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Quantum-correlated double-well tunneling of two-component Bose-Einstein condensates

H. T. Ng, C. K. Law, and P. T. Leung
Department of Physics, The Chinese University of Hong Kong, Shatin, NT, Hong Kong, China

~Received 21 March 2003; published 14 July 2003!

We investigate a double-well tunneling process in Bose condensates of two interacting species. We show that
particles of different species can tunnel as pairs through the potential barrier between the two wells in opposite
directions. Such a correlated motion of tunneling atoms leads to the generation of quantum entanglement
between two macroscopically coherent systems. The strong correlations are manifested in the particle number
sum and the phase difference variables.

DOI: 10.1103/PhysRevA.68.013604 PACS number~s!: 03.75.Gg, 03.75.Lm, 03.75.Mn
m
o
sy
ile
tio
on
su
at

li
m
p
di
tu

ion

n-
T
th
e
t

ha
io
e

te

f
In

e
a
c
ig
on
n
n

ti
e

icl

ed
ics
de-
ate
sics

vo-
c-
lls
o-
he

by

l-
re
l in

y,
e

I. INTRODUCTION

Quantum tunneling of macroscopically coherent syste
is an intriguing phenomena well known in the context
Josephson-junction effects in superconducting electronic
tems. For superfluids consisting of neutral particles, deta
investigations of tunneling are aided by the recent realiza
Bose-Einstein condensation of atomic vapor in a well c
trollable environment. Indeed, recent experiments have
cessfully demonstrated quantum tunneling for condens
confined in an array of optical potentials@1,2#. One promi-
nent feature of tunneling in Bose condensates is the non
ear dynamics arising from the interaction between ato
Quite remarkably, for single-component condensates trap
in double-well configurations, previous studies have in
cated that a self-trapping mechanism can suppress the
neling rate significantly due to the atom-atom interact
@3–6#.

An interesting extension of the tunneling problem i
volves Bose condensates of two interacting species.
main question is how the interspecies interaction affects
tunneling process, and particularly the quantum coherenc
the two condensates mix together. Previous studies of
general properties of two-component Bose condensates
emphasized the important role of the interspecies interact
which leads to novel features, such as the components s
ration @7,8#, cancellation of the mean-field energy shift@9#,
and the suppression of quantum phase diffusion@10#. How-
ever, the investigation of the influence of interspecies in
action on tunneling dynamics has only just begun@11–13#.

In this paper, we examine the tunneling dynamics o
two-component condensate trapped in a double well.
tially, the atoms of the componentsA and B are separately
prepared in the left and right potential well, respectively. W
discover the condition under which the interspecies inter
tion can eliminate the self-trapping effect and thus enhan
the tunneling significantly. Such an enhanced tunneling or
nates from the correlated quantized motion of the two c
densates. We will show that atoms of different species tun
through the barrier as correlated pairs in opposite directio
i.e., a form ofquantum entangled tunneling. Therefore, tun-
neling serves as a mechanism to buildup a strong correla
among atoms of different species, and this leads to the g
eration of quantum entanglement between two multipart
systems.
1050-2947/2003/68~1!/013604~6!/$20.00 68 0136
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II. THE MODEL

The configuration of our double-well system is sketch
in Fig. 1. Our focus in this paper is the quantum dynam
beyond the mean-field description. An exact many-body
scription is difficult even for single-component condens
problems. The usual method to capture the essential phy
is based on the two-mode approximation in which the e
lution is confined by the left and right localized mode fun
tions associated with the respective potential we
@3–6,14,15#. Such an approximation is valid when each p
tential well is sufficiently deep so that higher modes of t
wells essentially do not participate in the dynamics.

In the two-mode approximation, the system is modeled
the Hamiltonian (\51)

H5
V

2
~aL

†aR1aR
†aL1bL

†bR1bR
†bL!1k~aL

†aLbL
†bL

1aR
†aRbR

†bR!1
ka

2
@~aL

†aL!21~aR
†aR!2#

1
kb

2
@~bL

†bL!21~bR
†bR!2#. ~1!

