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Proper treatment of the zero mode in quantum field theory for trapped Bose-Einstein condensation
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So far much theoretical consideration of experiments on the Bose-Einstein conderB&@nof alkali-
metal atoms in harmonic traps is based on the Gross-Pitad@Rii equation. In this paper, we attempt to
formulate the BEC in the language of quantum field theory and to estimate the quantum and thermal fluctuation
effects, which are neglected in the approximation using the GP equation. First, the formulation at zero tem-
perature is developed, and then it is extended to the finite-temperature case by means of thermofield dynamics.
We treat the zero-energy mode with care, so that the canonical commutation relations hold. As a result, an
infrared divergence appears, but it can be renormalized into the observed condensate number. Numerical
calculations are performed. For illustration, the corrections at one-loop level to the original GP equation are
given. We also calculate numerically the effects of quantum and thermal fluctuations on the distribution of
condensed atoms.
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I. INTRODUCTION velop a formulation of the BEC problem from first prin-
ciples; i.e., a quantum field theoretical one, and estimate the
Since the first experiments on Bose-Einstein condensatiofiuctuation effects.
(BEC) of alkali-metal atoms in harmonic traps succeeded in In our approach, BEC is understood as a spontaneous
1995[1-3] and subsequent experiments were achieved ifbreakdown of global phase symmetry. This mechanism gives
many laboratories all over the world, BEC phenomena havean order parameter which behaves like a classical field.
inspired various theoretical studig$]. From the theoretical When a continuous symmetry is spontaneously broken, the
viewpoint, the BEC system is rather simple, i.e., the interacGoldstone theorem implies the existence of a Nambu-
tion is of the two-body contacting type and weak. The ex-Goldstone(NG) mode[7]. This gapless mode is the leading
periments are well controlled and are expected to give prepart, creating and maintaining the order. In a sense our dis-
cise measurements under various experimental situations. bussions below emphasize the importance of the NG mode.
addition to future development of “BEC technology” and its It should be pointed out that the spatial translational sym-
potential applications, BEC can offer opportunities to con-metry is broken explicitly for the BEC system due to the
firm the foundations of quantum and statistical physics, or okxternal trapping potential, while the systems treated in text-
the physics of quantum many-body system. books are usually invariant under the translatiaithough
The behavior in BEC experiments has been treated corthe symmetry may be spontaneously broken, e.g., when a
sistently as the first step using the Gross-PitaeveBiP) lattice is formed. In the latter homogeneous cases the mo-
equation[5]. The approach using the GP equation is considmentum is a good quantum number and the Goldstone mode
ered as a mean-field approximation of quantum field theoryisually belongs to a continuous spectrum as a zero-
(QFT) which is the most fundamental law of dynamics. Themomentum mode. But, as will be seen later, the Goldstone
applicability of the GP equation is limited to cases wheremode in the present case is a discrete one. A discussion of the
most of the trapped particles are condensed and the effects sfmmetry and the gapless mode is given in R&f.within
noncondensed particles are very small. Actually, the GRhe mean-field formalism. There the symmetry and gapless
equation explains the phenomena at rather low temperaturgode are considered in the limit of homogeneous geometry;
observed in many experimeri#]. For future experiments in we do not take the homogeneous limit, but treat the inhomo-
which physical quantities will be measured more accuratelygeneous system directly.
or in which fluctuationgwe mean both quantum and thermal  The Ward-TakahashiwT) relations[8] and the Gold-
fluctuationg will play an important role, one has to take stone theorem are derived solely from the canonical commu-
those fluctuations into account. In a way they are estimatethtion relation, the Heisenberg equation of motion, and the
within the framework of the mean-field approximatifi. transformation property for the Heisenberg operator. In this
Our purpose is to reconsider the BEC from the viewpointconnection, we insist on preserving the canonical commuta-
of QFT beyond the GP equation. We want a theoretical fortion relation, while the Bogoliubov prescriptid®] violates
mulation applicable to cases even with large fluctuations. Foit [10]. This problem has already been pointed out for the
example, when the temperature approaches the critical ongapped BEC systeiiil1]. For illustration, we will show that
the fluctuations are inevitably large. In this paper, we dethe WT relation holds at the tree level in our approach, which
clarifies the important role of the NG mode for the existence
of condensation.
*Electronic address: okumura@toki.waseda.jp The existence of the zero mode is also deriveplin 13,
"Electronic address: yamanaka@waseda.jp using a formalism slightly different from ours. There it is
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treated as a pair of collective coordinates, while we treat it agrapping potential is assumed to be isotropic ands its
a particle mode. The point relevant to the discussions in thisrequency, andy is a coupling constant which is assumed to
paper is that the two approaches correspond to choosing dibe small. We suppose that the system is cool and dilute
ferent vacua. When the choices of vacua are different irenough to use this approximate interaction.
QFT, the physical results are different. The way to treat the Note that the action above is invariant under the global
zero mode and associated vacuum is not definite yet, and it jshase ~ transformation ¢(x)—e'éy(x) and ¢'(X)
fair to say that it is still an open problem. —e "¢yT(x), where¢ is an arbitrary constant phase.
Once an operator representing the zero mode comes in as In the terminology of the canonical operator formalism,
in our formulation, one expects that large fluctuation effectshe Heisenberg operatgi(x) is divided intoc-number and
will appear, since it easily fluctuates due to gaplessness. Igperator parts as
fact, it will be seen below that this fluctuation effect brings
us an infrared divergence in the coefficient of the distribution {ﬂH(X) =e %y (x)+ ;DH(X)! (2)
function of the condensed particle and a finite deviation of
the distribution function from that of the GP equation even atwhere thec-number real functiow (x), whose square corre-
zero temperature. It is shown that the infrared divergence casponds to the distribution function of the condensed particle,
be dealt with in a kind of renormalization prescription. is unknown at the beginning and should be determined self-
One has to take account of thermal fluctuations as well irconsistently. In what followsy(x) is assumed to be time
order to compare theoretical results with experimental datandependent, whilef is assumed to be real and time and
Formally, the formulation of QFT at zero temperature can bespace independent, meaning that there is no vortex. We re-
readily extended to include thermal effects, that is, to thermafjuire the condition
field theories. We employ the formalism of thermofield dy- . .
namics(TFD) [14], because it is faithful to the concepts of (Qfh(x)| Q) =€""v(x), 3
QFT such as the particle picture, canonical properties, and so .
on, although any thermal theory for equilibrium would give or equivalently
us the same result as ours below within the one-loop calcu- ~ _
lation. According to the formulation of QFT at finite tem- (©2]en(x)[€2)=0, @
perature, we can show in this paper that a finite deviation ofeading to an equation determiningx), where|Q) is the
the distribution function of condensed particles from that ofygcyum.
the GP equation is predicted numerically. In order to tame the singular terms associated with the
The paper is organized as follows. In Sec. Il, we give thegiscrete NG mode, we introduce an artificial breaking term
formulation of quantum field theory for the trapped BEC which is taken to be vanishing at the final stage of calcula-
system. The unperturbed Hamiltonian is diagonalized, so thafon, which is a conventional prescription for treating a sys-
one can obtain the unperturbed energy spectrum of noncofem of spontaneous symmetry breakdown. Explicitly we add
densate quasiparticles and the unperturbed propagator. Thef following breaking term with an infinitesimal dimension-

