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We present a method to solve the model describing either a Bose-Einstein cond&ksaten a Mott-
insulator state or a double-well BEC. We show that all the energy eigenvalues and eigenstateslidray
(small or largé total atom numbeN can be explicitly expressed analytically in terms of a parametwhose
values are determined by the roots of the polynomials of the order of at madst(IN/2), with int(x) denoting
X's integer part. We also show thats explicit analytical expressions f&<7 can be readily obtained by a
simple MATHEMATICA code. Besides, finding the roots of the polynomials of the order of at most 1
+int(N/2) to give explicitly all the energy eigenvalues and eigenstates greatly simplifies the corresponding
calculations, particularly when the total atom numbkis large.
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[. INTRODUCTION duce two bosonic annihilation operatoag=—ia and a,
=b equally denoting condensed atoms in the left and right
Recently, the superfluid—Mott-insulator phase transitionwells, respectively, and then the Hamiltonian can be, after
has been observed in a system of Bose condensed atormiitting an unimportant constant gN%/2 (N=a'a+b'b
immersed in a periodic array of optical potentiflg. In the EaIalJr agaz denotes the total number of atoms in the sys-
experiment, the average occupations per wslte) was tems and is a conserved quankjtgxpressed in another form
around one to three atoms, which could potentially form el-
ementary building blocks for atomic qubit based quantum H=Q(ala,+ala;)+g[(a])?a’+ (a})?a3], 3)
computing design$2]. Most recently, a scheme has been
proposed to create massive maximum entangled pairs, tripvhich is exactly the model utilized to describe a double-well
lets, quartiles, and other clusters of Bose condensed atoms Bpse-Einstein condensatg—9].
a Mott-insulator statg3]. In a Mott state, the system dynam-  Although model(1) or (3) has important applications to
ics is rather simple as there exists a fisthal) number of  the fields of Bose-Einstein condensates, quantum computa-
atoms within each well. If we use the second-quantized option and information, no one seems to have been able to
eratorsa(a’) andb(b") for atoms in the two internal states, solve for the combined dynamics analytically even for a

the effective Hamiltonian can be expressed 4] small number of atoms for such syst¢85-7, and it be-
comes increasingly more painful to obtain analytical results
H =ZgJ§+ 2QJ, . (1) when the total atom number is large. The mean-field method

) _[5-10], number-conserving Bogoliubov theof$1,12, and
The second term denotes the single-atom Raman couplingymerical computations are usually utilized to solve such
due to external laser fields with (@ea) effective Rabi fre-  king of models. Another powerful method to deal with such
quency 2Z). The angular-momentum operators are themodels is to utilize the properties of the group or Lie algebra
Schwinger representation in terms of the two boson modestor the Schwinger representation and generalized Schwinger
1 presentationg13,14]. Progress has been achieved towards
J,==(bta+a'b), understanding the characteristics of the spectrum and eigen-
2 states for model§l) and(3) [13]. In view of its importance,
) it is thus desirable to develop a simple and efficient method
Jo=— I_(bTa_ a'b) 2 to obtain analytically the energy spectrum and eigenstates for
Y 2 ' model (1) or (3) at least for a small number of atoms.

In this paper, we shall present an efficient and simple
method to solve mode(l) or (3) based on the approach
proposed by ugl5]. We show that all the energy eigenvalues
and eigenstates for aarbitrary (small or huge total atom
with the conserved squared angular momentuid  numberN can be explicitly expressed analytically in terms of
=2kley,ZJﬁ= (N/2)[(N/2)+1]. The Hamiltonian(1) can  a parametek while its values are determined by the roots of
also describe a double-well Bose-Einstein condensate with polynomial of the order of at mosttlint(N/2). We show
a(a") andb(b") for condensed atoms in the left and right that we can obtain’s explicit analytical expressions fa
wells, respectively. To see this point more clearly, we intro-<7, and hence give all the energy eigenvalues and eigen-

1
Jzzz(bTb—aTa),

1050-2947/2003/68)/0136087)/$20.00 68 013608-1 ©2003 The American Physical Society



