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Theory of the forces exerted by Laguerre-Gaussian light beams on dielectrics
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The classical theory of the electromagnetic field associated with paraxial Laguerre-Gaussian light is gener-
alized to apply to propagation in a bulk dielectric, and the theory is quantized to obtain expressions for the
electric and magnetic field operators. The forms of the Poynting vector and angular momentum density
operators are derived and their expectation values for a single-photon wave packet are obtained. The Lorentz
force operator in the dielectric is resolved into longitudinal, radial, and azimuthal components. The theory is
extended to apply to an interface between two semi-infinite dielectric media, one of which is transparent with
an incident single-photon pulse, and the other of which is weakly attenuating. For a pulse that is much shorter
than the attenuation length, the theory can separately identify the surface and bulk contributions to the Lorentz
force on the attenuating dielectric. Particular attention is given to the transfer of longitudinal and angular
momentum to the dielectric from light incident from free space. The resulting expressions for the shift and
rotation of a transparent dielectric slab are shown to agree with those obtained from Einstein box theories.

DOI: 10.1103/PhysRevA.68.013806 PACS nuntber42.50.Ct, 42.60.Jf

I. INTRODUCTION reaches any exit or reflecting surface. The pulse length is

taken to be much smaller than the attenuation distance so

The main purpose of this paper is a calculation of thethat the calculation can separate the contributions to the
Lorentz forces on a dielectric produced by a pulse offorces from the passage of the pulse through the surface and

Laguerre-Gaussian light. The calculation generalizes earlidf®™m its subsequent attenuation in the bulk dielectric. Par-

work on the radiation pressure associated with a plane-wav%_cmar attenuation is given to the longitudinal and azimuthal

pulse of uniform cross-sectional intensifg], which pro- orces, as they determine the transfers of linear and angular

duces only a longitudinal force on the dielectric in the direc-momentum to the dielectric. The magnitudes of these mo-

tion of propagation of the light. Laguerre-Gaussian light alsomenta hgve begn a topic of controversy for some t[ﬁ]e
bropag g g 9 nd, as in previous workl], the calculations are restricted

exerts a longitudinal force but there are additional transversg to determinati fthe L tr ithout
forces in the radial and azimuthal directions. The longitudi- ere to determinations of the Lorentz forces, without any
ssumptions of the photon momenta in dielectrics.

nal force causes a radiation pressure when the pulse in% . ) : .
P b The classical properties of Laguerre-Gaussian light are

pinges on a dielectric surface, with a corresponding transfer X . .
of linear momentum from light to dielectric material. The summarized in Sec. Il and the theory is extended to cover

radial, or gradient, force acts towards the radius of maximu Lop?r]gatlon W|th|nt.an d |.nf|g|te Iltlnlstsless q&electnc medmrfn.
intensity in the pulse cross section and it has a confining, o € Ieory 1S guantized in Sec. 117 1o provide expressions for

trapping, effect on dielectric particles immersed in a liquid. h_e electric and magnetic field operators in the infinite dielec-

The azimuthal force causes a torque on the dielectric, with g'c' Thg nprmalization of thg field operators is ve_rified by
corresponding transfer of angular momentum from pulse t etermination of the expectation value of the Poynting vector

dielectric. The longitudinal and azimuthal forces find practi-Oper"?‘ttor for ismgle-phstor: %ullses. Th(TVar_;_%UIT mortnefntum
cal applications in the optical tweezers and spanners used nsity operator Is constructed in Sec. 1v. 1he Lorentz force

position and rotate biological specimens for examination unoperator for an infinite isotropic dielectric is resolved into

der a microscope. The azimuthal force is of strong curren ongltudlnal,. radial, qnd a_2|muthal components in Sec. V.
interest[2—4). he theory is generalized in Sec. VI to apply to an interface

The calculation presented here uses the simplest possiblf’gtween wo s.em|-|nf|.n|t<.a d|eleqtr|c media, one of which is
nsparent, with an incident single-photon pulse, and the

optical and dielectric systems that preserve the characteristie2

properties of the three force components and illustrate theﬁ)ther. of Wh'Ch is weakly attenuating. The surface_ and_ bulk
natures and magnitudes. Thus the Laguerre-Gaussian mo gniributions to the Lorentz force on the attenuating dielec-
function of zero radial index is assumed. with a beam waist''C for a pulse incident from free space are calculated in Sec.

much larger than the wavelength, and the evaluations ar II. Particular attention is given to the transfers of longitu-
restricted to longitudinal positions close to the focus. Th inal and angular momentum from the light to the dielectric.

pulse is assumed to contain a single photon so that the var he con_clusmns_ of the wor_k are dlsqusseq in Sec. Vil and
ous quantities are conveniently normalized per photon. Th € predlct(_ad shift and rotation ofa d_|elecfcr|c slab are _shown
expectation values of interest are determined first for a loss© adree with the results of simple Einstein box theories.
Iess'l'so'grqplc dielectric of mflnlte_exten_t an_d secondly for a Il PARAXIAL MODE FUNCTIONS AND

semi-infinite V\_/eakly attenuating dlelectr_lc with a flat surface_. ELECTROMAGNETIC EIELDS IN DIELECTRICS

The propagation direction of the pulse in the latter system is

assumed to be perpendicular to the surface and the weak The positive-frequency part of the Lorentz-gauge vector
attenuation ensures that the pulse within the dielectric nevgrotential in a material with real refractive indexw) for
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Laguerre-Gaussian light in the form of a paraxial wave of k=n(w)o/c and |a|?>+|B|?=1. (2.2
frequencyw that travels in the positive direction is

AL (r,t)=Ag(aX+ BY)uy (Nexp —iwt+ikz), (2.1)

We consider only the simplest form of mode function, for a
whereA, is a complex amplitudés andy are unit vectors, radial indexp=0, given approximately by

- (ﬁ)lﬂ ' O i+ 2], 1012 2.3
Uk,|(f)—m Wo p"lex w2z ilp—i(]lf )Z_R’ =0*x1,+2,.., (2.3

wherer=(p, ¢,z) in cylindrical polar coordinates arzk is the Rayleigh range, related to the beam waigthy
Zp=3kwj. (2.4

The z coordinate is measured from the position of the waist and the f@r8) is valid whenz<zy so that terms involving
(z/zg)? and higher powers can be neglected. The mode function is normalized,