the canonical commutation relation is respected, which ¢ parametes and a parametee, representing a typical
means a careful treatment of the zero mode. We develognergy scale of the systetno: ’

one-loop calculationgtadpole diagramincluding quantum
and thermal fluctuations in Sec. Ill. There appears an infra- — _ .

red divergence as a result of the fluctuating zero mode. It is AS:SEJ' dtd®x[e v () p(x)+e' % (x) ' (x)]  (5)
shown that the renormalization can deal with the divergence.

In Sec. IV, we describe the method of numerical calculatiornto the original action(1),

and give numerical results for the distribution of condensed

particles. Section V is devoted to a summary and conclu- S;=S+AS, ©

sions. In the Appendix, we derive the WT identity at the treey it the suffixe will be suppressed unless otherwise men-
level to indicate the role of the NG mode.

tioned.
The expression in Eq(2) is substituted into Eq(6),
Il. FORMULATION OF QUANTUM FIELD THEORY AND which is rewritten in terms of (x), 6, ande(x) as follows:
DIAGONALIZATION OF UNPERTURBED
HAMILTONIAN S, =So+S1+S,+Ss4, (7
Let us start with the action given by where
szf dtdsx( STONT—K=V+ u)h(x) so=f dtd3x(v(x)(—K—v+M+2s?)v(x)— gv“(x) ,
g (8a)
=S¥ 0BT )P (x) |, )

Slzf dtd®x{e "% (X)[—K—V+ u—guv3(X)+ €] o(X)
with the abbreviated notations ofT=ifd/dt, K _
=—(#%12m)V?, and V=imw?(x?+y?+7?), where the +o'(X)[—K=V+u—gvi(x)+eele'v(x)}, (8b
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g We now turn to diagonalizing the unperturbed Hamil-

52=J dtd®x{ o' (X)[T—K—=V+ule(x) - Evz(X) tonian (128 and to establishing the quasiparticle picture at

the tree level. Equatioi9) suggests that it is adequate to

+ _2ip 2 20 +2 expand the fieldp(x) in terms of the complete orthonormal
X[4e'(X)o(X)+e " e%(x) +e e (X)]}' (80) set{u,(x)} (n=0,1,2...), whose eigenequations are

S3,4:f dtdSX(—gv(X)[eiggDT(X)QDT(X)(,D(X) [K+V—/.L+gvé(X)]Un(X):(8n+8?)un(X), (13)

with
o g
+e7 0T (x) p(x) p(x)]— §¢T(X)¢T(X)¢(X)¢(X)]- f d3x U (X) U/ (X') = S (14)
(8d) -
As will be seen below, this prescription is crucial to control nzo Un(X)U(X") = 8%(x=x"). (15
the symmetry breakdown and the infrared divergence appear-
ing in higher-order loop. It is easily seen thaty(x) is proportional toug(x) with g

