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Perturbation theory of spin-1 Bose-Einstein condensates
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We generalize the perturbation theory of weakly interacting bosons to Bose-Einstein condensates with
hyperfine spinF51. Analytical expressions of second-order self-energies beyond the mean-field approxima-
tion are derived at zero temperature. We further extend the perturbation theory to the finite-temperature case,
and derive the corresponding self-energies. We evaluate these self-energies near the poles of the first-order
~mean-field! Green’s functions within the on-shell approximation, and expand the results in powers of wave
number in the long-wavelength limit. Excitation spectra for each mode are obtained analytically at low tem-
peratures. We also derive the ground-state energy and thermodynamic quantities such as free energy of the
system.
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I. INTRODUCTION

Bose-Einstein condensates of alkali-metal atoms have
ternal degrees of freedom due to the hyperfine structure
the atoms. These are frozen in a magnetic field, but re
experiments have produced spin-1 and ‘‘~pseudospin! spin-
1
2 ’’ Bose condensates. The former is produced in optica
confined23Na @1–3# and 87Rb @4#, which is characterized by
the three hyperfine spin statesuF51,mF561,0&, and the
latter in magnetically confined87Rb with hyperfine states
uF52,mF51& and uF51,mF521& @5#. Generally, only at-
oms in the low lying hyperfine spin states are confined in
optical potential. Atoms in the higher hyperfine spin sta
will leave the potential by spin-flip scattering. In the case
23Na and 87Rb, which are alkali-metal atoms with nucle
spin I 53/2, their hyperfine spin states areF52, andF51
is regular, i.e., the higher spin stateF52 has higher energy
While the experiments have reported so far the spin-1
spin-12 Bose condensates, the spin-2 Bose condensates
pear feasible using theF52 multiple of bosons such as23Na
and 87Rb.

An important feature of Bose condensates with spin
grees of freedom is that, in addition to the repulsive tw
body hard-core collisions that give rise to density fluctu
tions, atoms in the condensates can also couple to each
through the spin-exchange interaction. The competition
tween these two interactions leads to complex ground-s
structures. Ho@6# and Ohmi and Machida@7# showed that
the ground-states of spin-1 bosons are either ferromagn
or ‘‘polar’’ states, depending on the scattering lengths in d
ferent angular momentum channels. They also developed
mean-field theory for describing a vectorial Bose cond
sates by generalizing the Gross-Pitaevskii equation unde
restriction of gauge and spin rotational symmetries. Lawet
al. @8# constructed an algebraic representation of the sp
Bose condensates to study the exact many-body states
found that spin-exchange interactions cause a set of co
tive dynamic behaviors. Recently, the properties of spi
Bose condensates are also investigated. Ciobanuet al. @9#
generalized the approach for the spin-1 Bose condens
developed by Ho to study the ground-state structure of
spin-2 Bose condensates. Koashi and Ueda@10# studied the
1050-2947/2003/68~1!/013601~24!/$20.00 68 0136
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eigenstates and eigenspectra of spin-2 Bose condensate
We generalize the perturbation theory of scalar Bose c

densates@11–13# to vectorial spin-1 Bose condensates und
the single-condensate assumption. It is now understood
the ground-state of spin-1 Bose gas can be ‘‘fragment
@14#. Despite this fact, the phase diagram for single cond
sates remains highly valuable and gives the best agreem
with experiments@2#. This paper is organized as follows. I
Sec. II, after giving the specifications of the Hamiltonian, t
normal and anomalous single-particle Green’s functions~ma-
trices in the spin variables! are defined. We give the Dyson’
equations expressing the 333 matrix Green’s functions in
terms of the 333 self-energies. Solving these matrix Dy
on’s equations, we obtain the formal expression of
Green’s functions in terms of the self-energies. Within t
first-order calculations, in which the self-energies are
proximated by the lowest-order terms of the ladder diagra
we derive the energy spectrum that coincides with the res
of previous studies@6,7#. We then discuss the second-ord
approximation, in which the self-energies include t
second-order terms of the order of (n0aF t

3 )1/2 (F t50,2),
wheren0 is the density of the condensate, anda0 anda2 are
the s-wave scattering lengths for two colliding atoms wi
total angular momenta,F t50 ~spin singlet! andF t52 ~quin-
tuple!, respectively. Summing the set of diagrams, we rep
sent the second-order self-energies and derive excita
spectra for each mode. In Sec. III, we generalize the per
bation theory in Bose system with spin degrees of freedom
zero temperature, which is developed in Sec. II to the fin
temperature case. In Secs. IV and V, we evaluate the s
energies near the poles of the first-order Green’s functio
which is the on-shell approximation, and expand excitat
spectra in powers of the wave number in the lon
wavelength limit analytically. We also derive the analytic
expressions of the ground-state energy and thermodyna
quantities such as free energy of the system. Results are
marized in Sec. VI.

II. GREEN’S FUNCTION METHOD

A. Basic equations and definitions

We consider an assembly of homogeneous dilute Bo
condensed gas with hyperfine spin stateF51, which con-
©2003 The American Physical Society01-1
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sists ofN atoms, enclosed in a box of volumeV and inter-
acting through two-body potentialUaa8,bb8(r). The natural
basis set to characterize such a system is the hyperfine
statesumF561,0&. In this case, the wave function has thr
components, and written as

ĉ~r!5S ĉ1~r!

ĉ0~r!

ĉ2~r!
D . ~1!

In this representation, the spin operators are

Fx5
1

A2 F 0 1 0

1 0 1

0 1 0
G , Fy5

1

A2 F 0 2 i 0

i 0 2 i

0 i 0
G , ~2!

Fz5F 1 0 0

0 0 0

0 0 21
G .

Here,ĉa(r) andĉa
†(r) are the boson field operators, satisf

ing the usual Bose commutation relations which a

@ĉa(r),ĉb(r8)#50, @ĉa(r),ĉb
†(r8)#5d(r2r8) dab . As-

suming periodic boundary conditions, the field opera
can be expanded in terms of creation and annihilation o
ators characterized by wave vectorp, ĉa

(†)(r)5(1/
AV)(papa

(†)eip•r.
In the second quantized formalism, the grand canon

Hamiltonian of the system is given by

K̂5Ĥ2mN̂

5E drĉa
†~r!F2

\2¹2

2m
2mG ĉa~r!

1E drE dr8ĉa
†~r!ĉb

†~r8!Uaa8,bb8

3~r2r8!ĉb8~r8!ĉa8~r!b f

[K̂01V̂, ~3!

where the chemical potentialm is chosen so that̂N̂&5N.
Here and henceforth, an implicit summation is to be carr
out over all repeated spin indius. With the grand cano
cal HamiltonianK̂, we introduce the time-dependent Heise
berg picture for Schro¨dinger operators, and the fiel
operators have a time dependency given byĉKa

(†)(rt)
[eiK̂ t/\ĉa

(†)(r)e2 iK̂ t/\. Using these operators, the singl
particle Green’s function is defined as

iGab~rt,r8t8!5
^C0uT@ĉKa~rt !ĉKb

† ~r8t8!#uC0&

^C0uC0&
, ~4!

where uC0& denotes the ground-state wave function of t
system andT is the time-ordered product of operators.
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B. Bogoliubov prescription and ground-state structure

In an ideal Bose gas, all the particles will be in the sta
with zero momentum. From the operatorsĉa(r), we separate
the operators corresponding to creation and annihilation
particles in the state withp50: ĉa(r)5ja1ĉa8 (r), where
ja5a0a /AV, and the prime means to omit the termp50.
The number of particles which are inp50 state (N0

5Vja
†ja) becomes infinite asV→`. If we neglect the right-

hand side in the commutation relation@ja ,jb
† #5dab /V, the

operatorsja andja
† can be regarded asc number within the

first approximation. This approximate procedure clearly n
glects fluctuations in the occupation number of the cond
sate. It is convenient to writeja5An0za , whereza is nor-
malized asz†z51.

The ground-state structure ofja is determined by mini-
mizing the energy with a fixed particle number@6,7#. If we
use the point-contact interaction

Uaa8,bb8~r!.
4p\2

m
@cndaa8dbb81csFaa8•Fbb8#d~r!

[
\2

m
f̃ aa8,bb8

0 d~r!, ~5!

which is approximately valid in a dilute gas, the energy
the condensate is expressed asE5*dr@2mn01(n0

2/2)(cn

1cs^F&2)#, where^F&[za* Fabzb . The coefficientscn and
cs are related to the spin-singlet (F t50) and quintuple (F t
52) s-wave scattering lengthsaF t

. Note that the assumption
of a two-body point-contact interaction gives rise to a div
gent ground-state energy, and renormalized coupling c
stants should be substituted to eliminate this divergence@15#.
There are two types of ground-state structures dependin
the sign of the spin-dependent part of interaction, i.e.,cs
,0 andcs.0. When the interaction for the spin-exchan
channel is ferromagneticcs,0, the ferromagnetic state
emerges and the energy is minimized by^F&251. In this
case, the condensate wave functionza in the ferromagnetic
ground-state is given byfz5(1,0,0)T. When the interaction
for the spin-exchange channel is antiferromagneticcs.0,
the polar state emerges and the energy is minimized
^F&250. In this case, the condensate wave functionza in the
polar ground-state is given bypz5(0,1,0)T. According to
the current estimate@6#, the scattering lengths of23Na are
a25(5265)aB anda05(4664)aB ; and those for87Rb are
a25(10764)aB anda05(11064)aB , whereaB is the Bohr
radius. If the inequalities suggested by current estimatea2
.a0 for 23Na anda0.a2 for 87Rb) are true, then the con
densates of23Na and 87Rb are the polar state and the ferr
magnetic state, respectively.

The separation ofĉa(r) into the condensate and nonco
densate parts modifies the Hamiltonian in a fundame
way. The grand canonical Hamiltonian is now given by

K̂5E02mN01
1

V (
pÞ0

~\vp2m!apa
† apa1(

j
V̂ j

[E02mN01K̂8, ~6!
1-2
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where we denote\vp5\2p2/2m. The interaction Hamil-
tonian V̂ separates into the several distinct parts:E0 is the
part which does not include noncondensate operatorapa

(†) and

V̂j denotes the parts which includeapa
(†) , where the indexj

indicates the number ofapa
(†) . In a normal system (n050),

only V̂4 is present. We also note thatK̂ has no term contain
ing a singleapa

(†) because these would violate momentu
conservation.