% 2
fo dpfo d¢ plug(r)[?=1, (2.9
and it satisfies the paraxial wave equation

2+ 2+2'k(9 = (72+1(7+ & -i-2'k(7 =0 2.6
w2 a2 |5uk1|(r)— a2t o T o IEUkJ(F)—, (2.6

where the paraxial assumption The coefficients in the polarization factor in E§-1) can
be used to form the spin angular-momentum quantum num-
|auy,(r)/az|<kuy,(r) (2.7 ber of the beanf8],

or o=i(aB* —a*B), (2.11
k> 1Mo (2.8 which takes the values 1 for right and left circularly polar-
applies. In words, the beam waist is assumed to be mucﬁoe:(léggtﬁgsdtggor linearly polarized light. The mode func-
) S . . property
larger than its wavelength. In considering the paraxial equa-
tion after substitution of the approximate soluti¢h3), the
definition (2.4) and the limitz<zg are used. The above re-
lations reduce to those for Laguerre-Gaussian modes in free dp
spacd 6,7] for n(w) =1, except that several previous papers
have the wrong signs for the second and fourth terms in thandl is identified as the orbital angular-momentum quantum
exponent in Eq(2.3 when the form exptiwt) is used for number of the bearf2,9]. These contributions to the angular
the time dependence. These two terms in the exponent afaomentum of the beam, defined relative to its direction of
needed for the mode function to satisfy the paraxial wavepropagation, are considered in Sec. IV.
equation but they do not contribute to most of the quantites Maxwell's equations for the positive-frequency fields in a
calculated below. homogeneous and isotropic dielectric are

The strength of the mode function is given by

Uy (r)

:”UKJ(I’) (212

| V.-E*=0, VXE"=iwB* (2.13
I|+1
|uk,l(r)|2:W|ﬂ+_1)P2“| exp—2p°/wWg), (29 g
independent ofp andz. The mode clearly has zero strength . . 7 n
on thez axis atp=0, except forl =0, and its peak strength V-B'=0, VXB'=-lo7E". (214

occurs at the radial coordinatg given by

- ) The gauge condition on the vector and scalar potentials in a
po=7z|!|wo. (210 dielectric takes the form
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71 deL(r,t) . _J“ i vz . nz
V-A (r t) T =0, (215) B (r,t)— o dw m a(w)ex lw|t ?
. . au ~
and in free space, wherg=1, this becomes the usual Lor- —inw(BX—ay)u+c ,3—— a—y 7
entz gauge condition. The positive-frequency part of the sca- y
lar potential is[10] (3.2
ic2 i wherea(w) is the photon destruction operator, with commu-
@ (r,t)=— %V.Af(r’t): — FV.Af(r,t)_ tation relation
2.1 R At, ,
(210 [4(0).8"(0)]= 80— o). 33

The electric and magnetic fields are obtained from the potenthese quantized field expressions reduce to those for a uni-
tials as form plane wave of transverse cross sectioim a dielectric
[12] when the mode function is replaced by f/A. They

IA[ (1,1) c satisfy the operator Maxwell equations similar to E@s13

Ef(r,it)=— T—Vgof(r,t):Ao— ik(aX+ BYy)u and (2.14) and their normalization is shown below to give
K the correct representation for the energy in a single-photon
Ju wave packet.
_( <Py ) ]exp(—ithrikz) (2.17 The expression$3.1) and (3.2) generalize the classical
fields(2.17) and(2.18 to excitations that include a spread of
frequencies, as is needed to represent a wave packet. Thus, a
and single-photon pulse is represented by the state vétigi2]
_ At
B*(r,t):VXAf(r,t)on[—ik(,rﬂ—ay)u |1>‘fd“’§(“’)a ()10}, @49

_ ) ) where |0) is the vacuum state. Use of the photon operator
+ ’Bﬁ_x_ QW Z exp—iot+ikz), commutation relation shows that the single-photon state vec-
tor satisfies
(2.18

a(w)|1)=¢&(w)|0). (3.5
whereu is shorthand fouy (r). These field expressions ne-
glect terms in each component that are smaller than thosghe function&(w), which describes the spectrum of the pho-
retained in accordance with the paraxial assumption in Ecton wave packet, is normalized,
(2.7 or Eq. (2.9). Thez components are smaller than tke
andy components by a factor of orderkl,. It is readily
verified that the field92.17) and (2.18 satisfy Maxwell’s f do|é&(w)|?=1, (3.6
equations(2.13 and (2.14). The Cartesian derivatives are
converted to polap and ¢ derivatives in the usual way. . o . )

and a simple choice is the narrowband Gaussian function of

I1l. QUANTIZED PARAXIAL FIELDS AND POYNTING

spatial lengthL,
VECTOR L2 \U4 L2(w— wp)?
(w) ( exp{——], c/lL<wq.

The field operators corresponding to the classical fields in | 2mc? 4c?
Egs.(2.17 and(2.18 are obtained by the usual quantization (3.7
procedurg 11] as

The narrow spectrum ensures thatan be set equal to the
central frequencw, of the wave packet in such quantities as
the Rayleigh rangé2.4).

1/2
é(w)exr{—iw(t—n—z>

= f (4’778 C77w

c The normal-order Poynting vector operator is
, 5 Ju au\ _ R . . R .
X{inw(aX+ BY)u—c a—+,8—>2] (3.1 :S(r,t):=goC?E(r,t)XB¥(r,t)—=B~(r,t) XE*(r,1)},
ax Ty 38
and with z component
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7' This expression shows the expected form of the total energy
:S,(r.t): :—J dwf do'( ww')l/z( )1 ———mpa(w)a(e’)  flow past each point on the axis as the quantuniw
weighted by the photon-number operator at frequancgnd
z it justifies the normalization of the field operatdf1) and
Xex;{ i(w—o)t—i(npo—7" ® )C u*u’, (3.9  (3.2. Similarly, the integration of the Poynting vector opera-
tor over the entire axis gives

whereu’ is shorthand fou,, (r) with k"= n(w")w’/c and

it is assumed that the coefficientsand 8 are independent of A N At/ A 5
w for frequencies within the excitation spectrujtw). There _dzs(ry:= . dofiwve(w)a'(w)a(w)|u|
are also contributions to the Poynting vector operator, omit- (3.12

ted from Eq.(3.9), that contain integrands with terms in
a(w)a(w’') and a'(w)a'(w'). The expectation values of
these terms vanish for the single-photon states defined i
Egs.(3.4—(3.6). For more general states in which these ex-
pectation values do not vanish, their contributions oscillate at
optical frequencies and they can be neglected. dr:S,(r,t): = fmdw hove(w)a(w)a(w).

