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Analytical results for energy spectrum and eigenstates of a Bose-Einstein condensate in a
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We present a method to solve the model describing either a Bose-Einstein condensate~BEC! in a Mott-
insulator state or a double-well BEC. We show that all the energy eigenvalues and eigenstates for anarbitrary
~small or large! total atom numberN can be explicitly expressed analytically in terms of a parameterl whose
values are determined by the roots of the polynomials of the order of at most 11 int(N/2), with int(x) denoting
x’s integer part. We also show thatl ’s explicit analytical expressions forN<7 can be readily obtained by a
simple MATHEMATICA code. Besides, finding the roots of the polynomials of the order of at most 1
1 int(N/2) to give explicitly all the energy eigenvalues and eigenstates greatly simplifies the corresponding
calculations, particularly when the total atom numberN is large.
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I. INTRODUCTION

Recently, the superfluid–Mott-insulator phase transit
has been observed in a system of Bose condensed a
immersed in a periodic array of optical potentials@1#. In the
experiment, the average occupations per well~site! was
around one to three atoms, which could potentially form
ementary building blocks for atomic qubit based quant
computing designs@2#. Most recently, a scheme has be
proposed to create massive maximum entangled pairs,
lets, quartiles, and other clusters of Bose condensed atom
a Mott-insulator state@3#. In a Mott state, the system dynam
ics is rather simple as there exists a fixed~small! number of
atoms within each well. If we use the second-quantized
eratorsa(a†) andb(b†) for atoms in the two internal states
the effective Hamiltonian can be expressed as@3,4#

H52gJz
212VJy . ~1!

The second term denotes the single-atom Raman coup
due to external laser fields with a~real! effective Rabi fre-
quency 2V. The angular-momentum operators are t
Schwinger representation in terms of the two boson mod

Jx5
1

2
~b†a1a†b!,

Jy52
i

2
~b†a2a†b!, ~2!

Jz5
1

2
~b†b2a†a!,

with the conserved squared angular momentumJ2

5(k5x,y,zJk
25(N/2)@(N/2)11#. The Hamiltonian~1! can

also describe a double-well Bose-Einstein condensate
a(a†) and b(b†) for condensed atoms in the left and rig
wells, respectively. To see this point more clearly, we int
1050-2947/2003/68~1!/013608~7!/$20.00 68 0136
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duce two bosonic annihilation operatorsa1[2 ia and a2
[b equally denoting condensed atoms in the left and ri
wells, respectively, and then the Hamiltonian can be, a
omitting an unimportant constant2gN2/2 (N5a†a1b†b
[a1

†a11a2
†a2 denotes the total number of atoms in the sy

tems and is a conserved quantity!, expressed in another form

H5V~a1
†a21a2

†a1!1g@~a1
†!2a1

21~a2
†!2a2

2#, ~3!

which is exactly the model utilized to describe a double-w
Bose-Einstein condensate@5–9#.

Although model~1! or ~3! has important applications to
the fields of Bose-Einstein condensates, quantum comp
tion and information, no one seems to have been able
solve for the combined dynamics analytically even for
small number of atoms for such system@3,5–7#, and it be-
comes increasingly more painful to obtain analytical resu
when the total atom number is large. The mean-field met
@5–10#, number-conserving Bogoliubov theory@11,12#, and
numerical computations are usually utilized to solve su
kind of models. Another powerful method to deal with su
models is to utilize the properties of the group or Lie algeb
for the Schwinger representation and generalized Schwin
presentations@13,14#. Progress has been achieved towa
understanding the characteristics of the spectrum and ei
states for models~1! and~3! @13#. In view of its importance,
it is thus desirable to develop a simple and efficient meth
to obtain analytically the energy spectrum and eigenstates
model ~1! or ~3! at least for a small number of atoms.

