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Proper treatment of the zero mode in quantum field theory for trapped Bose-Einstein condensation
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So far much theoretical consideration of experiments on the Bose-Einstein condensation~BEC! of alkali-
metal atoms in harmonic traps is based on the Gross-Pitaevskii~GP! equation. In this paper, we attempt to
formulate the BEC in the language of quantum field theory and to estimate the quantum and thermal fluctuation
effects, which are neglected in the approximation using the GP equation. First, the formulation at zero tem-
perature is developed, and then it is extended to the finite-temperature case by means of thermofield dynamics.
We treat the zero-energy mode with care, so that the canonical commutation relations hold. As a result, an
infrared divergence appears, but it can be renormalized into the observed condensate number. Numerical
calculations are performed. For illustration, the corrections at one-loop level to the original GP equation are
given. We also calculate numerically the effects of quantum and thermal fluctuations on the distribution of
condensed atoms.
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I. INTRODUCTION

Since the first experiments on Bose-Einstein condensa
~BEC! of alkali-metal atoms in harmonic traps succeeded
1995 @1–3# and subsequent experiments were achieved
many laboratories all over the world, BEC phenomena h
inspired various theoretical studies@4#. From the theoretica
viewpoint, the BEC system is rather simple, i.e., the inter
tion is of the two-body contacting type and weak. The e
periments are well controlled and are expected to give p
cise measurements under various experimental situation
addition to future development of ‘‘BEC technology’’ and i
potential applications, BEC can offer opportunities to co
firm the foundations of quantum and statistical physics, o
the physics of quantum many-body system.

The behavior in BEC experiments has been treated c
sistently as the first step using the Gross-Pitaevskii~GP!
equation@5#. The approach using the GP equation is cons
ered as a mean-field approximation of quantum field the
~QFT! which is the most fundamental law of dynamics. T
applicability of the GP equation is limited to cases whe
most of the trapped particles are condensed and the effec
noncondensed particles are very small. Actually, the
equation explains the phenomena at rather low tempera
observed in many experiments@4#. For future experiments in
which physical quantities will be measured more accurat
or in which fluctuations~we mean both quantum and therm
fluctuations! will play an important role, one has to tak
those fluctuations into account. In a way they are estima
within the framework of the mean-field approximation@6#.

Our purpose is to reconsider the BEC from the viewpo
of QFT beyond the GP equation. We want a theoretical
mulation applicable to cases even with large fluctuations.
example, when the temperature approaches the critical
the fluctuations are inevitably large. In this paper, we

*Electronic address: okumura@toki.waseda.jp
†Electronic address: yamanaka@waseda.jp
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velop a formulation of the BEC problem from first prin
ciples; i.e., a quantum field theoretical one, and estimate
fluctuation effects.

In our approach, BEC is understood as a spontane
breakdown of global phase symmetry. This mechanism gi
an order parameter which behaves like a classical fi
When a continuous symmetry is spontaneously broken,
Goldstone theorem implies the existence of a Nam
Goldstone~NG! mode@7#. This gapless mode is the leadin
part, creating and maintaining the order. In a sense our
cussions below emphasize the importance of the NG mo

It should be pointed out that the spatial translational sy
metry is broken explicitly for the BEC system due to th
external trapping potential, while the systems treated in te
books are usually invariant under the translation~although
the symmetry may be spontaneously broken, e.g., whe
lattice is formed!. In the latter homogeneous cases the m
mentum is a good quantum number and the Goldstone m
usually belongs to a continuous spectrum as a ze
momentum mode. But, as will be seen later, the Goldst
mode in the present case is a discrete one. A discussion o
symmetry and the gapless mode is given in Ref.@6# within
the mean-field formalism. There the symmetry and gapl
mode are considered in the limit of homogeneous geome
we do not take the homogeneous limit, but treat the inhom
geneous system directly.

The Ward-Takahashi~WT! relations @8# and the Gold-
stone theorem are derived solely from the canonical com
tation relation, the Heisenberg equation of motion, and
transformation property for the Heisenberg operator. In t
connection, we insist on preserving the canonical commu
tion relation, while the Bogoliubov prescription@9# violates
it @10#. This problem has already been pointed out for t
trapped BEC system@11#. For illustration, we will show that
the WT relation holds at the tree level in our approach, wh
clarifies the important role of the NG mode for the existen
of condensation.

The existence of the zero mode is also derived in@12,13#,
using a formalism slightly different from ours. There it
©2003 The American Physical Society09-1
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M. OKUMURA AND Y. YAMANAKA PHYSICAL REVIEW A 68, 013609 ~2003!
treated as a pair of collective coordinates, while we treat i
a particle mode. The point relevant to the discussions in
paper is that the two approaches correspond to choosing
ferent vacua. When the choices of vacua are differen
QFT, the physical results are different. The way to treat
zero mode and associated vacuum is not definite yet, and
fair to say that it is still an open problem.

Once an operator representing the zero mode comes
in our formulation, one expects that large fluctuation effe
will appear, since it easily fluctuates due to gaplessness
fact, it will be seen below that this fluctuation effect brin
us an infrared divergence in the coefficient of the distribut
function of the condensed particle and a finite deviation
the distribution function from that of the GP equation even
zero temperature. It is shown that the infrared divergence
be dealt with in a kind of renormalization prescription.

One has to take account of thermal fluctuations as we
order to compare theoretical results with experimental d
Formally, the formulation of QFT at zero temperature can
readily extended to include thermal effects, that is, to ther
field theories. We employ the formalism of thermofield d
namics~TFD! @14#, because it is faithful to the concepts
QFT such as the particle picture, canonical properties, an
on, although any thermal theory for equilibrium would giv
us the same result as ours below within the one-loop ca
lation. According to the formulation of QFT at finite tem
perature, we can show in this paper that a finite deviation
the distribution function of condensed particles from that
the GP equation is predicted numerically.

