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Quantum-correlated double-well tunneling of two-component Bose-Einstein condensates
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We investigate a double-well tunneling process in Bose condensates of two interacting species. We show that
particles of different species can tunnel as pairs through the potential barrier between the two wells in opposite
directions. Such a correlated motion of tunneling atoms leads to the generation of quantum entanglement
between two macroscopically coherent systems. The strong correlations are manifested in the particle number
sum and the phase difference variables.
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I. INTRODUCTION Il. THE MODEL

. . The configuration of our double-well system is sketched
: Q“‘?‘”“?m 'tunnelmg of macroscoplcally.coherent systemsg, Fig. 1. Our focus in this paper is the quantum dynamics
is an intriguing phenomena well known in the context of oy 5y the mean-field description. An exact many-body de-
Josephson-junction effects in superconducting electronic Syggrintion s difficult even for single-component condensate
tems. For superfluids consisting of neutral particles, detailedoplems. The usual method to capture the essential physics
investigations of tunneling are aided by the recent realizatiofs pased on the two-mode approximation in which the evo-
Bose-Einstein condensation of atomic vapor in a well conqytion is confined by the left and right localized mode func-
trollable environment. Indeed, recent experiments have sUGijons  associated with  the respective potential  wells
cessfully demonstrated quantum tunneling for condensate{g_G 14,15. Such an approximation is valid when each po-
confined in an array of optical potentidls,2]. One promi- tentjal well is sufficiently deep so that higher modes of the
nent feature of tunneling in Bose condensates is the nonlingq|is essentially do not participate in the dynamics.

ear dynamics arising from the interaction between atoms. |, the two-mode approximation, the system is modeled by
Quite remarkably, for single-component condensates trappefle Hamiltonian f=1)

in double-well configurations, previous studies have indi-

cated that a self-trapping mechanism can suppress the tun- Q

neling rate significantly due to the atom-atom interaction ~ H= % (alar+aka +b/bg+bkb )+ x(ala blby
2

[3-6].

An interesting extension of the tunneling problem in- bt Ka  + 5 M
volves Bose condensates of two interacting species. The +agarbrbr) + S-[(aLa) "+ (arar)’]
main question is how the interspecies interaction affects the
tunneling process, and particularly the quantum coherence as
the two condensates mix together. Previous studies of the
general properties of two-component Bose condensates have
emphasized the important role of the interspecies interactiorjere, the subscripts andR, respectively, denote the local-
which leads to novel features, such as the components sepaed modes in the left and right potential wells. Since there
ration [7,8], cancellation of the mean-field energy sHi, are two modes available for each component, the model in
and the suppression of quantum phase diffugidd]. How-  fact consists of four-mode operators. We ua?ieand bjT (i
ever, the investigation of the influence of interspecies inter-
action on tunneling dynamics has only just bedih—13.

In this paper, we examine the tunneling dynamics of a
two-component condensate trapped in a double well. Ini-
tially, the atoms of the componenfsand B are separately
prepared in the left and right potential well, respectively. We
discover the condition under which the interspecies interac-
tion can eliminate the self-trapping effect and thus enhances
the tunneling significantly. Such an enhanced tunneling origi-
nates from the correlated quantized motion of the two con-
densates. We will show that atoms of different species tunne
through the barrier as correlated pairs in opposite directions
i.e., a form ofquantum entangled tunnelingherefore, tun-
neling serves as a mechanism to buildup a strong correlation
among atoms of different species, and this leads to the gen- FIG. 1. A sketch of the double-well tunneling system. Initially,
eration of quantum entanglement between two multiparticlehe atoms of the compone#t are trapped in the left side and the
systems. atoms of the componeri are trapped in the right side.

+220(b]by) %+ (bfbg)?]. ®

® ®
® ®
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=L,R) to denote the creation operators of the componAnts 5 T T
and B, respectively. The parametets, «,(«p), and « de-
scribe the tunneling rate, self-interaction strength of the com-
ponentA(B), and the interspecies interaction strength, re- \
spectively.
We consider the initial condition in which all atoms in the 25¢ b
componentA(B) are localized in the lef(right) potential \
well. The general form of the state vector at timis given /4 i \

by \

N N 0F \ i

|\P(t)>:e7iKN2tn§=:O m§=:0 Cn,m(t)|nvN_ n>A|m!N_ m>B . \\ ————
(2 =7

Here,|p,q)s denotes the state with atoms of specie§ (S 2.5 :
=A,B) in the left well andg atoms of specieSin the right
well. The amplitudesc,, (t) are governed by the Schro T

dinger equation according to Hamiltonigty: FIG. 2. Particle number difference of the componariietween