In this paper, we shall present an efficient and sim
method to solve model~1! or ~3! based on the approac
proposed by us@15#. We show that all the energy eigenvalu
and eigenstates for anarbitrary ~small or huge! total atom
numberN can be explicitly expressed analytically in terms
a parameterl while its values are determined by the roots
a polynomial of the order of at most 11 int(N/2). We show
that we can obtainl ’s explicit analytical expressions forN
<7, and hence give all the energy eigenvalues and eig
©2003 The American Physical Society08-1



nd
n
n
iv
lu
fi
1
d
ic

ib
al
s-
th
an

at
l

on

n
he

b
te

e

t
e

on

ial

are
be
ms

r

lue

t

del

WU AND YANG PHYSICAL REVIEW A 68, 013608 ~2003!
states in terms of the given parametersV andg of Eq. ~3!,
which should be helpful for preparation, manipulation a
control of a Bose-Einstein condensate in optical lattices i
Mott-insulator state or of a double-well Bose-Einstein co
densate, and for facilitating the investigation of mass
maximum entangled pairs, triplets, quartiles, and other c
ters of Bose condensed atoms in such systems. Besides,
ing the roots of the polynomials of the order of at most
1 int(N/2) to give explicitly all the energy eigenvalues an
eigenstates greatly simplifies the corresponding numer
calculations, particularly when the total atom numberN is
large.

The paper is organized as follows. In Sec. II, we descr
the simple method to reduce the corresponding eigenv
problem into a differential equation. In Sec. III, we first di
cuss how to simplify the method, and then we present
analytical expressions of all the energy eigenvalues
eigenstates in terms of a parameterl which can be obtained
by finding the roots of the polynomials of the order of
most 11 int(N/2). In Sec. IV, we list explicitly the analytica
expressions of the parameterl for small N. In Sec. V, we
discuss the results in some limiting cases. Section VI c
cludes the paper with a summary.

II. PROCEDURE FOR THE EIGENVALUE EQUATION

In this section, we describe how to reduce the correspo
ing eigenvalue problem into a differential equation by t
method proposed by us@15#. We shall focus on model~3! but
all the final results are equally suitable for model~1! except
for different eigenvaluesE @adding a constant2gN2/2 to the
eigenvaluesE of model~3! results in those of the model~1!#.

The eigenvalue equation for the Hamiltonian~3!,

HuCE,N&5EuCE,N&, ~4!

can be reduced into an operator-type differential equation
the following steps@15#. Let us denote the energy eigensta
as

uCE,N&5F~a1
† ,a2

†!uvac&, ~5!

whereF is a polynomial of the creation operatorsa1,2
† , and

the vacuum stateuvac&5un150,n250& denotes a Fock stat
without any bosons. Throughout this paper, statesun1 ,n2&
denote Fock states withnj in the jth mode so thatun1 ,n2&
5(1/An1!n2!)a1

†n1a2
†n2uvac&. Then noting HFuvac&

5(@H,F#1FH)uvac&5@H,F#uvac& because of the fac
Huvac&50 due toaj uvac&50, it is seen that the eigenvalu
equation becomes (@H,F#2EF)uvac&50. Finally, by using
the identities aj uvac&50, @aj

† ,F#50, @aj
2 ,F#5aj@aj ,F#

1@aj ,F#aj5@aj ,@aj ,F##12@aj ,F#aj , and @aj ,F#
5]F/]aj

† ~and hence†aj ,@aj ,F#‡5]2F/]aj
†2), it is then

straightforward to show that the polynomialF of the creation
operatorsa1,2

† satisfies the operator-type differential equati
as follows:
01360
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VS x1

]F

]x2
1x2

]F

]x1
D1gS x1

2 ]2F

]x1
2

1x2
2]2F

]x2
2 D 5EF, ~6!

where x1,2[a1,2
† , F is a polynomial of the formF(x1 ,x2)

5( j 50
N a j x1

j x2
N2 j or energy eigenstates uCE,N&

5F(a1
† ,a2

†)uvac&[( j 50
N cj u j ,N2 j & with cj

5Aj !(N2 j )!a j .
It is important to note that the operator-type different

equation~6! can formally be thought of as ac-number dif-
ferential equation because all the operators involved in it
mutually commutable with each other and hence can
solved by any ordinary techniques and/or computer progra
for a c-number differential equation@15#. Therefore, we shall
hereafter consider Eq.~6! as ac-number differential equation
for a c-number polynomialF(x1 ,x2) of the form

F~x1 ,x2!5(
j 50

N

a j x1
j x2

N2 j[x2
Nf ~z!, z5x1 /x2 . ~7!

Equations~6! and ~7! lead to the differential equation fo
f (z)5( j 50

N a j z
j as follows:

2g̃z2
d2f ~z!

dz2
1@12z222~N21!g̃z#

d f~z!

dz
1~Nz2l! f ~z!

50, ~8!

where g̃5g/V and the parameterl relates to the energy
eigenvalues by the relation

E5gN~N21!1Vl, ~9a!

uCl,N&[uCE,N&5(
j 50

N

a jAj ! ~N2 j !! u j ,N2 j &. ~9b!