The paper is organized as follows. In Sec. II, we give
formulation of quantum field theory for the trapped BE
system. The unperturbed Hamiltonian is diagonalized, so
one can obtain the unperturbed energy spectrum of non
densate quasiparticles and the unperturbed propagator. T
the canonical commutation relation is respected, wh
means a careful treatment of the zero mode. We deve
one-loop calculations~tadpole diagram! including quantum
and thermal fluctuations in Sec. III. There appears an in
red divergence as a result of the fluctuating zero mode.
shown that the renormalization can deal with the divergen
In Sec. IV, we describe the method of numerical calculat
and give numerical results for the distribution of condens
particles. Section V is devoted to a summary and conc
sions. In the Appendix, we derive the WT identity at the tr
level to indicate the role of the NG mode.

II. FORMULATION OF QUANTUM FIELD THEORY AND
DIAGONALIZATION OF UNPERTURBED

HAMILTONIAN

Let us start with the action given by

S5E dtd3xS c†~x!~T2K2V1m!c~x!

2
g

2
c†~x!c†~x!c~x!c~x! D , ~1!

with the abbreviated notations ofT5 i\]/]t, K
52(\2/2m)¹2, and V5 1

2 mv2(x21y21z2), where the
01360
s
is
if-

in
e
is

as
s
In

n
f
t

an

n
a.
e
al

so

u-

f
f

e

at
n-
ere
h
p

-
is
e.
n
d
-

trapping potential is assumed to be isotropic andv is its
frequency, andg is a coupling constant which is assumed
be small. We suppose that the system is cool and di
enough to use this approximate interaction.

Note that the action above is invariant under the glo
phase transformation c(x)→ei jc(x) and c†(x)
→e2 i jc†(x), wherej is an arbitrary constant phase.

In the terminology of the canonical operator formalism
the Heisenberg operatorĉH(x) is divided intoc-number and
operator parts as

ĉH~x!5eiuv~x!1ŵH~x!, ~2!

where thec-number real functionv(x), whose square corre
sponds to the distribution function of the condensed parti
is unknown at the beginning and should be determined s
consistently. In what follows,v(x) is assumed to be time
independent, whileu is assumed to be real and time an
space independent, meaning that there is no vortex. We
quire the condition

^VuĉH~x!uV&5eiuv~x!, ~3!

or equivalently

^VuŵH~x!uV&50, ~4!

leading to an equation determiningv(x), whereuV& is the
vacuum.

In order to tame the singular terms associated with
discrete NG mode, we introduce an artificial breaking te
which is taken to be vanishing at the final stage of calcu
tion, which is a conventional prescription for treating a sy
tem of spontaneous symmetry breakdown. Explicitly we a
the following breaking term with an infinitesimal dimensio
less parameter« and a parameterē, representing a typica
energy scale of the system\v:

DS5«ēE dtd3x@e2 iuv~x!c~x!1eiuv~x!c†~x!# ~5!

to the original action~1!,

S«5S1DS, ~6!

but the suffix« will be suppressed unless otherwise me
tioned.

The expression in Eq.~2! is substituted into Eq.~6!,
which is rewritten in terms ofv(x), u, andw(x) as follows:

S«5S01S11S21S3,4, ~7!

where

S05E dtd3xS v~x!~2K2V1m12«ē !v~x!2
g

2
v4~x! D ,

~8a!

S15E dtd3x$e2 iuv~x!@2K2V1m2gv2~x!1«ē#w~x!

1w†~x!@2K2V1m2gv2~x!1«ē#eiuv~x!%, ~8b!
9-2
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PROPER TREATMENT OF THE ZERO MODE IN QUANTUM . . . PHYSICAL REVIEW A68, 013609 ~2003!
S25E dtd3xH w†~x!@T2K2V1m#w~x!2
g

2
v2~x!

3@4w†~x!w~x!1e22iuw2~x!1e2iuw†2~x!#J , ~8c!

S3,45E dtd3xH 2gv~x!@eiuw†~x!w†~x!w~x!

1e2 iuw†~x!w~x!w~x!#2
g

2
w†~x!w†~x!w~x!w~x!J .

~8d!

As will be seen below, this« prescription is crucial to contro
the symmetry breakdown and the infrared divergence app
ing in higher-order loop.

As was emphasized, the role of the zero-energy mod
essential. We should adopt an approximate scheme in w
the Goldstone theorem holds. The theorem can be der
from the WT identity. It is well known that the loop expan
sion respects the WT identity and that therefore the Go
stone theorem holds at each level of the loop. Thus, in w
follows, we develop a loop expansion for the system of
action in Eq.~8d!. It will be seen in the Appendix that th
existence of the NG mode guarantees the WT relation at
tree ~zero-loop! level.

First we investigate the system at the tree level, deno
v(x) by v0(x). From Eq. ~4! or from the condition
(dS/dw)uw5050 the classical equation of motion forv0 is
derived:

@K1V2m1gv0
2~x!2«ē#v0~x!50. ~9!

At the limit of vanishing«, this equation is reduced to th
GP equation:@K1V2m1gv0

2(x)#v0(x)50. The integra-
tion of the square ofv0 is interpreted as the condensate p
ticle numberNc ,

Nc5E d3xv0
2~x!. ~10!

Under the condition of Eq.~9!, we have the Hamiltonian
given by

Ĥ5Ĥ01Ĥ int , ~11!

where

Ĥ05E d3xH ŵ†~x!~K1V2m!ŵ~x!1
g

2
v0

2~x!@4ŵ†~x!ŵ~x!

1e22iuŵ2~x!1e2iuŵ†2~x!#J , ~12a!

Ĥ int5E d3xH gv0~x!@eiuŵ†~x!ŵ†~x!ŵ~x!

