
homogeneous and isotropic dielectric are

“•E150, “3E15 ivB1 ~2.13!

and

“•B150, “3B152 iv
h2

c2 E1. ~2.14!

The gauge condition on the vector and scalar potentials
dielectric takes the form
6-2
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“•AL~r ,t !1
h2

c2

]wL~r ,t !

]t
50, ~2.15!

and in free space, whereh51, this becomes the usual Lo
entz gauge condition. The positive-frequency part of the s
lar potential is@10#

wL
1~r ,t !52

ic2

h2v
“•AL

1~r ,t !52
iv

k2 “•AL
1~r ,t !.

~2.16!

The electric and magnetic fields are obtained from the po
tials as

E1~r ,t !52
]AL

1~r ,t !

]t
2“wL

1~r ,t !5A0

c

h H ik~a x̃1b ỹ!u

2S a
]u

]x
1b

]u

]yD z̃J exp~2 ivt1 ikz! ~2.17!

and

B1~r ,t !5“3AL
1~r ,t !5A0H 2 ik~b x̃2a ỹ!u

1S b
]u

]x
2a

]u

]yD z̃J exp~2 ivt1 ikz!,

~2.18!

whereu is shorthand foruk,l(r ). These field expressions ne
glect terms in each component that are smaller than th
retained in accordance with the paraxial assumption in
~2.7! or Eq. ~2.8!. The z components are smaller than thex
and y components by a factor of order 1/kw0 . It is readily
verified that the fields~2.17! and ~2.18! satisfy Maxwell’s
equations~2.13! and ~2.14!. The Cartesian derivatives ar
converted to polarr andf derivatives in the usual way.

III. QUANTIZED PARAXIAL FIELDS AND POYNTING
VECTOR

The field operators corresponding to the classical field
Eqs.~2.17! and~2.18! are obtained by the usual quantizatio
procedure@11# as

Ê1~r ,t !5E
0

`

dvS \

4p«0ch3v D 1/2

â~v!expF2 ivS t2
hz

c D G
3H ihv~a x̃1b ỹ!u2cS a

]u

]x
1b

]u

]yD z̃J ~3.1!

and
01380
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B̂1~r ,t !5E
0

`

dvS \

4p«0c3hv D 1/2

â~v!expF2 ivS t2
hz

c D G
3H 2 ihv~b x̃2a ỹ!u1cS b

]u

]x
2a

]u

]yD z̃J ,

~3.2!

whereâ(v) is the photon destruction operator, with comm
tation relation

@ â~v!,â†~v8!#5d~v2v8!. ~3.3!

These quantized field expressions reduce to those for a
form plane wave of transverse cross sectionA in a dielectric
@12# when the mode functionu is replaced by 1/AA. They
satisfy the operator Maxwell equations similar to Eqs.~2.13!
and ~2.14! and their normalization is shown below to giv
the correct representation for the energy in a single-pho
wave packet.

The expressions~3.1! and ~3.2! generalize the classica
fields ~2.17! and~2.18! to excitations that include a spread
frequencies, as is needed to represent a wave packet. Th
single-photon pulse is represented by the state vector@11,12#

u1&5E dv j~v!â†~v!u0&, ~3.4!

where u0& is the vacuum state. Use of the photon opera
commutation relation shows that the single-photon state v
tor satisfies

â~v!u1&5j~v!u0&. ~3.5!

The functionj~v!, which describes the spectrum of the ph
ton wave packet, is normalized,

E dvuj~v!u251, ~3.6!

and a simple choice is the narrowband Gaussian functio
spatial lengthL,

j~v!5S L2

2pc2D 1/4

expH 2
L2~v2v0!2

4c2 J , c/L!v0 .

~3.7!

The narrow spectrum ensures thatv can be set equal to th
central frequencyv0 of the wave packet in such quantities
the Rayleigh range~2.4!.

The normal-order Poynting vector operator is

:Ŝ~r ,t !:5«0c2$Ê2~r ,t !3B̂1~r ,t !2B̂2~r ,t !3Ê1~r ,t !%,
~3.8!

with z component
6-3
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:Ŝz~r ,t !:5
\

4p E
0

`

dvE
0

`

dv8~vv8!1/2
h1h8

~hh8!1/2 â†~v!â~v8!

3expF i ~v2v8!t2 i ~hv2h8v8!
z

cGu* u8, ~3.9!

whereu8 is shorthand foruk8,l(r ) with k85h(v8)v8/c and
it is assumed that the coefficientsa andb are independent o
v for frequencies within the excitation spectrumj~v!. There
are also contributions to the Poynting vector operator, om
ted from Eq. ~3.9!, that contain integrands with terms i
â(v)â(v8) and â†(v)â†(v8). The expectation values o
these terms vanish for the single-photon states define
Eqs.~3.4!–~3.6!. For more general states in which these e
pectation values do not vanish, their contributions oscillat
optical frequencies and they can be neglected.

The expression~3.9! simplifies, when integrated over a
time, to give

E
2`

`

dt:Ŝz~r ,t !:5E
0

`

dv \vâ†~v!â~v!uuu2. ~3.10!

Use of the normalization condition~2.5! gives the integrated
energy flow over the complete mode cross section as

E
0

`

drE
0

2p

df rE
2`

`

dt:Ŝz~r ,t !:5E
0

`

dv \vâ†~v!â~v!.

~3.11!
01380
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This expression shows the expected form of the total ene
flow past each point on thez axis as the quantum\v
weighted by the photon-number operator at frequencyv, and
it justifies the normalization of the field operators~3.1! and
~3.2!. Similarly, the integration of the Poynting vector oper
tor over the entirez axis gives

E
2`

`

dz:Ŝz~r ,t !:5E
0

`

dv \vnG~v!â†~v!â~v!uuu2

~3.12!

and integration over the mode cross section gives the i
grated energy flow over all space as

E dr :Ŝz~r ,t !:5E
0

`

dv \vnG~v!â†~v!â~v!.

~3.13!

