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Diffraction phases in atom interferometers
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Diffraction of atoms by lasers is a very important tool for matter wave optics. Although the process is well
understood, the phase shifts induced by this diffraction process are not well known. In this paper, we make
analytical calculations of these phase shifts in some simple cases and use these results to model the contrast
interferometer recently built by Pritchard and co-workers. We thus show that the values of the diffraction
phases are large and that they probably contribute to the phase noise observed in this experiment.
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[. INTRODUCTION sufficiently large laser detuninf= w, — g, wherewy is the
resonance transition frequency, the probability of real excita-

In atom interferometry, laser diffraction is a very powerful tion is negligible and the diffraction process is coherent. In
and versatile toolfor overviews, see Ref§1,2]). The dif- the dressed-atom pictufd4], the laser standing wave cre-
fraction of matter waves by a standing light wave was pro-ates a light shift potentiaV(x,t):
posed by Kapitza and Dird8] in the case of electrons and
generalized to atoms by Altshulet al. [4]. Atom diffraction V(x,t)=V(t)cos(k x)
by light has been studied theoretically,6] and experimen- Vet
tally [7,8], and this early work was followed by many studies - o(t)
too numerous to be quoted here. The phases of the diffraction 4

amplitudes are rarely discussed in detail, with a few excep- _ _
tions like the work of Weitzt al.[9] and of Featonbyt al. ~ Where the envelop¥,(t) is proportional to the laser power

[10], in both cases for Raman adiabatic transfer, and th&ensity divided by the frequency detunisg andk, is the
work of Bordeand co-workerg11,12, which analyzes the laser wave vector. We are going to forget thindependent
general diffraction process in the rotating wave approxima{€rm, which simply shifts the energy zero and therefore has
tion. Unfortunately, this approximation cannot be used for0 effect, as long as all atoms experience the same potential.
the elastic diffraction studied here. The motion along thg andz directions is free and will not

In an interferometer, the diffraction phases modify thebe discussed. Tge natural energy unit is the atom recoil en-
interference signals but this effect is difficult to detect, as itefdy fiwec=%°k{/2m, and we will measure the potential
requires accurate phase measurements and it cancels in sywith this unit, by definingg(t) [15,16 as
metric interferometers, like the Mach-Zehnder interferom-
eter. The goal of this paper is to present an analytical calcu- q(t)=Vo()/ (4 wrec). )
lation of diffraction phases in a simple cagselastic
diffraction by a laser standing wavand to show the impor- ; , , ;
tance of these diffraction phases in an existing experimengioniess spatial coordinat=k x, and a dimensionless
We consider here diffraction in the Raman-Nath regime andVave vectork=Kk/k,_, the one-dimensionaflD) Schro
second order Bragg diffraction in the weak field regime, andlinger equation becomes
we apply these results to the contrast interferometer built by v 2
Guptaet al. [13]. The calculated diffraction phases are large i +q(n)[exp(2iX) +exp( —2iX)]¥. (3)

[2+exp(+2ik x)+exp(—2ik x)], (D)

Using a dimensionless timedefined byr= w,.:, a dimen-

in this interferometer, and as these phases depend sensitively 97 gx2
on the laser power density used for the diffraction process,
our calculation may explain the observed phase noise as re- For a constant value of the potentigl the atom eigen-
sulting from fluctuations of this power density. states are Bloch stat¢47,15,16. Writing the Hamiltonian
matrix corresponding to Eq3) in the basis|«x) of plane
waves of momentunt « and using numerical diagonaliza-
tion, we get the band structued «,p), with the pseudomo-
We consider diffraction of slow ground state atoms by amentum « belonging to the first Brillouin zone {1<k
near-resonant laser standing wave of frequeagy For a <1) and the integep labeling the band$16]. Figure 1
presents the energy of the lowest Bloch states as a function
of « for two values of the potentiatj=0 andg= 1, with two
*Electronic address: jacques.vigue@irsamc.ups-tlse.fr important features: wheq is not equal to zero, band gaps

Il. THE PROBLEM

1050-2947/2003/68)/0136074)/$20.00 68 013607-1 ©2003 The American Physical Society



BUCHNER et al. PHYSICAL REVIEW A 68, 013607 (2003

Up to second order ig, the energy correction of tHe) state
is Eo=—q%/2, and the effective Hamiltonian coupling the
states —2) and|+2) is

_[4+(a%6)  (g’14)
eff™ (q2/4) 4+(q2/6) . (6)

We have tested the quality of this expansion limited toghe

1-11.._ terms, by numerical diagonalization of the Hamiltonian ma-

o] TS trix. The neglected termgn g, etc) are of the order of 1%
| (10%) of the g? terms ifq=0.3 (@=1), thus giving an idea

-1 r r T of the validity range of this calculation.