1e2 iuŵ†~x!ŵ~x!ŵ~x!#1
g

2
ŵ†~x!ŵ†~x!ŵ~x!ŵ~x!J .

~12b!
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We now turn to diagonalizing the unperturbed Ham
tonian ~12a! and to establishing the quasiparticle picture
the tree level. Equation~9! suggests that it is adequate
expand the fieldŵ(x) in terms of the complete orthonorma
set$un(x)% (n50,1,2, . . . ), whose eigenequations are

@K1V2m1gv0
2~x!#un~x!5~«n1«ē !un~x!, ~13!

with

E d3xun~x!un8~x8!5dnn8 , ~14!

(
n50

`

un~x!un~x8!5d3~x2x8!. ~15!

It is easily seen thatv0(x) is proportional tou0(x) with «0
50:

v0~x!5ANcu0~x!. ~16!

Let us expandŵ(x) in terms of Eq.~13!,

ŵ~x!5 (
n50

`

ân~ t !un~x!. ~17!

The operatorsân and ân
† are subject to

@ ân ,ân8
†

#5dnn8 , ~18!

and @ ân ,ân8#5@ ân
† ,ân8

†
#50. These commutation relation

with the completeness~15! are consistent with the canonica
commutation relations

@ĉ~x,t !,ĉ†~x8,t !#5@ŵ~x,t !,ŵ†~x8,t !#5d3~x2x8!
~19!

and

@ĉ~x,t !,ĉ~x8,t !#5@ĉ†~x,t !,ĉ†~x8,t !#

5@ŵ~x,t !,ŵ~x8,t !#

5@ŵ†~x,t !,ŵ†~x8,t !#

50. ~20!

Here the fact thatâ0 is included in the expansion~17! is
essential, otherwise the canonical commutation relat
would be violated. In the conventional Bogoliubov approa
â0 is excluded, or, more precisely,v0(x)1â0u0(x) is re-
placed by a singlec-number functionv0(x). The difference
between the conventional Bogoliubov approach and ours
central subject in this paper.

The unperturbed Hamiltonian now reads

Ĥ05 (
n50

`

~«n1«ē !ân
†ân1 (

n,n850

`

@2ân
†Unn8ân8

1e22iuânUnn8ân81e2iuân
†Unn8ân8

†
#, ~21!
9-3
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with the notationUnn85
1
2 g*d3xv2(x)un(x)un8(x). Ĥ0 is

not diagonalized yet in terms of theâ operators. Let us in-
troduce the following operators:

q̂n5A 1

2~«n1«ē !
~e2 iuân1eiuân

†!, ~22a!

p̂n52 iA«n1«ē

2
~e2 iuân2eiuân

†!. ~22b!

These operators satisfy the canonical commutation relat

@ q̂n ,p̂n8#5 idnn8 and other commutations vanish. The Ham
tonian ~21! is rewritten as

Ĥ05 (
n50

`
1

2
p̂n

21 (
n,n850

`
1

2
q̂nWnn8q̂n8

2 (
n50

` F1

2
~«n1«ē !1UnnG . ~23!

Here the matrixW has a block structure,

W5S 4~«ē !U001O~«2! A«ēu8T1O~«3/2!

A«ēu81O~«3/2! W81O~«!
D , ~24!
al

s

01360
ns

where

u85S 4A«1U10

4A«2U20

A
D , ~25!

u8T5~4A«1U01,4A«2U02, . . . !, ~26!

Wnn8
8 5«n

2dnn814A«nUnn8A«n8 ~n,n851,2, . . .!.
~27!

Then the symmetric matrixW can be diagonalized by a
orthogonal matrixO:

(
m,m850

`

~OnmWmm8On8m8!5En
2dnn8 . ~28!

It can be shown that the zeroth eigenvalue is

E05A«ē~4U002u8TW821u8!1/21O~«3/2! ~29!

[A«ēAĒ01O~«3/2!, ~30!

and that the matrixO also has the form of
O5S 12
1

2
~«ē !u8TW822u81O~«2! 2A«ēu8TW8211O~«3/2!

A«ēO8W821u81O~«3/2! O81O~«!
D , ~31!
a-
whereO8 satisfies

O8W8O8T5E82, ~32!

with the diagonal matrix

Enn8
8 5Endnn81O~«1/2! ~n,n851,2, . . .!. ~33!

Using thisO matrix, we introduce a new pair of canonic
operators by

Q̂n5 (
m50

`

Onmq̂m , ~34a!

P̂n5 (
m50

`

Onmp̂m , ~34b!

where @Q̂n ,P̂n8#5 idnn8 and other commutation relation
vanish. Finally, we have
Ĥ05 (
n50

` F1

2
P̂n

21
1

2
En

2Q̂n
22

1

2
~«n1«ē !2UnnG

5 (
n50

` FEnb̂n
†b̂n1

1

2
En2

1

2
~«n1«ē !2UnnG . ~35!

In the last equality, we related$Q̂n ,P̂n% to $b̂n ,b̂n
†% as

Q̂n5A 1

2En
~ b̂n1b̂n

†!, ~36a!

P̂n52 iAEn

2
~ b̂n2b̂n

†!. ~36b!

In this way we have the generalized Bogoliubov transform
tion @11# with the zero mode

b̂n5 (
m50

`

~e2 iuCnmâm1eiuSnmâm
† !, ~37a!
9-4
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b̂n
†5 (

m50

`

~eiuCnmâm
† 1e2 iuSnmâm!, ~37b!

where

Cnm5
1

2 SA En

«m1«ē
1A«m1«ē

En
DOnm , ~38a!

Snm5
1

2 SA En

«m1«ē
2A«m1«ē

En
DOnm . ~38b!

The matricesC andS satisfy the following relations:

(
m50

`

~CnmCn8m2SnmSn8m!5dnn8 , ~39!

(
m50

`

~CnmSn8m2SnmCn8m!50. ~40!