The contribution of each frequency component to the flow
thus weighted by the appropriate group velocitynG(v), de-
fined by

1

nG~v!
5

]„h~v!v/c…

]v
. ~3.14!

The Poynting vectorx component operator is
he mode

ynting
:Ŝx~r ,t !:5
i\c

4p E
0

`

dvE
0

`

dv8
â†~v!â~v8!

~hh8vv8!1/2expF i ~v2v8!t2 i ~hv2h8v8!
z

cG H 2vS h

h8
uau21ubu2Du*

]u8

]x

1vS ab* 2
h

h8
a* b Du*

]u8

]y
1v8S h8

h
uau21ubu2D ]u*

]x
u81v8S h8

h
ab* 2a* b D ]u*

]y
u8J ~3.15!

and the expression for they component is the same but with the exchanges of symbolsx↔y anda↔b. The z component
exceeds thex andy components by a factor of orderkw0 . The resulting time-integrated energy flows in thex andy directions
are

E
2`

`

dt:Ŝx~r ,t !:5E
0

`

dv
\c

2h
â†~v!â~v!H i S ]u*

]x
u2u*

]u

]x D1s
]uuu2

]y J ~3.16!

and

E
2`

`

dt:Ŝy~r ,t !:5E
0

`

dv
\c

2h
â†~v!â~v!H i S ]u*

]y
u2u*

]u

]y D2s
]uuu2

]x J . ~3.17!

It is straightforward to perform the differentiations in these expressions by conversion to polar coordinates and use of t
function ~2.3!. The terms all contain either sinf or cosf, so that integration over the mode cross section as in Eq.~3.11! gives

E
0

`

drE
0

2p

df rE
2`

`

dt:Ŝx~r ,t !:5E
0

`

drE
0

2p

df rE
2`

`

dt:Ŝy~r ,t !:50. ~3.18!

The results~3.16! and ~3.17! are expressed more compactly in terms of radial and azimuthal components of the Po
vector, defined by

Ŝr5Ŝx cosf1Ŝy sinf and Ŝf52Ŝx sinf1Ŝy cosf. ~3.19!
6-4
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The time-integrated energy flows in the radial and azimuthal directions are thus found to be

E
2`

`

dt:Ŝr~r ,t !:5 i E
0

`

dv
\c

2h
â†~v!â~v!S ]u*

]r
u2u*

]u

]r D5E
0

`

dv
\c

h
â†~v!â~v!

4rz

kw0
4 uuu2 ~3.20!

and

E
2`

`

dt:Ŝf~r ,t !:5E
0

`

dv
\c

h
â†~v!â~v!S l

r
uuu22

s

2

]uuu2

]r D5E
0

`

dv
\c

h
â†~v!â~v!S l

r
2

su l u
r

1
2sr

w0
2 D uuu2. ~3.21!
te

nc

te

fa
in
w

he
E
to

re

s
e
-

ib

th

of

tic

gu-
are
to
al
-

st

s-

d,
s,
This azimuthal component is smaller than the time-integra
z component in Eq.~3.10! by a factor of order 1/kw0 , while
the radial component has an additional reduction factorz/zR .
The spin-dependent terms in the azimuthal component ca
at r5r0 , given by Eq.~2.10!.

The relative magnitudes of the three time-integra
Poynting-vector components in Eqs.~3.10!, ~3.20!, and
~3.21! agree with the results of a classical calculation@13#. It
is seen that the effect of the dielectric withh.1 is to reduce
the transverse components of the Poynting vector by the
tor 1/h relative to the longitudinal component. The energy
a Laguerre-Gaussian beam in a dielectric therefore flo
more closely parallel to thez axis than in a similar beam in
free space.

The expectation values of all of the operators in t
present section for the single-photon pulse defined in
~3.4! are given by the same expressions as the opera
themselves except for the replacementsâ†(v)→j* (v) and
â(v8)→j(v8). The integrals in the expectation values a
difficult to evaluate because of the dispersion inh~v!, whose
main role in integrations overz is the provision of an addi-
tional factornG(v) relative to integrations over the time, a
in Eqs. ~3.10! and ~3.12!. If the dispersion is ignored, th
expectation value of thez-component Poynting vector opera
tor ~3.9!, for example, can be written

^1u:Ŝz~r ,t !:u1&5
\

2p U E
0

`

dv v1/2j~v!

3expF2 ivS t2
hz

c D GuU2

. ~3.22!

In the expression~2.3! for u, v appears only in thek factor in
the second term of the exponent and this term is neglig
compared to thekz term in the exponent of Eq.~3.22!. Thus
u can be taken outside the integral and insertion of
Gaussian spectrum from Eq.~3.7! then gives
01380
d

el

d

c-

s

q.
rs

le

e

^1u:Ŝz~r ,t !:u1&5
\v0c

L S 2

p D 1/2

expF2
2c2

L2 S t2
hz

c D 2G uuu2,

~3.23!

where the narrow spectrum justifies the approximation
replacingv1/2 in the integrand byv0

1/2. The peak of the wave
packet at timet lies at positionz5ct/h. The time integral of
Eq. ~3.23! is

E
2`

`

dt^1u:Ŝz~r ,t !:u1&5\v0uuu2 ~3.24!

and the normalization in Eq.~2.5! confirms the total energy
content\v0 of the photon wave packet.

IV. ANGULAR MOMENTUM DENSITY

The form of the linear momentum of the electromagne
field in a dielectric is a matter of debate and controversy@5#,
and this uncertainty applies equally to the form of the an
lar momentum. The effective values of these momenta
discussed in Secs. VII and VIII in terms of their transfers
an attenuating dielectric. We follow here the convention
approach@2,9#, with the angular momentum of the electro
magnetic field per unit volume defined as

j5«0r3~E3B!5r3S/c2, ~4.1!

whereS is the Poynting vector. Thus thez component of the
normally ordered angular-momentum density operator is

: ĵ z:5~x:Ŝy :2y:Ŝx : !/c25r:Ŝf :/c2, ~4.2!

where Eq.~3.19! has been used. Substitution into the fir
form in Eq. ~4.2! from Eq. ~3.15! and the corresponding
expression for they component gives a complicated expre
sion for :ĵ z :.