WU AND YANG PHYSICAL REVIEW A 68, 013608 (2003

states in terms of the given parametéysandg of Eq. (3), ( JF JF ) J9°F 2,92|:
- i i i QX ——+Xo—|+0| X]— +tx5— | =EF, (6
which should be helpful for preparation, manipulation and Loy ' 2ox, g| X1 axf 2&x§ (6)

control of a Bose-Einstein condensate in optical lattices in a
Mott-insulator state or _of a double_-well I_?;os_e-Emstem Co.n'wherexl 25312, F is a polynomial of the fornF (x,x,)
densate, and for facilitating the investigation of massive _n % N2 :
: : : : =30 pax)x5; ) or  energy eigenstates |Vg )
maximum entangled pairs, triplets, quartiles, and other cIus-_FJ=$ 712 _<N N ith EN
ters of Bose condensed atoms in such systems. Besides, find- _(al’aZ)_|V6‘C>= i—oCilI.N=1J) wit Cj
ing the roots of the polynomials of the order of at most 1~ VJ!_(N_J)!ai- ) )
+int(N/2) to give explicitly all the energy eigenvalues and It is important to note that the operator-type d|ffer§nt|al
eigenstates greatly simplifies the corresponding numericgtduation(6) can formally be thought of as @number dif-
calculations, particularly when the total atom numbeis ferential equation because all the operators involved in it are
large. mutually commutable with each other and hence can be
The paper is organized as follows. In Sec. II, we describg®lved by any ordinary techniques and/or computer programs

the simple method to reduce the corresponding eigenvaluf@" @ c-number differential equatiofi5]. Therefore, we shall
problem into a differential equation. In Sec. Ill, we first dis- Nereafter consider E¢6) as ac-number differential equation

cuss how to simplify the method, and then we present th&r @ c-number polynomiaF(x;,xz) of the form

analytical expressions of all the energy eigenvalues and N
eigenstates in terms of a parametewhich can be obtained F(X: X5)= NI =N (7 7= %1 IX 7
by finding the roots of the polynomials of the order of at (X1.%2) Z’o **1%2 21(2), 1o ()

most 1+int(N/2). In Sec. IV, we list explicitly the analytical
expressions of the parameterfor small N. In Sec. V, we Equations(6) and (7) lead to the differential equation for
discuss the results in some limiting cases. Section VI conf(2)=2{Loa;Z as follows:
cludes the paper with a summary.
d?f(z)

2922
92742

df(z)
d

+[1-22-2(N-1)gz] .

+(Nz—\)f(2)
Il. PROCEDURE FOR THE EIGENVALUE EQUATION

In this section, we describe how to reduce the correspond- ~ 0, ®)
ing eigenvalue problem into a differential equation by the ~
method proposed by §i5]. We shall focus on modéB) but ~ Whereg=g/Q and the parametek relates to the energy
all the final results are equally suitable for moﬂga)l except €igenvalues by the relation
for different eigenvaluek [adding a constant gN</2 to the _
eigenvalue€ of model(3) results in those of the modél)]. E=gN(N-1)+0x, (93)
The eigenvalue equation for the Hamiltonies),

N
[\ =ITen)=2 apit(N=1)!].N=]). (6b)

H[Wen) =E[Wen), (4)

The unknown parametar and coefficientsy; in the polyno-
can be reduced into an operator-type differential equation bynial f(z) are determined by solving E8), and they can
the following step$15]. Let us denote the energy eigenstatesalso be obtained by solving the matrix equation

as
Aa=\a, (10

|Wen)=F(a],a})|vag), (5)  where A is a (N+1)x(N+1) tridiagonal matrix with
the matrix elements A; y=a(]j)dj k+(J +1)6 416+ (N

whereF is a polynomial of the creation operatas$,, and ~ —K)dj+1 (j,k:OT,l_, ... N), a(j)=2§j(j_ —N), and «

the vacuum statpvac)=|n,;=0,n,=0) denotes a Fock state =(@o,a1, ...,ay) is a column vector with{+1) com-
without any bosons. Throughout this paper, stdtesn,) ponentsN Equatllorilo) is obtained simply by substituting
denote Fock states with; in the jth mode so than,,n,)  f(2) =27 into Eq.(8).