We mention only the leading behaviors of elements ofC and
S with respect to«: C00,S00;«21/4, C0n ,S0n;«1/4 (n
Þ0), andCn0 ,Sn0, and the other remaining elements;«0.
It is remarked that the singular behavior inC and S comes
from the mixing between theâ0 and ân (nÞ0). Although
the mixing matrices are divergent as«→0, the energy eigen
values$En% are finite.

We compare the quasiparticle picture in our theory w
the one in the usual Bogoliubov theory, in which the ze
mode is excluded in the expansion of Eq.~17!. In our theory
there are additional mixings between the operators withn
50 andnÞ0, but they do not affect the energy spectrum
noncondensate modes: the energy spectrum in our theo
given by$En%, while that in the Bogoliubov theory by$En8%.
Equation~33! indicates that the former approaches the la
as«→0 except forn50.

What is important here is that the energy spectrum
noncondensate quasiparticles is$En%, but not the ‘‘naive’’
energy parameter$«n%. The numerical difference betwee
these two energies will be shown in Sec. IV.

Now that the unperturbed Hamiltonian is diagonalized
Eq. ~33!, the unperturbative vacuumuVb& is defined by

b̂nuVb&50. ~41!

In terms ofb̂n and b̂n
† , the field operatorsŵ and ŵ† can be

written as

ŵ~x!5eiu (
m,n50

`

@ b̂n~ t !Cnmum~x!2b̂n
†~ t !Snmum~x!#,

~42a!

ŵ†~x!5e2 iu (
m,n50

`

@ b̂n
†~ t !Cnmum~x!2b̂n~ t !Snmum~x!#.

~42b!
01360
f
is

r

f

Here a crucial step is taken: We assume Eq.~41! even for
n50, b̂0uVb&50. The authors in@12,13# suggest a vacuum
different from ours, but could not propose a criterion to fix
single vacuum yet. In any case, their expression for the
perturbative propagator, if they calculated it, would diff
from ours. One cannot apply the results of our loop exp
sion calculations naively to their approach.

We can easily construct the unperturbative propagat
Introduce the column notation as

F̂ i5H ŵ ~ for i 51!,

ŵ† ~ for i 52!,
~43a!

F̂ i
†5H ŵ† ~ for i 51!,

ŵ ~ for i 52!,
~43b!

and define a 232 matrix propagator by

G0~x,x8;t2t8![S G0,11~x,x8;t2t8! G0,12~x,x8;t2t8!

G0,21~x,x8;t2t8! G0,22~x,x8;t2t8!
D ,

~44!

where

G0,i j ~x,x8;t2t8![2 i ^VbuT@F̂ i~x,t !F̂ j
†~x8,t8!#uVb&.

~45!

These propagators depend onx andx8 separately due to the
absence of space-translational invariance, but are funct
of t2t8 since the stationary situation is under considerati
We give their Fourier transforms with respect to time,

G0~x,x8;v![E dteivtG0~x,x8;t!

5 (
,,m,n50

` H F 1

v2En1 id S Cn,Cnm 2Cn,Snm

2Sn,Cnm Sn,Snm
D

2
1

v1En2 id S Sn,Snm 2Sn,Cnm

2Cn,Snm Cn,Cnm
D G

3u,~x!um~x8!J , ~46!

whered is an infinitesimal constant.

III. ONE-LOOP CALCULATION

Next we proceed to the one-loop level. The fieldc is
divided as

c~x!5eiuv~x!1w~x!, ~47!

where

v~x!5v0~x!1dv~x! ~48!

with an unknown functiondv(x) of the order of\, while
v0(x) is the one at the tree level, subject to Eq.~9!. Because
9-5
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the GP equation does not hold for thisv due to the presenc
of dv, the termS1 cannot be dropped. Thus the interacti
Hamiltonian at the one-loop level should read as

Ĥ int5E d3xH e2 iuv~x!@K1V2m1gv2~x!2«ē#ŵ~x!

1ŵ†~x!@K1V2m1gv2~x!2«ē#eiuv~x!

1gv~x!@eiuŵ†~x!ŵ†~x!ŵ~x!1e2 iuŵ†~x!ŵ~x!ŵ~x!#

1
g

2
ŵ†~x!ŵ†~x!ŵ~x!ŵ~x!J . ~49!

Starting with v0, we evaluate the quantum correctiondv,
using the unperturbed propagators in Eq.~46! and Feynman
rules from the interaction Hamiltonian~49!. Then the condi-
tion ~4! up to the one-loop level amounts to calculating t
tadpole diagram shown in Fig. 1, which leads to

@K1V2m1gv2~x!#v~x!

1g (
,,m,n50

`

~2Sn,Snm2Cn,Snm!u,~x!um~x!v~x!50.

~50!

Here a crucial observation is that the infrared diverge
appears in the summation~tadpole contribution! as the diver-
gence of 1/A«, but the divergent terms are limited to tho
with ,5m50. On the other hand, there are new finite qua
tum contributions. Within the approximation, one may r
write Eq. ~50! as

@K1V2m13gv0
2~x!#dv~x!

1g (
,,m,n50

`

~2Sn,Snm2Cn,Snm!u,~x!um~x!v0~x!50,

~51!

after the higher terms such asdv3 anddv2v0 are neglected
and the equation forv0, Eq. ~9!, is applied.

In order to isolate the infrared divergence, we expressdv
as a sum of two terms~one is infrared divergent, the other
finite!,

dv~x!5dv (0)~x!1dv (1)~x!. ~52!

The dv (0)(x) is taken to be proportional tou0(x) and is
subject to

2gv0
2~x!dv (0)~x!1g(

n50

`

~2Sn0
2 2Cn0Sn0!u0

2~x!v0~x!50;

~53!

FIG. 1. Tadpole diagram.
01360
e
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thendv (1)(x) is a solution of the equation

@K1V2m13gv0
2~x!#dv (1)~x!