The dynamics is adiabatic if the potentig(r) varies
slowly, but diffraction remains possible when two free states
are degenerate, like the-2) states. The problem is equiva-
lent to a Rabi oscillation exactly at resonance, for which an
exact solution is available for any functigfr). For a pulse
extending fromr; to 7,, the Rabi phase, at the end of the

Fhise is given by

FIG. 1. Plots of the energiesof the lowest Bloch states versus
the pseudomomentum: solid line,q=1; dashed lineg=0.

appear at each crossing of tlee=0 folded parabola and
energy shifts appear at the same time. These energy shifts
explained by perturbation theory: each free plane wWayes
coupled to two other statgsc+2), and the two coupling -
terms are equal. As the energy denominator is larger for the cpr=f
coupling to the upper state, all the levels are pushed upward

(except near the places where gaps opdut the lowest . B , .
Bloch state is obviously pushed downward. and if [(r1))=|=2) the final state is

Pr

— ||+

cos( 5 )|_2>
In order to simplify the calculations, we consider that the P

atom is initially in a state of zero momenturhj(r=0)) —i sin(%)ﬁZ)} (8)
=]0). We first consider diffraction in the Raman-Nath re-
gime. This approximation consists in neglecting the dynam- . .
ics of the atom during the diffraction process produced by a\livhere the phase shift of the-2) states due to their mean

. . SR energy shift has been expressed as a fraction of the Rabi
pulse q(7) of duration rgy. This approximation is good ~ : .
if the potentialq(r) is intense,g>1, and if the pulse is phase. Wherjy(74))=|0), the final state is th¢0) state

brief, 7ry<<1. The validity range of this approximation is with an extra phase shift, also due to its energy shift
given by[16.13 (7)) =e[0). ©

(q%/2)d, )

71

| h(7,))=el "2 )+ (e}

lll. DIFFRACTION PHASES

Tan<1/(4/q) (4)  From now on, we consider @ = 7 pulse. If the wave func-
tion at time 7, is given by
and the diffracted wave is a classic result:

wir)=__ 2, (e, (10

|¢(TRN)>:% (—i)lpl\]‘pl(y)|2p> (5) 2.0+2

the wave function at time, is given by

with y=2qg7grN. We have verified16] that the Raman-Nath |¢(72)>:eiwa0(71)|0>+e[—4i(72—Tl)—(siw/e)][aiz(Tl)|+2>

formula accurately predicts the diffraction probability of or-

der 0 and 1, for finite values of the parametgras long as +a,,(m)|—2)]. (11

condition(4) is satisfied, but we have not tested the phases of

these diffraction amplitudes. They could be tested by using’he phase factor exp-4i(m— )] is due to the free propa-

the diffraction amplitudes calculatgd8] as a power series gation of the| +2) states and is not linked to the diffraction

of 1/q. process. The interesting results are the diffraction phases
Second order Bragg diffraction is due to the indirect cou-equal to (+ ) for the |0) state and ¢ 5#/6) for the|+2)

pling of the|+2) free states, through tH®) state. As this states. The opposite signs of the diffraction phases are a con-

coupling is a second order term @ to make a consistent sequence of the opposite signs of the energy shifts of these

treatment, we must consider the five lowest-energy stategevels. In the resulting phase difference, the level shift con-

with k=0,+2,+4. The Hamiltonian matrix has the nonvan- tribution, equal to 4r/3, is proportional to the Rabi phase

ishing element¢2p|H|2p)=4p? and(2p|H|2(p=1))=qg. ¢, taken equal tar. In an experiment, the phase difference
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The experimental signab(7) is the intensity of the light

= reflected by this grating. This homodyne detection signal is
= proportional to the square of the coXj2modulation of the
] atomic density, with the following time dependence:
: s
o
X a S( T)°<C052(47'+ = (15)
(') i ﬁT t while the equation used by Gupéd al. is
FIG. 2. In the k,t) plane, representation of the atomic paths S( T)ocsin2(47-)_ (16)

followed by the wave packets in the interferometer of Gugital.

[13]: Raman-Nath diffraction at time=0, second order Bragg dif- The difference between Eqel5) and(16) is important only

fraction at timet=T, detection near time=2T. if one wants to make an absolute prediction of the phase, but
) _ it has no consequence in the analysis carried out by Gupta

may differ from this calculated value, as a result of angt g1.[13], because their fitted value of,.. comes from the

imperfect = pulse or of other effects neglected here gerivative of the phase with the time interva[19]. How-

(e.9.,k#0). ever, our result remains interesting as it may explain a large
part of the observed phase noise, 200 mrad from shot to shot.
IV. SIMPLE MODEL OF THE CONTRAST In the 77/3 phase of Eq(15), 47/3 is proportional to the
INTERFEROMETER OF GUPTA et al. Rabi phase, which is itself proportional &7, i.e., to the

. . square of the laser power density during the Bragg pulse.
We now calculate the output signal of the contrast inter- o - .
ferometer developed by Gupt al. [13]. This interferom- Therefore, a 1% variation of the laser power density changes

; i he diffraction phase by 84 mrad.
eter uses second order Bragg diffraction and Raman-Nath Our calculation relies on several approximations, some of

d|ffra}ct_|(_)n, and _the atomic _path_s are represented in '.:'g' hem being not very accurate in the experimental conditions
The initial state is a Bose-Einstein condensate, approxmateglf Guptaet al. [13]

hirg lt)g 8lk=0) ztgtted QéLgétlTﬁensﬁtZTd tz;:aefnpl:rl]srgefrggn (i) The k=0 approximation is an oversimplification but
T~ TRN 1S US ; 'S Inital state | " the calculation withe#0 is more complex.