The Heisenberg picture after the Bogoliubov prescript
is modified, and the field operatorĉa(r) becomesĉKa(rt)
5An0za1ĉKa8 (rt), where ĉKa8 (rt)5eitK̂ 8/\ĉKa8 (r)e2 i tK̂ 8/\.
After the Bogoliubov prescription, the single-partic
Green’s function, Eq.~4!, is modified as

iGab~rt,r8t8!5n0zazb
†1

^OuT@ĉ8Ka~rt !ĉ8Kb
† ~r8t8!#uO&

^OuO&

[n0zazb
†1 iG811

ab~rt,r8t8!, ~7!

where the prime denotes the noncondensate part. Here
ground-stateuO& is not an eigenstate ofN̂ and differs from
the stateuC0& in Eq. ~4!.

C. Dyson’s equations

Using the operator which is defined asK̂052mN0

1K̂08 , whereK̂08[(pÞ0(\vp2m)apa
† apa , the field operator

in the interaction picture is written as ĉ I(rt)

5eiK̂ 08t/\ĉ(r)e2 iK̂ 08t/\. The ground-stateu0& of the operator
K̂0 is an eigenstate of the particle number in the momen
space, which is expressed asu0&5uN,0,0, . . . &, where the
number of particles in each component of spin is arbitr
and the sum of the particles in zero momentum state is e
to the total number of particlesN. The zero-order Green’s
function, which is the Green’s function for an ideal Bos
condensed gas, becomes

iG0
ab~rt,r8t8!5^0uT@ĉ Ia8 ~rt !ĉ8Ib

† ~r8t8!#u0&. ~8!

After a simple calculation, its Fourier transform is express
as

G0
ab~p!5

dab

v2vp1m/\1 id
, ~9!

where we use the notationp5(p,v). Note that there is no
backward propagation in time, or hole propagation in E
~9!.

The presence of the condensate leads to the appearan
self-energy diagrams of an anomalous type. These te
stem from the interaction of particles which are not in t
condensate with particles in the condensate, and they con
operatorja

(†) at certain vertices. By the Bogoliubov prescri
tion, these operators behave asc numbers, and there exist th
terms which contain the interaction potential, at which t
number of the noncondensate particles is not conserve
follows that we can make the following three types of cla
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sifications for all the irreducible self-energy diagrams: D
grams with one ingoing and one outgoing noncondens
particle, and the corresponding sum of matrix elements
denoted by S11

ab(p); diagrams with two outgoing non
condensate particles, and the corresponding sum of ma
elements is denoted byS12

ab(p); diagrams with two ingoing
non-condensate particles, and the corresponding sum of
trix elements is denoted byS21

ab(p).
Correspondingly, we must introduce two anomalous ex

Green’s functionsG812
ab(p) and G821

ab(p), which represent
the appearance and disappearance of two noncondensat
ticles from the condensate. The anomalous Green’s funct
are defined in terms of Heisenberg operators:

iG812
ab~rt,r8t8!5

^OuT@ĉ8Ka
† ~rt !ĉ8Kb

† ~r8t8!#uO&

^OuO&
, ~10!

iG821
ab~rt,r8t8!5

^OuT@ĉ Ka8 ~rt !ĉ Kb8 ~r8t8!#uO&

^OuO&
. ~11!

Dyson’s equations for a scalar Bose-condensed system
first derived by Beliaev@11,12#. We generalize these equa
tions for this Bose-condensed system with spin degree
freedom, with are written as follows:

G811
ab~p!5G0

ab~p!1G0
ag~p!S11

gd~p!G811
db~p!

1G0
ag~p!S12

gd~p!G821
db~p!, ~12!

G812
ab~p!5G0

ag~p!S12
gd~p!G811

db~2p!

1G0
ag~p!S11

gd~p!G812
db~p!, ~13!

G821
ab~p!5G0

ag~2p!S21
gd~p!G811

db~p!

1G0
ag~2p!S11

gd~2p!G821
db~p!, ~14!

G811
ab~2p!5G0

ab~2p!1G0
ag~2p!S21

gd~p!G812
db~p!

1G0
ag~2p!S11

gd~2p!G811
db~2p!. ~15!

Overall four-momentum conservation determines the dir
tion of the momentum flow. Equations~12! and ~15! are
clearly equivalent equations forG811

ab(p). Dyson’s equations
~12!–~15! become a single-matrix equation

Ĝ8~p!5Ĝ0~p!1Ĝ0~p!Ŝ~p!Ĝ8~p!, ~16!

where

Ĝ8~p!5FG118 ~p! G128 ~p!

G218 ~p! G118 ~2p!
G , ~17!

Ŝ~p!5F S11~p! S12~p!

S21~p! S11~2p!
G , ~18!

Ĝ0~p!5FG0~p! 0

0 G0~2p!
G . ~19!
1-3
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In Eqs.~17!–~19! matrix elements are also the 333 matrices,
and the elements inĜ8(p) and Ĝ0(p) are defined by the
Fourier components of Eqs.~7!, ~8!, ~10!, and~11!.

Due to the isotropy of space, all quantities depend on
magnitude of the wave vectorp. Using the Lehmann repre
sentation of the anomalous Green’s functionsG812

ab(p) and
G821

ab(p), we find that they are even functions of frequen
v @16#; from these functions and Eqs.~27!, ~35!, and~36!, it
is easily seen thatS12

ab(p) and S21
ab(p) are also even func

tions of p5(p,v). Since the interaction Hamiltonian pre
serves the total number of particles, the anomalous s
energies are symmetric in the operatorsca and ca

† .
Therefore, with any diagram forS21

ab(p), we can associate
exactly the same diagram forS12

ab(p), obtained by replacing
all ingoing lines in the diagram forS21

ab(p) with outgoing
lines, andvice versa. This procedure reverses the direction
which all internal lines are traversed. However, we can
verse the direction in which all internal lines are traversed
changingp to 2p in the matrix element corresponding to th
given diagram forS21

ab(p). SinceS21
ab(p) is an even function

of p, it follows thatS21
ab(p)5S12

ab(p),G821
ab(p)5G812

ab(p).
Since rotational symmetry alongz axis is not broken, the

z component of the total angular momentum is conserv
and the matrix structures ofĜ8(p) andŜ(p) are determined
@17#. Due to spin conservation, the nonzero elements of n
mal Green’s functions and self-energies are the diagona
ements for both the ferromagnetic and the polar states.
ferromagnetic state, since condensed particles are infz
5(1,0,0)T and the interaction Hamiltonian preserves the
tal number of the particles, the existence of the anomal
Green’s functions and self-energies are forbidden excep
G12

11(p) and S12
11(p). Then, the matrix Green’s function

and self-energies are expressed as

fG118 ~p!5F fG811
11~p! 0 0

0 fG811
00~p! 0

0 0 fG811
22~p!

G , ~20!

fS11~p!5F fS11
11~p! 0 0

0 fS11
00~p! 0

0 0 fS11
22~p!

G , ~21!

fG128 ~p!5F fG812
11~p! 0 0

0 0 0

0 0 0
G , ~22!

fS12~p!5F fS12
11~p! 0 0

0 0 0

0 0 0
G . ~23!

By these matrix forms and Dyson’s equation~16!, the matrix
inversion yields
01360
e
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fG811
11~p!5

v1vp2m/\1 fS11
11~2p!

fD~p!
, ~24!

fG811
00~p!5

1

v2vp1m/\2 fS11
00~p!1 id

, ~25!

fG811
22~p!5

1

v2vp1m/\2 fS11
22~p!1 id

, ~26!

fG812
11~p!52

fS12
11~p!

fD~p!
, ~27!

where

fD~p!5Fv2
fS11

11~p!2 fS11
11~2p!

2 G2

2Fvp2
fS11

11~p!1 fS11
11~2p!

2
2m/\G2

1 fS12
11~p! fS12

11~p!. ~28!

For the polar state, since the condensed particles are ipz
5(0,1,0)T, the nonzero elements of the anomalous Gree
functions and self-energies are the elements in which
sum of the spin indices are zero. Then, the matrix Gree
functions and self-energies are expressed as

pG118 ~p!5F pG811
11~p! 0 0

0 pG811
00~p! 0

0 0 pG811
22~p!

G ,

~29!

pS11~p!5F pS11
11~p! 0 0

0 pS11
00~p! 0

0 0 pS11
22~p!

G , ~30!

pG128 ~p!5F 0 0 pG812
12~p!

0 pG812
00~p! 0

pG812
21~p! 0 0

G ,

~31!

pS12~p!5F 0 0 pS12
12~p!

0 pS12
00~p! 0

pS12
21~p! 0 0

G . ~32!

Since the ground-state structure of the condensate w
function pz is invariant under spin reflection, the Green
functions and self-energies are also symmetric under s
reflection: pG811

11(p)5pG811
22(p), pS11

11(p)5pS11
22(p),

pG812
12(p)5pG812

21(p), and pS12
12(p)5pS12

21(p). By these
matrix forms and Dyson’s equation~16!, the matrix inversion
yields
1-4
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pG811
11~p!5

v1vp2m/\1pS11
11~2p!

pD1~p!
, ~33!

pG811
00~p!5

v1vp2m/\1pS11
00~2p!

pD0~p!
, ~34!

pG812
12~p!52

pS12
12~p!

pD1~p!
, ~35!

pG812
00~p!52

pS12
00~p!

pD0~p!
, ~36!

where

pD1~p!5Fv2
pS11

11~p!2pS11
11~2p!

2 G2

2Fvp2
pS11

11~p!1pS11
11~2p!

2
2pm/\G2

1pS12
12~p!pS12

12~p!, ~37!

pD0~p!5Fv2
pS11

00~p!2pS11
00~2p!

2 G2

2Fvp2
pS11

00~p!1pS11
00~2p!

2
2pm/\G2

1pS12
00~p!pS12

00~p!. ~38!

Note that the matrix Green’s functionsĜ8(p) and self-
energiesŜ(p) are symmetric matrix for both the ferromag
netic and the polar states.

D. First-order Green’s function

The typical interatomic potential involves a hard co
This brings a problem for the perturbation theory in terms
the bare potentialUaa8,bb8(r). Since Uaa8,bb8(r) can be
large, the first few terms in such a perturbation expansion
no longer sufficient. Indeed, one has to sum over an infi
number of terms, i.e., the ladder-type diagram. In the lad
approximation, effective potentialGaa8,bb8

0 (k,k8;P) in-
volves the sum over all the ladder diagrams to infinite or
in Uaa8,bb8(r), taking into account the repeated scattering
two particles in a gas. In Appendix A, we derive the effecti
potential Gaa8,bb8

0 (k,k8;P), and show the connection be
tweenGaa8,bb8

0 (k,k8;P) and thes-wave scattering amplitude

f̃ aa8,bb8(k,k8) within the ladder approximation, which i
Eqs.~A12! or ~A13!.