Q the two potential wells as a function of a dimensionless time
- =(0Q% k)t with N=5 and k= k,= k,=10 Q. The dashed line is
ichm==[vV(n+1)(N—n)c +Vn(N—n+1)c,_ ( _ a—mpm e T .
nm- 2 A ) )Cn+1m ( )Cn-1ml the solution based on the effective Hamiltonian in ). The inset
shows the overlap probability, of finding the system belonging to

Q
_1_5[ (M+1)(N—m)Cn ms1 the degenerate set of stafef,).
) a form of Bell's state that is maximally entangled in the
+VMN=m+1)cnm-1]+«[(N+m=N)“Jcnm, two-particle two-mode subspace.
()

B. Multiatom case
with the initial conditionc, ,(0)= &, NnOmo- In this paper,
we shall limit our study to the #4>N(Q regime where the
nonlinear interaction is dominant.

Now we examine the multiatom case. In order to facilitate
the discussion, we assume the number of particles are the
same for the two components, i.Bl,=Ny=N, and the con-
densates share the same interaction strength, K £=,xp
Ill. ENTANGLED TUNNELING DYNAMICS = k. The latter condition is a good approximation ¥Rb
condensate of atoms in hyperfine spin stdfes 2,m;=1)
and|F=1m;=—1), which share similar scattering lengths
To gain insight of the quantum correlation developing in[8]. However, we emphasize that these assumptions are not

the tunneling process, we first consider the exactly solvablerucial, we shall discuss more general situations later in the
case with only oné\ atom in the left well and onB atom in  paper.

the right well. In this case, the system is spanned by four

basis vectors}1,004/1,0g, |1,004/0,Dg, |0,)4/1,0)g, and 1. Numerical results
|0,2)4|0,1)5. The eigenvalues and eigenvectorsbtan be

found explicitly (see Appendix A In the regime where the
interspecies interaction is sufficiently strong such that
>(), the system evolves as

A. Two-atom case

Let us first present the typical results obtained from the
numerical solutions of Eq.3). In Fig. 2, we show the par-
ticle number differenc&V=(a/a, —alag) of speciesA be-
tween the two wells as a function of time. The occurrence of

W (1)) = e 1[(ka* x0)2= w0l coswt|1,004]0,1) g tunneling is revealed by the decreaseVdfAt longer times
W approaches zero, therefore the numberé atoms in the
+isinwot|0,2)41,00g] + O(Q/ k). (4)  two potential wells are roughly equalized. We emphasize that

the nonzero interspecies interaction is responsible for the
In writing Eq. (4), we have definedby=?/2« as an effec- tunneling to occur. If the two species do not interact with
tive tunneling frequency. Because of the strong interactioreach other(i.e., k=0), then a sufficiently strong self-
between the atoms, the probability of finding both particlesinteraction«;>N() (j=a,b) can suppress the tunneling al-
in the same well at any timeis negligible (of the order of most completely by the self-trapping effd&.
Q?/«?). The tunneling motion of the two atoms are anticor- We note that the state vectp¥ (t)) is a superposition of
related in the sense that the at@xrand the atonB always (N+1)? states of the formn,N—n)am,N—m)g. How-
move in opposite directions. Such an anticorrelated tunnelingver, a small number of them suffice to describe the process.
motion gives rise to quantum entanglement between the twdhis can be understood intuitively becayseN—n),|m,N
atoms. At timet= (n+ 1/4)w/ wq, (N= integers, the state is —m)g have different energies for different valuesroand
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m, and those with energies closer to that of the initial state 4
are more accessible. The difference in energies is significan
in the regime 4>NQ considered here. We find that the
states| ¢q)=|0,N—q)a|N—q,q)g with g=0,1,2 ... N are
approximately degenerate energy eigenvectond ¢fo zero
order in(}), and the energies of states other thah) are
higher than those df¢,) by an amount of the order of or
higher. Since the initial stat¢¥(0)) is |¢o), |P(t)) is
mainly a superposition df,) according to the energy argu-
ment above. We find that this is indeed the case. To provide
a numerical evidence of our finding, we show in the inset of
Fig. 2, the overlap probability defined byPg(t) 1
=E$ZO|<¢q|‘P(t)>|2. For the parameters used in this figure,
the set of| ) contributes more than 90% ¢ (t)). Our
further numerical tests suggest thBy—1 in the limit
NQ/k—0. 0 0 '1 ‘2 3
We remark that all ¢,) have the same number of par-
ticles (componenfA plus componenB) in the left potential
well, and the same also holds for the right well. Therefore, FIG. 3. Entanglement entrofy as a function of the dimension-
Po(t)~=1 implies small fluctuations of total particle number less timer for the different particle numbersd=2, N=10, and
in the each potential well. In the case of Fig. 2, we find thatN=>50 with = k,= k,=10 Q.
the fluctuation of total particle number in the left weN, )
is much smaller thadN_ ) i.e., a sub-Poissonian distribu- 02
tion. Since,N, =a/a, +b/b, , the particle numbers of the Hei=— 7 (Ki K-+ K_K), (6)
two condensates in the left well is strongly correlated. The