Here, the subscriptsL andR, respectively, denote the loca
ized modes in the left and right potential wells. Since the
are two modes available for each component, the mode
fact consists of four-mode operators. We useaj

† and bj
† ( j

FIG. 1. A sketch of the double-well tunneling system. Initiall
the atoms of the componentA are trapped in the left side and th
atoms of the componentB are trapped in the right side.
©2003 The American Physical Society04-1
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5L,R) to denote the creation operators of the componenA
and B, respectively. The parametersV, ka(kb), and k de-
scribe the tunneling rate, self-interaction strength of the co
ponentA(B), and the interspecies interaction strength,
spectively.

We consider the initial condition in which all atoms in th
componentA(B) are localized in the left~right! potential
well. The general form of the state vector at timet is given
by

uC~ t !&5e2 ikN2t (
n50

N

(
m50

N

cn,m~ t !un,N2n&Aum,N2m&B .

~2!

Here, up,q&S denotes the state withp atoms of speciesS (S
5A,B) in the left well andq atoms of speciesS in the right
well. The amplitudescn,m(t) are governed by the Schro¨-
dinger equation according to Hamiltonian~1!:

i ċn,m5
V

2
@A~n11!~N2n!cn11,m1An~N2n11!cn21,m#

1
V

2
@A~m11!~N2m!cn,m11

1Am~N2m11!cn,m21#1k@~n1m2N!2#cn,m ,

~3!

with the initial conditioncn,m(0)5dn,Ndm,0 . In this paper,
we shall limit our study to the 4k@NV regime where the
nonlinear interaction is dominant.

III. ENTANGLED TUNNELING DYNAMICS

A. Two-atom case

To gain insight of the quantum correlation developing
the tunneling process, we first consider the exactly solva
case with only oneA atom in the left well and oneB atom in
the right well. In this case, the system is spanned by f
basis vectors:u1,0&Au1,0&B , u1,0&Au0,1&B , u0,1&Au1,0&B , and
u0,1&Au0,1&B . The eigenvalues and eigenvectors ofH can be
found explicitly ~see Appendix A!. In the regime where the
interspecies interaction is sufficiently strong such thatk
@V, the system evolves as

uC~ t !&5e2 i [(ka1kb)/22v0] t@cosv0tu1,0&Au0,1&B

1 isinv0tu0,1&Au1,0&B] 1O~V/k!. ~4!

In writing Eq. ~4!, we have definedv05V2/2k as an effec-
tive tunneling frequency. Because of the strong interact
between the atoms, the probability of finding both partic
in the same well at any timet is negligible~of the order of
V2/k2). The tunneling motion of the two atoms are antico
related in the sense that the atomA and the atomB always
move in opposite directions. Such an anticorrelated tunne
motion gives rise to quantum entanglement between the
atoms. At timet5(n11/4)p/v0, (n5 integers!, the state is
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a form of Bell’s state that is maximally entangled in th
two-particle two-mode subspace.

B. Multiatom case

Now we examine the multiatom case. In order to facilita
the discussion, we assume the number of particles are
same for the two components, i.e.,Na5Nb5N, and the con-
densates share the same interaction strength, i.e.,ka5kb
5k. The latter condition is a good approximation to87Rb
condensate of atoms in hyperfine spin statesuF52,mf51&
and uF51,mf521&, which share similar scattering length
@8#. However, we emphasize that these assumptions are
crucial, we shall discuss more general situations later in
paper.

1. Numerical results

Let us first present the typical results obtained from
numerical solutions of Eq.~3!. In Fig. 2, we show the par-
ticle number differenceW[^aL

†aL2aR
†aR& of speciesA be-

tween the two wells as a function of time. The occurrence
tunneling is revealed by the decrease ofW. At longer times
W approaches zero, therefore the numbers ofA atoms in the
two potential wells are roughly equalized. We emphasize t
the nonzero interspecies interaction is responsible for
tunneling to occur. If the two species do not interact w
each other~i.e., k50), then a sufficiently strong self
interactionk j.NV ( j 5a,b) can suppress the tunneling a
most completely by the self-trapping effect@3#.