The self-energies are determined by the special va
which Gaa8,bb8

0 (k,k8;P) takes when two out of four particle
involved in a process belong to the condensed phase. E
particle of the condensed phase carries a factorAn0 za , we
find
01360
.
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S11
ab~p!5

n0

\
zm1

† Gab,m1n1

0 ~p/2,p/2;P!zn1

1
n0

\
zm1

† Gm1b,an1

0 ~2p/2,p/2;P!zn1
, ~39!

S12
ab~p!5

n0

\
Gan1 ,bn2

0 ~p,0;0!zn1
zn2

, ~40!

S21
ab~p!5

n0

\
zm1

† zm2

† Gm1a,m2b
0 ~0,p;0!. ~41!

To obtain the chemical potential, we must let all four pa
ticles in Gaa8,bb8

0 (k,k8;P) belong to the condensed phas
and divide by one power ofn0. We then have

m5n0zm1

† zm2

† Gm1n1 ,m2n2

0 ~0,0;0!zn1
zn2

. ~42!

To proceed further, we must know the explicit value of t
scattering amplitudef̃ aa8,bb8(k,k8). At small momenta, we
neglect the wave-vector dependence of the lowest-order t
in Eq. ~A12!: f̃ aa8,bb8(k,k8). f̃ aa8,bb8

0 , where f̃ aa8,bb8
0 is

the momentum-independent part off̃ aa8,bb8(k,k8) and is de-
fined in Eq. ~5!. This approximation is allowed when th
wavelength is long compared to the characteristic size of
interaction region, which has an order of magnitude given
the scattering amplitudef̃ aa8,bb8

0 .
Substituting the effective potentialGaa8,bb8

0 (k,k8;P) in
Eqs. ~A12! into Eqs.~39!, ~40!, and ~42!, and the value of
Gaa8,bb8

0 (k,k8;P) in Eqs.~A13! into Eqs.~41!, we find

S11
ab~p!5

n0

\
zm1

† F \2

m
~ f̃ ab,m1n1

0 1 f̃ m1b,an1

0 !1S \2

m D 2

3~ f̃ am2 ,m1n2

0 f̃ m2b,n2n1

0 1 f̃ m1m2 ,an2

0 f̃ m2b,n2n1

0 !

3E dq

~2p!3 S 1

\v2
\2p2

4m
12m2

\2q2

m
1 id

1P
1

\2q2

m
2

\2p2

4m
D G zn1

, ~43!

S12
ab~p!5

n0

\ F \2

m
f̃ an1 ,bn2

0 1S \2

m D 2

f̃ am1 ,bm2

0 f̃ m1n1 ,m2n2

0

3E dq

~2p!3S 1

2m2
\2q2

m
1 id

1
1

\2q2

m
2 idD G

3zn1
zn2

, ~44!
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S21
ab~p!5

n0

\
zm1

zm2F \2

m
f̃ m1a,m2b

0 1S \2

m D 2

f̃ m1n1 ,m2n2

0 f̃ n1a,n2b
0

3E dq

~2p!3 S 1

2m2
\2q2

m
1 id

1
1

\2q2

m
1 idD G ,

~45!

m5n0zm1
zm2F \2

m
f̃ m1n1 ,m2n2

0 1S \2

m D 2

f̃ m1m3 ,m2n3

0 f̃ m3n1 ,n3n2

0

3E dq

~2p!3 S 1

2m2
\2q2

m
1 id

1
1

\2q2

m
2 idD G zn1

zn2
,

~46!

where we use Eq.~A9!. For dimensional reasons, all th
integral terms in Eqs.~43!–~46! are of the order of
(n0aF t

3 )1/2. Within the first-order approximation, we negle

the integral terms in Eqs.~43!–~46!.
For the ferromagnetic state, the condensate wave func

can be chosen tofza , and the first-order self-energies are

fS11~p!(1)5
4p\n0

m S 2~cn1cs! 0 0

0 cn1cs 0

0 0 cn2cs

D ,

~47!

fS12~p!(1)5
4p\n0

m S cn1cs 0 0

0 0 0

0 0 0
D , ~48!

fm
(1)5

4p\2n0

m
~cn1cs!. ~49!

The resultant first-order Green’s functions are derived us
Eqs.~24!–~28!,

fG811
11~p!5

Ap

v2Ep /\1 id
2

Bp

v1Ep /\2 id
, ~50!

fG812
11~p!5

Cp

v2Ep /\1 id
2

Cp

v1Ep /\2 id
, ~51!

fG811
00~p!5

1

v2vp1 id
, ~52!

fG811
22~p!5

1

v2«p /\1 id
, ~53!

where

Ep5@~\vp!
212fm

(1)\vp#
1/2, ~54!
01360
on

g

«p5\vp12
4p\2n0

m
ucsu, ~55!

Ap5
1

2Ep
@Ep1 fm

(1)1vp#, ~56!

Bp5
1

2Ep
@2Ep1 fm

(1)1vp#, ~57!

Cp5
1

2Ep
@2 fm

(1)#. ~58!

The excitation energies of collective modes are determi
by the poles of above Green’s functions. The density-wa
mode has a Bogoliubov spectrumEp . The spin-wave mode
has a free particle spectrum\vp ; and there exists the ‘‘quad
rupole’’ spin-wave mode, which has a free-particle-like spe
trum with a finite gap 2(4p\2n0 /m)ucsu. For the system to
be stable, the chemical potentialfm

(1) should be positive,
which meanscn1cs.0.

For the polar state, one can choose the condensate w
function aspza , and the first-order self-energies are

pS11~p!(1)5
4p\n0

m S cn1cs 0 0

0 2cn 0

0 0 cn1cs

D , ~59!

pS12~p!(1)5
4p\n0

m S 0 0 cs

0 cn 0

cs 0 0
D , ~60!

pm
(1)5

4p\2n0

m
cn . ~61!

The resultant first-order Green’s functions are derived us
Eqs.~33!–~38!,

pG811
11~p!5

Ap
s

v2Ep
s/\1 id

2
Bp

s

v1Ep
s/\2 id

, ~62!

pG811
00~p!5

Ap
n

v2Ep
n/\1 id

2
Bp

n

v1Ep
n/\2 id

, ~63!

pG812
11~p!5

Cp
s

v2Ep
s/\1 id

2
Cp

s

v1Ep
s/\2 id

, ~64!

pG812
00~p!5

Cp
n

v2Ep
n/\1 id

2
Cp

n

v1Ep
n/\2 id

, ~65!

where

Ep
s(n)5F ~\vp!

212
4p\2n0cs(n)

m
\vpG1/2

, ~66!
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FIG. 1. Topologically different diagrams o
order (n0aF t

3 )1/2.
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-
s
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s-
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ns,
Ap
s(n)5

1

2Ep
s(n) FEp

s(n)1
4p\2n0cs(n)

m
1vpG , ~67!

Bp
s(n)5

1

2Ep
s(n) F2Ep

s(n)1
4p\2n0cs(n)

m
1vpG , ~68!

Cp
s(n)5

1

2Ep
s(n) F2

4p\2n0cs(n)

m G . ~69!

In this case, the excitation forms are all of the Bogoliub
form, which areEp

n andEp
s . The former is the density-wav

mode and the latter is the spin-wave mode. For the syste
be stable, the chemical potentialpm

(1) should be positive,
which meanscn.0.

Note that above excitation energies for both the ferrom
netic and the polar states coincide with the results of pre
ous studies@6,7#.

E. Second-order approximation

For the second-order approximation to the self-energ
and the chemical potential, we must retain quantities of
order (n0aF t

3 )1/2. The integral terms in Eqs.~43!–~46! are of

the order of (n0aF t

3 )1/2. The diagrams containing one loo

with three or more continuous lines give contributions of t
same order. The summation over sets of diagrams, w
differ only in the number of continuous lines in a loop,
automatically performed if one replaces the zero-or
01360
to

-
i-

s
e

h

r

Green’s functionG0
ab(p) with the first-order Green’s func

tion G8 i j
ab(p) ( i , j 51,2). We therefore consider the loop

which can be built out ofG8 i j
ab(p) and Gaa8,bb8

0 (k,k8;P).
There are ten essentially different loops and we show them
Fig. 1. A rectangle denotes the constant part of the effec
potential which corresponds to (\2/m) f̃ aa8,bb8

0 , and a rect-
angle with a cross denotes a sum of two rectangles,
being a direct interaction and the other an exchange inte
tion. The two differ only by an interchange of the upper
the lower ends. The sum of the two rectangles introduce
factor

Gaa8,bb8
0

~p,p8;P!1Gba8,ab8
0

~2p,p8;P!

.
\2

m
~ f̃ aa8,bb8

0
1 f̃ ba8,ab8

0
![

\2

m
f̃ aa8,bb8 . ~70!

If the first-order Green’s functionsG811
ab(p), G812

ab(p), and
G821

ab(p) are expanded in powers of the effective potent
Gaa8,bb8

0 (k,k8;P), then in the lowest approximation the dia
grams (c,i,j ) in Fig. 1 become loops with two continuou
lines of G0

ab(p). But all such loops are already included
Gaa8,bb8

0 (k,k8;P) and must therefore be omitted. This omi
sion is represented in Fig. 1 by the strokes across the c
tinuous lines. It is convenient to separate out contributio
which are explicitly linear and quadratic inf̃ aa8,bb8

0 ,

S11~p!5S11~p!(1)1S11~p!(2), ~71!
1-7
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S12~p!5S12~p!(1)1S12~p!(2), ~72!

m5m (1)1m (2). ~73!

Here, the first-order termsS11(p)(1), S12(p)(1), and m (1)

have been given in Eqs.~47!–~49! and ~59!–~61! for the
ferromagnetic and polar states, respectively. For further c
venience, we call second-order contributions from the in
gral terms in Eqs.~43!–~46! type-I contributions, and denot
their contributions to the self-energies and the chemical
tential asS(p) I andm I, respectively. Similarly, the contribu
tions from the diagrams in Fig. 1 are called the type-II co
tributions and their contributions are denoted asS(p) II and
m II .

Let Fa, . . . ,g(p1 ,p2 ,p3 ,p4) and Fh,i , j (p1 ,p2) denote the
contributions from the diagrams in Fig. 1, which are writt
as follows:

Faa8,bb8
a

~p1 ,p2 ;p3 ,p4!

5S i

\ D 2E d4q

~2p!4

\2

m
f̃ aa8,b1b

18
G811

b18a1~q!
\2

m

3 f̃ a1a
18 ,bb8G811

a18b1~p32p11q!, ~74!

Faa8,bb8
b

~p1 ,p2 ;p3 ,p4!

5S i

\ D 2E d4q

~2p!4
G821

b1a1~p32p11q!

3
\2

m
f̃ aa8,b1b

18
\2

m
f̃ a1a

18 ,bb8G812
b18a18~q!, ~75!

Faa8,bb8
c

~p1 ,p2 ;p3 ,p4!