If the dispersion in the refractive index is again ignore
and with a transformation to cylindrical polar coordinate
the expression simplifies greatly to
: ĵ z~r ,t !:5
\

4pch E
0

`

dvE
0

`

dv8~vv8!1/2â†~v!â~v8!expF i ~v2v8!S t2
hz

c D G
3H l

v1v8

vv8
u* u82srS 1

v

]u*

]r
u81

1

v8
u*

]u8

]r D J , ~4.3!

where the property~2.12! has been used. The time-integrated angular-momentum density operator is accordingly
6-5
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E
2`

`

dt: ĵ z~r ,t !:5E
0

`

dv
\

2ch~v!
â†~v!â~v!H 2l uuu22sr

]uuu2

]r J , ~4.4!

where the dispersion in the refractive index can be restored in the integrated expression. This is the quantum-m
version of the classical expression for the angular-momentum density@9#. Note the different spatial variations of the orbital an
spin contributions, with the former proportional to the mode strength and the latter to its radial gradient. The sp
contributes only in the presence of a transverse variation inuuu2 and it vanishes atr5r0 @14#.

The square modulus~2.9! of the mode function~2.3! has the property

r
]uuk,l~r !u2

]r
52S u l u2

2r2

w0
2 D uuk,l~r !u252u l uuuk,l~r !u222~ u l u11!uuk,l 11~r !u2, ~4.5!

so that Eq.~4.4! can be written

E
2`

`

dt: ĵ z~r ,t !:5E
0

`

dv
\

ch~v!
â†~v!â~v!S l 2su l u1

2sr2

w0
2 D uuu2. ~4.6!

This result agrees with the form of time-integrated azimuthal Poynting vector in Eq.~3.21! and its relation~4.2! to the
angular-momentum density. Integration over the complete mode cross section with use of the second expression on
of Eq. ~4.5! gives

E
0

`

drE
0

2p

df rE
2`

`

dt: ĵ z~r ,t !:5
\~ l 1s!

c E
0

`

dv
1

h~v!
â†~v!â~v!. ~4.7!

The analogous spatial integral of Eq.~4.3! gives

E dr : ĵ z~r ,t !:5\~ l 1s!E
0

`

dv
nG~v!

ch~v!
â†~v!â~v!, ~4.8!

where the group velocity is defined in Eq.~3.14!. The free-space orbital angular momentum\ l and spin angular momentum
\s are thus affected in the same way by immersion in a dielectric medium.

V. FORCE OPERATOR

The force exerted on the dielectric by the light beam at positionr is determined by the Lorentz force-density operat
defined as a sum of electric and magnetic contributions@15#

f̂~r ,t !5 f̂ E~r ,t !1 f̂ B~r ,t !5@P̂~r ,t !•“#Ê~r ,t !1
]P̂~r ,t !

]t
3B̂~r ,t !. ~5.1!

The polarizationP̂(r ,t) is expressed in terms of the electric field operator via the dielectric function, equal to the square
refractive index, and its form is obtained from Eq.~3.1! as

P̂1~r ,t !5E
0

`

dvS «0\

4pch3v D 1/2

~h221!â~v!expF2 ivS t2
hz

c D G H ihv~a x̃1b ỹ!u2cS a
]u

]x
1b

]u

]yD z̃J . ~5.2!

The total force on the dielectric at timet is represented by the force operator

F̂~ t !5E dr f̂ ~r ,t !. ~5.3!

It is convenient to separate the force density into longitudinal, radial, and azimuthal components.

A. Longitudinal component

Thex, y, andz components of the force-density operator are straightforwardly but tediously obtained by substitution
~3.1!, ~3.2!, and~5.2! into Eq. ~5.1!. For thez component, it is found that the electric contribution in Eq.~5.1! is smaller than
the magnetic contribution by a factor of order (kw0)22 and the former can be neglected in view of Eq.~2.8!. The normally
ordered magnetic contribution alone gives
013806-6
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: f̂ z~r ,t !:5
i\

4pc2 E
0

`

dvE
0

`

dv8S vv8

hh8 D
1/2

â†~v!â~v8!expF i ~v2v8!t2 i ~hv2h8v8!
z

cG
3@vh8~h221!2v8h~h8221!#u* u8. ~5.4!

This expression reduces to that for the force-density operator for a uniform plane wave in a dispersionless dielectric@1# if h
is assumed independent of frequency andu is replaced by 1/AA. In general, the normally ordered part of the total for
operator~5.3! vanishes,

:F̂z~ t !:5E dr : f̂ z~r ,t !:50, ~5.5!

and the time integral of Eq.~5.4! also vanishes,

E
2`

`

dt: f̂ z~r ,t !:50. ~5.6!

With dispersion neglected, Eq.~5.4! can be written in the form

: f̂ z~r ,t !:5
\~h221!

4pc2

]

]t E0

`

dvE
0

`

dv8~vv8!1/2â†~v!â~v8!expF i ~v2v8!S t2
hz

c D Gu* u8. ~5.7!

The expectation value of this operator for the single-photon wave packet is obtained by the same method as use
Poynting vector in Eqs.~3.22! and ~3.23! with the result

^1u: f̂ z~r ,t !:u1&52
2\v0c~h221!

L3 S 2

p D 1/2S t2
hz

c DexpF2
2c2

L2 S t2
hz

c D 2G uuu2. ~5.8!

The distribution of the force density in thexy plane is determined by the mode strengthuuu2. Integration of Eq.~5.8! over the
plane gives the same totalz force as derived previously@1# for a uniform plane wave. The force density is antisymmet
around the peak of the pulse, with positive values in front and negative values behind@1,15#. The dielectric experiences a loca
stretching force that travels with the pulse, centered on its peak, but the spatially integrated force vanishes, in accord
Eq. ~5.5!.