1g (
,,m,n50

`

8 ~2Sn,Snm2Cn,Snm!u,~x!um~x!v0~x!50,

~54!

where(8 means a summation without,5m50.
Although (2Sn0

2 2Cn0Sn0) in Eq. ~53! is divergent in the
limit of «→0, the solution can formally be found to be

dv (0)~x!52
1

2ANc
(
n50

`

~2Sn0
2 2Cn0Sn0!u0~x!. ~55!

The linear equation~54! is free from divergence and can b
solved numerically. But when we expanddv (1)(x) in terms
of the complete set$un(x)%, dv (1)(x)5(n50

` dnun(x),
the coefficientd0 is not equal to zero in general. Thusdv (0)

and dv (1) are not orthogonal to each othe
*d3xdv (0)(x)dv (1)(x)Þ0. Physically, one should redefin
the two terms indv as

dv~x!5dv0~x!1dv f~x!, ~56!

where

dv0~x!5dv (0)~x!1d0u0~x!, ~57!

dv f~x!5 (
n51

`

dnun~x!. ~58!

In this way, whiledv0 is proportional tou0 , dv f is orthogo-
nal to dv0 , *d3xdv0(x)dv f(x)50. One cannot observev0 ,
dv0, anddv f separately in experiments, but only a combin
tion of v01dv. Therefore we should relate the condens
number, which we callNc,r , to the integration,

Nc,r5E d3x@v0,r~x!1dv f~x!#2.E d3xv0,r
2 ~x! ~59!

where the notation

v0,r~x!5v0~x!1dv0~x! ~60!

is used, anddv f
2 has been dropped because it is of the or

of \2. It should be noted that within the approximationv0
can be replaced with the observablev0,r in Eq. ~54!, which
determinesdv f .

Thus we isolate the infrared divergence and renormaliz
into the observed condensate numberNc,r . The explicit finite
fluctuation effect can be observed indv f as a deviation from
v0,r .

We can also evaluate the thermal correction, confin
ourselves to equilibrium situations, to the condensatev0. In
order to include thermal fluctuations, we use TFD which i
real time formalism of thermal field theory. The above fo
mulations in the zero-temperature case can straightforwa
be extended to the thermal situation in TFD, only with t
doubling of each degree of freedom@14#. The doubling
forces us to use a 434 matrix propagator instead of th
9-6
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232 matrix in the zero-temperature case. But we comm
that any conventional thermal field theory, e.g., the ima
nary time formalism, closed-time path formalism, and so
@15#, would give us the same result as in TFD for the qua
tities below.

After following all the same steps as at zero temperat
above, we reach the following equation from calculating
one-loop tadpole diagram:

@K1V2m1gv2~x!#v~x!

1g (
,,m,n50

`

~2Sn,Snm2Cn,Snm!u,~x!um~x!v~x!

1g (
,,m,n50

`
2

exp~bEn!21
~Sn,Snm1Cn,Cnm

2Cn,Snm!u,~x!um~x!v~x!50. ~61!

The corrected condensate partv(x) is separated into the fol
lowing three terms:

v~x!5v0~x!1dvb~x!, ~62!

dvb~x!5dvb
(0)~x!1dvb

(1)~x!, ~63!

wheredvb(x) represents all the corrections~thermal as well
as quantum! and dvb

(0)(x) is proportional tou0(x) and is
subject to

2gv0
2~x!dvb

(0)~x!1g(
n50

` F ~2Sn0
2 2Cn0Sn0!

1
2

exp~bEn!21
~Sn0Sn01Cn0Cn0

2Cn0Sn0!Gu0~x!u0~x!v0~x!50. ~64!

This equation is infrared divergent again, but fortunat
only with ,5m50 just as in Eq.~53!. The finite correction
term dvb

(1) is a solution of

@K1V2m13gv0
2~x!#dvb

(1)~x!1g ( 8
,,m,n50

` F ~2Sn,Snm

2Cn,Snm!1
2

exp~bEn!21
~Sn,Snm1Cn,Cnm

2Cn,Snm!Gu,~x!um~x!v0~x!50. ~65!

These results show that the infrared divergence appea
finite temperature in the same manner as at zero temper
and therefore that its isolation and renormalization can
performed quite similarly. Again, expanding asdvb

(1)(x)
5(n50

` db,nun(x), we redefine the two terms indvb as

dvb~x!5dvb,0~x!1dvb,f~x!, ~66!
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where

dvb,0~x!5dvb
(0)~x!1db,0u0~x!, ~67!

dvb,f~x!5 (
n51

`

db,nun~x!. ~68!

The total corrected order parameterv(x) is

v~x!5vb,0,r~x!1dvb,f~x! ~69!

vb,0,r~x!5v0~x!1dvb,0~x!. ~70!

Before closing this section, we should compare our
proach with others using QFT.

First, the quantum fluctuations to the condensate pro
were calculated perturbatively by Braaten and Nieto@16#.
The usual plane-wave expansion is used in their calcula
because they focus on short-distance quantum fluctuati
Conversely, we respect low-lying modes, especially the z
mode, in calculating quantum and thermal fluctuations, th
we use the complete orthonormal set~13! which fully in-
cludes the trapping potential, and diagonalize the unp
turbed Hamiltonian. Although both the approaches deal w
the same Feynman diagram~Fig. 1!, the propagators are dif
ferent from each other, as are the final results.

Next, we mention the difference between Hartree-Fo
Bogoliubov~HFB! theory and ours. Equations~50! and~61!
at first sight seem to be equivalent to the generalized
equation, derived by the HFB approximation@6#. However,
the methods to evaluate the quantum and thermal fluc
tions are different. The HFB theory is a variational meth
@17#, but our calculation is based on the loop expansi
which enables us to improve the numerical results loop
loop.