5S i

\ D 2E d4q

~2p!4

\2

m
f̃ aa

18 ,bb
18

0
@G811

a18a1~q!G811
b18b1

3~p31p42q!2G80
a18a1~q!G80

b18b1

3~p31p42q!#
\2

m
f̃ a1a8,b1b8

0 , ~76!

Faa8b,b8
d

~p1 ,p2 ,p3 ;p4!

5S i

\ D 2E d4q

~2p!4

\2

m
f̃ aa

18 ,bb
18

0
G811

b18a1

3~p11p22q!G812
a18a28~q!

\2

m
f̃ a1a

28 ,a8b8 ,

~77!
01360
n-
-

-

-

Fa,a8bb8
e

~p1 ;p2 ,p3 ,p4!

5S i

\ D 2E d4q

~2p!4

\2

m
f̃ ab,b1b

18
G811

b18a1

3~p31p42q!G821
b1b2~q!

\2

m
f̃ a1a8,b2b8

0 ,

~78!

Faa8bb8
f

~ ;p1 ,p2 ,p3 ,p4!

5S i

\ D 2E d4q

~2p!4

\2

m
f̃ a1a,b1b

0 \2

m
f̃ a2a8,b2b8

0

3G821
a1b2~p11p22q!G821

b1a2~q!, ~79!

Faa8bb8
g

~p1 ,p2 ,p3 ,p4 ; !

5S i

\ D 2E d4q

~2p!4

\2

m
f̃ aa

18 ,bb
18

0 \2

m
f̃ a8a

28 ,b8b
28

0
G812

b18a28~q!

3G812
a18b28~p11p22q!, ~80!

Fa,a8
h

~p1 ;p2!5S i

\ D E d4q

~2p!4

\2

m
f̃ aa

18 ,b1b
18
G811

b18b
~q!, ~81!

Fab
i ~p1p2 ; !5S i

\ D E d4q

~2p!4

\2

m
f̃ aa

18 ,bb
18

0

3FG812
a18b18~q!2S n0

\ DG
0
a18a1~q!G0

b18b1~2q!

3\2

m
f̃ a1a

28 ,b1b
28

0
za

28
zb

28G , ~82!

Fa8b8
j

~ ;p3p4!5S i

\ D E d4q

~2p!4 FG821
a1b1~q!2S n0

\ D za2

† zb2

†

3
\2

m
f̃ a2a

18 ,b2b
18

0
G

0
a18a1~q!G0

b18b1~2q!G
3

\2

m
f̃ a1a8,b1b8

0 . ~83!

Here momentum conservation is assumed to hold ev
where. Everywhere on the right-hand side of Eqs.~74!–~83!,
the value of the first-order approximationfm

(1) or
pm

(1)should should be substituted form.
The self-energies involve special values of the functio

Fa, . . . ,g(p1 ,p2 ,p3 ,p4) and Fh,i , j (p1 ,p2), together with a
factor An0 za for each particle of the condensed phase:
1-8
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S11
ab~p! II5~2 in0!@zb1

† Faa
18 ,b1b

a
~p,0;0,p!za

18
1zb1

† Faa
18 ,b1b

b
~p,0;0,p!za

18
1zb1

† Fab,b1b
18

c
~p,0;p,0!zb

18

1zb1

† Faa
18 ,b1b

c
~p,0;0,p!za

18
1za1

† zb1

† Faa1b1 ,b
d ~p,0,0;p!1za1

† za2

† Fa1a2a,b
d ~0,p,0;p!1Fa,a

18b1b
e

~p;0,0,p!za
18
zb1

1Fa,bb1b
18

e
~p;0,p,0!#zb1

zb
18
1Fa,b

h ~p;p!, ~84!

S12
ab~p! II5~2 in0!@Faa

18 ,bb
18

a
~p,2p;0,0!za

18
zb

18
1Faa

18 ,bb
18

b
~p,2p;0,0!za

18
zb

18
1zb1

† Fabb1 ,b
18

d
~p,0,2p;0!zb

18
b f

1zb1

† Fabb1 ,b
18

d
~2p,0,p;0!zb

18
1za1

† Fa1ab,b
18

d
~0,p,2p;0!zb

18
1za1

† Fa1ab,b
18

d
~0,2p,p;0!zb

18

1zb1

† zb2

† Fabb1b2

g ~p,0,2p,0;!1zb1

† za
18

†
Faa

18b1b
g

~p,0,0,2p; !#1Fab
i ~p,p; !, ~85!

S21
ab~p! II5~2 in0!@za1

† zb1

† Fa1a,b1b
a ~0,0;p,2p!1za1

† zb1

† Fa1a,b1b
b ~0,0;p,2p!1za1

† Fa1 ,abb
18

e
~0;p,2p,0!zb

18

1za1

† Fa1 ,abb
18

e
~0;2p,p,0!zb

18
1za1

† Fa1a
18ab

e
~0;p,0,2p!za

18
1za1

† Fa1a
18a,b

e
~0;2p,0,p!za

18

1Fab1bb
18

f
~ ;p,0,2p,0!zb1

zb
18
1Faa

18b1b
f

~p,0,0,2p; !zb1
za

18
#1Fab

j ~ ;p,2p!. ~86!
in
te
th

su

ie
The chemical potential is determined by the terms aris
from the excitation of two particles out of the condensa
where they interact repeatedly and then drop back into
condensate. The sums of contributions from diagrams
these types are, respectively,Fh(0;0) andFi(0,0;):

m II /\5za
†Fab

h ~0;0!zb1za
†zb

†Fab
i ~0,0;!. ~87!

To carry out the frequency integration in Eqs.~74!–~83!, it is
convenient to note thatG128 (p)5G218 (p). The frequency in-
tegrations are now performed and the results should be
stituted into Eqs.~84!–~87!.

Adding the type-I terms in Eqs.~43!–~46! to type-II terms
in Eqs. ~84!–~87!, we obtain the second-order self-energ
and chemical potential. For the ferromagnetic state,

fS11
11~p!(2)5

n0

\ S 4p\2

m D 2E dq

~2p!3F fN11~Eq ,Ek!

\v2Eq2Ek1 id

2
fN11~2Eq ,2Ek!

\v1Eq1Ek2 id
12

~cn1cs!
2

\2q2

m
2

\2p2

4m
G

12
4p\

m
~cn1cs!E dq

~2p!3
Bq , ~88!
01360
g
,
e

of

b-

s

fS11
00~p!(2)5

n0

\ S 4p\2

m D 2

~cn1cs!
2E dq

~2p!3

3F Aq1Bq12Cq

\v2Eq2\vk1 id
1

1

\2q2

m
2

\2p2

4m
G

1
4p\

m
~cn1cs!E dq

~2p!3
Bq , ~89!

fS11
22~p!(2)5

n0

\ S 4p\2

m D 2E dq

~2p!3F ~cn2cs!
2

3
Aq1Bq12Cq

\v2Eq2«k1 id
12cs

2

3
1

\v2\vq2\vk1 id
1@~cn2cs!

2

12cs
2#

1

\2q2

m
2

\2p2

4m
G

1
4p\

m
~cn2cs!E dq

~2p!3
Bq , ~90!
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fS12
11~p!(2)5

n0

\ S 4p\2

m D 2E dq

~2p!3F fN12~Eq ,Eq!

\v2Eq2Ek1 id

2
fN12~2Eq ,2Eq!

\v1Eq1Ek2 id
1

~cn1cs!
2

\2q2

m
G

1
4p\

m
~cn1cs!E dq

~2p!3
Cq , ~91!

fm
(2)5

4p\2

m
~cn1cs!E dq

~2p!3

3FCq12Bq1n0

4p\2

m
~cn1cs!

1

\2q2

m
G , ~92!

wherek5p2q, and

fN11~Eq ,Ek!52~cn1cs!
2~2AqBk12CqCk1AqAk

14CqAk!, ~93!

fN12~Eq ,Ek!52~cn1cs!
2~2BqAk12CqAk12CqBk

13CqCk!. ~94!

For the polar state,

pS11
11~p!(2)5

n0

\ S 4p\2

m D 2E dq

~2p!3F pN11~Eq
s ,Ek

n!

\v2Eq
s2Ek

n1 id

2
pN11~2Eq

s ,2Ek
n!

\v1Eq
s1Ek

n2 id
1

~cn1cs!
2

\2q2

m
2

\2p2

4m
G

1
4p\

m E dq

~2p!3
@~cn1cs!Bq

n

1~3cn1cs!Bq
s#, ~95!

pS11
00~p!(2)5

n0

\ S 4p\2

m D 2E dq

~2p!3F pN11
n ~Eq

n ,Ek
n!

\v2Eq
n2Ek

n1 id

2
pN11

n ~2Eq
n ,2Ek

n!

\v1Eq
n1Ek

n2 id
1

pN11
s ~Eq

s ,Ek
s!

\v2Eq
s2Ek

s1 id

2
pN11

s ~2Eq
s ,2Ek

s!

\v1Eq
s1Ek

s2 id
12

~cn
212cs

2!

\2q2

m
2

\2p2

4m
G

12
4p\

m E dq

~2p!3
@cnBq

n1~cn1cs!Bq
s#,

~96!
01360
pS12
12~p!(2)5

n0

\ S 4p\2

m D 2E dq

~2p!3 F pN12~Eq
s ,Ek

n!

\v2Eq
s2Ek

n1 id

2
pN12~2Eq

s ,2Ek
n!

\v1Eq
s1Ek

n2 id
G1

4p\

m E dq

~2p!3

3F ~cn2cs!Cq
s1csCq

n

1
n0

2

4p\2

m
cs~2cn2cs!

1

\vq
G , ~97!

pS12
00~p!(2)5

n0

\ S 4p\2

m D 2E dq

~2p!3 F pN12
n ~Eq

n ,Ek
n!

\v2Eq
n2Ek

n1 id

2
pN12

n ~2Eq
n ,2Ek

n!

\v1Eq
n1Ek

n2 id
1

pN12
s ~Eq

s ,Ek
s!

\v2Eq
s2Ek

s1 id

2
pN12

s ~2Eq
s ,2Ek

s!

\v1Eq
s1Ek

s2 id
G1

4p\

m E dq

~2p!3

3FcnCq
n12csCq

s1
n0

2

4p\2

m

~cn
212cs

2!

\vq
G ,
~98!

pm
(2)5

4p\2

m E dq

~2p!3 Fcn~Cq
n12Bq

n12Bq
s!12cs~Cq

s1Bq
s!

1
n0

2

4p\2

m

~cn
212cs

2!

\vq
G , ~99!

where

pN11~Eq
s ,Ek

n!5~cn1cs!
2Aq

s~Ak
n1Bk

n12Ck
n!