The expressiori3.9) simplifies, when integrated over all 0
time, to give (3.13

and integration over the mode cross section gives the inte-
rated energy flow over all space as

fx dt:S,(r,t): = foodwﬁwé’r(w)é(w)|u|2. (3.10  The contribution of each frequency component to the flow is
o 0 thus weighted by the appropriate group veloaity(w), de-

fined b
Use of the normalization conditiof2.5) gives the integrated Y
energy flow over the complete mode cross section as 1 ﬁ(n(w)w/c)
(3.19
o 2m o A o vo(w) dw
f dpf d¢pf dt:Sz(r,t):=f dofhwal(w)a(w).
0 0 —o 0
(3.11 The Poynting vectok component operator is
|
al(w)a(o’) z N, L), o
S(r,1): =—j dwf do’ —,)mex i(w—o)t—i(go—7" o )C ) 7|a| +|8]* |u* o
_1 ﬁ_u, 77_’ 2 2 gu* ’ 177_’ * _ % Ju* ’
aB* 7 @ ,B)U 7y +o’ |a|?+] 8] ) gVl +w naﬁ a* B oy u (3.19

and the expression for thecomponent is the same but with the exchanges of symbely and a« 8. The z component
exceeds th& andy components by a factor of ordew,. The resulting time-integrated energy flows in thandy directions
are

= (7, ke o [ ou* *0u) alul?
J_wdt.Sx(r,t).—fO dwﬁa (w)a(w)yi o u—u X +o 7y (3.1
and
° = he [ ou* L u lul?
f_mdt:sy(r,t):zfo dwﬂa (w)a(w)yi 7y u—u W -1 (3.17)

It is straightforward to perform the differentiations in these expressions by conversion to polar coordinates and use of the mode
function(2.3). The terms all contain either sifior cose, so that integration over the mode cross section as iIfE#f]) gives

f:dpfohw pfidt:éx(r,t): = Edpfozwdqspfldt:éy(r,t): =0. (3.18

The resultg3.16) and(3.17) are expressed more compactly in terms of radial and azimuthal components of the Poynting
vector, defined by

S,=S,cosp+S,sing and S,=-S,sing+S, cose. (3.19
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The time-integrated energy flows in the radial and azimuthal directions are thus found to be

jw 48 (r 1 ___J'ocd hc ., au* *au)_J'ood hc . dpz ., 35
o dt (1, 1): =i . w277a (w)a(w) i u—u )~ s ® . a'(w)a(w) kwé|u| (3.20
and

Joc dE,(r 0 de ﬁcAT( a(0) I| 2 oa|u|2) de hCAT( \a(w) I (7|I|+2(Tp>| 2 (321

:Sy(r,t):= o—2a(wa(w)|—|ul*—5——|= o—2a'(w)a(w)| ———+—]|u|" :
.Y o 7 p 2 dp o 7 PP W
|

This azimuthal component is smaller than the time-integrated . hwoC (2 12 2¢c2 nz\? )
z component in Eq(3.10 by a factor of order Kw,, while (1]:8,(r,1):[1)= L (—) expg — Tz‘(t— ?) |ul?,
the radial component has an additional reduction faniny . (3.23
The spin-dependent terms in the azimuthal component cancel '
at p=pg, given by Eq.(2.10. where the narrow spectrum justifies the approximation of

The relative magnitudes of the three time-integratedreplacingo?in the integrand byué/z.The peak of the wave

Poynting-vector components in Eg$3.10, (3.20, and packet at time lies at positiorz= ct/ 5. The time integral of
(3.21) agree with the results of a classical calculati®]. It Eqg.(3.23 is
is seen that the effect of the dielectric wigh>1 is to reduce % .
the transverse components of the Poynting vector by the fac- f dt(1]:S,(r,t):|1)=Awo|ul? (3.29
tor 1/n relative to the longitudinal component. The energy in o
a Laguerre-Gaussian beam in a dielectric therefore flowgng the normalization in Eq2.5) confirms the total energy
more closely parallel to the axis than in a similar beam in contenth w, of the photon wave packet.
free space.

The expectation values of all of the operators in the IV. ANGULAR MOMENTUM DENSITY
present section for the single-photon pulse defined in Eq.
(3.4) are given by the same expressions as the operators The form of the linear momentum of the electromagnetic
themselves except for the replacemeitéw) — £* (w) and  field in a dielectric is a matter of debate and controvégy
a(w')—&(w'). The integrals in the expectation values areand this uncertainty applies equally to the form of the angu-
difficult to evaluate because of the dispersionjim), whose  lar momentum. The effective values of these momenta are
main role in integrations over is the provision of an addi- discussed in Secs. VII and VIl in terms of their transfers to
tional factorye(w) relative to integrations over the time, as an attenuating dielectric. We follow here the conventional
in Egs. (3.10 and (3.12. If the dispersion is ignored, the approach2,9], with the angular momentum of the electro-
expectation value of thecomponent Poynting vector opera- magnetic field per unit volume defined as

tor (3.9), for example, can be written j=eor X(EXB)=rx9/c?, 4.9
. h % "™ whereS is the Poynting vector. Thus trecomponent of the
(1:8(r0:|1)=5— fo do 0 %(w) normally ordered angular-momentum density operator is
o2\ 2 Jr=x:S, 1 —y:8)/c?=p:S,:/c?, 4.2
Xex;{—iw(t— ?) u (322 \where Eq.(3.19 has been used. Substitution into the first

form in Eq. (4.2 from Eq. (3.15 and the corresponding
In the expressiof2.3) for u, » appears only in thifactor in ~ €xpression for thg component gives a complicated expres-
the second term of the exponent and this term is negligiblsion for :j,:.

compared to th&zterm in the exponent of Eq3.22). Thus If the dispersion in the refractive index is again ignored,
u can be taken outside the integral and insertion of theand with a transformation to cylindrical polar coordinates,
Gaussian spectrum from E¢B.7) then gives the expression simplifies greatly to

o - * * ' 1251 A ' : PN _77_2
Hr,t): 4chf0 dwfo do'(ww')"a" (w)a(w )exp{l((u 10) )(t c
w+o' 1 Ju* 1 au’
X1 —u*u'—op| — u'+ —u*——1| 1, 4.3
(010} w dp o ap

where the property2.12 has been used. The time-integrated angular-momentum density operator is accordingly
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|ul?