We note that the state vectoruC(t)& is a superposition of
(N11)2 states of the formun,N2n&Aum,N2m&B . How-
ever, a small number of them suffice to describe the proc
This can be understood intuitively becauseun,N2n&Aum,N
2m&B have different energies for different values ofn and

FIG. 2. Particle number difference of the componentA between
the two potential wells as a function of a dimensionless timet
[(V2/k)t with N55 andk5ka5kb510 V. The dashed line is
the solution based on the effective Hamiltonian in Eq.~6!. The inset
shows the overlap probabilityP0 of finding the system belonging to
the degenerate set of statesufq&.
4-2
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m, and those with energies closer to that of the initial st
are more accessible. The difference in energies is signifi
in the regime 4k@NV considered here. We find that th
statesufq&5uq,N2q&AuN2q,q&B with q50,1,2, . . . ,N are
approximately degenerate energy eigenvectors ofH ~to zero
order in V), and the energies of states other thanufq& are
higher than those ofufq& by an amount of the order ofk or
higher. Since the initial stateuC(0)& is uf0&, uC(t)& is
mainly a superposition ofufq& according to the energy argu
ment above. We find that this is indeed the case. To prov
a numerical evidence of our finding, we show in the inset
Fig. 2, the overlap probability defined byP0(t)
5(q50

N u^fquC(t)&u2. For the parameters used in this figur
the set ofufq& contributes more than 90% ofuC(t)&. Our
further numerical tests suggest thatP0→1 in the limit
NV/k→0.

We remark that allufq& have the same number of pa
ticles ~componentA plus componentB) in the left potential
well, and the same also holds for the right well. Therefo
P0(t)'1 implies small fluctuations of total particle numb
in the each potential well. In the case of Fig. 2, we find th
the fluctuation of total particle number in the left well^DNL&
is much smaller than̂NL&1/2, i.e., a sub-Poissonian distribu
tion. Since,NL5aL

†aL1bL
†bL , the particle numbers of the

two condensates in the left well is strongly correlated. T
same is also true in the right potential well.

2. Effective Hamiltonian

The time-dependent problem is now significantly simp
fied because the evolution of the condensates mainly
volves the set of degenerate statesufq&. For those states tha
do not have the same energy asufq&, they act as intermedi
ate states that are rarely populated. We may eliminate s
intermediate states to obtain the effective Hamiltonian~see
Appendix B!

Heff52
V2

2k
~aL

†aRbLbR
†1aLaR

†bL
†bR

1aL
†aLaR

†aR1bL
†bLbR

†bR!, ~5!

where a constant term proportional to the total number
particles is dropped. The effective HamiltonianHeff is an
approximation that captures the essential tunneling me
nism in the 4k@NV limit @16#. We have tested the validity
of this effective Hamiltonian numerically. For example,
Fig. 2 the dashed line, which is obtained from the evolut
based onHeff , agrees well with the exact numerical solutio

The quantum dynamics in the subspace defined by the
of ufq& is transparent@17#. The interaction termaR

†bL
†aLbR

suggests that every time when an atomA moves from the left
well to the right well there must be an atomB that moves
from the right well to the left well. This explains why th
small fluctuations in the total particle number in each pot
tial well. The reverse process is described byaL

†bR
†aRbL in

Heff . In other words, the atomsA and B move in pair in
opposite directions during the tunneling process.

