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Diffraction phases in atom interferometers
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Diffraction of atoms by lasers is a very important tool for matter wave optics. Although the process is well
understood, the phase shifts induced by this diffraction process are not well known. In this paper, we make
analytical calculations of these phase shifts in some simple cases and use these results to model the contrast
interferometer recently built by Pritchard and co-workers. We thus show that the values of the diffraction
phases are large and that they probably contribute to the phase noise observed in this experiment.
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I. INTRODUCTION

In atom interferometry, laser diffraction is a very powerf
and versatile tool~for overviews, see Refs.@1,2#!. The dif-
fraction of matter waves by a standing light wave was p
posed by Kapitza and Dirac@3# in the case of electrons an
generalized to atoms by Altshuleret al. @4#. Atom diffraction
by light has been studied theoretically@5,6# and experimen-
tally @7,8#, and this early work was followed by many studi
too numerous to be quoted here. The phases of the diffrac
amplitudes are rarely discussed in detail, with a few exc
tions like the work of Weitzet al. @9# and of Featonbyet al.
@10#, in both cases for Raman adiabatic transfer, and
work of Bordéand co-workers@11,12#, which analyzes the
general diffraction process in the rotating wave approxim
tion. Unfortunately, this approximation cannot be used
the elastic diffraction studied here.

In an interferometer, the diffraction phases modify t
interference signals but this effect is difficult to detect, as
requires accurate phase measurements and it cancels in
metric interferometers, like the Mach-Zehnder interfero
eter. The goal of this paper is to present an analytical ca
lation of diffraction phases in a simple case~elastic
diffraction by a laser standing wave! and to show the impor-
tance of these diffraction phases in an existing experim
We consider here diffraction in the Raman-Nath regime a
second order Bragg diffraction in the weak field regime, a
we apply these results to the contrast interferometer buil
Guptaet al. @13#. The calculated diffraction phases are lar
in this interferometer, and as these phases depend sensi
on the laser power density used for the diffraction proce
our calculation may explain the observed phase noise a
sulting from fluctuations of this power density.

II. THE PROBLEM

We consider diffraction of slow ground state atoms by
near-resonant laser standing wave of frequencyvL . For a
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sufficiently large laser detuningd5vL2v0 , wherev0 is the
resonance transition frequency, the probability of real exc
tion is negligible and the diffraction process is coherent.
the dressed-atom picture@14#, the laser standing wave cre
ates a light shift potentialV(x,t):

V~x,t !5V0~ t !cos2~kLx!

5
V0~ t !

4
@21exp~12ikLx!1exp~22ikLx!#, ~1!

where the envelopeV0(t) is proportional to the laser powe
density divided by the frequency detuningd, andkL is the
laser wave vector. We are going to forget thex-independent
term, which simply shifts the energy zero and therefore
no effect, as long as all atoms experience the same poten
The motion along they andz directions is free and will not
be discussed. The natural energy unit is the atom recoil
ergy \v rec5\2kL

2/2m, and we will measure the potentia
with this unit, by definingq(t) @15,16# as

q~ t !5V0~ t !/~4\v rec!. ~2!

Using a dimensionless timet defined byt5v rect, a dimen-
sionless spatial coordinateX5kLx, and a dimensionless
wave vectork5kx /kL , the one-dimensional~1D! Schrö-
dinger equation becomes

i
]C

]t
52

]2C

]X2
1q~t!@exp~2iX !1exp~22iX !#C. ~3!

For a constant value of the potentialq, the atom eigen-
states are Bloch states@17,15,16#. Writing the Hamiltonian
matrix corresponding to Eq.~3! in the basisuk& of plane
waves of momentum\k and using numerical diagonaliza
tion, we get the band structure«(k,p), with the pseudomo-
mentum k belonging to the first Brillouin zone (21,k
<1) and the integerp labeling the bands@16#. Figure 1
presents the energy of the lowest Bloch states as a func
of k for two values of the potential,q50 andq51, with two
important features: whenq is not equal to zero, band gap
©2003 The American Physical Society07-1
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appear at each crossing of theq50 folded parabola and
energy shifts appear at the same time. These energy shift
explained by perturbation theory: each free plane waveuk& is
coupled to two other statesuk62&, and the two coupling
terms are equal. As the energy denominator is larger for
coupling to the upper state, all the levels are pushed upw
~except near the places where gaps open!, but the lowest
Bloch state is obviously pushed downward.