?erer;; statei;()}f,|i2t_). V\f/ithin the Ram:gn-Nath approxima- (i) The first diffraction pulse used in the experiment is
ion, the wave function fofrry 1S given by 1us long, corresponding torgy=0.157. Assumingy
() ) =Jo|0) —id [ |+ 2)+ | —2)], (12) ~1.17, we gefy~3.7 and the validity conditio4) requires

7=<0.13. Therefore, the corrections to the Raman-Nath
the argumenty of the Bessel functions being omitted for Phases are not fully negligible. We have also neglected
compactness. The best contrfk8] would be obtained with the second order diffraction beams, which contribute to
diffraction probabilities equal to 50% for tH@) state and the sSignal. _ _ _
25% for each of thé=2) states. It is impossible to perfectly _ (i) As for the perturbation expansion used to describe
satisfy these two conditions simultaneously, as the first on&299 diffraction, ther pulse used is a Gaussian with a
implies y=1.13 whereas the second one impligs 1.21.

width of 7.6us [13]. Assuming that q=q..,exd—(t
2 . . . .
We can nevertheless suppose that=1.17. Although 1) 1(207)], with 01=3.8 us, i.e.,0,~0.6, we get the value
J,(1.17)~0.15, we will neglect here the second order dif- Amax=2-4, well outside the validity range of our second or-
fraction amplitudes, as was done in REE3]. We assume der perturbation expansion. Higher-order termsgfhwith

that 7xy is negligible so that free propagation startsratdo ~ N=4.6, .. . contribute to the phases and the sensitivity of the
and lasts until the Bragg diffraction pulse, which extendsdiffraction phase to the laser power density may even be

from 7, to 7,. Using Eq.(11), we get the wave function after larger than predicted above.

this pulse: Obviously, to describe this experiment very accurately, a
full numerical modelization is needed and is feasible, as the
|h(75)) =o€ ™|0)+ Jie~ 4 2e ™ 47| +2) +| - 2)]. problem reduces to a 1D Scliinger equation, if atom-atom

interactions are neglected. But, as noted by Geptal, the
mean field effect of the condensate can also modify atomic
Free propagation goes on until a timewhere the matter propagation and this effect has not been considered here.
grating formed by the interference of these three states is
read b)_/ the reflectlon_ of a laser beam. The atomic de_n5|ty as V. CONCLUSION
a function ofX and 7 is deduced from the wave function:
In this paper, we have made a simple and tutorial calcu-
[(X| (7)) P=J3+ 29[ 1+ cog 4X)] lation of the phase shifts of atomic waves due to the elastic
diffraction process by a laser standing wave. We have calcu-
lated the associated phase shift for the contrast interferometer

7
+ +—. : . )
4Jodsc04 ZX)COS(A'T ) (14) of Pritchard and co-workefd 3], thus showing that it should

3
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be possible to make an experimental test of the dependence We have made a systematic use of atomic Bloch states to
of the diffraction phase shifts on potential strength and interdescribe atom diffraction by a laser, following our previous
action time. The present calculations are simple because @aper[16]. The introduction of Bloch states to describe at-
our assumptions: the Raman-Nath limit or perturbative reoms in a laser standing waves is due to Letokhov and Mino-
gime, and vanishing initial momenturk=0. An accurate gin [23,24] in 1978 and also to Castin and Dalibg2b] in
modelling of a real experiment requires numerical integra-1991. Their use is rapidly expanding, in particular to treat
tion of the Schrdinger equation to describe the diffraction gose-Einstein condensates in an optical lattice, as reviewed
dynamics without any approximation. by Rolston and Phillip§26]. When coupled with reduced

_ We have considered only first and second order diffraCynits as here, the atomic Bloch states represent a very effi-
tion. Higher diffraction orders up to order 8 have been ob-

X . cient tool to get a simple understanding of the diffraction
served[20-27 with moderate laser power densities. The rocess
leading term of the coupling matrix element responsible 1‘0|p '
diffraction ordern behaves likeg" [20], whereas the leading
terms of the energy shifts, responsible for the diffraction
phase shifts, are always gf. Therefore, for diffraction or-
dersn>2, the control of the phase shifts will require a full . )
knowledge of the pulse shape. For the second order of dif- We thank C. Cohen-Tannoudji, J. Dalibard, and C.
fraction, the diffraction phase shifts and the Rabi phase ar&alomon for very fruitful discussions, D. Pritchard for a very
simply related, as long as second order perturbation theory igseful private communication, and §len Midi Pyrenees for
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