It is worth noting thatHeff can be cast in the form
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Heff52
V2

4k
~K1K21K2K1!, ~6!

where K15aL
†aR1bL

†bR and K25aLaR
†1bLbR

† satisfy the
angular-momentum commutation relations:@K1 ,K2#
52Kz , @Kz ,K6#56K6 , whereKz5(aL

†aL1bL
†bL2aR

†aR

2bR
†bR)/2. Therefore,K6 andKz are analogous to collective

spin operators, and analytic solutions can, in principle,
constructed using angular-momentum algebra. This shar
similar feature in the description of spinor condensates@18#.
Indeed, the nonlinear interaction between collective spin
the key to generation of nonclassical correlations such
spin squeezing@19#, and particularly, the notion of multipar
ticle entanglement has been discussed in the contex
squeezed spin states@20#. In the following section, we shal
see that the double-well tunneling process leads to quan
entanglement between two initially well separated multip
ticle subsystems (A and B) involving variables of two po-
tential wells.

3. Quantum correlations

The degree of entanglement between the two specie
measured by the entanglement entropy@21#

E52tr~rAlnrA!52tr~rBlnrB!, ~7!

whererA andrB are reduced density matrices of the resp
tive subsystems, i.e.,rA5trBrAB and rB5trArAB with rAB
5uC(t)&^C(t)u being the density matrix of the whole sys
tem. A disentangled state~for example, the initial state
above! has zero entanglement entropy. The more entang
the systems, the larger the value ofE is. As an illustration,
we show in Fig. 3 how the entanglement is established
time for various particle numbers. As time increases,
value ofE increases until a saturated value is reached. Si
there areN11 degenerate statesufq& mainly involved in the

FIG. 3. Entanglement entropyE as a function of the dimension
less timet for the different particle numbers:N52, N510, and
N550 with k5ka5kb510 V.
4-3



e
ue

e-
de
er
a
b

a
s

n
.

-
ce

es
-

u-

-

ti

te
ll
e
a
te
tu

e
m

he
-
he

ap-

e
een

a-
n
ined

n

ss

s of
in-

il-
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evolution, we haveE'2(n50
N ucn,N2nu2lnucn,N2nu2. There-

fore, the maximum value ofE is ' ln(N11) if all ufq& have
equal contributions to the state of the system. In the cas
Fig. 3, the value ofE can reach as high as 90% of the val
ln(N11).

It is important to identify the physical variables that r
veal the quantum correlation between the entangled con
sates. In addition to the strongly correlated particle numb
there is a less obvious correlation in the relative phase v
ables. We note that the relative phase of bosonic fields
tween two modes~potential wells! can be defined through
complete set of relative phase states. For the condensate
cies j, we define the phase states by@22#

uu r& j[
1

AN11
(
n50

N

einurun,N2n& j , j 5A,B, ~8!

where u r52pr /(N11) with r 50,1,2, . . . ,N. The state
uu r& j represents the state with a well-defined phase differe
u r @of resolution 2p/(N11)] between the two wells
Since the system consists of two atomic species,uC(t)&
is a superposition of uu r&Auus&B . The quantity
u^C(t)uu r&Auus&Bu2 corresponds to the joint pro
bability of finding the component A with the phase differen
u r and component B with the phase differenceus be-
tween the two wells. For the entangled tunneling proc
discussed above,uC(t)& involves a coherent super
position of un,N2n&AuN2n,n&B of various n. Therefore,
u^C(t)uu r&Auus&Bu25p(us2u r) is a function ofdifferenceof
the relative phases only.

The initial Fock stateu0,N&AuN,0&B has completely ran-
dom phases, i.e.,p(u r2us ,0) is uniform. However, we find
that p(u r ,us ,t) evolves into a single narrow peak distrib
tion as time increases~Fig. 4!. At a characteristic timets

[2k/V2AN, the half width of the peak is'2N21/2, and the
peak position atus2u r'p, according to our numerical cal
culations for the particle numberN up to 400. Therefore, the
entangled tunneling process tends to buildup a sharp rela
phase differenceu r2us dynamically. Fort.ts , the relative
phase distribution develops complicated interference pat
due to further mixing of condensates between the two we