B. Radial component

The electric and magnetic contributions to thex andy components of the force-density operator~5.1! have the same orde
of magnitude, being smaller than thez component calculated above by a factor of order (kw0)21, and both must be retained
The resulting expressions are quite complicated and it is acceptable to simplify them by neglect of dispersion in the r
index. It is convenient to give results, not for thex andy components, but for the radial and azimuthal components define

f̂ r5 f̂ x cosf1 f̂ y sinf and f̂ f52 f̂ x sinf1 f̂ y cosf, ~5.9!

similar to the Poynting vector decomposition in Eq.~3.19!. The radial component is

: f̂ r~r ,t !:5
\~h221!

4pch E
0

`

dvE
0

`

dv8~vv8!1/2â†~v!â~v8!expF i ~v2v8!S t2
hz

c D G
3H v8

v

]u*

]r
u81

v

v8
u*

]u8

]r
2s l

~v2v8!2

vv8

u* u8

r J ~5.10!

and its time integral is

E
2`

`

dt: f̂ r~r ,t !:5
\~h221!

ch S u l u
r

2
2r

w0
2D uuu2E

0

`

dv vâ†~v!â~v8!, ~5.11!

where ther derivative ofuuu2 is taken from Eq.~4.5!.
The expectation value of Eq.~5.10! for the single-photon wave packet is

^1u: f̂ r~r ,t !:u1&5
\v0~h221!

A2phL
S ]

]r
1

s l

v0
2r

]2

]t2D H expF2
2c2

L2 S t2
hz

c D 2G uuu2J . ~5.12!
013806-7
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RODNEY LOUDON PHYSICAL REVIEW A68, 013806 ~2003!
The time-derivative contribution is very much smaller than that of the radial derivative on account of the inequality in E~3.7!
and it can safely be neglected to give

^1u: f̂ r~r ,t !:u1&5
2\v0~h221!

A2phL
S u l u

r
2

2r

w0
2DexpF2

2c2

L2 S t2
hz

c D 2G uuu2. ~5.13!

The radial force density is independent of the spin quantum numbers and it is localized within the pulse. It vanishes at t
radiusr0 defined in Eq.~2.10!, it is positive forr,r0 , and negative forr.r0 . The radial force thus compresses the dielec
towards the ring of radiusr0 .

C. Azimuthal component

Use of the definition in Eq.~5.9! gives

: f̂ f~r ,t !:5
\~h221!

4pch E
0

`

dvE
0

`

dv8~vv8!1/2â†~v!â~v8!expF i ~v2v8!S t2
hz

c D G i ~v2v8!

3H l
v1v8

vv8

u* u8

r
2sS 1

v

]u*

]r
u81

1

v8
u*

]u8

]r D J . ~5.14!

The angular-momentum density operator in Eq.~4.3! and the azimuthal force density satisfy a form of continuity equatio

r: f̂ f~r ,t !:1~h221!
]

]t
: ĵ z~r ,t !:50. ~5.15!

The time integral of the azimuthal force density vanishes,

E
2`

`

dt: f̂ f~r ,t !:50. ~5.16!

The expectation value of the azimuthal force density for the single-photon wave packet is

^1u: f̂ f~r ,t !:u1&52
4\c2~h221!

hL3 S 2

p D 1/2S t2
hz

c DexpF2
2c2

L2 S t2
hz

c D 2G S l

r
2

su l u
r

1
2sr

w0
2 D uuu2. ~5.17!

The azimuthal force density thus shares the property of the longitudinal component~5.8! of having balanced positive an
negative values in the front and rear of the pulse. The pulse thus carries a localized twisting force but there is z
azimuthal force on the bulk dielectric.

VI. REFLECTION FROM DIELECTRIC SURFACE

Suppose now that space is divided into two regions with a dielectric of real refractive indexh0(v) at z,0 and a dielectric
of complex refractive index

n~v!5h~v!1 ik~v! ~6.1!

at z.0. The theory outlined so far applies to the dielectric atz,0 with h replaced byh0 and the real wave vectork replaced
by

k05h0~v!v/c. ~6.2!

The complex wave vector atz.0 is denoted

k5n~v!v/c5@h~v!1 ik~v!#v/c. ~6.3!

The dielectric atz.0 cannot in reality be of infinite extent but its thickness is assumed to be much larger than the c
teristic attenuation distancec/vk(v), so that there is no need to allow for waves reflected from its right-hand bounda
addition, the attenuation distance is assumed to be much longer than the pulse lengthL, so that surface and bulk effect
resulting from the entry of the pulse into the dielectric can be separated.

Suppose that an incident Laguerre-Gaussian beam, whose electric and magnetic field operators are given by Eqs~3.1! and
~3.2! with the above replacements, impinges normally on the dielectric interface from the left. The amplitudes of the re
013806-8
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THEORY OF THE FORCES EXERTED BY LAGUERRE- . . . PHYSICAL REVIEW A 68, 013806 ~2003!
and transmitted beams are determined by the boundary conditions atz50 in the usual way. Solutions for the same problem b
with an incident transverse plane wave have been given previously@1,16,17#. The incident beam considered here has fi
components in all three coordinate directions and it is necessary to apply both tangential and normal boundary condit
x andy components ofÊ1(r ,t) retain the same sign in the reflected beam but thez component changes sign, while thex and
y components ofB̂1(r ,t) change sign but thez component retains the same sign in the reflected beam. The field operat
z,0 are thus found to be

Ê1~r ,t !5E
0

`

dvS \

4p«0ch0
3v D 1/2

â~v!exp~2 ivt !H F ih0v~a x̃1b ỹ!uk0
2cS a

]uk0

]x
1b

]uk0

]y
D z̃GexpS i

h0vz

c D
1R~v!F ih0v~a x̃1b ỹ!u2k0

1cS a
]u2k0

]x
1b

]u2k0

]y
D z̃GexpS 2 i

h0vz

c D J ~6.4!

and

B̂1~r ,t !5E
0

`

dvS \

4p«0c3h0v D 1/2

â~v!exp~2 ivt !H F2 ih0v~b x̃2a ỹ!uk0
1cS b

]uk0

]x
2a

]uk0

]y
D z̃GexpS i

h0vz

c D
1R~v!F ih0v~b x̃2a ỹ!u2k0

1cS b
]u2k0

]x
2a

]u2k0

]y
D z̃GexpS 2 i

h0vz

c D J , ~6.5!