The unknown parameterl and coefficientsa j in the polyno-
mial f (z) are determined by solving Eq.~8!, and they can
also be obtained by solving the matrix equation

Aa5la, ~10!

where A is a (N11)3(N11) tridiagonal matrix with
the matrix elements Aj ,k5a( j )d j ,k1( j 11)d j 11,k1(N
2k)d j ,k11 ( j ,k50,1, . . . ,N), a( j )52g̃ j ( j 2N), and a
5(a0 ,a1 , . . . ,aN)T is a column vector with (N11) com-
ponents. Equation~10! is obtained simply by substituting
f (z)5( j 50

N a j z
j into Eq. ~8!.

We have now reduced solving the energy eigenva
equation~4! with the Hamiltonian~3! into finding all the
possiblel ’s values and the corresponding coefficientsa j
through solving Eq.~8! or ~10!. An interesting feature is tha
if eigenvaluel(g̃) ~i.e., l as a function ofg̃) and polyno-
mial f (z)5( j 50

N a j z
j represent a solution to Eq.~8!, then

2l(2g̃) and the polynomialf (z)5( j 50
N (21) ja j z

j must
also be a solution. This feature is revealed in a similar mo
@10# and originates from the fact that Eq.~8! is invariant
under the transformation (g̃,z,l)→2(g̃,z,l). Before end-
8-2
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ANALYTICAL RESULTS FOR ENERGY SPECTRUM AND . . . PHYSICAL REVIEW A68, 013608 ~2003!
ing this section, it is pointed out that the states in Eq.~9b! are
also eigenstates for model~1! with the corresponding energ
eigenvalues E5gN(N21)2gN2/21Vl5gN(N22)/2
1Vl.

III. ANALYTICAL EXPRESSIONS OF THE ENERGY
EIGENVALUES AND EIGENSTATES

We now show that the procedure determining all the p
siblel ’s values and the corresponding coefficientsa j by Eq.
~10! can be simplified greatly, and that the analytical expr
sions of all the energy eigenstates can be obtained expli
in terms of the parameterl while l ’s values can be obtaine
by finding the roots of the polynomials of the order of
most 11 int(N/2).

Defining an ‘‘antidiagonal’’ (N11)3(N11) matrix S
with matrix elementsSi j 5d i ,N2 j ( i , j 50,1,2, . . . ,N), it is
straightforward to see thatS[S21 with its eigenvaluess5
61. What is more important, it is readily shown that it com
mutes with the matrixA in Eq. ~10!, i.e.,SA5AS and hence
AVs#Vs . Here Vs denotes the subspace spanned
the eigenvectors of the matrixS with eigenvalue s.
Consequently, we can choose column vectorsa
5(a0 ,a1 , . . . ,aN)T in Eq. ~10! to be simultaneously the
eigenvectors of the two matricesA andS, implying that the
components of all the A’s eigenvectors a
5(a0 ,a1 , . . . ,aN)T in Eq. ~10! can be chosen to satisf
Sa5sa or the relationsa j5saN2 j for j 50,1,2, . . . ,N with
s561. This feature can also be expressed as

~a0 ,a1 , . . . ,aN!T[~saN ,saN21 , . . . ,sa0!T, ~11!

with s56.
Substituting Eq.~11! into Eq. ~10!, and after some ma

nipulation, it is shown in the Appendix that we can obtain t
analytical expressions of all the energy eigenvalues
eigenstates in terms of the parameterl which is determined
by the roots of the polynomials of the order of at most
1 int(N/2). We list the final results here. All the eigenvalu
and eigenstates for the Hamiltonian~3! have the forms

E5gN~N21!1Vl, ~12a!

uCl,N&5 (
j 50

int(N/2)
C

11d j ,N/2
A~N2 j !!