— (1) a™al™vag.  Then noting HF|vad We have now reduced solving the energy eigenvalue
—([H F]+FH)l|va§>=[H Fllvad because of the fact equation(4) with the Hamiltonian(3) into finding all the
H|vag=0 due toa;|vag =0, it is seen that the eigenvalue ![Jhossmlhe)\f .valuléas(s?nd (TC?) c;‘orr.efpon(tj.lngfcoteff|0|_e|z;t§ i
equation becomed KI,F]—EF)|vac=0. Finally, by using "?“9 solving | q' or -Ann gres Ing feature 1s tha
the identitiesaj|vag=0, [af,F]=0, [a?,F]=aj[a; F] if eigenvaluex(g) (i.e., N as a function ofg) and polyno-
+[a;,Fla;=[a; [a ,F]]+2[Jaj Fla, jand [a;,F] mial f(Z)=EJN:0ajZ' represent a solution to E@8), then
=oF/da] (and hencefa; [a;,F]]=d%F/sa/?), it is then ~—A(—Q) and the polynomialf (z) =S o(— 1) e;z) must
straightforward to show that the polynomFabf the creation also be a solution. This feature is revealed in a similar model
operatorsa} , satisfies the operator-type differential equation[10] and originates from the fact that E¢B) is invariant

as follows: under the transformationg(z,\)— —(g,z,\). Before end-
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ing this section, it is pointed out that the states in @) are
also eigenstates for mod@l) with the corresponding energy
eigenvalues E=gN(N—1)—gN?/2+Qrx=gN(N—2)/2
+QON.

IIl. ANALYTICAL EXPRESSIONS OF THE ENERGY
EIGENVALUES AND EIGENSTATES

We now show that the procedure determining all the pos-

sible\’s values and the corresponding coefficieajsby Eq.

PHYSICAL REVIEW A8, 013608 (2003

:(j+1)[(N_j)+5s+5j+%,N/2(N/2+ 1)]. In Eq. (12b),
detWw@(\)=1 andW(\) [for j=1,2,...,int(N/2)] is a

j X trigonal matrix made of the firgtrows and columns of
the matrix WO()), i.e., WON)=1 and WI(\)=[r
=29i(i=N)16i k= 6+ 1k~ I(N+1—0) 6 k1 [i.k
=0,1,...,(—1)] for j=<O0O. It is pointed out that
detw(N2=0 in Eq.(12b) for s=— in the evenN case be-
cause it is identical to d&v(~)(\) in Eq. (13).
Equations(12) and (13) are the central results of the
present paper. Equatidi2b) explicitly gives the analytical

(10) can be simplified greatly, and that the analytical expresexpressions of all the energy eigenstates for arbitrary positive
sions of all the energy eigenstates can be obtained explicitlintegersN in terms of the parametér. Once)’s values are

in terms of the parameter while \’s values can be obtained

obtained by solving Eq13), all the energy eigenvalues and

by finding the roots of the polynomials of the order of at eigenstates are then explicitly given by E#j2). It is pointed

most 1+int(N/2).

Defining an “antidiagonal” N+1)X(N+1) matrix S
with matrix elementsS;=6; y—; (i,j=0,1,2... N), itis
straightforward to see th&=S" 1! with its eigenvalues=

out that solving the eigenvalue problem of Bx N matrix

in Eq. (10) have been reduced into just finding the roots of
the polynomials of the order of at most+int(N/2)
[detW®(\) in Eq. (13) leads to the polynomial of the order

+1. What is more important, it is readily shown that it com- 0f 1409 =1+int(N/2)— &, - &; np=1+int(N/2) for the

mutes with the matriA in Eq. (10), i.e., SA=AS and hence

AV.,CV,. Here V4 denotes the subspace spanned b)}ic

the eigenvectors of the matribS with eigenvalue s.
Consequently, we can choose column vectors
=(ag,q, ...,ay)" in Eq. (10) to be simultaneously the
eigenvectors of the two matricésand S, implying that the
components of all the A’'s eigenvectors «
=(ag,aq, ...,ay)" in Eq. (10) can be chosen to satisfy
Sa=sa or the relationsy;=say_; for j=0,1,2 ... ,N with
s==*1. This feature can also be expressed as

(ao,al, A ,CYN)TE(SCYN,SCYN_]_, R ,Sao)T, (11)

with s= =+,
Substituting Eq.(11) into Eq. (10), and after some ma-

parameter\], which represents a great simplification, par-
ularly when the total atom numbé¥ is large.