same is also true in the right potential well. whereK , =alag+b/bg andK_=a, al+b b}, satisfy the
] o angular-momentum commutation relationsfK, ,K_]
2. Effective Hamiltonian =2K,, [K,,K.]=*K., whereKzz(aIaLer’[bL—aLaR
The time-dependent problem is now significantly simpli- —blbg)/2. ThereforeK .. andK, are analogous to collective

fied because the evolution of the condensates mainly inspin operators, and analytic solutions can, in principle, be
volves the set of degenerate stdtgg). For those states that constructed using angular-momentum algebra. This shares a
do not have the same energyld@), they act as intermedi- similar feature in the description of spinor condensates.

ate states that are rarely populated. We may eliminate sudhdeed, the nonlinear interaction between collective spins is
intermediate states to obtain the effective Hamiltonisee the key to generation of nonclassical correlations such as

(&)

Appendix B spin squeezin@19], and particularly, the notion of multipar-
ticle entanglement has been discussed in the context of
02 " N - squeezed spin stat€20]. In the following section, we shall
He= — Z(aLaRbLbR+ a agh b see that the double-well tunneling process leads to quantum
entanglement between two initially well separated multipar-
+a)a akag+ b/ b, blbg), (5) ticle subsystemsA andB) involving variables of two po-
tential wells.
where a constant term proportional to the total number of
particles is dropped. The effective Hamiltoni&hy, is an 3. Quantum correlations

approximation that captures the essential tunneling mecha- The degree of entanglement between the two species is
nism in the 4=>NQ limit [16] We have tested the Valldlty measured by the entang|ement entr@By]

of this effective Hamiltonian numerically. For example, in
Fig. 2 the dashed line, which is obtained from the evolution E=—tr(palnpa) = —tr(pglnpg), (7)
based orH ., agrees well with the exact numerical solution.

The quantum dynamics in the subspace defined by the s@therep, andpg are reduced density matrices of the respec-
of |¢q) is transparenf17]. The interaction termatb/a br  tive subsystems, i.ega=trgpag and pg=trapag With pag
suggests that every time when an atdmmoves from the left  =|W(t))((t)| being the density matrix of the whole sys-
well to the right well there must be an atoBithat moves tem. A disentangled statéfor example, the initial state
from the right well to the left well. This explains why the above has zero entanglement entropy. The more entangled
small fluctuations in the total particle number in each potenthe systems, the larger the value Bfis. As an illustration,
tial well. The reverse process is describedadjyplagb, in  we show in Fig. 3 how the entanglement is established in
Heg. In other words, the atoma and B move in pair in  time for various particle numbers. As time increases, the
opposite directions during the tunneling process. value of E increases until a saturated value is reached. Since

It is worth noting thatH .4 can be cast in the form there areN+ 1 degenerate statgg$,) mainly involved in the
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0.04 T 0.2 T
(@t=0 (b) t=0.05

evolution, we haveE~—=N_c|c, y_nl?Inlcn_nf>. There-
fore, the maximum value d is ~In(N+1) if all | ¢,) have
equal contributions to the state of the system. In the case o
Fig. 3, the value oE can reach as high as 90% of the value
IN(N+1).

It is important to identify the physical variables that re-
veal the quantum correlation between the entangled conden
sates. In addition to the strongly correlated particle numbers
there is a less obvious correlation in the relative phase vari- 0 0.5 1 0 0.5
ables. We note that the relative phase of bosonic fields be 5 ‘ 05
tween two modespotential well$ can be defined through a (©)1=0.1 @r=02
complete set of relative phase states. For the condensate sp
ciesj, we define the phase states [I32]

g Pt - ]
> e"n,N-n);, j=AB, (8

1
f)=——
| r>] N+ 1o

where 6,=27r/(N+1) with r=0,1,2... N. The state 0 ‘ 0 .
[6,) j represents the state with a well-defined phase difference 0 03 ! 0 03
6, [of resolution 2r/(N+1)] between the two wells. AB/2m AO/2m
Since the system consists of two atomic specjas(t))

s a  superposition of [6;)a|65)s. The quantity ity distribution of relative phase differenced= 6, — 4, (see textat

2 . -
|<\I’Q)|9r>/'\.|05.>5| corresponds to the Joint Pro- ¢+ different dimensionless times. Here, the particle num¥er
bability of finding the component A with the phase difference _ g ith «= .= ke =50 Q)
a .