As was emphasized, the role of the zero-energy mode is-0:
essential. We should adopt an approximate scheme in which
the Goldstone theorem holds. The theorem can be derived vo(x)=\/N—cuo(x). (16)
from the WT identity. It is well known that the loop expan-
sion respects the WT identity and that therefore the Goldiet us expandp(x) in terms of Eq.(13),
stone theorem holds at each level of the loop. Thus, in what
follows, we develop a loop expansion for the system of the

o0

action in Eq.(8d). It will be seen in the Appendix that the GD(X)ZHZO an(t)Un(X). 17
existence of the NG mode guarantees the WT relation at the
tree (zero-loop level. The operators,, anda/ are subject to
First we investigate the system at the tree level, denoting
v(x) by vo(x). From Eqg. (4 or from the condition [5n,5;/]:5nn, , (18
(8S/6¢)|,-0=0 the classical equation of motion fog, is
derived: and [én,énr]=[é§,éz,]=0. These commutation relations
[K+V—,u+gv§(x)—e?]vo(x)=0. (9) with the cpmpletenes@.S) are consistent with the canonical
commutation relations
At the limit of vanishinge, this equation is reduced to the o PV A4y T o
GP equationK+V—pu+gu(x)Jvg(x)=0. The integra- [HO00, (X D1=[e(x,D,¢" (X, D]= 8(x=X") (19
tion of the square od is interpreted as the condensate par-
ticle numberN,, and
N.= f PBxw2(%). (10 [0, H,01=[ 060, 31 (x' 0]
=[@(x1), (X't
Under the condition of Eq9), we have the Hamiltonian Le(x0), e (x.1)]
given by =[e"(x,1), 0" (x",1)]
H=Ho+Hin, (12) ~0. (20)
where Here the fact thaf, is included in the expansiofl?) is

R R A g R A essential, otherwise the canonical commutation relation
Hozf d3x+ oTOX)(K+V—p)e(x)+ Evg(x)[4goT(x)<p(x) would be violated. In the conventional Bogoliubov approach,

ay is excluded, or, more precisely,y(X)+agug(x) is re-
placed by a single-number functiorvy(x). The difference

(12a between the conventional Bogoliubov approach and ours is a
central subject in this paper.

+ e—2i 0(,02(X) + e2i¢9€DT2(X)] ,

Hint:f d3x[ gvo(x)[eieé‘pT(X)(”‘DT(x);}(x) The unperturbed Hamiltonian now reads
A ~ A g- - ~ A 2(s+seaa+2 [2aU,a,
+e e ()@ e(x)]+ 5@ (X) e(X) (X) |- = "o e
(12b) te 2IGanunn’an""ezma Unn’a ] (21)
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with the notationU,, =g d3xv2(X)u,(X)u, (X). He is  Where
not diagonalized yet in terms of the operators. Let us in- 4yaiU
troduce the following operators: 10

u' = 4\/8—2U20 s (25)
o= \/;_(e Wa,+e’a)), (223 :
" 2(entee)
u' T=(4e,Up1,4VeUpy, .. .), (26)

-~ sn+se A 5t
=TV —5 (e ). (220 W =28+ e Upp e (Mn'=1,2,.. ).
(27)
These operators satisfy the canonical commutation relations
[Qn,Pn/]1=1i 8,y and other commutations vanish. The Hamil- Then the symmetric matri¥V can be diagonalized by an

tonian(21) is rewritten as orthogonal matrix0:
R DA S . - ,
Ho= 2 5P 2 5UnWhn Qn 2 (Oanmm’On’m’):Enann’- (29)
=0 2 Weo 2 =0
B 2 (e +se)+Unn} 293 It can be shown that the zeroth eigenvalue is

Eo=Vee(4Ugu'™W 1) 24 O(s¥3)  (29)

= Jee\Eo+0(£), (30)

Here the matriXV has a block structure,

[ 4(s)UnotO(s?) Veeu T+0(£¥?) o
, (24
\/g—eu +0(e%?) W'+ 0O(e) and that the matrixD also has the form of
1 — =
1- (U W 2" +0(e%) —Veeu' "W 1+0(%?)
o=| 2 : (3D
VeeO'W ~1u’ +0(£3?) O'+0(s)
|
where O’ satisfies * 1 1
2
=n§=: P + = EnQn (8 +86) Unn
OIW/O/T:EQ, (32)
B T S
with the diagonal matrix = 24 | Enbnbnt 5B 5 (entee) = Unn . (39

— 1/2 [ A ~ A A
Enn =Endan +0(e™)  (nin'=12,..). (B3 | the last equality, we relatef,,P,} to {b,,b]} as

Using thisO matrix, we introduce a new pair of canonical ~ 1 . .
operators by Qn= (by+b)), (369
2E,
O = a R En .~ .
&, O (343 By=—i/ 5By B). (36
A - A In this way we have the generalized Bogoliubov transforma-
_mE:O OnmPrm, (34D {ion [11] with the zero mode

where[Qn,ﬁn,]=i5nn, and other commutation relations b = E (e71°C, a.+e’s al) (373
vanish. Finally, we have " o nmem nmme
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63=an:0(ei”cnméhe*”snmém), (37b

1 E, enmtee
Com== —+ Onm, (383

2 entee En

1 E, emtee
Sim=75 = £ |Onmm- (38D

emtee n

The matricesC and S satisfy the following relations:

where

oo

(ChmCn'm= ShmSn'm) = Snnr (39

m=0

mE:O (CrmSnm— SamCnrm) =0. (40)

We mention only the leading behaviors of element€aind
S with respect toe: Cop,Sog~e ¥ Con,Son~e¥* (n
#0), andC,g,Sy, and the other remaining elements:°.

It is remarked that the singular behavior @and S comes
from the mixing between tha, anda, (n#0). Although
the mixing matrices are divergent as-0, the energy eigen-
values{E,} are finite.