The explicit analytical expressions of the determinants
detW®(\) k=1,2,... (and hence the eigenstategiven

by Eq. (12b for an arbitrary but fixed positive integer
N can be easily calculated by a SimpMATHEMATICA
code p[j_J:=(j+1)(n—j); alj_l=A—2gj(j—n); n
=designated integer  k=designated integer s=1

or -1; g=Table [a[i—1] Kronecker Delti,]]
—Kronecker Deltdi +1,j]—p[i—2]Kronecker Deltéi,]

+11], {i,k}, {j,k}]; Matrix Form{q]; Det[q]. Here we list
the explicit analytical expressions of the eigenstates given by
Eq. (12b for N<7 as follows (the overall normalization
constant below has been omitted for simpligity

nipulation, it is shown in the Appendix that we can obtain the

analytical expressions of all the energy eigenvalues and

eigenstates in terms of the parametewhich is determined

by the roots of the polynomials of the order of at most 1
+int(N/2). We list the final results here. All the eigenvalues

and eigenstates for the Hamiltoni&®) have the forms

E=gN(N—1)+QA, (129
int(N/2) -
C (N=j)! . . .
W= 2 155, N g WO diN=D
+sIN=].i)), (12b)

where s= %, int(x) denotes thex’s integer part, and the
parameten is determined by
detW®(\)=0, s==, (13

with W (\) denoting two ®+1)x(q®+1) trigonal
matrices of the matrix elements
WO =a®(\) 8 = 6i11- P18 o1, (19

where i,j=0,1,...09,  q®=int(N/2)— 55 np2,
a¥(\)=A-20j(j—N)—=S(N+1)§ (v 122, and p{’

|\ n-1)=[1,0%+]0,1), (15a
A
|\If>\,N:2>=|0,2)+s|2,0)+5s,+E|1,1}, s=+,
(15b)
A
|y n=3)=10,3+5|3,00+ ﬁ(|1,2>+5|2,1>),
s==+, (150
A
|W\ n=a)=]0,4) +5[4,0+ §(|1,3>+S|3,1))
eo N 66])\_4|22 s=
s, + 2\/6 ’ >1 — =
(150
mN5>=|o,5>+sls,o>+%<|1,4>+s|4,1>>
+ % |2 A+ |3 2 =+
2\/E ( 1 > S|, >)l S==,

(159
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Once we substitute these analytical expressions for the pa-
rameter\ into Eq. (12), we immediately obtain the explicit
analytical expressions of all the energy eigenvalues and

eigenstates in terms of the given paramet@rsand g (g

A2+10g\—6
+ —Og (12,4 +s|4,2)) =g/Q).
2\/1—5 Although we can obtain the analytical results of the pa-

rameter\ for N<7 by a simpleMATHEMATICA code, here we

\%+26g\%+16(10g— 1)\ — 969 3.3 only list those folN<5 (\ for a fixedN is denoted aa V),
S, + 12\/5 ] ] .
AND=g=+1, (173
s=+, (15 ~ =
(150 AN&=0 (s=-1), \N®=-g=xV4+9® (s=1),
\ (170
Y, n=7)=10,)+5|7,00+—=(|1,6)+5|6,1 ~ =
¥\ n=7)=[0,7)+5]7,0) ﬁ(l )+5/6,1)) NO—s- PG oI Sgr e, s=+1, (179
N2+ 129N —7 a7 = _
n 2 (12,5 +5/5,2) AN¥=—-3g+4+99° ass=-1,
2421
- - - — 149+ 412+ 13g%cog (0+27&)13
+>\3+32g>\2+(240g2—19)>\—1409(34> A 1% 33 1O+27OB] s s-1,
635 ’
+5/4.3), s==. (159 6=cos 13%°~720] =0+ (179
- (12+132)%2 ° 7