where the subscripts on the mode functionu defined in Eq.~2.3! distinguish the incident and reflected beams and

R~v!5
h0~v!2n~v!

h0~v!1n~v!
~6.6!

is the usual reflection coefficient at the interface.
The corresponding field operators atz.0 are

Ê1~r ,t !5E
0

`

dvS \

4p«0ch0v D 1/2

â~v!expF2 ivS t2
n~v!z

c D GT~v!H iv~a x̃1b ỹ!uk2
c

n~v! S a
]uk

]x
1b

]uk

]y D z̃J ~6.7!

and

B̂1~r ,t !5E
0

`

dvS \

4p«0c3h0v D 1/2

â~v!expF2 ivS t2
n~v!z

c D GT~v!H 2 in~v!v~b x̃2a ỹ!uk1cS b
]uk

]x
2a

]uk

]y D z̃J ,

~6.8!

where the occurrence ofh0 in the square-root factors is a consequence of the boundary conditions and

T~v!5
2h0~v!

h0~v!1n~v!
~6.9!

is the usual transmission coefficient at the interface. Continuity of energy flow at the interface is ensured by the rela

h0@12uR~v!u2#5huT~v!u2. ~6.10!

It is not difficult to verify that the standard tangential and normal boundary conditions are all satisfied by the field op
in Eqs.~6.4!, ~6.5!, ~6.7!, and~6.8!. The forms of the field operators reduce to those given in@1# when the incident light beam
is a uniform plane wave. The complete field operators also contain noise contributions associated with the mate
@16,17#, but these are omitted from the above expressions as they do not contribute to the quantities calculated here

The Poynting vector operator in the dielectric atz.0 is obtained in the same way as that in Sec. III but with the fi
operators in Eqs.~3.1! and ~3.2! replaced by those in Eqs.~6.7! and ~6.8!. Thus thez component operator in Eq.~3.9! is
replaced by

:Ŝz~r ,t !:5
\

4ph0
E

0

`

dvE
0

`

dv8~vv8!1/2â†~v!â~v8!expF i ~v2v8!t2 i ~n* v2n8v8!
z

cGT* ~v!T~v8!~n81n* !u* u8.

~6.11!
013806-9
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The time-integrated Poynting vector is

E
2`

`

dt:Ŝz~r ,t !:5E
0

`

dv \vâ†~v!â~v!expS 2
22vkz

c D 4h0h

~h01h!21k2 uuu2 ~6.12!

and the expectation value of this expression for the narrowband single-photon pulse is

E
2`

`

dt^1u:Ŝz~r ,t !:u1&5\v0 expS 2
2v0kz

c D 4h0h

~h01h!21k2 uuu2, ~6.13!

whereh0 , h, andk are evaluated at frequencyv0 . The average total energy of the pulse that enters the dielectric atz50 is
therefore

E
0

`

drE
0

2p

df rE
2`

`

dt^1u:Ŝz~r,f,0;t !:u1&5\v0

4h0h

~h01h!21k2 . ~6.14!

This radiative energy is all transferred to the dielectric as the light beam is totally attenuated in accordance with th
nential decay factor in Eq.~6.13!. Note that no energy enters the dielectric atz.0 via thex andy components of the Poynting
vector on account of a property analogous to that given for the infinite homogeneous dielectric in Eq.~3.18!.
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VII. RADIATION FORCE AND TORQUE ON FREE-SPACE
SURFACE

It is a simple matter to calculate the total transfers
linear and angular momentum to a lossy dielectric by
single-photon wave packet incident normally on its surfa
from free space. The free-space photon has a well-defi
linear momentum\v0 /c and its reflection from the dielec
tric surface with coefficientR given by Eq.~6.6! with h0
51 produces a momentum transfer

\v0

c
@11uR~v0!u2#5

2\v0

c

h2111k2

~h11!21k2 , ~7.1!

where h and k are again evaluated at frequencyv0 . This
expression is valid for the assumed conditions in which th
is no reemergence of any light transmitted into the dielect
The linear momentum transfer has the expected value
2\v0 /c for reflection from the perfect mirror described b
the limit k→`.

For the angular momentum, the reflected beam has q
tum numbers2s and2 l with respect to its2z propagation
direction. The total transfer of angular momentum to the
electric is therefore

\~ l 1s!@12uR~v0!u2#5\~ l 1s!
4h

~h11!21k2 .

~7.2!

There is thus no transfer of angular momentum to a per
mirror.
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The transfer of the energy in Eq.~6.14! from the light to
the dielectric is distributed over the bulk material in acco
dance with the exponential attenuation. By contrast, the t
transfers of momentum given by Eqs.~7.1! and ~7.2! occur
partly at the dielectric surface and partly in the bulk mater
The separation into surface and bulk contributions require
more detailed study of the radiation forces. In order to se
rate the surface and bulk contributions, it is assumed thatk is
sufficiently small that the attenuation length greatly exce
the pulse length. However,k should also be sufficiently large
that the attenuation length is much smaller than the Rayle
range, so thatz can be assumed much smaller thanzR . Thus,
the various lengths satisfy the inequalities

zR@c/2v0k@L@c/v0 , ~7.3!

where the inequality from Eq.~3.7! is included. It is easily
verified that these inequalities are satisfied for visible lig
with a 1021 m pulse length and a 1023 m beam waist in a
dielectric withh51.5 andk5531028. The use of a short
pulse ensures that the variations in force as the pulse pa
through the surface occur on a much shorter time scale
the subsequent fall-off in force as the transmitted light
attenuated.