» tj(r,t):= . wZCn(w)a(w)a(w) |ul*—ap p

, (4.9

where the dispersion in the refractive index can be restored in the integrated expression. This is the quantum-mechanical
version of the classical expression for the angular-momentum dg@sifyote the different spatial variations of the orbital and
spin contributions, with the former proportional to the mode strength and the latter to its radial gradient. The spin thus
contributes only in the presence of a transverse variatia|fand it vanishes ab=pg [14].

The square modulu®.9) of the mode function2.3) has the property

d|uy,(n)|? 2p?
p PO 2 -2 a1 P2 =200 Dl s, 9

so that Eq.(4.4) can be written

o * h 20p?
f_wdt:jz(r,t):=fo do o7 (@)aw) |—0'|||+—\7\-Igp—)|u|2. 4.6

This result agrees with the form of time-integrated azimuthal Poynting vector iN3E2{) and its relation(4.2) to the
angular-momentum density. Integration over the complete mode cross section with use of the second expression on the right
of Eq. (4.5 gives

o 2m s h(l+o) (= 1 R
J'o dpf0 d¢pJ’,wdt'JZ(r’t)'_ c J'o deaT(w)a(w). (4.7
The analogous spatial integral of E4.3) gives
f dr:]z(r,t):=ﬁ(l+a)fowdwz;EZ;éT(w)é(w), 4.8

where the group velocity is defined in E@.14). The free-space orbital angular momenttitnand spin angular momentum
ho are thus affected in the same way by immersion in a dielectric medium.

V. FORCE OPERATOR

The force exerted on the dielectric by the light beam at positias determined by the Lorentz force-density operator,
defined as a sum of electric and magnetic contribut|dig

aﬁ(r,t)

fr,)=FE(r,t)+FB(r,t)=[P(r,t)- V]E(r,t)+ S

X B(r,t). (5.2

The polarizatiorP(r,t) is expressed in terms of the electric field operator via the dielectric function, equal to the square of the
refractive index, and its form is obtained from E§.1) as

Pt(r.t)= f:dw<

v . nz\ (. ~ au  du\_
(n°—1)a(w)ex —|w(t—?) (lnw(ax+ﬂy)u—c(a5+,8@>z}. (5.2

4acyio

The total force on the dielectric at tintds represented by the force operator

f:(t)=f drf(r,t). (5.3
It is convenient to separate the force density into longitudinal, radial, and azimuthal components.

A. Longitudinal component

Thex, y, andz components of the force-density operator are straightforwardly but tediously obtained by substitution of Egs.
(3.2), (3.2, and(5.2) into Eq.(5.1). For thez component, it is found that the electric contribution in Eg}1) is smaller than
the magnetic contribution by a factor of orddww,) ~2 and the former can be neglected in view of E2.8). The normally
ordered magnetic contribution alone gives
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z(rt)__if de( :

X[on' (n°~1)—w 7(n'?~1)]u*u’. (5.9

This expression reduces to that for the force-density operator for a uniform plane wave in a dispersionless igléciyic
is assumed independent of frequency ani$ replaced by 1/A. In general, the normally ordered part of the total force
operator(5.3) vanishes,

1/2 z
aT(w)é(w’)exr{i(w—w’)t—i(nw— 7w’ g

:Ifz(t):zf dr:f,(r,t):=0, (5.5
and the time integral of Eq5.4) also vanishes,
f dt:f,(r,t):=0. (5.6

With dispersion neglected, E¢.4) can be written in the form

fr.b): _(4L2_):tj d‘*’f do' (ww’)l’zaf(w)a(w’)exi{l(w w’)(t—?)

u*u’. (5.7

The expectation value of this operator for the single-photon wave packet is obtained by the same method as used for the
Poynting vector in Eqs3.22 and(3.23 with the result

. 2hwoc(n?—1) (2|22 z 2¢? z\?
<1|;fz<r,t>;|1>:_%(;) (t_"_)ex;{_?(t_"_)

The distribution of the force density in they plane is determined by the mode strengtlf. Integration of Eq(5.8) over the

plane gives the same totalforce as derived previouslyl] for a uniform plane wave. The force density is antisymmetric
around the peak of the pulse, with positive values in front and negative values b&HiBld The dielectric experiences a locall
stretching force that travels with the pulse, centered on its peak, but the spatially integrated force vanishes, in accordance with
Eq. (5.5.

lul?. (5.8

B. Radial component

The electric and magnetic contributions to thandy components of the force-density operaf6rl) have the same order
of magnitude, being smaller than taeomponent calculated above by a factor of ordemnd) ~*, and both must be retained.
The resulting expressions are quite complicated and it is acceptable to simplify them by neglect of dispersion in the refractive
index. It is convenient to give results, not for tkendy components, but for the radial and azimuthal components defined by

f,=f cosp+Tf,sing and f,=—TF,sinp+f,cose, (5.9

similar to the Poynting vector decomposition in £E§.19. The radial component is

. f(np?— o o
fp(r’t)::(éli—cnl)fo dwfo dw'(a)w’)llzéT(w)é(w')ex%i(w—w’)(t— 77—2>

c
o' Ju* o  ou’ (w—w')? u*u’
O M L , (5.10
w dp 0} ap 0w p
and its time integral is
ﬁ 2
f dt:f (r.t): (’7 )(|p| p>| |2f do 0a'(@)a(e), (5.1
where thep derivative of|u|? is taken from Eq(4.5).
The expectation value of E@5.10 for the single-photon wave packet is
- ﬁwo(nz—l)( d 0'| 072)( F{ 2¢? ( 772) )
1:f (rt)|l)=—m—— | —+ —— ex t——| ||ul?}. 5.1
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The time-derivative contribution is very much smaller than that of the radial derivative on account of the inequalit{3im)Eq.
and it can safely be neglected to give

2_ 2 2
<1|:fp(r,t):|1>=—2ﬁw0(77 1)(“' 2p>ex;{—zc( 7]2)