We compare the quasiparticle picture in our theory with
the one in the usual Bogoliubov theory, in which the zero

mode is excluded in the expansion of Efj7). In our theory

there are additional mixings between the operators wwith

PHYSICAL REVIEW 88, 013609 (2003

Here a crucial step is taken: We assume &d) even for

n=0, bo|Q,)=0. The authors 12,13 suggest a vacuum
different from ours, but could not propose a criterion to fix a
single vacuum yet. In any case, their expression for the un-
perturbative propagator, if they calculated it, would differ
from ours. One cannot apply the results of our loop expan-
sion calculations naively to their approach.

We can easily construct the unperturbative propagators.
Introduce the column notation as

A o (fori=1),

. ot (fori=2), (433
R of  (for i=1),

i@

‘ [ o (for i=2), (430

and define a X2 matrix propagator by
Go (X, X" ;t—=t")  Gg1AXX";t—1t")

Go21(X, X ;t=t")  God X, X" ;t—t"))’
(44)

Go(x,x’;t—t’)z<

where

Goy (XX t—t')=—i(Qy| T[D{ (X, DT (X' t)]|Qy).
(45)

These propagators depend xandx’ separately due to the
absence of space-translational invariance, but are functions
of t—t’ since the stationary situation is under consideration.
We give their Fourier transforms with respect to time,

=0 andn#0, but they do not affect the energy spectrum ofGo(X,X’;w)Ef dre'“"Gy(x,X'; 7)
noncondensate modes: the energy spectrum in our theory is

given by{E,}, while that in the Bogoliubov theory byE}. % 1 CneCom —CieSim
Equation(33) indicates that the former approaches the latter = B w—E +is\| —S.,C
ase—0 except fom=0. fmn=0 (L& E=n SneCom - SheShm
What is important here is that the energy spectrum of 1 SveSim —ShCnm
noncondensate quasiparticles{is,}, but not the “naive” T WrE—is| —
energy parametefs,}. The numerical difference between ©+Ea=101 =CniSim - CneCom
these two energies will be shown in Sec. IV.
Now that the unperturbed Hamiltonian is diagonalized in XUe(X)Um(X") (, (46)

Eq. (33), the unperturbative vacuuptl,) is defined by
b, Q) =0. (41)

In terms ofb,, andb], the field operatorg and ' can be
written as

p(x)=¢ Hm;:() [Dn(1) Crmtm(¥) = B(1) Symtm(¥)1,
' (429

&*(x)=e“0m;:0 [B]() CrmUm(X¥) = bn() Symm(¥) 1.
' (42b)

whereé is an infinitesimal constant.

Ill. ONE-LOOP CALCULATION

Next we proceed to the one-loop level. The fieldis
divided as

P(x)=€""v(X)+ (X)), (47)
where
v(X)=vq(X)+ dv(X) (48

with an unknown functiondv(x) of the order of#, while
vo(X) is the one at the tree level, subject to E9). Because
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o—@—i—o—o =0

FIG. 1. Tadpole diagram.

the GP equation does not hold for thiddue to the presence

of sv, the termS; cannot be dropped. Thus the interaction

Hamiltonian at the one-loop level should read as

Him:f d3x[e_”’v(x)[K+V—,u+gvz(x)—s?]c}(x)
+ @ (O[K+V—p+gu?(x)—zelev(x)
+go(x)[e e’ (x) e (x) e(x) +e " () e (x) @ (X)]
+ §¢T<x><zf<x>¢<x>¢<x>]. (@9
Starting withvy, we evaluate the quantum correctién,

using the unperturbed propagators in E6) and Feynman
rules from the interaction Hamiltonia@9). Then the condi-

tion (4) up to the one-loop level amounts to calculating the

tadpole diagram shown in Fig. 1, which leads to

[K+V—,u+gv2(x)]v(x)

9, 2 (2S0Sum CorSum)Ue(¥) Um(x)0 () =0.

(50

PHYSICAL REVIEW A 68, 013609 (2003

then sv(M(x) is a solution of the equation

[K+V—u+3gv3(x)]6vP(x)

> (2S0Sam— CreSam)Ue(X) Un(X)v6(X) =0,

,m,n=0

+ ge
(54)

whereX’ means a summation witholdt=m=0.
Although (25%,— CnoSho) in Eq. (53 is divergent in the
limit of e—0, the solution can formally be found to be

0

1
2V 2 (2870~ CooSro)Uo(X). (59
The linear equatiori54) is free from divergence and can be
solved numerically. But when we expadd*(x) in terms
of the complete set{u,(x)}, SvM(X)=27_dun(X),
the coefficientd, is not equal to zero in general. Thas ()
and svY are not orthogonal to each other:
Jd3x6v @ (x) v (x)#0. Physically, one should redefine
the two terms indv as

SvO(x)=—

Ov (X) = v o(X) + dv¢(X), (56)

where
80o(X)= 80 (x) + doUig(X), (57)
801(x) = 2 dylin(X). (58)

Here a crucial observation is that the infrared divergencen this way, whiledv is proportional tauy, dv; is orthogo-

appears in the summatidtadpole contributiopas the diver-

nal to dvg, [d3xdvo(X) Su¢(x)=0. One cannot obserug,,

gence of 1{/e, but the divergent terms are limited to those sv,, anddv; separately in experiments, but only a combina-
with £=m=0. On the other hand, there are new finite quan-ion of vy+ v. Therefore we should relate the condensate

tum contributions. Within the approximation, one may re-

write Eq. (50) as

[K+V—u+3gv3(x)]6v(X)

9, 2 (250 Sum— CorSum)Ue(X)Um(x)06(X) =0,
(51)

after the higher terms such @s° and 6v2v, are neglected
and the equation fovg, EqQ.(9), is applied.