N! j !
detW( j )~l!~ u j ,N2 j &

1suN2 j , j &), ~12b!

where s56, int(x) denotes thex’s integer part, and the
parameterl is determined by

detW(s)~l!50, s56, ~13!

with W(s)(l) denoting two (q(s)11)3(q(s)11) trigonal
matrices of the matrix elements

Wi j
(s)~l!5aj

(s)~l!d i , j2d i 11,j2pi 21
(s) d i , j 11 , ~14!

where i , j 50,1, . . . ,q(s), q(s)5 int(N/2)2ds,2d j ,N/2 ,
aj

(s)(l)5l22g̃ j ( j 2N)2s(N11)d j ,(N21)/2/2, and pj
(s)
01360
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5(j11)@(N2j)1ds,1dj11,N/2(N/211)#. In Eq. ~12b!,
detW(0)(l)[1 andW( j )(l) @for j 51,2, . . . , int(N/2)] is a
j 3 j trigonal matrix made of the firstj rows and columns of
the matrix W(s)(l), i.e., W(0)(l)[1 and Wi ,k

( j )(l)5@l

22g̃i ( i 2N)#d i ,k2d i 11,k2 i (N112 i )d i ,k11 @ i ,k
50,1, . . . ,(j 21)# for j <0. It is pointed out that
detW(N/2)50 in Eq. ~12b! for s52 in the evenN case be-
cause it is identical to detW(2)(l) in Eq. ~13!.

Equations~12! and ~13! are the central results of th
present paper. Equation~12b! explicitly gives the analytical
expressions of all the energy eigenstates for arbitrary pos
integersN in terms of the parameterl. Oncel ’s values are
obtained by solving Eq.~13!, all the energy eigenvalues an
eigenstates are then explicitly given by Eq.~12!. It is pointed
out that solving the eigenvalue problem of anN3N matrix
in Eq. ~10! have been reduced into just finding the roots
the polynomials of the order of at most 11 int(N/2)
@detW(s)(l) in Eq. ~13! leads to the polynomial of the orde
of 11q(s)511 int(N/2)2ds,2d j ,N/2<11 int(N/2) for the
parameterl], which represents a great simplification, pa
ticularly when the total atom numberN is large.

The explicit analytical expressions of the determina
detW(k)(l) k51,2, . . . ~and hence the eigenstates!, given
by Eq. ~12b! for an arbitrary but fixed positive intege
N can be easily calculated by a simpleMATHEMATICA

code p@ j _#ª( j 11)(n2 j ); a@ j _#ªl22g j( j 2n); n
5designated integer; k5designated integer; s51
or 21; q5Table @a@ i 21# Kronecker Delta@ i , j #
2Kronecker Delta@ i 11,j #2p@ i 22#Kronecker Delta@ i , j
11#, $ i ,k%, $ j ,k%]; Matrix Form@q#; Det@q#. Here we list
the explicit analytical expressions of the eigenstates given
Eq. ~12b! for N<7 as follows ~the overall normalization
constant below has been omitted for simplicity!:

uCl,N51&5u1,0&6u0,1&, ~15a!

uCl,N52&5u0,2&1su2,0&1ds,1

l

A2
u1,1&, s56,

~15b!

uCl,N53&5u0,3&1su3,0&1
l

A3
~ u1,2&1su2,1&),

s56, ~15c!

uCl,N54&5u0,4&1su4,0&1
l

2
~ u1,3&1su3,1&)

1ds,1

l216g̃l24

2A6
u2,2&, s56,

~15d!

uCl,N55&5u0,5&1su5,0&1
l

A5
~ u1,4&1su4,1&)

1
l218g̃l25

2A10
~ u2,3&1su3,2&), s56,

~15e!
8-3
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uCl,N56&5u0,6&1su6,0&1
l

A6
~ u1,5&1su5,1&)

1
l2110g̃l26

2A15
~ u2,4&1su4,2&)

1ds,1

l3126g̃l2116~10g̃21!l296g̃

12A5
u3,3&,

s56, ~15f!

uCl,N57&5u0,7&1su7,0&1
l

A7
~ u1,6&1su6,1&)

1
l2112g̃l27

2A21
~ u2,5&1su5,2&)

1
l3132g̃l21~240g̃2219!l2140g̃

6A35
~ u3,4&

1su4,3&), s56. ~15g!

Equations~12! and ~13! are suitable for the Hamiltonian
~3!, but they are equally suitable for the results of the Ham
tonian ~1! after adding2gN2/2 term to the right hand side
~rhs! of Eq. ~12a!. Of course, the eigenketsun1 ,n2& on the
rhs of Eq.~12b! @suitable for both the Hamiltonians~1! and
~3!# represent the Fock state of the operatorsa1,2 ~i.e.,

a1un1 ,n2&5An1un121,n2& and a2un1 ,n2&5An2un1 ,n2
21&). Using a1[2 ia and a2[b, the results suitable fo
the Hamiltonian~1! can be written as follows:

E5gN~N22!/21Vl, ~16a!

uCl,N&5 (
j 50

int(N/2)
C

11d j ,N/2
A~N2 j !!