0, and component B with the phase differenég be-
tween the two wells. For the entangled tunneling proces
discussed above,|¥(t)) involves a coherent super-
position of [n,N—n)s/N—n,n)g of various n. Therefore,
(W ()] 6,)al 0s)5|2=p(6s— 6,) is a function ofdifferenceof
the relative phases only.

The initial Fock statg0,N)|N,0)g has completely ran-
dom phases, i.ep(6,— 65,0) is uniform. However, we find
that p(#6,,6s,t) evolves into a single narrow peak distribu-
tion as time increasefig. 4). At a characteristic timerg
=2k/I0%\N, the half width of the peak is2N~*2 and the Finally, we would like to address the conditions for the
peak position ats— ¢,~ m, according to our numerical cal- entangled tunneling to occur. Our discussion above has been
culations for the particle numbét up to 400. Therefore, the restricted to the simplest symmetric situatiod,=N,=N
entangled tunneling process tends to buildup a sharp relativgnd «,= x,=«, in order to illustrate the essential mecha-
phase differencé, — 65 dynamically. Fort> 7, the relative  nism under the condition 4>N. The same analysis can

phase distribution develops complicated interference patterpe performed to study general situations. We have examined
due to further mixing of condensates between the two wellsthe system with unequal particle numbens,N,)=D

So far we have considered quantum correlations between 0 and unequal coupling strengths,= k+ 8, kp,=k— &
the two condensate components. We remark that the left angfith | 5|< « (see Appendix B We find that if the tunneling

right potential wells can be treated as two spatially separategirength () is sufficiently weak or the self-interaction
subsystems. Therefore, it is natural to ask about the quanturengthx is sufficiently strong such that

entanglement between the left condensatbich contains

atoms of both atomic specieand the right condensate. We 4/k(D—1)—[Ny(D—2)|5]1/2|>QNy, 9
introduce basis vectors suitable for the left-right subsystems:

In,N—m)_IN—n,m)g=[n,N—n)s[N—m,m)g, which cor-  then the system mainly evolves among the stated,
responds to the state with A atoms andN—m B atoms in —n)alN,—Nn,Ny—N,+n)g, where n=0,1,2...,N,. In
the left well, andN—n A atoms andn Batoms in the right  other words, the tunneling under conditié® is character-
We” In the limit 4> NQ, Whel’e the eﬁeCtiVe Hamiltonian ized by entanglement generation tea&)laLbR as before'

—_

—_—

FIG. 4. An illustration of the time development of the probabil-

$Ve see thatW(t)) in the new basis is represented by the
same set of amplitudes, y—n(t). Therefore, the entangle-
ment entropyE between the left and right subsystems is the
same as that between the two species in the-KQ limit.
Similarly, the phase correlation discussed above can be ap-
plied to the left-right systems.

IV. CONCLUDING REMARKS

(5) applies, we have However, we point out that the tunneling are generally less
N efficient for the cases with nonzesandD. This is because
|\I,(t)>=efixN2tE Crnon(D]N,N=NY2[N=n,n)g the states]n,Na—_n>A|Na—n,Nb—_ N,+n)g are not as de-
n=0 generate as that in the symmetric case wittindD are both
N Zero.
—ikN? To summarize, we have studied the quantum dynamics of
=e "Nt > ¢ non(Dn,N=n) [N=n,n ' ) d y .
ngo (V)] )l )R double-well tunneling involving Bose condensates of two in-
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teracting components, based on the two-mode approximation APPENDIX B: DERIVATION
model in the strong-coupling regime. We find that the inter- OF THE EFFECTIVE HAMILTONIAN
play of intraspecies and interspecies interactions permits a

set of energy degenerate states, a small tunneling couplin dN f B, We al " | inter-
can push the system to “explore” through these degenerat b atoms of compone e also allow unequal inter
states and thus result in a substantial tunneling not limited bGction SWengthska =« + 38, kp=x =5, and y/2=x. With-
the self-trapping effect. The most interesting feature is th ut loss of generality, we Iemb>.N _and D=Np=Na#1.
strongly correlated tunneling motion. We have shown that he state vector of the system is given by

high degree of quantum entanglement between two macro-

scopically coherent systems can be achieved. The quantum |«y(t)>:e*i(KN§+ kNF— SDNp)U/2

correlations manifest themselves in the particle number sum

Let us consider a system witk, atoms of componem

as well as the relative phase difference variables associated a b
with the condensates in the two potential wells. XHZO mE:O Cnm(D[N,Na=n)|m,Np—my.
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Q
+ E[ (M+1)(Np—m)Cph m+1

m(Nb_ m-+ 1)Cn,m—l]