Finally, we discuss the ultraviolet divergence arising fro
the contact type interaction, already discussed in severa
pers@16–18#. The contributions ofG0,12(x,x;0) in the tad-
pole diagram, i.e., theCn,Snm terms in Eqs.~50! and ~61!,
correspond to the anomalous average in the HFB theory
give rise to UV divergences. The fact that the summations
theCn,Snm terms there diverge roughly as the square roo
the UV cutoff can be checked by the numerical method in
next section. In order to deal with the UV divergence, w
adopt the renormalization procedure given in@18#, which is
to subtract the zero-temperature component of the anoma
average or to drop the zero-temperature component of
Cn,Snm terms in Eqs.~50! and~61!. We have not formulated
the whole renormalization scheme including the self-ene
and vertices yet, but this procedure is considered legitim
within our one-loop calculation.

IV. NUMERICAL STUDY

Now let us perform numerical calculations regarding t
quasiparticle picture and the effects of quantum and ther
fluctuations. The parameters that we use are as follows:
trapped atoms are 87Rb, which has the massm
51.42310225 kg, the frequency of the trapping potential
9-7
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v520032pHz, the coupling constantg50.03aho (aho

[A\/2mv.5.4431027 m), and the number of condensa
atomsNc is chosen as 1000 and 25 000. Here the value og
is taken to be small for the following technical reason, co
pared with the usualg54p\2as/m, whereas is thes-wave
scattering length of the87Rb atom. The situation of smallg is
realizable with Feshbach resonance@19#. The validity of the
loop expansion is guaranteed under the choice of these
rameters, since the parametersgANc.0.095 (Nc51000) and
0.47 (Nc525 000), a factor appearing at each level of t
loop, are small. In other words, a larger value forg would
make loop expansion of lower orders unreliable.

First we investigate the unperturbed particle picture in t
system. As was pointed out, our relevant energy spectru
given by $En% associated with the quasiparticle, but not
$«n%. We here compare the numerical values for these
energies. In order to know them, we solved the GP equa
~9! by use of the Runge-Kutta method@20# as the first step,
and then the eigenequation~13! with the solution of Eq.~9!
as a potential and with 200 levels from the bottom and 4
eigenvalues of angular momentum for a spherical trap.
matrix elements ofW in Eq. ~27! are explicitly expressed by
these solutions:v0(x) and$un(x)%. The matrix without zero
mode W8 is diagonalized as Eq.~32! @21#. Then we have
$«n%, $Onm%, and$En%, with which the matricesC andS in
Eq. ~38! are given.

Table I shows the results withNc51000 and Nc
525 000. The difference is rather small when the numbe
condensate atomsNc is small @Table I~a!#. But whenNc is
large, we are able to distinguish«n from En @Table I~b!#. We
note thatEn is calculated at the tree level, but is not reno
malized yet.

Next we evaluate the influences of quantum and ther
fluctuations on the spatial distribution of a condensate. T
remaining parameter to calculate the effects is the temp
ture T. In the ideal Bose gas model (g50) @4#, one can
derive the relation

TABLE I. The energy spectra of ‘‘naive’’ and quasiparticles.~a!
shows the energy spectrum with the number of condensate a
Nc51000 and~b! with Nc525 000.

~a! ~b!

Nc51000 Nc525 000

n «n En n «n En

1 1.976 2.015 1 1.669 2.130
2 3.967 3.999 2 3.529 3.960
3 5.963 5.989 3 5.451 5.839
4 7.959 7.983 4 7.401 7.752
5 9.957 9.979 5 9.365 9.687
A A A A A A
10 1.995310 1.997310 10 1.927310 1.951310
A A A A A A
50 9.994310 9.995310 50 9.914310 9.925310
A A A A A A
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Tc
5S 12

Nc

Ntot
D 1/3

, ~71!

whereTc is the critical temperature andNtot is the total num-
ber of particles~the sum of the numbers of condensate a
noncondensate particles!. But, in the interacting case (g
Þ0), we have neither such a simple relation norTc . We
acquire the total numberNtot with the energy of the quasi
particle

Ntot5Nc1 (
n51

`
1

exp@bEn#21
. ~72!

Here the energy of the quasiparticle is defined in the unp
turbed Hamiltonian of Eq.~35!, in other words, at the tree
level. We have the value ofT/Tc which parametrizes ou
results.

Let us illustrate the steps to obtaindv f(x) in Eq. ~58!
numerically. We already havev0(x), $un(x)%, $«n%, $Onm%,
$En%, $Cnm%, and $Snm%. Put dv (1)(x)5(n50

` dnun(x) into
Eq. ~54!:

(
n50

`

@«n12gv0
2~x!#dnun~x!

1g ( 8
,,m,n50

`

2Sn,Snmu,~x!um~x!v0~x!50, ~73!

multiply both sides of Eq.~73! by un8(x), and integrate it
over x,

(
n50

`

W̄n8ndn52Fn8 , ~74!

where

W̄nn85«ndnn812gE d3x@v0
2~x!un~x!un8~x!#, ~75!

Fn85gE d3xF ( 8
,,m,n50

`

2Sn,Snmv0~x!u,~x!um~x!un8~x!G .

~76!

From this relation~74! the coefficientsdn are derived:

dn52 (
n850

`

W̄nn8
21 Fn8 . ~77!

In this way we have the finite quantum correctiondv f(x) in
Eq. ~58! numerically. As was mentioned in the last paragra
of Sec. III, we have dropped the UV divergent term
((Cn,Snm) in Eqs.~73! and ~76!.