N! j !
detW( j )~l!@~2 i ! j u j ,N

2 j &ab1~2 i !N2 j suN2 j , j &ab], ~16b!

where un,k&ab5(1/An!k!)a†nb†ku0,0&ab denotes the Fock
state of the operatorsa andb ~i.e., aun,k&ab5Anun21,k&ab

and bun,k&ab5Akun,k21&ab), and both the matricesW( j )

and the parameterl are the same as those in Eq.~12!.

IV. l ’S ANALYTICAL EXPRESSIONS

In the preceding section, we have explicitly given the a
lytical expressions of all the energy eigenstates in terms
the parameterl determined by solving either analytically o
numerically Eq.~13!. Solving Eq.~13! is nothing but finding
the roots of the polynomials either of the order ofN/211
andN/2, respectively~for a positive even integerN), or of
the order of (N11)/2 ~for a positive odd integerN). The
explicit analytical expressions of the parameterl for N<7
can be readily obtained by a simpleMATHEMATICA code.
01360
-

-
of

Once we substitute these analytical expressions for the
rameterl into Eq. ~12!, we immediately obtain the explici
analytical expressions of all the energy eigenvalues
eigenstates in terms of the given parametersV and g (g̃
[g/V).

Although we can obtain the analytical results of the p
rameterl for N<7 by a simpleMATHEMATICA code, here we
only list those forN<5 (l for a fixedN is denoted asl (N)),

l (1)5s561, ~17a!

l (2)50 ~s521!, l (2)52g̃6A41g̃2 ~s51!,
~17b!

l (3)5s22g̃62A12sg̃1g̃2, s561, ~17c!

l (4)523g̃6A419g̃2 as s521,

l (4)5
214g̃14A12113g̃2cos@~u12pj!/3#

3
as s51,

u5cos21F u35g̃3272g̃u

~12113g̃2!3/2G , j50,6 ~17d!

l (5)5slj
(5)~sg̃!, s561, j50,6,

lj
(5)~ g̃!5

3220g̃18A7g̃223g̃13cos@~u812pj!/3#

3
,

u85cos21F u80g̃3118g̃2272g̃u

8~7g̃223g̃13!3/2 G , ~17e!

where cos21 denotes the principal value of the inverse cos
function.

V. RESULTS IN THE RABI AND FOCK REGIMES

In this section, we discuss the explicit forms for both t
energy eigenvalues and eigenstates in the two regi
@21,22#, i.e., the Rabi regime whereug̃u!N21 and the Fock
regime whereug̃u@N.

A. Rabi regime’s results

In the Rabi regime whereug̃u!N21, we can approxi-
mately takeg̃50 in the matrix elementsWi j

(s)(l) given by
Eq. ~14! and then use aMATHEMATICA code to solve Eq.~13!
to obtain the following results:

l'6~N22n!, n50,1, . . . , int~N/2!. ~18!

Substituting thesel ’s values into Eq.~12!, we immediately
obtain explicitly the analytical expressions of all the ener
eigenvalues and eigenstates in the Rabi regime. However
explicit analytical expressions of the energy eigenstates
the parameterl given by Eq.~18! can be most quickly ob-
8-4
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tained by solving directly Eq.~8! with g̃'0 ~due to ug̃u
!N21) by the simple MATHEMATICA code l5(N
22n) or 2(N22n);g50;Dsolve@2gx2y9@x# 1 (12 x2

22(n21)gx)y@x#55(l2Nx)y@x#,y@x#,x# with the re-
sults

uCl'(N22n)&5C1~a1
†2a2

†!n~a1
†1a2

†!N2nuvac&,
~19a!

uCl'2(N22n)&5C2~a1
†2a2

†!N2n~a1
†1a2

†!nuvac&,
~19b!

where C6 are normalization constants,uvac& denotes the
vacuum state or the one without any atoms in both mod
and n50,1, . . . ,int(N/2). In particular, the maximum an
minimum energy eigenvaluesE'gN(N21)6VN'6VN

~due toug̃u!N21) and the corresponding energy eigensta
are

uCl'6N&'
~a1

†6a2
†!N

A2NN!
uvac&. ~20!

WhenV.0 (,0), the ground state isuCl'2N& (uCl'N&).