Equations(12) and (13) are suitable for the Hamiltonian
(3), but they are equally suitable for the results of the Hamil-

. . _ . AN®O=a\B)(sg), s==1, =07,
tonian (1) after adding— gN?/2 term to the right hand side

(rhs) of Eq. (123. Of course, the eigenkets,,n,) on the
rhs of Eq.(12b) [suitable for both the Hamiltoniand) and
(3)] represent the Fock state of the operatass, (i.e.,
agng.n)=vnin;—1n,) and  a,lny,ny)=1nylng,n,
—1)). Using a;=—ia anda,=b, the results suitable for
the Hamiltonian(1) can be written as follows:

E=gN(N—2)/2+ OX, (169
int(N/2) C \/W . -
= (i) —iVli
|\I})\,N> 120 1+ 5],N/2 N']' detWJ ()\)[( I)]|J’N
_j>ab+(_i)N7jS|N_j7j>ab]a (16b)

where |n,k),,=(1/\/ntk!)a™b™|0,0),, denotes the Fock
state of the operatom andb (i.e., a|n,k),p=vh|n—1K)ap
and b|n,k) = Vk|n,k—1),,), and both the matricesv()
and the parametex are the same as those in E2).

IV. N’S ANALYTICAL EXPRESSIONS

In the preceding section, we have explicitly given the ana
lytical expressions of all the energy eigenstates in terms
the parametek determined by solving either analytically or

numerically Eq.(13). Solving Eq.(13) is nothing but finding
the roots of the polynomials either of the order Nf2+ 1
andN/2, respectively(for a positive even integeX), or of
the order of N+ 1)/2 (for a positive odd integeN). The
explicit analytical expressions of the parametefor N<7
can be readily obtained by a simpleATHEMATICA code.

(o)

N 3—20g+8\7g%—3g+3cos$ (0’ +2m&)/3]
& B 3 ’

[80g°+189°— 72|
8(7g?—3g+3)3?

§'=cos ! , (17

where cos! denotes the principal value of the inverse cosine
function.

V. RESULTS IN THE RABI AND FOCK REGIMES

In this section, we discuss the explicit forms for both the
energy eigenvalues and eigenstates in the two regimes

[21,22, i.e., the Rabi regime whetg|<N~* and the Fock
regime wherdg|>N.

A. Rabi regime’s results

In the Rabi regime wher¢§|<N*1, we can approxi-

mately takeg=0 in the matrix elementwi(js)()\) given by
Eq. (14) and then use RATHEMATICA code to solve Eq(13)

Ep obtain the following results:

A~=*(N-2n), n=0,1,...,intN/2). (18
Substituting thesa’s values into Eq(12), we immediately
obtain explicitly the analytical expressions of all the energy
eigenvalues and eigenstates in the Rabi regime. However, the
explicit analytical expressions of the energy eigenstates for

the parametek given by Eq.(18) can be most quickly ob-
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tained by solving directly Eq(8) with g~0 (due to [g|
<N™1) by the simple MATHEMATICA code A=(N
—2n) or —(N—2n);g=0;Dsolve[2gx?y"[x]+ (1 — x?
—2(n—1)gx)y[x]==(A—NxX)y[x],y[x],x] with the re-
sults

[y~ (n-2n)=C(a]—a))"(a]+ah)N "|vag),

(199

[ Wy~ (n-2n)=C_(a]—ah)N " "(a]+a})"|vag),
(19b

PHYSICAL REVIEW A8, 013608 (2003

unigue ground state wheN is an even positive integer.
However, it is emphasized that this kind of ground-state de-
generacy wheiN is an odd positive integer exists only under
the conditiongg|=c (or =0) andg>0 and it does not
exist at all wheng|—o but with Q#0, because only the
cases=—1 in Eq. (22b) is the unique ground state fd
#0, which can be readily seen from E@1) although the
energy of staté22b) for s=1 is very near the ground-state
energy wherjg|— but with Q#0.