14cs~cn1cs!Cq
s~Ck

n1Ak
n!14cs

2Bq
sAk

n ,

~100!

pN11
n ~Eq

n ,Ek
n!52cn

2~2Aq
nBk

n12Cq
nCk

n1Aq
nAk

n14Cq
nAk

n!,
~101!

pN11
s ~Eq

s ,Ek
s!52~cn1cs!

2~Aq
sBk

s1Cq
sCk

s!14cs
2Aq

sAk
s

18cs~cn1cs!Cq
sAk

s , ~102!

pN12~Eq
s ,Ek

n!5~cn1cs!
2Cq

s~Ak
n1Bk

n12Ck
n!14cs

2Cq
sCk

n

12cs~cn1cs!~Aq
sBk

n1Bq
sAk

n1Aq
sCk

n

1Bq
sCk

n!, ~103!

pN12
n ~Eq

n ,Ek
n!52cn

2~2Bq
nAk

n12Cq
nAk

n12Cq
nBk

n13Cq
nCk

n!,

~104!
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pN12
s ~Eq

s ,Ek
s!52~cn1cs!

2~Bq
sAk

s1Cq
sCk

s!14cs~cn1cs!

3~Cq
sAk

s1Cq
sBk

s!14cs
2Cq

sCk
s . ~105!

Once we have obtained a specific form for self-energ
and chemical potential, we then substitute these terms
Eqs. ~24!–~28! and Eqs.~33!–~38! to calculate the Green’s
functions. Since the second-order terms are small cor
tions, we can express the Green’s functions in a form an
gous to the first-order Green’s functions in Eqs.~50!–~53!
and ~62!–~65!. For the ferromagnetic state,

fG811
11~p!5

Ap1 fa
11~p!

v2Ep /\2 fL
11~p!1

2
Bp1 fa

11~p!

v1Ep /\1 fL
11~p!2

, ~106!

fG811
00~p!5

1

v2vp2 fL
00~p!1 id

, ~107!

fG811
22~p!5

1

v2vp2 fL
22~p!1 id

, ~108!

fG812
11~p!5

Cp1 fb
11~p!

v2Ep /\2 fL
11~p!1

2
Cp1 fb

11~p!

v1Ep /\1 fL
11~p!2

, ~109!

where

fL
11~p!65

\vp

2Ep
@ fS11

11~p!(2)1 fS11
11~2p!(2)22fm

(2)/\#

1
fm

(1)

2Ep
@ fS11

11~p!(2)1 fS11
11~2p!(2)

22fm
(2)/\2 fS12

11~p!(2)#6
1

2
@ fS11

11~p!(2)

2 fS11
11~2p!(2)#, ~110!

fa
11~p!/\5

fm
(1)

4Ep
3 $2fS12

11~p!(2)\vp2 fm
(1)@ fS11

11~p!(2)

1 fS11
11~2p!(2)22fm

(2)/\2 fS12
11~p!(2)#%,

~111!

fb
11~p!/\52

1

2Ep
fS12

11~p!(2)1
fm

(1)

4Ep
3 $\vp@ fS11

11~p!(2)

1 fS11
11~2p!(2)22fm

(2)/\#

2 fm
(1)@ fS11

11~p!(2)1 fS11
11~2p!(2)

22fm
(2)/\2 fS12

11~p!(2)#%, ~112!
01360
s
to

c-
o-

fL
00~p!5S11

00~p!(2)2 fm
(2)/\, ~113!

fL
22~p!5S11

22~p!(2)2 fm
(2)/\. ~114!

For the polar state, Green’s functions including the seco
order corrections are

pG811
11~p!5

Ap
s1pa

s~p!

v2Ep
s/\2pL

s~p!1
2

Bp
s1pa

s~p!

v1Ep
s/\1pL

s~p!2
,

~115!

pG811
00~p!5

Ap
n1pa

n~p!

v2Ep
n/\2pL

n~p!1
2

Bp
n1pa

n~p!

v1Ep
n/\1pL

n~p!2
,

~116!

pG812
12~p!5

Cp
s1pb

s~p!

v2Ep
s/\2pL

s~p!1
2

Cp
s1pb

s~p!

v1Ep
s/\1pL

s~p!2
,

~117!

pG812
00~p!5

Cp
n1pb

n~p!

v2Ep
n/\2pL

n~p!1
2

Cp
n1pb

n~p!

v1Ep
n/\1pL

n~p!2
,

~118!

where

pL
s~p!65

\vp

2Ep
s

@pS11
11~p!(2)1pS11

11~2p!(2)22pm
(2)/\#

1
pm

(1)

2Ep
@pS11

11~p!(2)1pS11
11~2p!(2)22pm

(2)/\

2pS12
12~p!(2)#6

1

2
@pS11

11~p!(2)

2pS11
11~2p!(2)#, ~119!

pa
s~p!/\5

pm
(1)

4Ep
s3

$2pS12
12~p!(2)\vp2pm

(1)@pS11
11~p!(2)

1pS11
11~2p!(2)22pm

(2)/\2pS12
12~p!(2)#%,

~120!

pb
s~p!/\52

1

2Ep
spS12

12~p!(2)1
pm

(1)

4Ep
s3

$\vp@pS11
11~p!(2)

1pS11
11~2p!(2)22pm

(2)/\#

2pm
(1)@pS11

11~p!(2)1pS11
11~2p!(2)22pm

(2)/\

2pS12
12~p!(2)#%, ~121!

and we can obtain the termspL
n(p)6, pa

n(p), and pb
n(p)

by replacing the subscripts of self-energies, which are11

and 12, with 00 andEp
s with Ep

n in corresponding terms.
1-11
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III. FINITE-TEMPERATURE EXTENSION

So far, we have studied Bose-condensed system with
degrees of freedom at the absolute zero of temperature.
finite temperatures, the problem becomes more complica
But to a great extent, the discussion and calculations at fi
temperatures duplicate the corresponding material in the
ceding section. To avoid the duplication, we discuss the
ference betweenT50 andTÞ0.

A. Temperature Green’s function

If we consider the finite-temperature case, the definit
of the Green’s functions becomes slightly different. With t
grand canonical HamiltonianK̂, the grand partition function
and statistical operator are written asZG5e2bV5tre2bK̂

andr̂G5ZG
21e2bK̂5eb(V2K̂), respectively where we use th

short-hand notationb51/kBT, andV is the thermodynamic
potential. We introduce the modifiedt-dependent Heisenber
picture, and the field operator assumes the formĉKa(rt)
5eK̂t/\ĉa(r)e2K̂t/\. Then, the single-particle temperatu
Green’s function is defined as

Gab~rt,r8t8!52tr†r̂GTt@ĉKa~rt!ĉKb
† ~r8t8!#‡. ~122!

Here, the symbolTt orders the operators according to the
value oft. The trace tr implies a sum over a complete set
states in the Hilbert space, each contribution being weigh
with the operatorr̂G .

The single-particle temperature Green’s function for no
condensate part is also defined as follows

G811
ab~rt,r8t8!52tr†r̂GTt@ĉ Ka8 ~rt!ĉ8Kb

† ~r8t8!#‡,
~123!

where the trace means the sum over a complete set of e
states after the Bogoliubov prescription. The diagrams in
technique for absolute zero and the diagrams in Matsuba
technique differ only in which integration over frequenci
for T50 is replaced by summation over discrete ‘‘freque
cies’’ in ivn for TÞ0. More precisely, any expression for
correction to a temperature Green’s function, correspond
to a certain diagram, can be obtained from the expression
the Green’s function forT50, corresponding to the sam
diagram, if in the latter expression we replacev with ivn
and integration by the summation, according to the r
( i /2p)*dv•••→2(1/b\)(n•••. This fact allows us to im-
mediately extend many results in the preceding section to
caseTÞ0, provided we simply change the notation. In pa
ticular, Dyson’s equation still holds in Matsubara’s techniq
and takes the same form as for the caseT50, and can be
obtained by replacingv with ivn in Eq. ~16!.

B. Second-order approximation at finite temperatures

As we note in previous sections, at finite temperatur
any expression for the self-energies, corresponding to a
tain diagram, can be obtained from the expression for
self-energies atT50, corresponding to the same diagram,
01360
in
or
d.
te
e-
f-

n

f
d

-

n-
e
’s

-

g
or

e

e
-
e

s,
r-
e

in the latter expression we replacev with ivn and integra-
tion with summation. Effective potential at finite temper
turesGaa8,bb8

T (k,k8;P) are derived in Appendix B.
Like at the absolute zero of temperature, the contributio

from the effective potential are determined by the spec
values, whichGaa8,bb8

T (k,k8;P) takes when two out of four
particles involved in a process belong to the conden
phase:

S11
ab~p!5

n0

\
zm1

† Gab,m1n1

T ~p/2,p/2;P!zn1

1
n0

\
zm1

† Gm1b,an1

T ~2p/2,p/2;P!zn1
, ~124!

S12
ab~p!5

n0

\
Gan1 ,bn2

T ~p,0;0!zn1
zn2

, ~125!

S21
ab~p!5

n0

\
zm1

† zm2

† Gm1a,m2b
T ~0,p;0!. ~126!

To obtain the chemical potential, we must let all four pa
ticles in Gaa8,bb8

T (k,k8;P) belong to the condensed phas
and divide by one power ofn0. We then have

m5n0zm1

† zm2

† Gm1n1 ,m2n2

T ~0,0;0!zn1
zn2

. ~127!

Using the value ofGaa8,bb8
0 (k,k8;P) in Eqs. ~A12! and

~A13! and substituting the value ofGaa8,bb8
T (k,k8;P) in Eq.

~B6! into Eqs.~124!–~127!, we find

S11
ab~p!5

n0

\
zm1

† H \2

m
f̃ ab,m1n1

1S \2

m D 2

f̃ am2 ,m1n2
f̃ m2b,n2n1

0

3E dq

~2p!3

3F 11 f B~\vP/21q2m!1 f B~\vP/22q2m!

i\vn2
\2p2

4m
12m2

\2q2

m

1
P

\2q2

m
2

\2p2

4m
G J zn1

, ~128!

S12
ab~p!5

n0

\ H \2

m
f̃ an1 ,bn2

0 1S \2

m D 2

f̃ am1 ,bm2

0 f̃ m1n1 ,m2n2

0

3E dq

~2p!3F 112 f B~\vq2m!

2m2
\2q2

m

1
1

\2q2

m
2 idG J zn1

zn2
, ~129!
1-12
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S21
ab~p!5

n0

\
zm1

zm2H \2

m
f̃ m1a,m2b

0 1S \2

m D 2

f̃ m1n1 ,m2n2

0 f̃ n1a,n2b
0

3E dq

~2p!3F 112 f B~\vq2m!