The three components of the force-density operator~5.1!
are calculated by the same methods as used in Sec. V, w
the field operators are now taken from Eqs.~6.7! and ~6.8!.
The polarization operator~5.2! is replaced by
ore
P̂1~r ,t !5E
0

`

dvS «0\

4pcv D 1/2

~n221!â~v!expF2 ivS t2
nz

c D GT~v!H iv~a x̃1b ỹ!u2
c

n S a
]u

]x
1b

]u

]yD z̃J , ~7.4!

wheren is the complex refractive index from Eq.~6.1!. The expressions for the components of the force operator are m
complicated than before and it is convenient to neglect dispersion in the complex refractive index at the outset.
6-10
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THEORY OF THE FORCES EXERTED BY LAGUERRE- . . . PHYSICAL REVIEW A 68, 013806 ~2003!
A. Longitudinal component

The z component of the force-density operator can be written in the form

: f̂ z~r ,t !:5
\

pc2

1

un11u2 E0

`

dvE
0

`

dv8~vv8!1/2â†~v!â~v8!H h~ unu221!
]

]t
1k~ unu211!~v1v8!J

3expF i ~v2v8!t2 i ~n* v2nv8!
z

cGu* u8, ~7.5!

which generalizes Eq.~5.7! to the dielectric interface system. The time integral of this operator is

E
2`

`

dt: f̂ z~r ,t !:5
2\

c2 k
h21k211

~h11!21k2 uuu2E
0

`

dv 2v2â†~v!â~v!exp~22vkz/c! ~7.6!

and further integration over all space gives the total transfer of linear momentum to the dielectric as

E drE
2`

`

dt: f̂ z~r ,t !:5
2\

c

h21k211

~h11!21k2 E
0

`

dv vâ†~v!â~v!. ~7.7!

The expectation value of the frequency integral isv0 for any form of narrowband single-photon pulse, so this express
agrees with Eq.~7.1!.

The expectation value of the longitudinal force-density operator for the single-photon wave packet is obtained by t
method as before, with the result

^1u: f̂ z~r ;t !:u1&5
4\v0

cLun11u2 H 2h~ unu221!
2c2

L2 S t2
hz

c D1k~ unu211!v0J S 2

p D 1/2

expF2
2v0kz

c
2

2c2

L2 S t2
hz

c D 2G uuu2.

~7.8!

For a lossless dielectric withk50, this expression reduces to the force-density expectation value in Eq.~5.8!, apart from an
additional factorhT2 caused by the changes in the field operators from those of an infinite medium to those for the hal
dielectric.

The total force operator defined in Eq.~5.3! is now obtained by integration of Eq.~7.8! only over positivez. With use of the
standard Gaussian integral, the definition of the complementary error function, and the inequalities~7.3!, the total force exerted
on the dielectric by the single-photon wave packet is

^1u:F̂z~ t !:u1&5
4\v0

c@~h11!21k2# H ~h21k221!
c

2L S 2

p D 1/2

expF2
2c2t2

L2 G1
v0k

h
expF2

2v0kt

h GerfcF2
21/2ct

L G J . ~7.9!

This total force is the same as that found for an incident plane wave@1#, although its distribution in thexy plane is given by
the functionuuu2 instead of a uniform distribution over areaA. The time dependence of the total force is plotted in Fig. 2
this reference. The first term in the large bracket of Eq.~7.9! is the surface contribution; it acts only for timest close to 0 as
the pulse passes through the surface and the positive force from the front of the pulse is not wholly canceled by the
force in the rear. The second term is the bulk contribution; it vanishes in the absence of dielectric attenuation but,k
Þ0, it shows a rapid rise as the transmitted pulse enters the medium followed by a slow exponential fall-off with dec
h/2v0k.

The time-integrated force, or the total linear momentum transfer to the dielectric, is

E
2`

`

dt^1u:F̂z~ t !:u1&5
2\v0

c H h21k221

~h11!21k2

surface

1
2

~h11!21k2

bulk
J 5

2\v0

c

h2111k2

~h11!21k2

total

. ~7.10!

The total transfer again agrees with that given in Eq.~7.1!. The energy transfer is given by Eq.~6.14! with h051, so that the
transfer of momentum per transmitted\v0 photon is

\v0

c H h21k221

2h
surface

1
1

h
bulk

J 5
\v0

c

h2111k2

2h
total

. ~7.11!

The implications of these results are discussed in@1# and in Sec. VIII.
013806-11
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RODNEY LOUDON PHYSICAL REVIEW A68, 013806 ~2003!
B. Transverse components

Thex component of the force operator obtained from Eq.~5.1! upon substitution of the field operators from Eqs.~6.7!, ~6.8!,
and ~7.4! is

: f̂ x~r ,t !:5
\

pc

1

un11u2 E
0

`

dvE
0

`

dv8~vv8!1/2â†~v!â~v8!expF i ~v2v8!t2 i ~n* v2nv8!
z

cG H ~n* 221!F S uau2

1
v

v8
ubu2Du*

]u8

]x
2

n

n* S 12
v8

v D uau2
]u*

]x
u82S v

v8
21Dab* u*

]u8

]y
2

n

n* S 12
v8

v Dab*
]u*

]y
u8G1~n221!

3Fn*

n S v

v8
21D uau2u*

]u8

]x
1S uau21

v8

v
ubu2D ]u*

]x
u81

n*

n S v

v8
21Da* bu*

]u8

]y
1S 12

v8

v Da* b
]u*

]y
u8G J ,

~7.12!

and they component is given by the same expression with the exchangesx↔y anda↔b. The time-integrated operators a
accordingly

E
2`

`

dt: f̂ x~r ,t !:5
2\

c

1

~h11!21k2 H ~n* 221!u*
]u

]x
1~n221!

]u*

]x
uJ E

0

`

dv vâ†~v!â~v!exp~22vkz/c! ~7.13!

and

E
2`

`

dt: f̂ y~r ,t !:5
2\

c

1

~h11!21k2 H ~n* 221!u*
]u

]y
1~n221!

]u*

]y
uJ E

0

`

dv vâ†~v!â~v!exp~22vkz/c!. ~7.14!