It is interesting to note from Eq$20) and (22) that the
ground states in the Rabi and Fock regimes have dramati-

where C.. are normalization constantfyac denotes the cally different phase behaviors. In the Fock regime, the sys-
vacuum state or the one without any atoms in both modegem’s ground state given in ER?2) is a Fock statéthe state
andn=0,1,...jnt(N/2). In particular, the maximum and with a fully incoherent phagdor an even positive intege\,

minimum energy eigenvalugs~gN(N—1)=QON~=*QN

and nearly so for an odd positivé at least for largeN’s;

(due to[g|<N~1) and the corresponding energy eigenstateé"’h”e in the Rabi regime, the ground state given by one of

are
(aj*a))"
N |vac).

When(Q>0 (<0), the ground state isF', - ) (|¥y~n))-

|‘I’>\~¢N>* (20

B. Fock regime’s results

In the Fock regime wherég|>N, it is readily shown

the states in EqRO) is a state with a fully coherent phase.

VI. CONCLUSIONS

In summary, we have presented an efficient and simple
method to solve modell) or (3) based on our previously
developed approach. We have shown that all the energy ei-
genvalues and eigenstates for an arbitreamall or large
total atom numbeN can be explicitly expressed analytically
in terms of a parametex whose values can be obtained by

from Egs.(12) and(13) that all the energy eigenvalues and finging the roots of at most two polynomials of at most of the

eigenstates can be written explicitly as follows:

En=0[N(N-1)—=2n(N—n)]+sQ(N+1)5, n-1)

1
+0O ,T), (21@
g

j ~ i -

W (—29) "(N—2mt(N—)inl
v.,y=C’ - = JN—
¥ 120(N—n—J)!\/j!(N—n)!(1+5j,N,2)(|] D

+sIN=j,j)), (21b
where s==*1, jha=maxint(N/2),n}, n=0,1,...,

int(N/2), andC’ is a normalization constant. Equati®ilb)

order of 1+int(N/2). To be more specific, we need to find
the roots of two polynomials of the order Nf2+ 1 andN/2,
respectively for an evemN and both of the order of N
+1)/2 for an oddN, but just as we have shown in the Ap-
pendix that we only need to find the roots of one of the two
polynomials for an oddN. As explained below, the method
and the results here are not only of theoretical interests in
their own right but also may find wide applications in the
fields of Bose-Einstein condensates, quantum optics, quan-
tum information, and quantum computation.

First of all, the method is shown to have wide applicabil-
ity to nonlinear processes in various fields of phygit5—
19].

Second, in handling the systems with nonlinear interac-

explicitly describes how the energy eigenstates vary with retions among several boson modes, one usually needs to make

spect to variablg in the Fock regime wherfg|>N.
It is instructive to note that the ground st@eunder the

conditions|g| =% (or =0) andg>0 becomes

N N
|\Pgr>: 205 s=1, N=even, (22a
v y— 1 /IN=1 N+1 N+1 N—1
| gr>_ﬁ 2 ' 2 +s 2 ’ 2 ’
s=+1, N=odd. (22b

the so-called Bethe ansaf20] on the energy eigenstates
with several parameters determined by highly complicated
reduced system of Bethe equatidi2§]. However, we have
obtained the explicit analytical expressionsatifthe energy
eigenstates in terms of a parametefor an arbitrary(small

or large total atom numbeN for model(1) or (3) considered
here. These expressions are exact results without making any
assumption particular without the so-called Bethe ansatz. Be-
sides, thesingle parametern is determined by finding the
roots of two polynomials of at most of the order of 1
+int(N/2), which is much simpler than the usually compli-
cated reduced system of Bethe equations for several param-
eters.

Expression(22) demonstrates that there are two ground Third, dealing with the problem at hand is greatly simpli-