In order to isolate the infrared divergence, we expt&ss
as a sum of two term@ne is infrared divergent, the other is
finite),

Sv(x)=6vO(x)+ svM(x). (52
The 6v(9(x) is taken to be proportional tay(x) and is
subject to

2gv§(x) av<°><x>+gr§0 (282, — CnoSno) U3(X)vo(X)=0;
(53)

number, which we calN,,, to the integration,

Ne,= f dx[00,(X) + Sug(X)]°= f dxvg () (59

where the notation

Vo AX)=v0o(X)+ vo(X) (60)

is used, and$uf2 has been dropped because it is of the order
of #2. It should be noted that within the approximatiop
can be replaced with the observablg, in Eq. (54), which
determinesduvy .

Thus we isolate the infrared divergence and renormalize it
into the observed condensate numbgg. The explicit finite
fluctuation effect can be observeddo; as a deviation from
onr.

We can also evaluate the thermal correction, confining
ourselves to equilibrium situations, to the condensateln
order to include thermal fluctuations, we use TFD which is a
real time formalism of thermal field theory. The above for-
mulations in the zero-temperature case can straightforwardly
be extended to the thermal situation in TFD, only with the
doubling of each degree of freedofi4]. The doubling
forces us to use a4 matrix propagator instead of the
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2X 2 matrix in the zero-temperature case. But we commenivhere
that any conventional thermal field theory, e.g., the imagi-

nary time formalism, closed-time path formalism, and so on 8 5,o(X) = 80§ (%) +d g oUig(X), (67)
[15], would give us the same result as in TFD for the quan-
tities below. “

After following all the same steps as at zero temperature 5Uﬁ,f(x):nZl dg nUn(X). (68)

above, we reach the following equation from calculating the

one-loop tadpole diagram: The total corrected order parametgx) is

[K+V=p+go’(x)]v(x)

) v(X)=v g 0dX)+ v g (X) (69
+ngn:0 (2S0¢Sm= CrneSam) U () Um(X)v (X) v ,0AX) =0(X)+ 80 g o(X). (70

o Before_ closing this_ section, we should compare our ap-
+ge,m,zn:o exp(BE,) —1 (SneSnm+ Coe G prolg?;'vmg (()qtt:]aerr]fulrﬁllz]lgc(tguz{ibns to the condensate profile

B _ were calculated perturbatively by Braaten and Nigté].
CreSam)Ue(X)Um(X)v (x)=0. 6D The usual plane-wave expansion is used in their calculation

The corrected condensate paf) is separated into the fol- because they focus on short-distance quantum fluctuations.

lowing three terms: Conver_sely, we respect low-lying modes, especiall_y the zero
mode, in calculating quantum and thermal fluctuations, then
v(X)=vo(X)+ v 4(X), (620  we use the complete orthonormal $&B8) which fully in-
cludes the trapping potential, and diagonalize the unper-
v ()= 80 (%) + v (%), (63  turbed Hamiltonian. Although both the approaches deal with

the same Feynman diagraffig. 1), the propagators are dif-
where év 5(x) represents all the correctiofthermal as well ~ ferent from each other, as are the final results.
as quantum and 5v(ﬁo)(x) is proportional toug(x) and is Next, we mention the difference between Hartree-Fock-
subject to Bogoliubov(HFB) theory and ours. Equatiort50) and (61)
at first sight seem to be equivalent to the generalized GP
) ©) ” 5 equation, derived by the HFB approximatip®]. However,
29v5(0) 80§ ()+9 > | (2S5~ CroSho) the methods to evaluate the quantum and thermal fluctua-
n=0 tions are different. The HFB theory is a variational method
[17], but our calculation is based on the loop expansion,

+ e (Sh0Sho+ CoCio which enables us to improve the numerical results loop by
exp(BE,) —1 loop
Finally, we discuss the ultraviolet divergence arising from
~ CnoSno) |Uo(X)Ug(X)vo(X) =0. (64 the contact type interaction, already discussed in several pa-

pers[16—18. The contributions 0f5, ;AX,X;0) in the tad-
This equation is infrared divergent again, but fortunatelypole diagram, i.e., th€, S, terms in Eqs(50) and (61),
only with ¢=m=0 just as in Eq(53). The finite correction correspond to the anomalous average in the HFB theory and
term ngl) is a solution of give rise to UV divergences. The fact that the summations of
the C,,,S,m terms there diverge roughly as the square root of

* the UV cutoff can be checked by the numerical method in the
[K+V—u+3g03(x)160P0+g > | (2SSum next section. In order to deal with the UV divergence, we
¢.mn=0 adopt the renormalization procedure giver{ 18], which is
2 to subtract the zero-temperature component of the anomalous
-C T +C.,.C average or to drop the zero-temperature component of the
neSom) exp(BE,) —1 (SneSomt Cne Com Cp¢Snm terms in Eqs(50) and(61). We have not formulated
the whole renormalization scheme including the self-energy
— CrtSnin) | U (O U(X) 0 6(X) =0. (65) and vertices yet, but this procedure is considered legitimate

within our one-loop calculation.