B. Fock regime’s results

In the Fock regime whereug̃u@N, it is readily shown
from Eqs.~12! and ~13! that all the energy eigenvalues an
eigenstates can be written explicitly as follows:

En5g@N~N21!22n~N2n!#1sV~N11!dn,(N21)/2

1OS 1

g̃2D , ~21a!

uCn&5C8(
j 50

j max ~22g̃! j 2n~N22n!!A~N2 j !!n!

~N2n2 j !!Aj ! ~N2n!! ~11d j ,N/2!
~ u j ,N2 j &

1suN2 j , j &), ~21b!

where s561, j max5max$int(N/2),n%, n50,1, . . . ,
int(N/2), andC8 is a normalization constant. Equation~21b!
explicitly describes how the energy eigenstates vary with
spect to variableg̃ in the Fock regime whereug̃u@N.

It is instructive to note that the ground state~s! under the
conditionsug̃u5` ~or V50) andg.0 becomes

uCgr&5UN2 ,
N

2 L , s51, N5even, ~22a!

uCgr&5
1

A2
S UN21

2
,
N11

2 L 1sUN11

2
,
N21

2 L D ,

s561, N5odd. ~22b!

Expression~22! demonstrates that there are two grou
states ~corresponding tos51 and s521, respectively!
whenN is an odd positive integer, while there exists only
01360
s,

s

-

unique ground state whenN is an even positive integer
However, it is emphasized that this kind of ground-state
generacy whenN is an odd positive integer exists only und
the conditionsug̃u5` ~or V50) andg.0 and it does not
exist at all whenug̃u→` but with VÞ0, because only the
cases521 in Eq. ~22b! is the unique ground state forV
Þ0, which can be readily seen from Eq.~21! although the
energy of state~22b! for s51 is very near the ground-stat
energy whenug̃u→` but with VÞ0.

It is interesting to note from Eqs.~20! and ~22! that the
ground states in the Rabi and Fock regimes have dram
cally different phase behaviors. In the Fock regime, the s
tem’s ground state given in Eq.~22! is a Fock state~the state
with a fully incoherent phase! for an even positive integerN,
and nearly so for an odd positiveN at least for largeN’s;
while in the Rabi regime, the ground state given by one
the states in Eq.~20! is a state with a fully coherent phase.

VI. CONCLUSIONS

In summary, we have presented an efficient and sim
method to solve model~1! or ~3! based on our previously
developed approach. We have shown that all the energy
genvalues and eigenstates for an arbitrary~small or large!
total atom numberN can be explicitly expressed analytical
in terms of a parameterl whose values can be obtained b
finding the roots of at most two polynomials of at most of t
order of 11 int(N/2). To be more specific, we need to fin
the roots of two polynomials of the order ofN/211 andN/2,
respectively for an evenN and both of the order of (N
11)/2 for an oddN, but just as we have shown in the Ap
pendix that we only need to find the roots of one of the t
polynomials for an oddN. As explained below, the metho
and the results here are not only of theoretical interests
their own right but also may find wide applications in th
fields of Bose-Einstein condensates, quantum optics, qu
tum information, and quantum computation.

First of all, the method is shown to have wide applicab
ity to nonlinear processes in various fields of physics@15–
19#.

Second, in handling the systems with nonlinear inter
tions among several boson modes, one usually needs to m
the so-called Bethe ansatz@20# on the energy eigenstate
with several parameters determined by highly complica
reduced system of Bethe equations@20#. However, we have
obtained the explicit analytical expressions ofall the energy
eigenstates in terms of a parameterl for an arbitrary~small
or large! total atom numberN for model~1! or ~3! considered
here. These expressions are exact results without making
assumption particular without the so-called Bethe ansatz.
sides, thesingle parameterl is determined by finding the
roots of two polynomials of at most of the order of
1 int(N/2), which is much simpler than the usually comp
cated reduced system of Bethe equations for several pa
eters.

Third, dealing with the problem at hand is greatly simp
fied for smallN cases and particularly for hugeN as well,
since we have reduced solving eigenvalue problem fo
8-5
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(N11)3(N11) matrix A into finding the roots of at mos
two polynomials of at most of the order of 11 int(N/2) to
give all the energy eigenvalues and eigenstates.