—— t
V2Tl p W_zo =
The radial force density is independent of the spin quantum numtzerd it is localized within the pulse. It vanishes at the

radiuspg defined in Eq(2.10), it is positive forp<pg, and negative fop>p,. The radial force thus compresses the dielectric
towards the ring of radiugg.

lu|?. (5.13

C. Azimuthal component

Use of the definition in Eq(5.9) gives

R h(n?—1) (= (= z
:f¢(r,t):=(47;—c77)fo deO dw’(ww’)l/zéT(w)é(w’)exr{i(w—w’)(t—%) (00"
o+’ u*u’ 1 ou* 1 o
e e e T S 1 (5.14
0w p w dp w dap

The angular-momentum density operator in Ef3) and the azimuthal force density satisfy a form of continuity equation

. Jd .
p:f,f,(r,t):+(772—1)E:jz(r,t):zo. (5.15

The time integral of the azimuthal force density vanishes,

F dt:f,(r,t):=0. (5.16

The expectation value of the azimuthal force density for the single-photon wave packet is

. Afc(np?—1) [ 2\¥? z 2¢? z\?
<1|:f¢(r,t):|1>=—7]—|7_73(;> (t—%)exp{—ﬁ(t—%>

PP W

(5.17

I o|ll] 20p
|ul?.

The azimuthal force density thus shares the property of the longitudinal comp@@nof having balanced positive and
negative values in the front and rear of the pulse. The pulse thus carries a localized twisting force but there is zero total
azimuthal force on the bulk dielectric.

VI. REFLECTION FROM DIELECTRIC SURFACE

Suppose now that space is divided into two regions with a dielectric of real refractive infey atz<0 and a dielectric
of complex refractive index

N(w)=n(w)+ik(w) (6.1
atz>0. The theory outlined so far applies to the dielectriea0 with » replaced byn, and the real wave vectdrreplaced
by

koz 7]0((1))(1)/(: (62)
The complex wave vector at>0 is denoted
k=n(w)w/c=[n(w)+ik(w)]wl/c. (6.3

The dielectric az>0 cannot in reality be of infinite extent but its thickness is assumed to be much larger than the charac-
teristic attenuation distanag wx(w), so that there is no need to allow for waves reflected from its right-hand boundary. In
addition, the attenuation distance is assumed to be much longer than the pulsellergtthat surface and bulk effects
resulting from the entry of the pulse into the dielectric can be separated.

Suppose that an incident Laguerre-Gaussian beam, whose electric and magnetic field operators are givé8. bydads.
(3.2 with the above replacements, impinges normally on the dielectric interface from the left. The amplitudes of the reflected
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and transmitted beams are determined by the boundary conditiarslain the usual way. Solutions for the same problem but
with an incident transverse plane wave have been given previplidlg,17. The incident beam considered here has field
components in all three coordinate directions and it is necessary to apply both tangential and normal boundary conditions. The

x andy components 0E+(r,t) retain the same sign in the reflected beam butztbemponent changes sign, while thand

y components oB*(r,t) change sign but the component retains the same sign in the reflected beam. The field operators at
z<0 are thus found to be
exp i
c

] (6.9

1/2

A(w)exp(—i wt){

(9Uk (9Uk
7

i now(a7(+,8')7)uko— ( W+ﬁ_y

- h
+ — -
ET(nD f dw(4wsoc7]0w

O"U,ko ﬁu*ko

. - ~ NowZ
+R(w) |now(ax+ﬁy)u_ko+c a— +B oy Zlexp —i
and
I llZA . . ~ auko auko NowZ
BT (r,t)= j ol 7 — c377 ” a(w)exp —iwt) —|7;ow(,87<—ay)uk0+c B pva 3y Zlexp i c
. - Mok i) _ . MowZ
R(w)|inow(BX—ay)u_y +c| B @ oy zlexp —i— , (6.5

where the subscripts on the mode functiodefined in Eq.(2.3) distinguish the incident and reflected beams and

no(@) —N(w)
Rlw)=——7""—7""— 6.6
(@)= (@) n(w) €9
is the usual reflection coefficient at the interface.
The corresponding field operatorszt0 are
EX(r,t —fmd % o t— 22 + S P
(r,t)= o w W a(w)ex lw c (w) Iw(ozx ﬂy)uk ( ) X 'BW 4 ( 7

and

112 ®
é(w)exp{ —iw(t— I’](T))

oL _ * ( f &uk ﬁuk)~
B (r,t)—JO do m T(w)] —in(w)o(BX—ay)ut+c| B——a—|Z;,

ax ay
(6.9
where the occurrence of, in the square-root factors is a consequence of the boundary conditions and
270(w)
T(w)=———"7— 6.9
()= @) +n(w) ©9

is the usual transmission coefficient at the interface. Continuity of energy flow at the interface is ensured by the relation

7ol 1= |R(@)[2]= 7| T(w)|?. (6.10

It is not difficult to verify that the standard tangential and normal boundary conditions are all satisfied by the field operators
in Egs.(6.4), (6.5), (6.7), and(6.8). The forms of the field operators reduce to those givdijwhen the incident light beam
is a uniform plane wave. The complete field operators also contain noise contributions associated with the material loss
[16,17], but these are omitted from the above expressions as they do not contribute to the quantities calculated here.

The Poynting vector operator in the dielectriczat 0 is obtained in the same way as that in Sec. Il but with the field
operators in Egs(3.1) and (3.2) replaced by those in Eq$6.7) and (6.8). Thus thez component operator in Eq3.9) is
replaced by

dw’(ww’)”zéT(w)é.(w’)exp{i(w—w’)t—i(n*w—n’w’)g T*(0)T(w')(n'+n*)u*u’.

(6.19

R hoo(=
S(ry:=g | do
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The time-integrated Poynting vector is

j:dt:éz(r,t): = J:dw ﬁwa*(w)a(w)exp( -

—2wKZ
C

497
(m0+ 1)+ K

and the expectation value of this expression for the narrowband single-photon pulse is

7 |ul? (6.12

2wgKZ 4dngm
) 2 |U|2, (613)

c J(notn)’+k

where 7, 7, andx are evaluated at frequenay,. The average total energy of the pulse that enters the dielectzie @tis
therefore

fx dt(1]:5,(r,t):|1)=hw, ex;{ -

) 21 o0 ~ 4
[“ao | Tdsn [ atal8.0.0.00:10) =g (6.14
0 0 - (70

Crot M2+ K2
This radiative energy is all transferred to the dielectric as the light beam is totally attenuated in accordance with the expo-
nential decay factor in Eq6.13. Note that no energy enters the dielectrizatO via thex andy components of the Poynting

vector on account of a property analogous to that given for the infinite homogeneous dielectriq 31Bq.