At finite temperature the finite correctiondvb,f(x) in Eq.
~68!, which represents the effects of both the quantum a
thermal fluctuations, is obtained by the same procedure
above. As for the UV divergence, we subtract(Cn,Snm at
zero temperature, keeping the temperature-depen
Cn,Snm terms.

ms
9-8
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Now let us compare the result in our theory with the o
in the usual Bogoliubov theory, which one can easily obt
just by suppressing all the quantities with suffixn50 in
Secs. II and III, and in which we see no infrared divergen
in the loop calculation. For definiteness, we fix the para
etersNc51000 andkBT52\v (kB is the Boltzmann con-
stant!, which corresponds to the fraction of condens
T/Tc.0.275 according to the relation~71!. Figure 2 shows
the corrections of the condensate profile,dvb,f(x), with and
without the zero mode~our theory and the usual Bogoliubo
theory!. We find that the existence of the zero mode make
difference in the observable quantity.

Figure 2 may make us expect that quantum and ther
corrections give some contribution to the condensate.
corrections are too small to be measured with the parame
fixed.

However, the situation changes slightly when the num
of condensate atoms is larger and the temperature of
system becomes higher. We calculate the corrected con
sate density withNc525 000 andkBT550\v, keeping the
other parameters the same. The fraction of temperatur
given byT/Tc.0.949 with these parameters. Figure 3 sho
the radial corrected distribution of the condensate den
v2(x)5@vb,0,r(x)1dvb,f(x)#2 and the solution of the GP
equation without quantum and thermal corrections.

It is seen from Fig. 3 that the condensate density increa
at the center of a trap from the distribution without the c
rections. This can be explained as follows. The repuls
force between the condensate and noncondensate bec
substantial as the number of noncondensate particles
creases, surrounding the condensate particles at the ce
Consequently, the condensate density is pushed up to
center. The difference is too small to observe within the re
lution of the present experiments. This result assures us
the GP equation is applicable to describe the condensa
rather high temperature. It is consistent with the present
periments which can be roughly explained by the solution
the GP equation.

FIG. 2. This figure shows the radial distribution ofdvb,f(x) with
and without zero mode with the parametersNc51000 andkBT
52\v. The solid line is the radial distribution of the correctio
calculated by our theory and the dotted line is the one by the
goliubov theory. We find that the zero mode has effects on
distribution of the correction.
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V. SUMMARY AND CONCLUSION

We have given a formulation of QFT for a BEC system
a trap, which is a field theory in a finite region and witho
spatially translational invariance: the unperturbative rep
sentation is established under the assumption that the sy
is in a condensed stationary phase without a vortex. One
develop a loop expansion to include quantum fluctuation
fects. The formulation can be extended straightforwardly
thermal field theory to include thermal fluctuation as well

The BEC is considered as a spontaneous breakdown
global phase symmetry in QFT. Then the existence of the
mode, implied by the Goldstone theorem, is the most cru
to the behavior of the system. We respected the existenc
the NG mode in this paper. To do this, we first introduced

zero-energy operatorâ0 in the expansion of the operator fiel

ŵ in order to make the canonical commutation relation ho
since the canonical commutation relation is one of the ind
pensable relations, from which the Goldstone theorem is
rived. Note thatâ0 is omitted in the usual Bogoliubov pre
scription. Next we utilized the loop expansion, because
WT relations, from which the Goldstone theorem follow
are preserved at each level of loop.

Thus our approach is more fundamental than the me
field approximation~GP equation! and the Bogoliubov ap-
proach. One can check the validity of these approximate
proaches from our fundamental one. In this paper
calculated only a single-point Green function at one lo
~tadpole diagram! to estimate the condensate distribution, b
found that the deviation from the result with the GP equat
is too small to be observed at present experiments. So
study supports the applicability of GP equation to the pres
experiments. As a matter of fact, the GP approach is con
tent with the experiments. According to our analysis, one
apply the GP equation, surprisingly, up to temperatures v
close to the critical one. For our calculation of the one-lo
expansion to be valid, we had to confine ourselves to sm
values of the parametergANc. Our analysis suggests tha
experiments with a rather large value ofgANc will show

-
e

FIG. 3. The difference between corrected and uncorrected
tributions with the parametersNc525 000 andkBT550\v is
shown in this figure. There is a small difference between the tw
the center. The upper solid line is the corrected distribution, wh
the lower dashed line is the one without correction.
9-9
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larger deviations, which may be observed at the present
perimental resolution.

Although our formulation gives almost the same nume
cal results as the conventional approaches@22#, the appear-
ance of infrared divergence there is of great significance.
divergence certainly brings additional trouble, but is clos
related to the presence of the zero-energy mode, with
which the theory would not be consistent from the viewpo
of QFT. As was shown above, the divergence can be re
malized solely into the condensate number, and this is
main reason why our results are not different drastically fr
the others in spite of the divergence.

Our future task is to calculate the two-point Green fun
tion ~self-energy diagram!, which should be related to th
one-point function through the WT relation. By doing th
we will be able to clarify more deeply the implication of th
renormalization done in this paper, and to predict the ene
spectrum of excited particles, affected by quantum and t
mal fluctuations.

One interesting possibility is to consider the NG mode
collective coordinates as in@12,13#. Then the unperturbed
propagator will be modified, as will our numerical results.
study along these lines will be reported in a future paper
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APPENDIX: WARD-TAKAHASHI IDENTITY

First, we make a brief review of the derivation of th
Ward-Takahashi identity for a general system@8,14#. Con-
sider an infinitesimal transformation for a system of fie
operatorsĉ and ĉ†,

ĉ~x!→ĉ~x!1jdĉ~x!, ~A1!

where j is an infinitesimal parameter. For this transform
tion, one can find the Noether currents (N̂0 ,N̂) satisfying

]

]t
N̂0~x!1“•N̂~x!5dL̂~x!, ~A2!

wheredL̂ is the change of the Lagrangian density induced
the infinitesimal transformation above. The operator

N̂~ t ![E d3xN̂0~x! ~A3!

generates the transformation as

@ĉ~x!,N̂~ t8!#d~ t2t8!5 id~ t2t8!dĉ~x!. ~A4!
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It is easy to derive from Eqs.~A2!, ~A3!, and~A4! that

]

]t
^VuT @N̂~ t !ĉ~x1!•••ĉ~xn!uV&

5 (
a51

n

d~ t2ta!