2m2
\2q2

m

1
1

\2q2

m
1 idG J ,

~130!

m5n0zm1
zm2H \2

m
f̃ m1n1 ,m2n2

0 1S \2

m D 2

f̃ m1m3 ,m2n3

0 f̃ m3n1 ,n3n2

0

3E dq

~2p!3F 112 f B~\vq2m!

2m2
\2q2

m

1
1

\2q2

m
2 idG J zn1

zn2
,

~131!

where we use Eq.~A9! and the notation in Eq.~70!. If we
substitute the value of the ground-state condensate w
functions fza and pza into Eqs. ~128!–~131!, the self-
energies and the chemical potential for the ferromagnetic
polar state are obtained by summing spin indexes.

Within the first-order approximation, in which we negle
the integrals in Eqs.~128!–~131!, we obtain the self-energie
and the chemical potential, which coincide with the resu
derived at absolute zero of temperature in Eqs.~47!–~49! and
~59!–~61! for the ferromagnetic and polar states, resp
tively. As a result, the first-order temperature Green’s fu
tions are derived by replacingv with ivn in Eqs.~50!–~53!
and ~62!–~65!.

For the second-order approximation to the self-energ
and the chemical potential, we must retain the terms of
order of (n0aF t

3 )1/2. Besides the integral terms in Eqs.~128!–
01360
ve

d

s

-
-

s
e

~131!, which are the type-I contributions, we must add t
contributions from the diagrams containing one loop w
continuous lines, which are the type-II contribution and gi
the contributions of the order of (n0aF t

3 )1/2. The essentially

different diagrams of the type-II contribution are same as
ones atT50 and are shown in Fig. 1. We have to express
diagrams in Fig. 1 in terms of the temperature Green’s fu
tions and change the coefficient of thenth-order contribu-
tions (i /\)n(2 i )C to (21/\)n(21)C in Eqs. ~74!–~83!,
whereC is the number of the condensate factorsn0 appear-
ing in the diagram. To calculate the self-energies and
chemical potential, we must collect the special values of
functionsFa, . . . ,g(p1 ,p2 ,p3 ,p4) andFh,i , j (p1 ,p2) for each
quantity like Eqs.~74!–~83! at T50. If we change the coef-
ficient 2 in0 to 2n0 in Eqs. ~84!–~87!, we can obtain the
desired expressions at finite temperatures.

Adding the contributions from the diagrams in Fig. 1
the second-order terms from Eqs.~128!–~131!, we obtain the
second-order self-energies and the chemical potential a
nite temperatures. If we replacev with ivn in Eqs. ~88!–
~92! and Eqs. ~95!–~99!, the ‘‘temperature-independent
parts of each quantity are the same as the ones derive
T50 for both the ferromagnetic and the polar states.
distinguish the temperature-dependent parts from
temperature-independent parts, we denote the tempera
dependent parts, which depend on the Bose distribution fu
tion, byS(p)T and the temperature independent parts, wh
do not depend on the Bose distribution functionexplicitly, by
S(p)0 : S(p)5S(p)01S(p)T . Although at finite tempera-
tures the condensate densityn0(T) is temperature dependen
we neglect the implicit temperature dependence thro
n0(T) and regard the implicit temperature-dependent ter
as temperature-independent terms. For the ferromagn
state, the temperature-dependent parts of the self-ene
and the chemical potential are written as
fS11
11~p!T

(2)5
n0

\ S 4p\2

m D 2E dq

~2p!3 H F fN11~Eq ,Ek!

i\vn2Eq2Ek
2

fN11~2Eq ,2Ek!

i\vn1Eq1Ek
G f 1~Eq ,Ek!1F2

fN11~Eq ,2Ek!

i\vn2Eq1Ek

1
fN11~2Eq ,Ek!

i\vn1Eq2Ek
G f 2~Eq ,Ek!2

~cn1cs!
2

i\vn2\vq1\vk
f 2~\vq ,\vk!2

~cn2cs!
2

i\vn2«q1«k
f 2~«q ,«k!J

1
4p\

m E dq

~2p!3
$~cn1cs!@2~Aq1Bq! f B~Eq!1 f B~\vq!#1~cn2cs! f B~«q!%, ~132!

fS11
00~p!T

(2)5
n0

\ S 4p\2

m D 2E dq

~2p!3 H ~cn1cs!
2F Aq1Bq12Cq

i\vn2Eq2\vk
f 1~Eq ,\vk!1

Aq1Bq12Cq

i\vn1Eq2\vk
f 2~Eq ,\vk!G

24cs
2 1

i\vn2«q1\vk
f 2~«q ,\vk!J 1

4p\

m E dq

~2p!3
$~cn1cs!@~Aq1Bq! f B~Eq!1 f B~«q!#12cnf B~\vq!%,

~133!
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fS11
22~p!T

(2)5
n0

\ S 4p\2

m D 2E dq

~2p!3 F ~cn2cs!
2H Aq1Bq12Cq

i\vn2Eq2«k
f 1~Eq ,«k!1

Aq1Bq12Cq

i\vn1Eq2«k
f 2~Eq ,«k!G

1
2cs

2f 1~\vq ,\vk!

i\vn2\vq2\vk
J 1

4p\

m E dq

~2p!3
$~cn2cs!~Aq1Bq! f B~Eq!1~cn1cs!@ f B~\vq!12 f B~«q!#%,

~134!

fS12
11~p!T

(2)5
n0

\ S 4p\2

m D 2E dq

~2p!3 H F fN12~Eq ,Ek!

i\vn2Eq2Ek
2

fN12~2Eq ,2Ek!

i\vn1Eq1Ek
G f 1~Eq ,Ek!1F2

fN12~Eq ,2Ek!

i\vn2Eq1Ek

1
fN12~2Eq ,Ek!

i\vn1Eq2Ek
G f 2~Eq ,Ek!1

~cn1cs!
2

i\vn1\vq2\vk
f 2~\vq ,\vk!1

~cn2cs!
2

i\vn1«q2«k
f 2~«q ,«k!J

12
4p\

m
~cn1cs!E dq

~2p!3
Cqf B~Eq!, ~135!

fmT
(2)5

4p\2

m E dq

~2p!3
$~cn1cs!@2~Aq1Bq1Cq! f B~Eq!1 f B~\vq!#1~cn2cs! f B~«q!%, ~136!

where the twof 6(x,y) thermal functions are defined as

f 6~x,y![ f B~x!6 f B~y!, ~137!

and the functionsfN11(12)(x,y) are defined in Eqs.~93! and ~94!. For polar state temperature-dependent parts of the s
energies and the chemical potential are written as

pS11
11~p!T

(2)5
n0

\ S 4p\2

m D 2E dq

~2p!3 H F pN11~Eq
s ,Ek

n!

i\vn2Eq
s2Ek

n
2

pN11~2Eq
s ,2Ek

n!

i\vn1Eq
s1Ek

n G f 1~Eq
s ,Ek

n!

1F2
pN11~Eq

s ,2Ek
n!

i\vn2Eq
s1Ek

n
1

pN11~2Eq
s ,Ek

n!

i\vn1Eq
s2Ek

n G f 2~Eq
s ,Ek

n!J
1

4p\

m E dq

~2p!3
$~cn1cs!~Aq

n1Bq
n! f B~Eq

n!1~3cn1cs!~Aq
s1Bq

s! f B~Eq
s!%, ~138!

pS11
00~p!T

(2)5
n0

\ S 4p\2

m D 2E dq

~2p!3 H F pN11
n ~Eq

n ,Ek
n!

i\vn2Eq
n2Ek

n
2

pN11
n ~2Eq

n ,2Ek
n!

i\vn1Eq
n1Ek

n G f 1~Eq
n ,Ek

n!

1F2
pN11

n ~Eq
n ,2Ek

n!

i\vn2Eq
n1Ek

n
1

pN11
n ~2Eq

n ,Ek
n!

i\vn1Eq
n2Ek

n G f 2~Eq
n ,Ek

n!1F pN11
s ~Eq

s ,Ek
s!

i\vn2Eq
s2Ek

s
2

pN11
s ~2Eq

s ,2Ek
s!

i\vn1Eq
s1Ek

s G f 1~Eq
s ,Ek

s!

1F2
pN11

s ~Eq
s ,2Ek

s!

i\vn2Eq
s1Ek

s
1

pN11
s ~2Eq

s ,Ek
s!

i\vn1Eq
s2Ek

sG f 2~Eq
s ,Ek

s!J 1
4p\

m E dq

~2p!3
$2cn~Aq

n1Bq
n! f B~Eq

n!

12~cn1cs!~Aq
s1Bq

s! f B~Eq
s!%, ~139!

pS12
12~p!T

(2)5
n0

\ S 4p\2

m D 2E dq

~2p!3 H F pN12~Eq
s ,Ek

n!

i\vn2Eq
s2Ek

n
2

pN12~2Eq
s ,2Ek

n!

i\vn1Eq
s1Ek

n G f 1~Eq
s ,Ek

n!

1F2
pN12~Eq

s ,2Ek
n!

i\vn2Eq
s1Ek

n
1

pN12~2Eq
s ,Ek

n!

i\vn1Eq
s2Ek

n G f 2~Eq
s ,Ek

n!J 1
4p\

m E dq

~2p!3
$2~cn2cs!Cq

sf B~Eq
s!12csCq

nf B~Eq
n!%,

~140!
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pS12
00~p!T

(2)5
n0

\ S 4p\2

m D 2E dq

~2p!3 H F pN12
n ~Eq

n ,Ek
n!

i\vn2Eq
n2Ek

n
2

pN12
n ~2Eq

n ,2Ek
n!

i\vn1Eq
n1Ek

n G f 1~Eq
n ,Ek

n!

1F2
pN12

n ~Eq
n ,2Ek

n!

i\vn2Eq
n1Ek

n
1

pN12
n ~2Eq

n ,Ek
n!

i\vn1Eq
n2Ek

n G f 2~Eq
n ,Ek

n!1F pN12
s ~Eq

s ,Ek
s!

i\vn2Eq
s2Ek

s
2

pN12
s ~2Eq

s ,2Ek
s!

\vn1Eq
s1Ek

s G f 1~Eq
s ,Ek

s!

1F2
pN12

s ~Eq
s ,2Ek

s!

i\vn2Eq
s1Ek

s
1

pN12
s ~2Eq

s ,Ek
s!

i\vn1Eq
s2Ek

sG f 2~Eq
s ,Ek

s!J 1
4p\

m E dq

~2p!3
$2cnCq

nf B~Eq
n!14csCq

sf B~Eq
s!%,

~141!
cl
d
a
th
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ng
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ys
d
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s

.

pmT
(2)5

4p\2

m E dq

~2p!3
$2cn~Aq

n1Bq
n1Cq

s! f B~Eq
n!