VIl. RADIATION FORCE AND TORQUE ON FREE-SPACE The transfer of the energy in E.14) from the light to

SURFACE the dielectric is distributed over the bulk material in accor-
It is a simple matter to calculate the total transfers c)fdance with the exponentia_ll attenuation. By contrast, the total
linear and angular momentum to a lossy dielectric by ransfers of momentum given by qu"l). and (7.2 oceur
single-photon wave packet incident normally on its surfac artly at the .dle|'ECtI’IC surface and partly |n'the'bulk matgnal.
from free space. The free-space photon has a weII-definerg]he separation into surface an_d _bulk contributions requires a
linear momentur.rhw /c and its reflection from the dielec- o ¢ detailed study of the radl_atlo_n for(_:e_s. In order 10 sepa-
tric surface with cogfﬁcienR given by Eq.(6.6) with 7 rate_ the surface and bulk contrlbut_lons, it is assumeds#ligt

e 0 sufficiently small that the attenuation length greatly exceeds
=1 produces a momentum transfer the pulse length. Howevexk should also be sufficiently large
2hwy 7P+ 1+ K2 that the attenuation length is much smaller than the Rayleigh
(7.2 range, so that can be assumed much smaller ttzgn Thus,
the various lengths satisfy the inequalities

h(l)o 2

c [1+[R(wo)|*]= c (gt <2
where  and k are again evaluated at frequeney. This
expression is valid for the assumed conditions in which there
is no reemergence of any light transmitted into the dielectric.
The linear momentum transfer has the expected value of
2hwq/c for reflection from the perfect mirror described by
the limit k— oo,

For the angular momentum, the reflected beam has qua
tum numbers-o and —1| with respect to its-z propagation
direction. The total transfer of angular momentum to the di
electric is therefore

ZR>C/2(()0K>L>C/(1)0, (73)

where the inequality from Ed3.7) is included. It is easily
N_erified that these inequalities are satisfied for visible light
with a 10 * m pulse length and a 16 m beam waist in a
dielectric with y=1.5 andk=5%10"8. The use of a short
pulse ensures that the variations in force as the pulse passes
through the surface occur on a much shorter time scale than

) 4y the subsequent fall-off in force as the transmitted light is
(14 a)[1—|R(wo)] ]=ﬁ(|+0)(77+1) 2 attenuated.
(7.2 The three components of the force-density operéidl)

are calculated by the same methods as used in Sec. V, where
There is thus no transfer of angular momentum to a perfedhe field operators are now taken from E¢8.7) and(6.8).
mirror. The polarization operatd5.2) is replaced by

|
- 112
I5+(r,t)=J dw( eof ) (nz—l)é(w)exp{—iw(t—n—z)
0 c

4mCw Jx ady

o c| du du\_
T(w){m(axwv)u—ﬁ(a—w—)z], (7.9

wheren is the complex refractive index from E¢6.1). The expressions for the components of the force operator are more
complicated than before and it is convenient to neglect dispersion in the complex refractive index at the outset.
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A. Longitudinal component

The z component of the force-density operator can be written in the form

f,(r,t):=

mC2 |n+1|zf dwf do’(0o’)"a'(w)a(w’ )(77(|n|2 i-i-K(|I’1|2+1 wt+o')

u*u’, (7.5

z
Xexr{i(a)—w')t—i(n*w—nw')e
which generalizes Ed5.7) to the dielectric interface system. The time integral of this operator is

2
7+ K?+1 » [ 2ats sa
dt f r t) —[sz_i_—’(z“” o dw2w°a (w)a(w)eXK—ZwKZ/C) (76)

and further integration over all space gives the total transfer of linear momentum to the dielectric as

fdrd'? A L a8 7
r . t Z(r,t).—?m o w wa (w)a(w). ( 7)

The expectation value of the frequency integrabig for any form of narrowband single-photon pulse, so this expression
agrees with Eq(7.2).
The expectation value of the longitudinal force-density operator for the single-photon wave packet is obtained by the same

method as before, with the result
z 2\12 2wokz 2¢? z\?2
s o (2] o] 22222
T c c

2
wo | op . 2001 7mZ
7](|n| 1) L2 (t C L2

1-’f\ . . 1 — 4ﬁ
ATrO0 = e

Jul?.

(7.9

For a lossless dielectric withk=0, this expression reduces to the force-density expectation value ikbBy.apart from an
additional factoryT? caused by the changes in the field operators from those of an infinite medium to those for the half-space
dielectric.

The total force operator defined in E&.3) is now obtained by integration of E¢.8) only over positivez. With use of the
standard Gaussian integral, the definition of the complementary error function, and the ineq7aBtjéise total force exerted

on the dielectric by the single-photon wave packet is
2|12 2c?t? 2%t
—) exp{ - erfc{ —
T L

LZ

This total force is the same as that found for an incident plane Whyalthough its distribution in they plane is given by
the function|u|? instead of a uniform distribution over aréa The time dependence of the total force is plotted in Fig. 2 of
this reference. The first term in the large bracket of &) is the surface contribution; it acts only for timeslose to 0 as
the pulse passes through the surface and the positive force from the front of the pulse is not wholly canceled by the negative
force in the rear. The second term is the bulk contribution; it vanishes in the absence of dielectric attenuation bwt, when
#0, it shows a rapid rise as the transmitted pulse enters the medium followed by a slow exponential fall-off with decay time
n2wgk.