So far we have considered quantum correlations betw
the two condensate components. We remark that the left
right potential wells can be treated as two spatially separa
subsystems. Therefore, it is natural to ask about the quan
entanglement between the left condensate~which contains
atoms of both atomic species! and the right condensate. W
introduce basis vectors suitable for the left-right subsyste
un,N2m)LuN2n,m)R[un,N2n&AuN2m,m&B , which cor-
responds to the state withn A atoms andN2m B atoms in
the left well, andN2n A atoms andm B atoms in the right
well. In the limit 4k@NV, where the effective Hamiltonian
~5! applies, we have

uC~ t !&5e2 ikN2t (
n50

N

cn,N2n~ t !un,N2n&AuN2n,n&B

5e2 ikN2t (
n50

N

cn,N2n~ t !un,N2n)LuN2n,n)R.
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We see thatuC(t)& in the new basis is represented by t
same set of amplitudescn,N2n(t). Therefore, the entangle
ment entropyE between the left and right subsystems is t
same as that between the two species in the 4k@NV limit.
Similarly, the phase correlation discussed above can be
plied to the left-right systems.

IV. CONCLUDING REMARKS

Finally, we would like to address the conditions for th
entangled tunneling to occur. Our discussion above has b
restricted to the simplest symmetric situation:Na5Nb5N
and ka5kb5k, in order to illustrate the essential mech
nism under the condition 4k@NV. The same analysis ca
be performed to study general situations. We have exam
the system with unequal particle numbers (Nb2Na)[D
.0 and unequal coupling strengthska5k1d, kb5k2d
with udu!k ~see Appendix B!. We find that if the tunneling
strength V is sufficiently weak or the self-interactio
strengthk is sufficiently strong such that

4uk~D21!2@Na~D22!udu#/2u@VNb , ~9!

then the system mainly evolves among the statesun,Na
2n&AuNa2n,Nb2Na1n&B , where n50,1,2, . . . ,Na . In
other words, the tunneling under condition~9! is character-
ized by entanglement generation termaR

†bL
†aLbR as before.

However, we point out that the tunneling are generally le
efficient for the cases with nonzerod andD. This is because
the statesun,Na2n&AuNa2n,Nb2Na1n&B are not as de-
generate as that in the symmetric case withd andD are both
zero.

To summarize, we have studied the quantum dynamic
double-well tunneling involving Bose condensates of two

FIG. 4. An illustration of the time development of the probab
ity distribution of relative phase differenceDu[u r2us ~see text! at
four different dimensionless times. Here, the particle numberN
550 with k5ka5kb550 V.
4-4
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QUANTUM-CORRELATED DOUBLE-WELL TUNNELING OF . . . PHYSICAL REVIEW A 68, 013604 ~2003!
teracting components, based on the two-mode approxima
model in the strong-coupling regime. We find that the int
play of intraspecies and interspecies interactions permi
set of energy degenerate states, a small tunneling coup
can push the system to ‘‘explore’’ through these degene
states and thus result in a substantial tunneling not limited
the self-trapping effect. The most interesting feature is
strongly correlated tunneling motion. We have shown t
high degree of quantum entanglement between two ma
scopically coherent systems can be achieved. The quan
correlations manifest themselves in the particle number s
as well as the relative phase difference variables assoc
with the condensates in the two potential wells.
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APPENDIX A: ENERGY EIGENVECTORS
OF THE TWO-ATOM SYSTEM

For a system with only oneA atom and oneB atom, there
are four eigenvectors ofH

ul1&5
1

A2
~ u1,0&Au1,0&B2u0,1&Au0,1&B), ~A1!

ul2&5
1

A2
~ u1,0&Au0,1&B2u0,1&Au1,0&B), ~A2!

ul3&5
1

AC1
F u1,0&Au1,0&B1u0,1&Au0,1&B

1
2V

k1Ak214V2
~ u1,0&Au0,1&B1u0,1&Au1,0&B!G ,

~A3!

ul4&5
1

AC2
F u1,0&Au1,0&B1u0,1&Au0,1&B

1
2V

k2Ak214V2
~ u1,0&Au0,1&B1u0,1&Au1,0&B!G ,

~A4!