states (corresponding tos=1 and s=—1, respectively

fied for smallN cases and particularly for hudé as well,

whenN is an odd positive integer, while there exists only asince we have reduced solving eigenvalue problem for a
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(N+1)x(N+1) matrix A into finding the roots of at most Where the column vectoy=(yo, 1, - --,¥)". We intro-
two polynomials of at most of the order oftint(N/2) to  duce the matricesV(>)) as WI(\)=1, wherew(())
give all the energy eigenvalues and eigenstates. (k=1) is akxk trigonal matrix with the matrix elements
Fourth, we can obtain the explicit analytical expressiondV™(\)=aP(\) 8 ;= 8i+1j—Pi—18,+1 (i,j=0,1,...k
of the parametex for N<7 by a simplevaTHEMATICA code ~ —1). Equation(A2) with y#0 immediately leads to
[although we have listed them in E@L7) only for N<5], .
and hence obtain via Eq12) the explicit analytical expres- detW4"H(\)=0, s==, q=int(N/2). (A3)
sions of all the energy eigenvalues and eigenstates in ter
of the known parametei@ andg described in Eq(1) or (3).
The average occupations per wedite) in the experiment is aq ‘
around one to three atoms, which could potentially form el- aj=—dewD(\), j=0,12...4. (A4)
ementary building blocks for atomic qubit based quantum I

computing designf2,3], but no one seems to have been ablerhg proof of Eq.(A4) is as follows. Expanding then@ 1)
to solve for the combined dynamics analytically even for ax (n+ 1) trigonal determinant d&y(s"* Y py the (1+1)th
small number of atoms for such a syst€®6,7]. Therefore, column leads to deN(s,n+l):a(s)()\)detw(s,n)+K where
the explicit analytical expressions of all the energy eigenval]< is annxn determinant obtai'r11ed by deleting bc’)th e
ues and eigenstates either in terms of the known parametelrgW and (+1)th column of the determinant dfs"*1)
{1 andg for N<7 or in terms of the parametar for olther Obviously, there exists only one nonzero elemerp,_;
numbers of total atoms might be useful for preparation, ma; e Iélst row of the determinant and h(nence
nipulation, and control of a Bose-Einstein condensate in Opg — _ detwsn—1) c fl dan/(sn+1)
tical lattices in a Mott-insulator state or of a double-well Pn-1C€ . orsequenty,

—a( (s,n) _ (s,n—1) (s.]) -
Bose-Einstein condensate, and for facilitating the investiga: a;”detw Pn—10etW SO that dew™I()) sat

tion of massive maximum entangled pairs, triplets, quartilesISfy the same iterating equatiofil) as y/vyo. Equation

and other clusters of Bose condensed atoms in such systerr(A.4) gO?ow_obwously(;[rlL)Je by fl(gther noting the_ fact that
Finally, the exact analytical results in the present pape etw™ ()‘_)21’ de_tVV “(M)=ag ’(flgd Vj:“e'k;” (7o
are expected to play a role in checking the applicable rangg ®0)- Besides, noting the facts tha™"(x) =W™()) for
of various approximations such as the number-conservinﬁ(f)'”t(N/Z)E(N_1)/2 [since —s(N+1)dj,(n-1)22 in
Bogoliubov theory{11,12. a;”(\) is zero due tod,y-1)2/2=0 whenj=0,1,...k
—1 as k<int(N/2)=(N—1)/2] and that W(EITD())
=W®()) for positive odd integersN since p{”=(j
FDIN=J) + s+ 6 1n2(N2+1)]=p; = (j +1)(N—])
This work was supported by National Fundamental Re-due tod; 1 y,=0 for the oddN case, Eqs(A3) and (A4),
search Program of China 2001CB309310, by NSF of Chindogether with Eqs(9) and(11), result in Eqs(12) and(13) in
(Grants Nos. 90103026, 60078023, 10125419, andhe main text for the odd\ case.
10121503, and by The Chinese Academy of Sciences under Besides, for the oddl case, only the roots of one of the
100 TalentsProject. two polynomials in Eq(13) or (A3) are needed to be found

to give all the\’s values. This conclusion can be readily
APPENDIX shown as follows. Let us denow()(\) asW(*)(\,qg) to
explicitly illustrate their dependence on the paramejer
Jhhen using the expression of the matrit&s™)(\,g) given

MBesides, it is readily shown that
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In this appendix, we show Eq$12b), (13), and(14) in
the main text. Let us show them for the cases of odd an

even integer$\| separate|y_ after Eq (14), it is readily shown thatW(+)(—)\,—§)