These results show that the infrared divergence appears at
finite temperature in the same manner as at zero temperature
and therefore that its isolation and renormalization can be Now let us perform numerical calculations regarding the
performed quite similarly. Again, expanding a%;%l)(x) quasiparticle picture and the effects of quantum and thermal

IV. NUMERICAL STUDY

=37_odgaUn(X), We redefine the two terms ifv 5 as fluctuations. The parameters that we use are as follows: the
trapped atoms are®Rb, which has the massm
6V g(X) = 6v g o(X) + SV g 1(X), (66) =1.42x10 ?° kg, the frequency of the trapping potential is
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TABLE I. The energy spectra of “naive” and quasiparticléa). T ( N ) 173
= : (71

shows the energy spectrum with the number of condensate atoms T =|1- N
N.=1000 and(b) with N.=25 000. ¢ tot

whereT. is the critical temperature and,, is the total num-

@ ®) ber of particles(the sum of the numbers of condensate and

9.957 9.979 9.365 9.687

Nc=1000 Ne=25000 noncondensate particlesBut, in the interacting caseg(
n en E, n en E, #0), we have neither such a simple relation Agr. We
acquire the total numbeN,, with the energy of the quasi-
2 3.967 3.999 2 3.529 3.960
3 5.963 5.989 3 5.451 5.839 N N % 1 2
=N+ —_—,
;1 7.959 7.983 ;1 7.401 7.752 e=Net 20 S aE T (72)

i : : : : : Here the energy of the quasiparticle is defined in the unper-
10 1.995¢10 1.99%10 10 1.92%10 1.951x10 turbed Hamiltonian of Eq(35), in other words, at the tree

: : : : : : level. We have the value of/T; which parametrizes our
50 9.994<10 9.995¢10 50 9.91&K10 9.92%¢10 results.

: : : : : : Let us illustrate the steps to obtav¢(x) in Eq. (58)
numerically. We already havey(x), {u,(X)}, {en}, {Onm}>
{En}, {Chmt, @and{Symt. Put 5o (x)==7_d,un(x) into

w=200x27mHz, the coupling constang=0.03, (an Eq. (54):
=\h/I2mw=5.44x10""m), and the number of condensate o

atomsN; is chosen as 1000 and 25 000. Here the valug of E [e,+ 29v§(x)]dnun(x)
is taken to be small for the following technical reason, com- n=0

pared with the usual=4m#%as/m, wherea, is thes-wave w

scattering length of thé’Rb atom. The situation of smailis n - U AU~ 0a(X) =0. (73

realizable with Feshbach resonarid€]. The validity of the ge,n;r:'=0 SneSante(YUn(X)vo(x)=0, (73

loop expansion is guaranteed under the choice of these pa- . . . .

rameters, since the parametgrdN .= 0.095 (N.= 1000) and (r)nvuel';l)p()ly both sides of Eq(73) by un (x), and integrate it

0.47 (N.,=25000), a factor appearing at each level of the '

loop, are small. In other words, a larger value §pwould <

make loop expansion of lower orders unreliable. > Wondy=—Fpr, (74)
First we investigate the unperturbed particle picture in this n=0

system. As was pointed out, our relevant energy spectrum i§qare

given by{E,} associated with the quasiparticle, but not by

{en}. We here compare the numerical values for these two — 3r 2

energies. In order to know them, we solved the GP equation Wnn’:8n5nn'+29f d*X[wp(X)Un(X)Un ()], (79)
(9) by use of the Runge-Kutta meth$a0] as the first step,

and then the eigenequatidh3) with the solution of Eq(9) -

as a potential and with 200 levels from the bottom and 400 Fnr=gf d3x . r;_'o 2S4¢Shmv o(X) U (X) U(X) U/ (X) |-

eigenvalues of angular momentum for a spherical trap. The

matrix elements oW in Eq. (27) are explicitly expressed by

these solutionsuo(x) and{u,(x)}. The matrix without zero  From this relation(74) the coefficientsd,, are derived:

mode W’ is diagonalized as Eq32) [21]. Then we have .

{en}, {Onm}, and{E,}, with which the matrice€ andSin —_1

Eq. (38) are given. dn= _ngo Wi For- 77
Table | shows the results witiN,=1000 and N.

=25000. The difference is rather small when the number ofn this way we have the finite quantum correctiéwy(x) in

condensate atomi. is small[Table ka)]. But whenN; is  Eq.(58) numerically. As was mentioned in the last paragraph

(76)

large, we are able to distinguigh, from E, [Table kb)]. We  of Sec. Ill, we have dropped the UV divergent terms
note thatkE, is calculated at the tree level, but is not renor-(2C.,S,w in Egs.(73) and(76).
malized yet. At finite temperature the finite correctiafv 5 ((x) in Eq.