III. DIFFRACTION PHASES

In order to simplify the calculations, we consider that t
atom is initially in a state of zero momentum,uc(t50)&
5u0&. We first consider diffraction in the Raman-Nath r
gime. This approximation consists in neglecting the dyna
ics of the atom during the diffraction process produced b
pulse q(t) of duration tRN . This approximation is good
if the potential q(t) is intense,q@1, and if the pulse is
brief, tRN!1. The validity range of this approximation i
given by @16,15#

tRN,1/~4Aq! ~4!

and the diffracted wave is a classic result:

uc~tRN!&5(
p

~2 i ! upuJupu~g!u2p& ~5!

with g52qtRN . We have verified@16# that the Raman-Nath
formula accurately predicts the diffraction probability of o
der 0 and 1, for finite values of the parameterq, as long as
condition~4! is satisfied, but we have not tested the phase
these diffraction amplitudes. They could be tested by us
the diffraction amplitudes calculated@18# as a power series
of 1/q.

Second order Bragg diffraction is due to the indirect co
pling of the u62& free states, through theu0& state. As this
coupling is a second order term inq, to make a consisten
treatment, we must consider the five lowest-energy sta
with k50,62,64. The Hamiltonian matrix has the nonva
ishing elementŝ2puHu2p&54p2 and ^2puHu2(p61)&5q.

FIG. 1. Plots of the energies« of the lowest Bloch states versu
the pseudomomentumk: solid line,q51; dashed line,q50.
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Up to second order inq, the energy correction of theu0& state
is E052q2/2, and the effective Hamiltonian coupling th
statesu22& and u12& is

He f f5F41~q2/6!

~q2/4!

~q2/4!

41~q2/6!G . ~6!

We have tested the quality of this expansion limited to theq2

terms, by numerical diagonalization of the Hamiltonian m
trix. The neglected terms~in q4, etc.! are of the order of 1%
~10%! of the q2 terms if q50.3 (q51), thus giving an idea
of the validity range of this calculation.

The dynamics is adiabatic if the potentialq(t) varies
slowly, but diffraction remains possible when two free sta
are degenerate, like theu62& states. The problem is equiva
lent to a Rabi oscillation exactly at resonance, for which
exact solution is available for any functionq(t). For a pulse
extending fromt1 to t2 , the Rabi phasew r at the end of the
pulse is given by

w r5E
t1

t2
~q2/2!dt, ~7!

and if uc(t1)&5u62& the final state is

uc~t2!&5e$2 i [4(t22t1)1(wr /3)]%FcosS w r

2 D u62&

2 i sinS w r

2 D u72&G ~8!

where the phase shift of theu62& states due to their mea
energy shift has been expressed as a fraction of the R
phase. Whenuc(t1)&5u0&, the final state is theu0& state
with an extra phase shift, also due to its energy shift:

uc~t2!&5eiwru0&. ~9!

From now on, we consider aw r5p pulse. If the wave func-
tion at timet1 is given by

uc~t1!&5 (
p522,0,12

ap~t1!up&, ~10!

the wave function at timet2 is given by

uc~t2!&5eipa0~t1!u0&1e[ 24i (t22t1)2(5ip/6)]@a22~t1!u12&

1a12~t1!u22&]. ~11!

The phase factor exp@24i(t22t1)# is due to the free propa
gation of theu62& states and is not linked to the diffractio
process. The interesting results are the diffraction pha
equal to (1p) for the u0& state and (25p/6) for the u62&
states. The opposite signs of the diffraction phases are a
sequence of the opposite signs of the energy shifts of th
levels. In the resulting phase difference, the level shift c
tribution, equal to 4p/3, is proportional to the Rabi phas
w r , taken equal top. In an experiment, the phase differen
7-2
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may differ from this calculated value, as a result of
imperfect p pulse or of other effects neglected he
~e.g.,kÞ0).

IV. SIMPLE MODEL OF THE CONTRAST
INTERFEROMETER OF GUPTA et al.

We now calculate the output signal of the contrast int
ferometer developed by Guptaet al. @13#. This interferom-
eter uses second order Bragg diffraction and Raman-N
diffraction, and the atomic paths are represented in Fig
The initial state is a Bose-Einstein condensate, approxim
here by auk50& state. A first intense and brief pulse fro
t50 to tRN is used to diffract this initial state in three co
herent statesu0&,u62&. Within the Raman-Nath approxima
tion, the wave function fortRN is given by

uc~tRN!&5J0u0&2 iJ1@ u12&1u22&], ~12!

the argumentg of the Bessel functions being omitted fo
compactness. The best contrast@13# would be obtained with
diffraction probabilities equal to 50% for theu0& state and
25% for each of theu62& states. It is impossible to perfectl
satisfy these two conditions simultaneously, as the first
implies g51.13 whereas the second one impliesg51.21.
We can nevertheless suppose thatg'1.17. Although
J2(1.17)'0.15, we will neglect here the second order d
fraction amplitudes, as was done in Ref.@13#. We assume
that tRN is negligible so that free propagation starts att50
and lasts until the Bragg diffraction pulse, which exten
from t1 to t2 . Using Eq.~11!, we get the wave function afte
this pulse:

uc~t2!&5J0eipu0&1J1e24i t2e24ip/3@ u12&1u22&].
~13!