Fourth, we can obtain the explicit analytical expressio
of the parameterl for N<7 by a simpleMATHEMATICA code
@although we have listed them in Eq.~17! only for N<5],
and hence obtain via Eq.~12! the explicit analytical expres
sions of all the energy eigenvalues and eigenstates in te
of the known parametersV andg described in Eq.~1! or ~3!.
The average occupations per well~site! in the experiment is
around one to three atoms, which could potentially form
ementary building blocks for atomic qubit based quant
computing designs@2,3#, but no one seems to have been a
to solve for the combined dynamics analytically even fo
small number of atoms for such a system@3,6,7#. Therefore,
the explicit analytical expressions of all the energy eigenv
ues and eigenstates either in terms of the known param
V andg for N<7 or in terms of the parameterl for other
numbers of total atoms might be useful for preparation, m
nipulation, and control of a Bose-Einstein condensate in
tical lattices in a Mott-insulator state or of a double-w
Bose-Einstein condensate, and for facilitating the investi
tion of massive maximum entangled pairs, triplets, quarti
and other clusters of Bose condensed atoms in such syst

Finally, the exact analytical results in the present pa
are expected to play a role in checking the applicable ra
of various approximations such as the number-conserv
Bogoliubov theory@11,12#.
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APPENDIX

In this appendix, we show Eqs.~12b!, ~13!, and ~14! in
the main text. Let us show them for the cases of odd
even integersN separately.

1. The oddN case

In this case, the column vectors in Eq.~11! have the form
a5(a0 ,a1 , . . . ,a (N21)/2,sa (N21)/2, . . . ,sa1 ,sa0)T with
s56 and f (z)5( j 50

(N21)/2a j (z
j1szN2 j ). Substituting a

5(a0 ,a1 , . . . ,a (N21)/2,sa (N21)/2, . . . ,sa1 ,sa0)T into Eq.
~10! and introducingg j5 j !a j , we obtain

g j 115aj
(s)~l!g j2pj 21g j 21 , 0< j <q, ~A1!

where q5 int(N/2)[(N21)/2 for positive odd integersN,
g215g (N11)/250, pj5( j 11)(N2 j ), and aj

(s)(l)5l

22g̃ j ( j 2N)2s(N11)d j ,(N21)/2/2. This set of equations
can be put into the form

W(s,q11)~l!g50, ~A2!
01360
s

s

l-

e

l-
ers

-
-

-
s,
ms.
r
e
g

-
a
d
r

d

where the column vectorg5(g0 ,g1 , . . . ,gq)T. We intro-
duce the matricesW(s, j ) as W(s,0)(l)[1, whereW(s,k)(l)
(k>1) is a k3k trigonal matrix with the matrix element
Wi j

(s,k)(l)5aj
(s)(l)d i , j2d i 11,j2pi 21d i , j 11 ( i , j 50,1, . . . ,k

21). Equation~A2! with gÞ0 immediately leads to

detW(s,q11)~l!50, s56, q5 int~N/2!. ~A3!

Besides, it is readily shown that

a j5
a0

j !
detW(s, j )~l!, j 50,1,2, . . . ,q. ~A4!

The proof of Eq.~A4! is as follows. Expanding the (n11)
3(n11) trigonal determinant detW(s,n11) by the (n11)th
column leads to detW(s,n11)5an

(s)(l)detW(s,n)1K, where
K is ann3n determinant obtained by deleting both thenth
row and (n11)th column of the determinant detW(s,n11).
Obviously, there exists only one nonzero element2pn21
in the last row of the determinantK and hence
K52pn21detW(s,n21). Consequently, detW(s,n11)

5an
(s)detW(s,n)2pn21detW(s,n21) so that detW(s, j )(l) sat-

isfy the same iterating equation~A1! as gk /g0. Equation
~A4! is now obviously true by further noting the fact th
detW(s,0)(l)[1, detW(s,1)(l)5a0

(s) , and g j5a j / j ! (g0

5a0). Besides, noting the facts thatW(s,k)(l)[W(k)(l) for
k< int(N/2)[(N21)/2 @since 2s(N11)d j ,(N21)/2/2 in
aj

(s)(l) is zero due tod j ,(N21)/2/250 when j 50,1, . . . ,k
21 as k< int(N/2)[(N21)/2] and that W(s,q11)(l)
[W(s)(l) for positive odd integersN since pj

(s)5( j
11)@(N2 j ) 1 ds,1d j 11,N/2(N/211)# [ pj 5 ( j 11)(N2 j )
due tod j 11,N/250 for the oddN case, Eqs.~A3! and ~A4!,
together with Eqs.~9! and~11!, result in Eqs.~12! and~13! in
the main text for the oddN case.