1@2~cn1cs!~Aq
s1Bq

s!14csCq
s# f B~Eq

s!%, ~142!

where pN11(12)
n(s) (x,y) are defined in Eqs.~100!–~105!.

IV. CALCULATIONS AT TÄ0

In previous sections, we worked out the single-parti
Green’s functions for Bose-condensed system with spin
grees of freedom. The formalism developed is valid for
arbitrary temperature if there exists the condensate. In
section, we use the results obtained in previous section
study the energy spectrum atT50. In particular, we give the
explicit expressions for the self-energies which contain inf
red divergent terms. As well-known@11,12#, for scalar Bose-
condensed gas these divergent contributions cancel out in
final expressions for physical quantities such as the lo
wavelength excitation spectrum.

A. Excitation spectrum

At zero temperature, the Green’s functions are given
Eqs. ~106!–~109! and ~115!–~118!. The functions in Eqs.
~110!–~114! and Eqs.~119!–~121! are linear combinations o
the second-order corrections to the self-energies and ch
cal potential. At zero temperature, we then substitute
temperature-independent part of the self-energiesS(2)(p)0

and the chemical potentialm0
(2) . Note that, in second-orde

self-energies and chemical potential, the integrals which
not involve frequencyv can be carried out exactly.

Since we consider the dilute limit of Bose-condensed s
tem with spin degrees of freedom, it is convenient to stu
the behavior of the Green’s functions near the poles that
have obtained within the first-order approximation. In th
region, we may writeu\vu5Ep

(s,n) in a(p) and b(p), and
we need to retain only terms of first order of about (Ep

(s,n)

7\v) in L(p)6. For small wavelengths, which mean
small compared to the inverse of the coherence lengthupu
! p̃ @ p̃[A4pn0(cs1cn)#, we find the explicit expressions
For the ferromagnetic state, we obtain
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fa~p!0.a1/2F16

3

p̃

p
1 i

p

8

p

p̃
G.2 fb~p!0 , ~143!

\ fL
11~p,6Ep!0

6.m̃a1/2F28

3

p

p̃
2 ip

3

80

p5

p̃5G
1~Ep7\v!a1/2F41 ip

1

4

p2

p̃2G
[ fVp

111 flp
11~Ep7\v!, ~144!

\ fL
00~p,\vp!0.m̃a1/2F2

32

45

p2

p̃2
1

8

3
~\vp2\v!G

[ fVp
001 flp

00~\vp2\v!, ~145!

\ fL
22~p,«p!0.m̃a1/2F2

32

45

p2

p̃2
~an2as!

2

2
16

3
as~9an1as!24A2ipuasu5/2G

1~«p2\v!a1/2F8

3
~an2as!

2

1A2p i uasu3/2G
[ fVp

221 flp
22~«p2\v!, ~146!

where we define the notationsa5(@n0(cn1cs)
3/p)1/2#,

as(n)5cs(n) /(cn1cs), andm̃54p\2n0(cn1cs)/m. For the
polar state, we obtain

pa
11~p!0.a1/2F p̃

p
C11 ip

p

p̃
C2G.2pb

11~p!0 ,

~147!

pa
00~p!0.a1/2F p̃

p
C31 ip

p

p̃
C4G.2pb

00~p!0 , ~148!
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\pL
11~p,6Ep

n!0
6.a1/2m̃Fas

1/2p

p̃
C52 ip

p5

p̃5
C6G

1a1/2~Ep
s7\v!FC71 ip

p2

p̃2
C8G

[pVp
111plp

11~Ep
s7\v!, ~149!

\pL
00~p,6Ep

n!0
6.a1/2m̃Fan

1/2p

p̃
C92 ip

p5

p̃5
C10G

1~Ep
n7\v!a1/2FC111 ip

p2

p̃2
C12G

[pVp
001plp

00~Ep
n7\v!, ~150!

where the constantsCi ( i 51, . . .,12) are defined as

C15
as

1/2

180an
1/2~an

1/21as
1/2!

@1129an
5/211129an

2as
1/2

11214an
3/2as2146anas

3/22191an
1/2as

2215as
5/2#,

~151!

C25
as~an12an

1/2as
1/2!

3~an
1/21as

1/2!2
, ~152!

C35
1

an
1/2F16

3
an

5/21
8

3
anas

3/218as
5/2G , ~153!

C45
an

1/2~an13an
1/2as

1/215as!

24as
1/2

, ~154!

C55
1

90an
1/2~an

1/21as
1/2!

@1031an
5/211031an

2as
1/2

11186an
3/2as2334anas

3/22289an
1/2as

2115as
5/2#,

~155!

C65
2

105an
1/2~an

1/21as
1/2!5

@4an
3120an

5/2as
1/2140an

2as

140an
3/2as

3/2126anas
2215an

1/2as
5/2111as

3#, ~156!

C75
8~an1as!~an1an

1/2as
1/21as!

3~an
1/21as

1/2!
, ~157!

C85
2as

1/2~an12an
1/2as

1/2!

3~an
1/21as

1/2!2
, ~158!

C95
1

an
F28

3
an

5/21
8

3
anas

3/2116as
5/2G , ~159!
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C105
7an

2122anas136an
1/2as

3/2143as
2

960an
1/2as

3/2
, ~160!

C1154~an
3/212as

3/2!, ~161!

C125
an13an

1/2as
1/215as

12as
1/2

. ~162!

For small wavelengthsupu! p̃, the normal Green’s func-
tions near to their poles may be written in the followin
forms:

fG11
11~p!5~12 flp

11!F Ap1 fa
11~p!

v2Ep /\2 fVp
11

2
Bp1 fa

11~p!

v1Ep /\1 fVp
11G , ~163!

fG11
00~p!5

~12 flp
00!

v2vp2 fL
00~p,vp!1 id

, ~164!

fG11
22~p!5

~12 flp
22!

v2«p2 fL
22~p,«p /\!1 id

~165!

for the ferromagnetic state, and

pG11
11~p!5~12plp

11!F Ap
s1pa

11~p!

v2Ep
s/\2pVp

11

2
Bp

s1pa
11~p!

v1Ep
s/\1pVp

11G , ~166!

pG11
00~p!5~12plp

00!F Ap
n1pa

22~p!

v2Ep
n/\2pVp

00
2

Bp
n1pa

00~p!

v1Ep
n/\1pVp

00G
~167!

for the polar state. Comparing with the first-order Gree
function given by Eqs.~50!–~53! and ~62!–~65!, one sees
that the quantitieslp , a(p), and Vp are the second-orde
corrections. These corrections are small for a low-density
since these all are proportional toa1/2!1.

The quasiparticle energy is determined by the pole of
Green’s functions. In the wavelength rangep! p̃, the quasi-
particle spectrum for the ferromagnetic case is

Ep1 fVp
115m̃

p

p̃
F11

28

3
a1/2G2 ip

3

80
a1/2m̃

p5

p̃5
, ~168!

\vp1 fVp
005m̃

1

2

p2

p̃2 F12
64

45
a1/2G , ~169!
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«p1 fVp
225m̃H 1

2

p2

p̃2 F12
64

45
a1/2~an2as!

2G
12uasuF11

8

3
~9an1as!a

1/2G J
24A2p ia1/2m̃uasu5/2, ~170!

and for the polar case

Ep
s1pVp

115m̃as
1/2p

p̃
@11a1/2C5#2 ipm̃a1/2

p5

p̃5
C6 ,

~171!

Ep
n1pVp

005m̃an
1/2p

p̃
@11a1/2C9#2 ip

p5

p̃5
m̃a1/2C10.

~172!

Equations~168!, ~171!, and ~172! show that for a smallp,
one of the quasiparticles for the ferromagnetic state and
for the polar state are phonons. The second-order approx
tion also gives a correction to the sound velocity, and
damping rate proportional top5, which is connected with a
process of decay of one phonon into two. This damping r
corresponds to a finite lifetime for phonons.

The mean number of particlesN̄p with a given wavelength
p in the ground-state of the system is related to the residu
the Green’s function at its upper pole. For the ferromagn
state,fN̄p can be calculated using the Green’s functions, E
~163!–~165!, we obtain

fN̄p5 i lim
d→01

E
2`

1`dv

2p
eivd

fG11
aa~p,v!.

1

2

p̃

p F11
20

3
a1/2G .

~173!

The leading terms of the imaginary parts offlp
11 and

fa
11(p) cancel in Eq.~173!, and fNp is real. For the polar

state,pN̄p can be calculated using Eqs.~166! and ~167!, we
obtain

pN̄p5 i lim
d→01

E
2`

1`dv

2p
eivd

pG11
aa~p,v!b f.

p̃

p H an
1/2

2
1as

1/2

1a1/2F2C11C32as
1/2C72

an
1/2

2
C11G J . ~174!

B. Ground-state energy

To find the total number of particles withpÞ0, we need
to knowN̄p for all wavelengths. We therefore use the lowe
order form forN̄p , this means we neglect the terms prop
tional to a1/2 in Eqs.~173! and~174!. For the ferromagnetic
state, we find
01360
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n2n05 i lim
d→01

E dp

~2p!3

dv

2p
eivd

fG11
aa~p,v!5

8

3
a1/2n0 ,

~175!

and for the polar state

n2n05 i lim
d→01

E dp

~2p!3

dv

2p
eivd

pG11
aa~p,v!

5
8

3
a1/2~an

3/212as
3/2!n0 . ~176!

Equations~175! and~176! give the relation between the den
sity of particles in the condensate,n0, and the total number
of particles in the system.

We then calculate the ground-state energy by integra
the chemical potential. For the ferromagnetic state using E
~49! and ~92!, the chemical potential up to the second-ord
approximation is

fm5m̃F11
40

3
a1/2G . ~177!

Expressingn0 in terms ofn by means of Eq.~175!, we have

fm5
4p\2n~cn1cs!

m F11
32

3 S n~cn1cs!
3

p D 1/2G .
~178!

By definitionm5(]/]n)(E0 /V), we obtain the ground-stat
energy for the ferromagnetic state

fE0

V
5

2p\2n2~cn1cs!

m F11
128

15 S n~cn1cs!
3

p D 1/2G .
~179!

We can apply the same calculation for the polar state. Us
Eqs.~61! and ~99!, the chemical potential up to the secon
order approximation is

pm5m̃Fan1
8

3
a1/2@5an

5/212anas
3/218as

5/2#G . ~180!

Expressingn0 in terms ofn by means of Eq.~176!, we obtain

pm5
4p\2n~cn1cs!

m
anF11

32

3
~an

3/212as
5/2an

21!

3S n~cn1cs!
3

p D 1/2G . ~181!

Then, we obtain the ground-state energy for the polar st

pE0

V
5

2p\2n2~cn1cs!

m
anF11

128

15
~an

3/212as
5/2an

21!