=—QW)(\,g)Q ! for the oddN case. Her® '=Qis a

1. The oddN case diagonal matrix with elementsQ;;=(—1)'6;; (i,]
=0,1,...,\N—1)/2). Consequently, we have

In this case, the column vectors in E41) have the form detW()(\,g) =(— 1)N*DZdetw(*)(—\,—g) by noting

a=(ao,al, e ,a(N,l)/z,Sa(N,‘l)/z, s ,Sal,Sao)T W|th -1y _ -1y _ . _
s== and £(2)=3N, 0%, (2 +s2'). Substituting o~ (Je1Q)(dER ) =deUQQ ) =1 This proves the conclu
=(a0,a1, e ,a’(N_l)/z,Sa(N_l)/z, e ,Sal,SaO)T into Eq '

(10) and introducingy;=j!«a;, we obtain
2. The evenN case

Yie1=a(N)y—pj-1y-1, Osj=q, (A1) WhenN is an arbitrary positive even integeN&O is a

trivial case and hence is excluded hereaft&iq. (11) gives

where g=int(N/2)=(N—1)/2 for positive odd integerdl,  the constraint§—1)ay,=0 or ay,=0 for s= —1. Conse-

Yo1=¥ns1e=0, Pj=(j+1)(N=j), and a®(\)=A  quently, fors=—1, column vectors in Eq(11) have the

—20j(j—N)—s(N+1)3; (y—1)2/2. This set of equations form a=(ag,ay, - - anp-1,0,"anp-1, - - -, — g,
can be put into the form —ag)" and hencd (2) =34 tej(Z -2V 7)), Fors=1, we
haVe az(ao,al, Cee ,aN/zfl,aN/z,aN/z,l, P ,Ct’l,ao)T
WAt (\) y=0, (A2)  and f(2)=3N% " a;(Z+2" 1) + a2V It is pointed out

013608-6



ANALYTICAL RESULTS FOR ENERGY SPECTRUM AND . ..

that f(z) for boths=1 ands=—1 can be written ag(z)
=N ej(Z+s2Y71)/(1+ 8 nin)] because ofz +s2V7)

=0 when s=-1 and j=N/2. Substituting «
=(ag,aq, ... ,anp-1,.0,—anp-1, ..y al,—ao)T (s=
_1) or a=(a0,a1, "'!alefllaN/Zl
ANj2—1s - - - 201,a0)" (5=1) into Eq.(10) and again intro-

ducing y;=j'«;, we obtain from Eq(10) the results

7j+1:aj()\)7j_pj(s—)17j—1i 0<j<q®, (A5

where q®=int(N/2)= 65—, y_1=¥q®9+1=0, a;(\)=\
—209j(j—N), and p{¥=(j+1)[(N=j)+ & & 1 N/2

+1)]. This set of equations can also be put into the formy,

WEATHD\)y=0  with the column  vector y
=(%0.71, - - - ¥q)". The matricesw®) in this evenN
case are defined A89(\)=1, whereWS Y (\) (k=1) is
a kXxk trigonal matrix with the matrix eIementh/i(js’k)()\)
=a;(\) 38— 8i11,—P{¥18 41 (1,j=01,... k=1). Itis

PHYSICAL REVIEW A8, 013608 (2003

detwsa9+D(\)=0, s==, qO=int(N/2)—s,_,

(A6)

_ao (i) e
aj—j—!detW N), 0=j=g". (A7)

Once again we have made use of the identité$(\)
=WM(\) for 0<k=q®, since &.1n=0 in p{¥=(]
+L[(N=J)+ s+ 6+ 1n(N2+1)]  when j<(k—1)
<(q®-1). In addition, WP +D\)=WO(\) due
af¥(\) =\ —20j(j —N) =s(N+1) (v-1)/2=a;(\)
(51,5N,1),2=0) for the evenN case. It is noted thgt=N/2
=q7)+1 for s=— can be included in Eq(A7) because
detWwN2(\)=detW(~N2(\)=0 so that the includedy,
=0 for s=— as it should be. Eqs(A6) and (A7) (after
including j=N/2=q(7)+1 for s= —), together with Equa-

now straightforward to follow the same routine as we did fortions (9) and (11), result in Eqs.(12) and (13) in the main

the odd case to show that for the even case, we have

text for the everN case.
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