APPENDIX A: ENERGY EIGENVECTORS
OF THE TWO-ATOM SYSTEM

For a system with only on& atom and ond atom, there

i K
are four eigenvectors df + E[(n+m)2+(Na+ Np—n—m)?—N2—NZ]c,

6D

|)\1> \/—(|10>A|10>B (Al) +7(n_m)cn,ma (Bl)

)= =100, D5 0,14 1,08), (A2) with the initial conditioncNa'0(0)=1.
\/— Since k is a large parameter here, the states withm

=N,*1 have a much different energy than that of the states

1 with n+m=N,. Any transition(due toQ}) from the mani-
INg)=—]|1,041,05+]0,1)4|0,D)g fold n+m=N, to the manifoldsn+m=N_,=*= 1 must quickly
\/C_]_ return ton+m=N,. In other words, the states witi+m

=N,*1 are intermediate states that are hardly occupied at
any time. The amplitudes associated with the m=N,

+1 manifold arec41m, Ch—1m» Cnm+1, andcy n—1, and
they can be found approximately by adiabatic approximation
(A3} under the conditions |N,|>QNy and 4N,|>QNy:

(11,0040, 15+ 0,/ 1,08) |,
a7 | 00 Det[0.04]1.00)

1
- Q
INa) /_Cz 11,0411,0+|0,04/0,Dg Cn+1,m~__2N1[ (n+1)(Ny—n)cp m

(11.0a0.D5+[0.Da1,08) |, M(Np=m+ 1) am-als - (B2)

N 20
k— K2+ 402
A4 Qe
( ) Cnfl,m 2N [ n(N n+1)cn,m
where C;=2+80%(k+k?+40%? and C,=2
+802/(k— Jk*+ 40?2 are normalization constants. The FN(M+1)(Np=m)Cpgms1], (B3)
eigenvalues are given b¥i=(x,+ kp,+2k)/2, No=(k,

+kp)/2, N3=(ka+ kp+ k+Vk2+402)/2, and A= (k, Q

+ kp+ k— kZ+4Q?)/2. Note that in the limitx>Q, the Crm+1™~ = g IV(ME DNy =m)Cn,m

four eigenvectors are exactly the four mutually orthogonal

Bell’s states. +VN(Na—n+1)cqh_gmeq], (B4)
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Q
Chm—1~— Z_NZ \/m(Nb_ m+ 1)Cn,m

+ (n+1)(Na_n)Cn+1,m—1]v (BS)

where N;=«(1—-D)+éD/2—6(h—m)(D—2)/2 and N,
=k(D+1)—6D/2— 6(n—m)(D+2)/2 are defined.

Using (B2)—(B5), the amplitude equation af, _ is re-
duced to

. Q%(N;+Np)
iCn N, = —W\/(mL 1)(Na—n)m(Np—m+1)

Q%(N;+Ny)

><CnJrl,Na*n*l_ 4N1N2

X YN(Ng—n+1)(m+1)(N;—mM)Cq 1N, n+1
QZ
- 4—N1[(n+ 1)(Na—n)

PHYSICAL REVIEW A 68, 013604 (2003

2
H(m+ D (Ny=m) Jen, 0= z-[n(Na=n+ 1)

6D
+M(Np—m+1)JCnn, -nt T(n—m)cn,Na,n.

(B6)

In the case with equal particle numke=0 and equal cou-
pling 5=0, Eqg.(B6) corresponds to the Schiimger equa-
tion governed by the effective Hamiltoni#b). For the cases
with unequal particle numbers and coupling strengths, i.e.,
D+#0 andé+0, Eq.(B6) describes how the amplitudes of
degenerate states couple together under the conditions
4|N4|>QN, and 4N,|>QN,. These inequalities lead to
condition (9) in Sec. IV. We also remark that conditid@)
does not apply to the special casg—N,==*=1 in which
some of the states in+m=N, andn+m=N_*=1 mani-
folds are accidentally degenerate.
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