where C15218V2/(k1Ak214V2)2 and C252
18V2/(k2Ak214V2)2 are normalization constants. Th
eigenvalues are given byl15(ka1kb12k)/2, l25(ka

1kb)/2, l35(ka1kb1k1Ak214V2)/2, and l45(ka

1kb1k2Ak214V2)/2. Note that in the limitk@V, the
four eigenvectors are exactly the four mutually orthogo
Bell’s states.
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APPENDIX B: DERIVATION
OF THE EFFECTIVE HAMILTONIAN

Let us consider a system withNa atoms of componentA
andNb atoms of componentB. We also allow unequal inter
action strengths:ka5k1d, kb5k2d, and g/25k. With-
out loss of generality, we letNb.Na and D[Nb2NaÞ1.
The state vector of the system is given by

uC~ t !&5e2 i (kNa
2
1kNb

2
2dDNb)t/2

3 (
n50

Na

(
m50

Nb

cn,m~ t !un,Na2n&um,Nb2m&.

The amplitudescn,m(t) with n1m5Na are governed by

i ċn,m5
V

2
@A~n11!~Na2n!cn11,m1An~Na2n11!cn21,m#

1
V

2
@A~m11!~Nb2m!cn,m11

1Am~Nb2m11!cn,m21#

1
k

2
@~n1m!21~Na1Nb2n2m!22Na

22Nb
2#cn,m

1
dD

2
~n2m!cn,m , ~B1!

with the initial conditioncNa,0(0)51.

Sincek is a large parameter here, the states withn1m
5Na61 have a much different energy than that of the sta
with n1m5Na . Any transition~due toV) from the mani-
fold n1m5Na to the manifoldsn1m5Na61 must quickly
return ton1m5Na . In other words, the states withn1m
5Na61 are intermediate states that are hardly occupied
any time. The amplitudes associated with then1m5Na
61 manifold arecn11,m , cn21,m , cn,m11, andcn,m21, and
they can be found approximately by adiabatic approximat
under the conditions 4uN1u@VNb and 4uN2u@VNb :

cn11,m'2
V

2N1
@A~n11!~Na2n!cn,m

1Am~Nb2m11!cn11,m21#, ~B2!

cn21,m'2
V

2N2
@An~Na2n11!cn,m

1A~m11!~Nb2m!cn21,m11#, ~B3!

cn,m11'2
V

2N1
@A~m11!~Nb2m!cn,m

1An~Na2n11!cn21,m11#, ~B4!
4-5
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cn,m21'2
V

2N2
@Am~Nb2m11!cn,m

1A~n11!~Na2n!cn11,m21#, ~B5!

where N15k(12D)1dD/22d(n2m)(D22)/2 and N2
5k(D11)2dD/22d(n2m)(D12)/2 are defined.

Using ~B2!–~B5!, the amplitude equation ofcn,N2n is re-
duced to

i ċn,Na2n'2
V2~N11N2!

4N1N2
A~n11!~Na2n!m~Nb2m11!

3cn11,Na2n212
V2~N11N2!

4N1N2

3An~Na2n11!~m11!~Nb2m!cn21,Na2n11

2
V2

4N1
@~n11!~Na2n!
hy

s.

hy

ev

. A

01360
1~m11!~Nb2m!#cn,Na2n2
V2

4N2
@n~Na2n11!

1m~Nb2m11!#cn,Na2n1
dD

2
~n2m!cn,Na2n .

~B6!

In the case with equal particle numberD50 and equal cou-
pling d50, Eq. ~B6! corresponds to the Schro¨dinger equa-
tion governed by the effective Hamiltonian~5!. For the cases
with unequal particle numbers and coupling strengths,
DÞ0 anddÞ0, Eq. ~B6! describes how the amplitudes o
degenerate states couple together under the condit
4uN1u@VNb and 4uN2u@VNb . These inequalities lead to
condition ~9! in Sec. IV. We also remark that condition~9!
does not apply to the special caseNb2Na561 in which
some of the states inn1m5Na and n1m5Na61 mani-
folds are accidentally degenerate.
at-
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