Next we evaluate the influences of quantum and thermal68), which represents the effects of both the quantum and
fluctuations on the spatial distribution of a condensate. Théhermal fluctuations, is obtained by the same procedure as
remaining parameter to calculate the effects is the temperabove. As for the UV divergence, we subtr&t,,S, at
ture T. In the ideal Bose gas modefy€0) [4], one can zero temperature, keeping the temperature-dependent
derive the relation ChneShm terms.
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- 0.0035 T r r v 700
Q . . [
€ 0003} Correction with NG-Mode 600 | Corrected GP equation :
£ 25 [ Correction without NG-Mode ------ = GP equation -------
8 000 5 Y g 500 L o
= 0002 L
£ =400 |
g 0.0015 | b=
9 Z 300t
g 0001 2
£ 200 |
E 0.0005 | 3
g oh 100 |
>y
-0.0005 . . . 0 . . .
0 1 2 3 4 5 0 1 2 3 4 5
radial distance (units of ay,) radial distance (units of ay )
FIG. 2. This figure shows the radial distribution&f 5 {(x) with FIG. 3. The difference between corrected and uncorrected dis-

and without zero mode with the parametéds=1000 andkgT tributions with the parametersl;=25000 andkgT=50iw is
=2fiw. The solid line is the radial distribution of the correction shown in this figure. There is a small difference between the two at
calculated by our theory and the dotted line is the one by the Bothe center. The upper solid line is the corrected distribution, while
goliubov theory. We find that the zero mode has effects on thehe lower dashed line is the one without correction.

distribution of the correction.

V. SUMMARY AND CONCLUSION

Now let us compare the result in our theory with the one ) ) )
in the usual Bogoliubov theory, which one can easily obtain W& have given a formulation of QFT for a BEC system in

just by suppressing all the quantities with suffic0 in a trap, which is a field theory in a finite region and without

Secs. Il and IIl, and in which we see no infrared divergencé":’patia"y translational invariance: the unperturbative repre-

in the loop calculation. For definiteness, we fix the param_sentation is established under the assumption that the system
etersN_= 1000 andksT=2%w (kg is the’Boltzmann con- is in a condensed stationary phase without a vortex. One can
C

stan), which corresponds to the fraction of condensatedevelop a loop expansion to include quantum fluctuation ef-

T/T,~0.275 according to the relatiofr1). Figure 2 shows fECtS' T}e lf(;)rrt?ulation F:ar|1 ze eﬁ(tend??l straightforwardll)ll to
the corrections of the condensate profife,; «(x), with and t e‘lr'rr?aB:EeC theory .t; 'n%u e therma uctua’gon iz Well. ¢
without the zero modéour theory and the usual Bogoliubov N Is considered as a spontaneous breakdown of a

theory). We find that the existence of the zero mode makes global Phas_e symmetry in QFT. Then the e?<|stence of the NG
difference in the observable quantity. mode, implied by the Goldstone theorem, is the most crucial

Figure 2 may make us expect that quantum and thermd the behavior of the system. We respected the existence of
corrections give some contribution to the condensate. Th e NG mode in this paper. To do this, we first introduced the

corrections are too small to be measured with the parameteZ£ro-energy operatar, in the expansion of the operator field

fixed. ¢ in order to make the canonical commutation relation hold,
However, the situation changes slightly when the numbesince the canonical commutation relation is one of the indis-

of condensate atoms is larger and the temperature of thgensable relations, from which the Goldstone theorem is de-

system becomes higher. We calculate the corrected condefived. Note thatéo is omitted in the usual Bogoliubov pre-
sate density witiN.=25000 andkgT=50% w, keeping the scription. Next we utilized the loop expansion, because the
other parameters the same. The fraction of temperature M/T relations, from which the Goldstone theorem follows,
given by T/T.=0.949 with these parameters. Figure 3 showsare preserved at each level of loop.
the radial corrected distribution of the condensate density Thus our approach is more fundamental than the mean-
uz(x):[vﬁyoyr(x)Jr5uﬂ'f(x)]2 and the solution of the GP field approximation(GP equatioh and the Bogoliubov ap-
equation without quantum and thermal corrections. proach. One can check the validity of these approximate ap-
It is seen from Fig. 3 that the condensate density increasegdyoaches from our fundamental one. In this paper we
at the center of a trap from the distribution without the cor-calculated only a single-point Green function at one loop
rections. This can be explained as follows. The repulsiveétadpole diagramto estimate the condensate distribution, but
force between the condensate and noncondensate beconiegnd that the deviation from the result with the GP equation
substantial as the number of noncondensate particles iris too small to be observed at present experiments. So our
creases, surrounding the condensate particles at the centgiudy supports the applicability of GP equation to the present
Consequently, the condensate density is pushed up to tifexperiments. As a matter of fact, the GP approach is consis-
center. The difference is too small to observe within the resotent with the experiments. According to our analysis, one can
lution of the present experiments. This result assures us thapply the GP equation, surprisingly, up to temperatures very
the GP equation is applicable to describe the condensate elose to the critical one. For our calculation of the one-loop
rather high temperature. It is consistent with the present exexpansion to be valid, we had to confine ourselves to small
periments which can be roughly explained by the solution olvalues of the parametagN.. Our analysis suggests that
the GP equation. experiments with a rather large value @f/N, will show
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larger deviations, which may be observed at the present et is easy to derive from Eq$A2), (A3), and(A4) that
perimental resolution.
Although our formulation gives almost the same numeri- ¢ N a N
cal results as the conventional approacf2¥, the appear- E<Q|T[N(t)¢(xl)' - (X0 [ Q)
ance of infrared divergence there is of great significance. The .
divergence certainly brings additional trouble, but is closely
related to the presence of the zero-energy mode, without :azl o(t—1ta)
which the theory would not be consistent from the viewpoint
of QFT. As was shown above, the divergence can bg renor- XQUT[(xq) - - - [N(), h(X2) - - - h(x) 1| Q)
malized solely into the condensate number, and this is the
main reason why our results are not different drastically from J N N
the others in spite of the divergence. +<Q|T[(EN(U Y(Xa) -+ (%)
Our future task is to calculate the two-point Green func- .
tion (self-energy diagraim which should be related to the , A R -
one-point function through the WT relation. By doing this,  — _';::l S(t—t)( QT [Yh(X1) - - - Sh(Xq) - - - h(Xp) | Q)
we will be able to clarify more deeply the implication of the
renormalization done in this paper, and to predict the energy 3 na -
spectrum of excited particles, affected by quantum and ther- + | EXQTLLOOP(X1) - - - r(Xn) ]| Q). (AS)
mal fluctuations.
One interesting possibility is to consider the NG mode adntegration with respect tbon both sides leads to
collective coordinates as ifl2,13. Then the unperturbed