3^VuT †ĉ~x1!•••@N̂~ t !,ĉ~xa!#•••ĉ~xn!‡uV&

1^VuT F S ]

]t
N̂~ t ! D ĉ~x1!•••ĉ~xn!G uV&

52 i (
a51

n

d~ t2ta!^VuT [ ĉ~x1!•••dĉ~xa!•••ĉ~xn!uV&

1E d3x^VuT @dL̂~x!ĉ~x1!•••ĉ~xn!#uV&. ~A5!

Integration with respect tot on both sides leads to

i\ (
a51

n

^VuT @ĉ~x1!•••dĉ~xa!•••ĉ~xn!#uV&

5E d4x^VuT @dL̂~x!ĉ~x1!•••ĉ~xn!#uV&, ~A6!

which is called the Ward-Takahashi identity. Here it is r
marked that the surface terms in thet integration vanish only
when N̂ and dL̂ are replaced byN̂2^VuN̂uV& and dL̂
2^VudL̂uV&.

Let us consider the system in Eq.~1!. The relevant trans-
formation corresponding to Eq.~A1! is an infinitesimal glo-
bal phase one, and we have

dĉ~x!5 i ĉ~x!. ~A7!

Then we have the Noether currents from Eq.~A7! as follows:

N̂052ĉ†~x!ĉ~x!,

N̂5
i

2m
$@“ĉ†~x!#ĉ~x!2ĉ†~x!@“ĉ~x!#%, ~A8!

anddL̂50.
When the symmetry is broken spontaneously and the

fore the Goldstone mode is present, we need a more su
treatment. To do this, one intentionally introduces a break
term in the Lagrangian density@14#. We introduced the ex-
plicit breaking term~5!, which becomes in the notation o
this appendix

«J~x!5«ē@e2 iuv~x!c~x!1eiuv~x!c†~x!#, ~A9!

i.e., the Lagrangian density corresponding toS« in Eq. ~6! is
defined by

L«~x!5L~x!1«J~x!. ~A10!
9-10
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This Lagrangian is not invariant under the phase transfor
tion due to the explicit breaking term~A9!. The variation of
the Lagrangian densityL« is

dL̂«~x!5«dĴ~x!5 i @N̂~ t !,Ĵ~x!#Þ0. ~A11!

Now we can use the WT identity~A6! with Eq. ~A11!,

i ^VuddĴ~x!uV&5E d4x8^VuT @«dĴ~x8!dĴ~x!uV&.

~A12!

The quantities in Eq.~A12! are

dĴ~x!5 i @N̂~ t !,Ĵ~x!#5 i ē@e2 iuv~x!ĉ~x!2eiuv~x!ĉ†~x!#,

~A13!

ddĴ~x!5 i @N̂~ t !,dĴ~x!#

52 ē@e2 iuv~x!ĉ~x!1eiuv~x!ĉ†~x!#.

~A14!
01360
a-Then we have from Eq.~A12!

v~x!5
i

2
~«ē !E d4x8v~x8!@^VuT @ĉ~x!ĉ†~x8!#uV&

1^VuT @ĉ†~x!ĉ~x8!#uV&

2e22iu^VuT @ĉ~x!ĉ~x8!#uV&

2e2iu^VuT @ĉ†~x!ĉ†~x8!#uV&#. ~A15!

Let us evaluate Eq.~A15! at the tree level. The field op
eratorĉ is divided as follows:

ĉ~x!5eiuv0~x!1ŵ~x!. ~A16!

Put Eq.~A16! into Eq. ~A15!, we then get
a critical
v0~x!5
i

2
~«ē !E d4x8v0~x8!@^VbuT @ŵ~x!ŵ†~x8!#uVb&1^VbuT @ŵ†~x!ŵ~x8!#uVb&2e22iu^VbuT @ŵ~x!ŵ~x8!#uVb&

2e2iu^VbuT @ŵ†~x!ŵ†~x8!#uVb&#

52
1

2
~«ē !E d4x8v0~x8!@G0,11~x,x8;t2t8!1G0,22~x,x8;t2t8!2e22iuG0,12~x,x8;t2t8!2e2iuG0,21~x,x8;t2t8!#

52
1

2
~«ē !E dv

2pE d4x8v0~x8!@G0,11~x,x8;v!1G0,22~x,x8;v!2e22iuG0,12~x,x8;v!2e2iuG0,21~x,x8;v!#e2 iv(t2t8)

5~«ē !E d3x8v0~x8! (
,,m,n50

`
1

En
@Cn,Cnm1Sn,Snm1Cn,Snm1Sn,Cnm#u,~x8!um~x!, ~A17!

where we use Eqs.~44! and ~46!. At the tree level,v0 is proportional tou0:

v0~x!5ANcu0~x!. ~A18!

Substituting Eq.~A18! into the right hand side of Eq.~A17!, we derive

v0~x!5~«ē !ANc (
m,n50

` 1

En

@Cn0Cnm1Sn0Snm1Cn0Snm1Sn0Cnm#um~x!

5~«ē !ANcF 1

E0
~C00C001S00S001C00S001S00C00!u0~x!1 ( 8

m,n50

` 1

En

~Cn0Cnm1Sn0Snm1Cn0Snm1Sn0Cnm!um~x!G
5ANc@u0~x!1O~«1/2!#, ~A19!

where(8 means summation withoutm5n50. Finally, we have the correct value forv0(x) in the limit of «→0:

v0~x!→ANcu0~x! ~ for «→0!. ~A20!

Thus it has been shown that the WT identity is satisfied at the tree level, as it should be. There the NG mode plays
role to keep the original symmetry.
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