Besides, for the oddN case, only the roots of one of th
two polynomials in Eq.~13! or ~A3! are needed to be foun
to give all thel ’s values. This conclusion can be readi
shown as follows. Let us denoteW(6)(l) as W(6)(l,g̃) to
explicitly illustrate their dependence on the parameterg̃.
Then using the expression of the matricesW(6)(l,g̃) given
after Eq. ~14!, it is readily shown thatW(1)(2l,2g̃)
52QW(2)(l,g̃)Q21 for the oddN case. HereQ21[Q is a
diagonal matrix with elements Qi j 5(21)id i , j ( i , j
50,1, . . . ,(N21)/2). Consequently, we hav
detW(2)(l,g̃)5(21)(N11)/2detW(1)(2l,2g̃) by noting
(detQ)(detQ21)5det(QQ21)51. This proves the conclu
sion.

2. The evenN case

When N is an arbitrary positive even integer (N50 is a
trivial case and hence is excluded hereafter!, Eq. ~11! gives
the constraint (s21)aN/250 or aN/250 for s521. Conse-
quently, for s521, column vectors in Eq.~11! have the
form a5(a0 ,a1 , . . . ,aN/221,0,2aN/221 , . . . ,2a1 ,
2a0)T and hencef (z)5( j 50

N/221a j (z
j2zN2 j ). For s51, we

have a5(a0 ,a1 , . . . ,aN/221 ,aN/2 ,aN/221 , . . . ,a1 ,a0)T

and f (z)5( j 50
N/221a j (z

j1zN2 j )1aN/2z
N/2. It is pointed out
8-6
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that f (z) for both s51 ands521 can be written asf (z)
5( j 50

N/2 @a j (z
j1szN2 j )/(11d j ,N/2)# because ofzj1szN2 j

50 when s521 and j 5N/2. Substituting a
5(a0 ,a1 , . . . ,aN/221,0,2aN/221 , . . . ,2a1 ,2a0)T (s5
21) or a5(a0 ,a1 , . . . ,aN/221 ,aN/2 ,
aN/221 , . . . ,a1 ,a0)T (s51) into Eq. ~10! and again intro-
ducingg j5 j !a j , we obtain from Eq.~10! the results

g j 115aj~l!g j2pj 21
(s) g j 21 , 0< j <q(s), ~A5!

where q(s)5 int(N/2)2ds,2 , g215gq(s)1150, aj (l)5l

22g̃ j ( j 2N), and pj
(s)5( j 11)@(N2 j )1ds,1d j 11,N/2(N/2

11)#. This set of equations can also be put into the fo
W(s,q(s)11)(l)g50 with the column vector g
5(g0 ,g1 , . . . ,gq(s))T. The matricesW(s, j ) in this evenN
case are defined asW(s,0)(l)[1, whereW(s,k)(l) (k>1) is
a k3k trigonal matrix with the matrix elementsWi j

(s,k)(l)
5aj (l)d i , j2d i 11,j2pi 21

(s) d i , j 11 ( i , j 50,1, . . . ,k21). It is
now straightforward to follow the same routine as we did
the odd case to show that for the even case, we have
I

le

s.

R

.

01360
r

detW(s,q(s)11)~l!50, s56, q(s)5 int~N/2!2ds,2 ,
~A6!

a j5
a0

j !
detW( j )~l!, 0< j <q(s). ~A7!

Once again we have made use of the identitiesW(s,k)(l)
[W(k)(l) for 0<k<q(s), since d j 11,N/250 in pj

(s)5( j
11)@(N2 j )1ds,1d j 11,N/2(N/211)# when j <(k21)
<(q(s)21). In addition, W(s,q(s)11)(l)[W(s)(l) due
to aj

(s)(l)5l22g̃ j ( j 2N)2s(N11)d j ,(N21)/2/2[aj (l)
(d j ,(N21)/250) for the evenN case. It is noted thatj 5N/2
5q(2)11 for s52 can be included in Eq.~A7! because
detW(N/2)(l)[detW(2,N/2)(l)50 so that the includedaN/2
50 for s52 as it should be. Eqs.~A6! and ~A7! ~after
including j 5N/25q(2)11 for s52), together with Equa-
tions ~9! and ~11!, result in Eqs.~12! and ~13! in the main
text for the evenN case.
R.
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