1)

propagator will be modified, as will our numerical results. A 2 . . .
study along these lines will be reported in a future paper. 'ﬁa}::l (QIT [gh(X1) - - - 8h(Xa) - - - h(X) 1| Q)
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Their Applications.” formation corresponding to E¢A1) is an infinitesimal glo-

bal phase one, and we have

APPENDIX: WARD-TAKAHASHI IDENTITY - ~

OPp(X)=1(X). (A7)
First, we make a brief review of the derivation of the

Ward-Takahashi identity for a general syst¢&14]. Con-  Then we have the Noether currents from E&j7) as follows:

sider an infinitesimal transformation for a system of field

operatorsyy and i, No=— () #(x),
()= P(X) + ESY(X), (A1) L P ;
N= ALV 001900 =T (LY 0T (AB)
where ¢ is an infinitesimal parameter. For this transforma-
tion, one can find the Noether currenfdy(N) satisfying and82=0.
When the symmetry is broken spontaneously and there-

J ¢ Q e fore the Goldstone mode is present, we need a more subtle

—No(X) + V- N(x) = 6L(X), (A2) . 1S present, w :

at treatment. To do this, one intentionally introduces a breaking

R term in the Lagrangian densifyt4]. We introduced the ex-
wheredL is the change of the Lagrangian density induced byplicit breaking term(5), which becomes in the notation of

the infinitesimal transformation above. The operator this appendix
Ri(t)= f B Rg(x) (A3) sE(0=sele (0P T ()Y (0],  (A9)
i.e., the Lagrangian density correspondindgstoin Eq. (6) is
generates the transformation as defined by
[4(x),N(t")]8(t—t")=i8(t—t")Sg(x).  (Ad) L.(X)=L(X)+eE(X). (A10)
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This Lagrangian is not invariant under the phase transformafhen we have from EqA12)
tion due to the explicit breaking ter®9). The variation of
the Lagrangian densityf, is

i -
SL,(\)=esE()=I[N(1),E(x)]#0.  (Al1) ”(X):E(“)fd4X’”(X’)[<Q|T”’(XW(X')]M

Now we can use the WT identit{A6) with Eq. (A11), QTP ) P(x")]] Q)
i<9|55é(x)|n>=f A4 ([T [£ 62 (x) 52 (x)| Q). —e QT H00#0)]I)
(A12) —e2UQIT[ 0PN (x)]1Q)]. (A15)

The quantities in Eq(A12) are

- R - e . » - Let us evaluate EqA15) at the tree level. The field op-
SE(X)=i[N(1),E(x)]=ie[e”" v (X)h(x)— € U(XW((X)]; erator is divided as follows:
Al3

882 () =i[N(t),62(x)] P(x)=€"vo(X) + ¢(X). (A16)

= —e[e () (x) +e ()P (x)].
(A14) Put Eq.(A16) into Eq. (A15), we then get

0= 5(c0 f d*%"vo(X )( Q| T Le(x) @ (x) ]| Q0) + (2| T Lo () @(x) ]| Q) — ™ %] T[¢ () @(x")]|2p)
— e[ T[e (00" (x)]| )]

1 — ) .
=——(se)f d*% vo(X")[Go 11X, X it =t )+ Gg oA X, X ;t—t") —e 2 0Gy 1 x,X;t—t") —e? /Gy oy(x,X";t—t")]

2
1 —(dof ,, ' ' ' —2i ) 2i6 ) —iw(t—t")
== 5(86) o d™'vo(X")[Gg 11X, X" ;@) + Gg oA X, X ;) —€ Go1dX.X";0) — €7 Gg (X, X";w) ]€
3\ 37 ’ . 1 '
=(2€) | dvg(x') 2 = [CnCom*+ SneSmt CorSumt SueCamlUe(X')un(), (A7)
,M,N= n

where we use Eq$44) and(46). At the tree levelp is proportional touy:

vo(X) = Nelg(x). (A18)

Substituting Eq(A18) into the right hand side of EqA17), we derive

_ c o
vo(X)=(2€)VNg > —[CroCrm*SnoShm*+ CroSam* SnoCrmlUm(X)

m,n=0 En

©

_ 1 o1
= (2€) VNg = (CooCoo* SoaSoot CooSoat SucConUo(X) + 2 | =(CroCrm+ SnoSnm* CroSnm+ SnoCrm) Um(X)
0 n= n

= VNdug(x)+0(£*3)], (A19)
whereX’ means summation withoub=n=0. Finally, we have the correct value fog(x) in the limit of e —0:
0o(X) = Nglg(X) (for e—0). (A20)

Thus it has been shown that the WT identity is satisfied at the tree level, as it should be. There the NG mode plays a critical
role to keep the original symmetry.
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