The time-integrated force, or the total linear momentum transfer to the dielectric, is

(&)
cl[(np+ 1)°+ K2]

WK F{ 2wkt

(1:F(0):|1)= (7;2+K2—1)Z } (7.9

f”d 1-E _1_2hw0 7?+Kk2—1 2 Zﬁ(uo 7°+1+K? -1
—w K1]:Fo(1):]1)= c (77+1)2+K (77+1)2+K c (p+1)2+k* (7.19
surface bulk total

The total transfer again agrees with that given in &ql). The energy transfer is given by E@.14) with 7»y=1, so that the
transfer of momentum per transmittéad photon is

27 7

surface bulk

. . 2 (7.10)

total

ﬁwo[ 7”?+k?>—1 1 ] _hog 7?+1+ k2

The implications of these results are discusseflirand in Sec. VIII.
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B. Transverse components

Thex component of the force operator obtained from €&ql) upon substitution of the field operators from E(&7), (6.8),
and(7.4) is

2 z
fo(r,t):= s |n+1|2j dwf do'(0o')Y% T(a))a(cu’)ex;{l(w o )t—i(n*o—nw') = ((n (|a|2
L@ Lou” n 1 ' ,our o 1 Lo, ou N o' Lot 1
w'|'8| u X n* 1) |a] IX u o' af*u* gy n* ® ap ay u (n )
y n* 1 , , ou’ N 2, o L) au* - n* [ o 1 au’ (1 o' au* o
Ww_ |a|Ua— || —|[3| VTl aBUW ;aﬁy :
(7.12

and they component is given by the same expression with the exchaftggsand e« 8. The time-integrated operators are
accordingly

*

Ju Ju
(n 1)u +(n —-1) o

fjowdt:fX(r’t)::?(n-Flﬁ u]f:dwa)é.T(w)é(w)eX;I—ZwKZ/C) (7.13

and

* - 2h 1
J; dt:fy(r,t):sz[( l)u ]f dwwaT(w)a(w)exp( 2wkzlc). (7.19

The radial and azimuthal components are defined by the reldd®sas before and the time-integrated value of the former
is obtained from Eqs(7.13 and(7.14) as

Ahwg 7*—Kk>—1

c (p+1)°+

2exp( ZwOKz/c){%—Z—]wFf dwa'(w)a(w), (7.15

f:dt:fp(r,t)::

where the limitz<zg is assumed and the derivative expression from(Edp) is used. For a lossless dielectric with= 0, this
expression reduces to the integrated force density for an infinite medium given {B.Et), apart from the additional factor
»T?. The time-integrated azimuthal force density is similarly obtained as

© 8hwg nkl lul? (= At/ a
J_wdt:f¢(r,t):= c (77+1)2+K26Xp(_2w°'<2/c)7j0 dod'(w)a(w). (7.19

This vanishes for a lossless dielectric witk= 0 in agreement with E(5.16).

The main aim of the calculation of the transverse force components is the identification of the surface and bulk contribu-
tions to the transfer of angular momentum from the optical pulse to the dielectric, similar to the above results for the transfer
of linear momentum via the longitudinal force component. For this, it is necessary to obtain the space and time dependence of
the azimuthal force density and not merely its time-integrated value given i(vBdy). The required force density is derived
straightforwardly from Eq(7.12 and the correspondingcomponent with the use of E¢.9) but the resulting expression is
extremely complicated. Considerable simplifications result if only those terms are retained that survive in the integration over
¢ that will be made in the calculation of the total torque defined in(®2 below. Thus terms in sit#hcos¢ are neglected
and, furthermore, sfnp and cod ¢ are set equal to their integrated average valugs bf addition, it is convenient to assume
that the forces will be evaluated only for narrowband wave packets so that the integrated frequermzies can be set equal
to wg, except where they appear in the combination »’. With these manipulations, the azimuthal force-density operator
reduces to

1
wc (p+1)2+ 2

. 2(p?+Kk?—1) /2l 4
F(r )= LA )(——ai>ﬁ+ 77'“"0]| |2f dwf do’'a’(0)a(w’)

7]2+ K p dp | at

(7.17

z
Xex;{i(w—w')t—i(n*w—nw')a
The time integral of this operator agrees with the expression given it 7ELp.
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C. Torque
The operator that represents the density ofazltemponent of the torque on the dielectric is

8.(r,t)=pf 4(r,t) +(EXP),, (7.18

where the second term on the right is the ordinary expression for the torque on an electrid¢ tBholéis term provides an
additional torque proportional to the spin quantum numbend, in combination with the azimuthal force from E@.17), it
gives a torque density operator

h 1
mc (p+1)°+k?

:gz(r,t):: 772_}_’(2 (Zl_O'p%

2P+ Kk?—1 d\d ) )
(7 ) E+4(|+0’)77Kw0]|u|2f dwf do'a’(w)a(w")
0 0

VA
Xex;{i(w—w’)t—i(n*w—nw’)e

(7.19

valid for application to a narrowband wave packet. The time-integrated torque is

J"” 8hwy mnr(l+o)

_wdt:gz(r Di=—¢ T exp(— Zwoxz/c)|u|2f:dw a'(w)a(w) (7.20

and a further integration over all space gives

o fomdwawa»)a(w). (7.20

J' drfidt:gz(r,t):=ﬁ(l +0’)m

The expectation value of the integral is unity for a single-photon pulse and the total torque on the dielectric agrees with the
expected transfer of angular momentum in EG2).
The total torque on the dielectric at tinés represented by the torque operator

&,(t)= f dr 8,01 1), 722

analogous to the force operator defined in Eg3). The expectation value of this operator for the single-photon wave packet
is evaluated in the same way as that in E§9) with the result
2 2c%t? 212t
erfd — 3 .

(7?+K2—1) —(—) lIZeX[{ —
L\ L?
(7.23

The large bracketed term in this expression is similar to that in the total force expectatiorf&8luexcept that the latter has
one-half the ratio of surface to bulk contributions. With allowance for this change, the time dependences of the two contri-
butions to the total torque can be seen from Fig. 219f

The time-integrated torque, or total angular-momentum transfer to the dielectric, is

Ah(l+o)y {7]2-|—K2—1L 1 ] Ah(l+o)y

il + o)y
[(n+1)°+ k%] (59 + K7

(1]:G,(1):|1)= + ex

n

WoK [{ 2wokt

f:dt<1|:éz(t):|1>: (7.24

(p+1)°+«? 7°+ K? I772-i-l<2 (gt 1%+«
surface bulk total

The total transfer again agrees with that given in &). The energy transfer is given by E@.14 with »,=1, so that the
transfer of angular momentum per transmitted, photon is

fL(|+ ) i i 1+ ! —_ﬁ(|+ ) (7 23
g ag). .
772 K2 772 K2 total
surface bulk

The bulk component of the angular momentum in a lossless dielectric is thus reduced by afaetative to its free-space
value. However, the torque on an object immersed in the dielectric cannot be deduced from these results but requires an
additional calculation for a three-component system, as in the corresponding problem of the transfer of linear mpbjentum
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VIIl. DISCUSSION The main aim of the work is the understanding of the forces