The radial and azimuthal components are defined by the relations~5.9! as before and the time-integrated value of the form
is obtained from Eqs.~7.13! and ~7.14! as

E
2`

`

dt: f̂ r~r ,t !:5
4\v0

c

h22k221

~h11!21k2 exp~22v0kz/c!H u l u
r

2
2r

w0
2J uuu2E

0

`

dv â†~v!â~v!, ~7.15!

where the limitz!zR is assumed and the derivative expression from Eq.~4.5! is used. For a lossless dielectric withk50, this
expression reduces to the integrated force density for an infinite medium given in Eq.~5.11!, apart from the additional facto
hT2. The time-integrated azimuthal force density is similarly obtained as

E
2`

`

dt: f̂ f~r ,t !:5
8\v0

c

hk l

~h11!21k2 exp~22v0kz/c!
uuu2

r E
0

`

dv â†~v!â~v!. ~7.16!

This vanishes for a lossless dielectric withk50 in agreement with Eq.~5.16!.
The main aim of the calculation of the transverse force components is the identification of the surface and bulk c

tions to the transfer of angular momentum from the optical pulse to the dielectric, similar to the above results for the
of linear momentum via the longitudinal force component. For this, it is necessary to obtain the space and time depen
the azimuthal force density and not merely its time-integrated value given in Eq.~7.16!. The required force density is derive
straightforwardly from Eq.~7.12! and the correspondingy component with the use of Eq.~5.9! but the resulting expression i
extremely complicated. Considerable simplifications result if only those terms are retained that survive in the integrat
f that will be made in the calculation of the total torque defined in Eq.~7.22! below. Thus terms in sinf cosf are neglected
and, furthermore, sin2 f and cos2 f are set equal to their integrated average values of1

2. In addition, it is convenient to assum
that the forces will be evaluated only for narrowband wave packets so that the integrated frequenciesv andv8 can be set equa
to v0 , except where they appear in the combinationv2v8. With these manipulations, the azimuthal force-density oper
reduces to

: f̂ f~r ,t !:5
\

pc

1

~h11!21k2 H h2~h21k221!

h21k2 S 2l

r
2s

]

]r D ]

]t
1

4lhkv0

r J uuu2E
0

`

dvE
0

`

dv8â†~v!â~v8!

3expF i ~v2v8!t2 i ~n* v2nv8!
z

cG . ~7.17!

The time integral of this operator agrees with the expression given in Eq.~7.16!.
013806-12
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C. Torque

The operator that represents the density of thez component of the torque on the dielectric is

ĝz~r ,t !5r f̂ f~r ,t !1~Ê3P̂!z , ~7.18!

where the second term on the right is the ordinary expression for the torque on an electric dipole@18#. This term provides an
additional torque proportional to the spin quantum numbers and, in combination with the azimuthal force from Eq.~7.17!, it
gives a torque density operator

:ĝz~r ,t !:5
\

pc

1

~h11!21k2 H h2~h21k221!

h21k2 S 2l 2sr
]

]r D ]

]t
14~ l 1s!hkv0J uuu2E

0

`

dvE
0

`

dv8â†~v!â~v8!

3expF i ~v2v8!t2 i ~n* v2nv8!
z

cG ~7.19!

valid for application to a narrowband wave packet. The time-integrated torque is

E
2`

`

dt:ĝz~r ,t !:5
8\v0

c

hk~ l 1s!

~h11!21k2 exp~22v0kz/c!uuu2E
0

`

dv â†~v!â~v! ~7.20!

and a further integration over all space gives

E drE
2`

`

dt:ĝz~r ,t !:5\~ l 1s!
4h

~h11!21k2 E
0

`

dv â†~v!â~v!. ~7.21!

The expectation value of the integral is unity for a single-photon pulse and the total torque on the dielectric agrees
expected transfer of angular momentum in Eq.~7.2!.

The total torque on the dielectric at timet is represented by the torque operator

Ĝz~ t !5E dr ĝz~r ,t !, ~7.22!

analogous to the force operator defined in Eq.~5.3!. The expectation value of this operator for the single-photon wave pa
is evaluated in the same way as that in Eq.~7.9! with the result

^1u:Ĝz~ t !:u1&5
4\~ l 1s!h

@~h11!21k2#~h21k2! H ~h21k221!
c

L S 2

p D 1/2

expF2
2c2t2

L2 G1
v0k

h
expF2

2v0kt

h GerfcF2
21/2ct

L G J .

~7.23!

The large bracketed term in this expression is similar to that in the total force expectation value~7.9!, except that the latter ha
one-half the ratio of surface to bulk contributions. With allowance for this change, the time dependences of the two
butions to the total torque can be seen from Fig. 2 of@1#.

The time-integrated torque, or total angular-momentum transfer to the dielectric, is

E
2`

`

dt^1u:Ĝz~ t !:u1&5
4\~ l 1s!h

~h11!21k2 H h21k221

h21k2

surface

1
1

h21k2

bulk
J 5

4\~ l 1s!h

~h11!21k2

total

. ~7.24!

The total transfer again agrees with that given in Eq.~7.2!. The energy transfer is given by Eq.~6.14! with h051, so that the
transfer of angular momentum per transmitted\v0 photon is

\~ l 1s!H h21k221

h21k2

surface

1
1

h21k2

bulk
J 5\~ l 1s!

total
. ~7.25!

The bulk component of the angular momentum in a lossless dielectric is thus reduced by a factorh2 relative to its free-space
value. However, the torque on an object immersed in the dielectric cannot be deduced from these results but re
additional calculation for a three-component system, as in the corresponding problem of the transfer of linear momen@1#.
013806-13
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VIII. DISCUSSION

The first stage in the force calculations reported here
the quantization of the radiation field associated w
Laguerre-Gaussian modes in dielectrics. The field opera
so derived extend the usual results for uniform plane-w
modes to a more complicated mode structure that co
sponds reasonably closely to the light beams used in m
practical observations of radiation pressure and torque
fects. The calculations could in principle be performed w
the use of classical fields but the quantum version has
additional complication or difficulty and it provides results
terms of forces per single-photon wave packet, which is v
convenient for interpretation of the overall effects. The
sults reported here are restricted to the mean values o
forces, which scale linearly with the mean photon numb
for more intense light beams. However, the quantum the
also allows for future calculations of the force fluctuatio
in, for example, the nonclassical light beams considered
use in some schemes of gravitational wave detection@19#.