Free propagation goes on until a timet where the matter
grating formed by the interference of these three state
read by the reflection of a laser beam. The atomic densit
a function ofX andt is deduced from the wave function:

z^Xuc~t!& z25J0
212J1

2@11cos~4X!#

14J0J1cos~2X!cosS 4t1
7p

3 D . ~14!

FIG. 2. In the (x,t) plane, representation of the atomic pat
followed by the wave packets in the interferometer of Guptaet al.
@13#: Raman-Nath diffraction at timet50, second order Bragg dif
fraction at timet5T, detection near timet52T.
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The experimental signalS(t) is the intensity of the light
reflected by this grating. This homodyne detection signa
proportional to the square of the cos(2X) modulation of the
atomic density, with the following time dependence:

S~t!}cos2S 4t1
7p

3 D , ~15!

while the equation used by Guptaet al. is

S~t!}sin2~4t!. ~16!

The difference between Eqs.~15! and~16! is important only
if one wants to make an absolute prediction of the phase,
it has no consequence in the analysis carried out by Gu
et al. @13#, because their fitted value ofv rec comes from the
derivative of the phase with the time intervalT @19#. How-
ever, our result remains interesting as it may explain a la
part of the observed phase noise, 200 mrad from shot to s
In the 7p/3 phase of Eq.~15!, 4p/3 is proportional to the
Rabi phase, which is itself proportional toq2, i.e., to the
square of the laser power density during the Bragg pu
Therefore, a 1% variation of the laser power density chan
the diffraction phase by 84 mrad.

Our calculation relies on several approximations, some
them being not very accurate in the experimental conditi
of Guptaet al. @13#.

~i! The k50 approximation is an oversimplification bu
the calculation withkÞ0 is more complex.

~ii ! The first diffraction pulse used in the experiment
1 ms long, corresponding totRN50.157. Assuming g
'1.17, we getq'3.7 and the validity condition~4! requires
t<0.13. Therefore, the corrections to the Raman-N
phases are not fully negligible. We have also neglec
the second order diffraction beams, which contribute
the signal.

~iii ! As for the perturbation expansion used to descr
Bragg diffraction, thep pulse used is a Gaussian with
width of 7.6ms @13#. Assuming that q5qmaxexp@2(t
2T)2/(2st

2)#, with s t53.8 ms, i.e.,st'0.6, we get the value
qmax'2.4, well outside the validity range of our second o
der perturbation expansion. Higher-order terms inqn with
n54,6, . . . contribute to the phases and the sensitivity of t
diffraction phase to the laser power density may even
larger than predicted above.

Obviously, to describe this experiment very accurately
full numerical modelization is needed and is feasible, as
problem reduces to a 1D Schro¨dinger equation, if atom-atom
interactions are neglected. But, as noted by Guptaet al., the
mean field effect of the condensate can also modify ato
propagation and this effect has not been considered her

V. CONCLUSION

In this paper, we have made a simple and tutorial cal
lation of the phase shifts of atomic waves due to the ela
diffraction process by a laser standing wave. We have ca
lated the associated phase shift for the contrast interferom
of Pritchard and co-workers@13#, thus showing that it should
7-3
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be possible to make an experimental test of the depend
of the diffraction phase shifts on potential strength and in
action time. The present calculations are simple becaus
our assumptions: the Raman-Nath limit or perturbative
gime, and vanishing initial momentumk50. An accurate
modelling of a real experiment requires numerical integ
tion of the Schro¨dinger equation to describe the diffractio
dynamics without any approximation.

We have considered only first and second order diffr
tion. Higher diffraction orders up to order 8 have been o
served @20–22# with moderate laser power densities. T
leading term of the coupling matrix element responsible
diffraction ordern behaves likeqn @20#, whereas the leading
terms of the energy shifts, responsible for the diffracti
phase shifts, are always inq2. Therefore, for diffraction or-
dersn.2, the control of the phase shifts will require a fu
knowledge of the pulse shape. For the second order of
fraction, the diffraction phase shifts and the Rabi phase
simply related, as long as second order perturbation theo
a good approximation.
at
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We have made a systematic use of atomic Bloch state
describe atom diffraction by a laser, following our previo
paper@16#. The introduction of Bloch states to describe a
oms in a laser standing waves is due to Letokhov and Mi
gin @23,24# in 1978 and also to Castin and Dalibard@25# in
1991. Their use is rapidly expanding, in particular to tre
Bose-Einstein condensates in an optical lattice, as revie
by Rolston and Phillips@26#. When coupled with reduced
units as here, the atomic Bloch states represent a very
cient tool to get a simple understanding of the diffracti
process.
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