The first stage in the force calculations reported here icaused by the passage of light from free space into a dielec-

the quantization of the radiation field associated with?ric and, in particular, the division of the integrated force into

Laguerre-Gaussian modes in dielectrics. The field operatord!/face and bulk contributions. This separation is made pos-
so derived extend the usual results for uniform plane-wavé'ble by the tlme resolution of the longitudinal and azimuthal
modes to a more complicated mode structure that corrOrces as a single-photon pulse passes through the surface
sponds reasonably closely to the light beams used in mar§nd is subsequently totally attenuated in the bulk. The forces
practical observations of radiation pressure and torque efxerted by light on dielectric samples are measurable quan-
fects. The calculations could in principle be performed withtities, whereas the momenta often assigned to the light beam
the use of classical fields but the quantum version has ner to individual photons in dielectrics are not directly observ-
additional complication or difficulty and it provides results in able. Indeed, it has been showt] that different measure-
terms of forces per single-photon wave packet, which is verynents of the longitudinal force can produce quite different
convenient for interpretation of the overall effects. The re-values of the apparent linear photon momentum in a dielec-
sults reported here are restricted to the mean values of tHec.
forces, which scale linearly with the mean photon numbers The nature of the longitudinal force exerted by the single-
for more intense light beams. However, the quantum theorphoton Laguerre-Gaussian pulse and the corresponding
also allows for future calculations of the force fluctuationstransfer of linear momentum is similar to that for uniform
in, for example, the nonclassical light beams considered foplane-wave modes discussed previoJdly; but some addi-
use in some schemes of gravitational wave detedtl®n tional comments can be made. Consider again the total mo-
The calculations are all based on the standard expressionentum transfer derived in Eg&..1) and(7.10. This can be
for the Lorentz force and there is no reliance on any assumgdivided into contributions from the reflected and transmitted
tions about the magnitudes of the linear and angular moeomponents of the single-photon wave packet, as the re-
menta of light in a dielectric. Theifree-spacemagnitudes flected pulse component transfers a momentdmwg/c, and
are used to derive expressions for the transfer of momenta the remainder is the transfer from the transmitted photon
the dielectric in Eqs(7.1) and(7.2), and these are confirmed component. The reflected photon component is entirely a sur-
by subsequent calculations of the Lorentz force component$ace contribution, so we can combine EG&1) and(7.10 as

reflected transmitted
2hwg , hwg .. 2hog (p—1)%+«? 2(n—1) 2
c |R(wo)| +T(1_|R(“’O)| )= c (7t D)2t 2 (77+1)2+K2+(77+1)2+K2 8.1
surface bulk
|
The left-hand side is a rearrangement of the left of &dql) hog n—1
to display the reflected contribution and the right-hand side is V= Mc 7 (8.9

a rearrangement of the right of E(Z.10 to show the re-
flected surface contributioffirst term) and the transmitted anq the time of flight through the slab is

surface and bulk contributionsecond and third terms, re-

spectively. The transmitted energy is given by E@.14) T=yDl/c. (8.4)

with 7,=1 and the transmitted contributions to the linear

momentum transfer to the dielectric per transmitted photorThe slab comes to rest again after the wave packet emerges

are therefore from the rear surface and the final shift in slab position is
— — _ 2
f g 7]_1+ 1) g o AZ=VT=hwyn—1)D/Mc*, (8.5
c Ui n c’ ' in exact agreement with a calculation of the shift by an Ein-
surface bulk] total stein box theonyf20].
The Laguerre-Gaussian pulse also exerts an azimuthal
independent ok. force and there is a corresponding transfer of angular mo-

The surface momentum transfer from E&.2) can be mentum given in Eq(7.2) or Eq.(7.24). A remarkable fea-
used to obtain the shithZ in position of a transparent slab ture of the transfer is the proportionality ite- o, despite the
of refractive indexzn, massM, and thicknes® with antire-  distinct provenances of the orbital angular momentum in Eq.
flection coatings as a normally incident single-photon wave?2.12) and the spin angular momentum in Eg.11) from the
packet passes through. Thus the velocity imparted to the slatpatial and polarization parts of the vector poten(il),
by the above surface momentum is respectively. The angular momentum transfer has no contri-
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bution from the reflected component of the single-photorenergy-momentum properties of the electromagnetic fields in
wave packet and the total transfer of angular momentum tdielectrics by Abraham, Minkowski, and others. All these
the dielectric comes entirely from the transmitted compo-authors derive equivalent momentum-force conservation re-
nent. Thus the separation of the latter into surface and bullations but with different identifications of the momentum
transfers, analogous to E¢B.2), is obtained directly from density, momentum current density, and fof2&]. The dif-

Eq.(7.29 as ferent formulations validly describe experiments on the
21 1 transfer of momentum between field and dielectric when

n _ properly applied. The Lorentz force components for single-

Al +o) 777 +? ﬁ(ltoj;,a)’ 8.6 photon pulses of light in dielectrics calculated here are inde-

surface  bulk pendent of any specific formulation of the energy-

momentum tensor, as are the results for the shift and rotation

Wh?LeK IS fset equal tlo zero for the transpfarent Slib' 4 £f @ transparent slab derived above. For the transparent di-
e surface angular momentum transfer can be used Qe e it is seen from Eqe8.2) and (8.6) that the bulk

obtain thefangu_lar rmat'g‘f; of the ghelect:l;c sIaE, whose  omponents of the linear and angular momenta are equal,
moment of inertia around theaxis is denoted, as the wave \ocoecivel tofwg/cr and fi(1+ o)l 2. However, it is

packet passes through. Thus the angula}r velocity imparted bé(mphasized that these momenta are deduced from results de-
the above surface angular momentum is

rived here for the radiation pressure and rotational forces on

h(l+o) 2—1 an effectively semi-infinite attenuating specimen and for the
= (8.7)  shift and rotation of a transparent dielectric slab. Any attempt
I Y to measure them within the bulk dielectric would require the

detection of the forces exerted by the light on some addi-

and the total rotation after the slab comes to rest again is . . .
tional physical component not included in the present theory.

2_
A(l+0)D -1 8

AP=QOT= .
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