The calculations are all based on the standard expres
for the Lorentz force and there is no reliance on any assu
tions about the magnitudes of the linear and angular m
menta of light in a dielectric. Theirfree-spacemagnitudes
are used to derive expressions for the transfer of momen
the dielectric in Eqs.~7.1! and~7.2!, and these are confirme
by subsequent calculations of the Lorentz force compone
e

-

a
to

b

v
sl
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The main aim of the work is the understanding of the forc
caused by the passage of light from free space into a die
tric and, in particular, the division of the integrated force in
surface and bulk contributions. This separation is made p
sible by the time resolution of the longitudinal and azimuth
forces as a single-photon pulse passes through the su
and is subsequently totally attenuated in the bulk. The for
exerted by light on dielectric samples are measurable qu
tities, whereas the momenta often assigned to the light b
or to individual photons in dielectrics are not directly obse
able. Indeed, it has been shown@1# that different measure
ments of the longitudinal force can produce quite differe
values of the apparent linear photon momentum in a die
tric.

The nature of the longitudinal force exerted by the sing
photon Laguerre-Gaussian pulse and the correspon
transfer of linear momentum is similar to that for unifor
plane-wave modes discussed previously@1#, but some addi-
tional comments can be made. Consider again the total
mentum transfer derived in Eqs.~7.1! and~7.10!. This can be
divided into contributions from the reflected and transmitt
components of the single-photon wave packet, as the
flected pulse component transfers a momentum 2\v0 /c, and
the remainder is the transfer from the transmitted pho
component. The reflected photon component is entirely a
face contribution, so we can combine Eqs.~7.1! and~7.10! as
2\v0

c
uR~v0!u2

reflected

1
\v0

c
~12uR~v0!u2!

transmitted

5
2\v0

c H ~h21!21k2

~h11!21k2 1
2~h21!

~h11!21k2

surface

1
2

~h11!21k2

bulk

J . ~8.1!
rges

in-

thal
o-

Eq.

tri-
The left-hand side is a rearrangement of the left of Eq.~7.1!
to display the reflected contribution and the right-hand sid
a rearrangement of the right of Eq.~7.10! to show the re-
flected surface contribution~first term! and the transmitted
surface and bulk contributions~second and third terms, re
spectively!. The transmitted energy is given by Eq.~6.14!
with h051 and the transmitted contributions to the line
momentum transfer to the dielectric per transmitted pho
are therefore

\v0

c H h21

h
surface

1
1

h
bulk

J 5
\v0

c
total

, ~8.2!

independent ofk.
The surface momentum transfer from Eq.~8.2! can be

used to obtain the shiftDZ in position of a transparent sla
of refractive indexh, massM, and thicknessD with antire-
flection coatings as a normally incident single-photon wa
packet passes through. Thus the velocity imparted to the
by the above surface momentum is
is

r
n

e
ab

V5
\v0

Mc

h21

h
~8.3!

and the time of flight through the slab is

T5hD/c. ~8.4!

The slab comes to rest again after the wave packet eme
from the rear surface and the final shift in slab position is

DZ5VT5\v0~h21!D/Mc2, ~8.5!

in exact agreement with a calculation of the shift by an E
stein box theory@20#.

The Laguerre-Gaussian pulse also exerts an azimu
force and there is a corresponding transfer of angular m
mentum given in Eq.~7.2! or Eq. ~7.24!. A remarkable fea-
ture of the transfer is the proportionality tol 1s, despite the
distinct provenances of the orbital angular momentum in
~2.12! and the spin angular momentum in Eq.~2.11! from the
spatial and polarization parts of the vector potential~2.1!,
respectively. The angular momentum transfer has no con
6-14
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bution from the reflected component of the single-pho
wave packet and the total transfer of angular momentum
the dielectric comes entirely from the transmitted comp
nent. Thus the separation of the latter into surface and b
transfers, analogous to Eq.~8.2!, is obtained directly from
Eq. ~7.25! as

\~ l 1s!H h221

h2

surface

1
1

h2

bulk
J 5\~ l 1s!

total
, ~8.6!

wherek is set equal to zero for the transparent slab.
The surface angular momentum transfer can be use

obtain the angular rotationDF of the dielectric slab, whose
moment of inertia around thez axis is denotedI, as the wave
packet passes through. Thus the angular velocity imparte
the above surface angular momentum is

V5
\~ l 1s!

I

h221

h2 ~8.7!

and the total rotation after the slab comes to rest again i

DF5VT5
\~ l 1s!D

Ic

h221

h
. ~8.8!

This expression also agrees exactly with the result of an E
stein box theory@20#.

The magnitudes of the linear and angular momenta
ried by light in dielectric media have been topics of deb
and controversy over many years@5#. Different values of the
momenta appear to follow from different formulations of t
L

P

01380
n
to
-
lk

to

by

n-

r-
e

energy-momentum properties of the electromagnetic field
dielectrics by Abraham, Minkowski, and others. All the
authors derive equivalent momentum-force conservation
lations but with different identifications of the momentu
density, momentum current density, and force@21#. The dif-
ferent formulations validly describe experiments on t
transfer of momentum between field and dielectric wh
properly applied. The Lorentz force components for sing
photon pulses of light in dielectrics calculated here are in
pendent of any specific formulation of the energ
momentum tensor, as are the results for the shift and rota
of a transparent slab derived above. For the transparen
electric, it is seen from Eqs.~8.2! and ~8.6! that the bulk
components of the linear and angular momenta are eq
respectively, to\v0 /ch and \( l 1s)/h2. However, it is
emphasized that these momenta are deduced from result
rived here for the radiation pressure and rotational forces
an effectively semi-infinite attenuating specimen and for
shift and rotation of a transparent dielectric slab. Any attem
to measure them within the bulk dielectric would require t
detection of the forces exerted by the light on some ad
tional physical component not included in the present theo
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