3S n~cn1cs!
3

p D 1/2G . ~182!
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V. CALCULATIONS AT TÅ0

In this section, we consider the case of finite tempe
tures. The general expressions for the self-energies and
chemical potential can be separated by two parts. One pa
denoted byS(p)0 andm0 which do not dependexplicitly on
the Bose distribution function, and we obtain these expr
sions in Sec. II. Another temperature-dependent part is
noted byS(p)T and mT which does depend on the Bos
distribution function, and we obtain these expressions in S
III. In Sec. IV, we worked out the expressions forS(p)0 and
m0 near the poles, which are obtained within the first-ord
approximation. In this section, we try to work out the expre
sions forS(p)T andmT near those poles.

At finite temperatures, the temperature Green’s functi
are obtained by replacingv with ivn in Eqs. ~106!–~109!
and ~115!–~118! for the ferromagnetic and polar states, r
spectively. Since the functionsa(p), b(p), and L(p) are
linear combinations of the self-energies and the chemical
tential, the temperature-dependent parts of these funct
can be separated out. To work out the temperature-depen
corrections, we must substitute the temperature-depen
parts ST

(2) and mT
(2) into the functionsa(p), b(p), and

L(p).
To obtain the excitation spectrum at finite temperatur

we have to made the analytic continuationivn→v1 id in
the expressions ofST , implying that we are now dealing
with the self-energies for the retarded Green’s functi
Compared to the zero-temperature case, the fin
temperature contributions are multiplied by the Bose dis
bution functionf B(eq)5@exp(eq /kBT)21#21. For kBT!m̃,
the dominant contributions come from excitations with en
gies eq;kBT. For kBT@m̃, excitations with energieseq

;m̃ are important, and we approximate the Bose distribut
function f B(eq);kBT/eq .

A. Density of condensate

Using the Green’s functions, one can calculate the den
of particles in the condensate. For a given total densityn, we
have

f~n2n0!52
1

\b (
n
E dq

~2p!3
eivnd

fG11
aa~q,ivn!

5
8

3
n0a1/21E dq

~2p!3
@~Aq1Bq! f B~Eq!

1 f B~\vq!1 f B~«q!#, ~183!

p~n2n0!52
1

\b (
n
E dq

~2p!3
eivnd

pG11
aa~q,ivn!

5
8

3
n0a1/2~an

3/212as
3/2!1E dq

~2p!3

3@~Aq
n1Bq

n! f B~Eq
n!12~Aq

s1Bq
s! f B~Eq

s!#,

~184!
01360
-
the
is

s-
e-

c.

r
-

s

-

o-
ns
ent
nt

s,

.
e-
i-

-

n

ty

for the ferromagnetic and polar states, respectively. T
temperature-independent terms of right-hand sides of E
~183! and ~184! coincide with Eqs.~175! and ~176!, respec-
tively. Equations~183! and~184! are nonlinear equations fo
n0, sinceEp

(n,s) and f,pm
(1) are also the functions ofn0. In

general, such nonlinear equations must be solved num
cally. However, in two important special cases, analyti
results can be obtained, as we now discuss.

We first consider the low-temperature limitkBT!m̃.
Since the Bose distribution function decreases exponent
for Ep

(n,s)!kBT, the dominant contributions in the integral i

Eqs.~183! and ~184! come from the regionq! p̃. Then, the
integral can be approximated and we obtain

f~n2n0!.
8

3
n0a1/212n0a1/2Fp2

3

~kBT!2

m̃2

1A2pz~3/2!
~kBT!3/2

m̃3/2
1

p4

20

~kBT!4

m̃4 G ,

~185!

p~n2n0!.
8

3
n0a1/2~an

3/212as
3/2!12n0a1/2

3Fp2

3 S 1

an
2

1
2

as
2D ~kBT!2

m̃2

1
p4

20 S 1

an
5/2

1
2

as
5/2D ~kBT!4

m̃4 G . ~186!

We next discuss the regionkBT@m̃. To calculate the den-
sity of particles in the condensate at high temperatures,
use the noncondensate density of an ideal gas:

E dq

~2p!3

1

eb\vq21
5z~3/2!S kBT

2p\2D 3/2

. ~187!

If we apply the high-temperature approximation for the d
tribution function f B(eq);kBT/eq to Eqs. ~183! and ~184!
directly, the integral diverges. To avoid an unphysical div
gence, we first subtract the noncondensate density of an i
Bose gas fromf,p(n2n0), and then carry out the integra
analytically to obtain

f~n2n0!.
8

3
n0a1/214n0a1/2F2p

kBT

m̃

13Ap

2
z~3/2!

~kBT!3/2

m̃3/2 G , ~188!
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p~n2n0!.
8

3
n0a1/2~an

3/212as
3/2!14n0a1/2

3F2p~an
1/212as

1/2!
kBT

m̃

13Ap

2
z~3/2!

~kBT!3/2

m̃3/2 G . ~189!

B. Energy shifts

We discuss energy shifts in this section. We consider o
the casep! p̃ and use the on-shell approximation. For t
ferromagnetic state, there exist three different kinds of ex
tations. For the corrections to the density modes, the co
butions from the interactions between the density-wa
modes are the same as the ones in the scalar Bose-cond
system@13#. So the parts that we have to analyze here are
contributions from the interactions between the spin wa
and ‘‘quadrupolar’’ spin-wave modes, and their contributio
are written as follows:

\ fLspin
11~p!T5n0

\vp

Ep
S 4p\2

m D 2E dq

~2p!3

3F2~cn1cs!
2

f 2~\vq ,\vk!

i\vn2\vq1\vk

2~cn2cs!
2

f 2~«q ,«k!

i\vn2«q1«k
G . ~190!

For the low-temperature limitkBT!m̃, the dominant con-
tributions come from the regionq! p̃, and the integrals can
be approximated to obtain

Re\ fL
11~p,6Ep /\!T

6

.m̃a1/2
p

p̃
Fp2

3

~kBT!2

m̃2
1A2pz~3/2!

~kBT!3/2

m̃3/2
2

6p4

5

3
~kBT!4

m̃4
ln

kBT

m̃
G , ~191!

Re\ fL
00~p,vp!T.m̃a1/2

4

3
A2pz~3/2!

p2

p̃2

~kBT!3/2

m̃3/2
,

~192!

Re\ fL
22~p,«p /\!T.m̃a1/2F28asAp

2
z~3/2!

~kBT!3/2

m̃3/2

2
4p2

3
as

~kBT!2

m̃2

112Ap

2
z~5/2!

~kBT!5/2

m̃5/2

1
2

as
Ap

2
z~5/2!

~kBT!5/2

m̃5/2

p2

p̃2G , ~193!
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Re\pL
11~p,6Ep

s/\!T
6

.m̃a1/2as
1/2p

p̃
Fas

1/212an
1/2

3an
1/2as

1/2
p2

~kBT!2

m̃2
1p4

~kBT!4

m̃4
C13G ,

~194!

Re\pL
00~p,6Ep

n/\!T
6.m̃a1/2an

1/2p

p̃
Fas

1/212an
1/2

3as
1/2an

1/2
p2

~kBT!2

m̃2

2
6

5an
5/2

p4
~kBT!4

m̃4
ln

kBT

m̃
G , ~195!

where the functionC13 is defined as

C135
1

180an
5/2as

5/2~an
1/21as

1/2!
@226an

3226an
5/2as

1/2

256an
2as256an

3/2as
3/2256anas

21an
1/2as

5/21as
3#.

~196!

In this regime of temperatures, the condensate densit
given by the expressions~185! and ~186! in terms of the
particle densityn, and the energy shift turns out to be

Ep1Re\ fL
11~p,6Ep /\!.

\2

m
A4pn~cs1cn!pH 11a1/2

3F82
6p4

5

~kBT!4

m̃4
ln

kBT

m̃
G J ,

~197!

\vp1Re\ fL
00~p,vp!.\vp1m̃a1/2

p2

p̃2

3F2
32

45
1

4

3
A2pz~3/2!

~kBT!3/2

m̃3/2 G ,

~198!

«p1Re\ fL
22~p,«p /\!

.\vpH 11a1/2F2
64

45
~an2as!

21
4

as
Ap

2

3z~5/2!
~kBT!5/2

m̃5/2 G J 22
4p\2ncs

m H 11a1/2

3F32an

3
2

6

as
Ap

2
z~5/2!

~kBT!5/2

m̃5/2 G J , ~199!
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Ep
s1\pL

11~p,6Ep
s/\!6

.
\2

m
A4pn~cs1cn!as

1/2p

3H 11a1/2FC141C15p
4
~kBT!4

m̃4 G J , ~200!

Ep
n1Re\pL

00~p,6Ep
n/\!6

.
\2

m
A4pn~cs1cn!an

1/2pH 11a1/2F 8

an
~an

5/212as
5/2!

2
6p4

5an
2

~kBT!4

m̃4
ln

kBT

m̃
G J , ~201!

where the constantsC14,C15 are defined as follows:

C145C52
4

3
~an

3/212as
3/2!, ~202!

C155C132
1

20S 1

an
5/2

1
2

as
5/2D . ~203!

For the high-temperature limitkBT@m̃, the dominant
contributions come from excitations with energieseq;m̃.
Using the high-temperature form of the Bose distributi
function f B(eq);kBT/eq , energy shifts are written as fol
lows:

Re\ fL
11~p,6Ep /\!T

6.m̃a1/2
p

p̃
F213

kBT

m̃
G , ~204!

Re\ fL
00~p,vp!T.m̃a1/2
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3

p2

p̃2 Fp
kBT

m̃

1A2pz~3/2!
~kBT!3/2

m̃3/2 G , ~205!

Re\ fL
22~p,«p /\!T.8pas@5an1as22~3an
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kBT

m̃
1

p2

p̃2

3F8p
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~an2as!

2@122Auasu~1
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kBT
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1

4

3
~an2as!

2~124as!

3
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2
z~3/2!

~kBT!3/2

m̃3/2 G , ~206!
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11~p,6Ep

s/\!T
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p

p̃
F 2pas

1/2

3~an2as!
@4as

1/2~4an2as!

2an~11an1as!#
kBT

m̃

1
4

3
as

1/2Ap

2
z~3/2!

~kBT!3/2

m̃3/2 G , ~207!

Re\pL
00~p,6Ep

s/\!T
6.m̃a1/2

p

p̃

kBT

m̃
C16, ~208!

where the constantsC16 are given in the integral form which
depends onan andas , and we omit the precise expressio
here.

C. Free energy

Free energy of the system can be calculated from
chemical potential, that is, by definition m
5(]/]n)(F/V)V,T . Thus, we first derive the analytical ex
pression of the chemical potential. The temperatu
dependent part of chemical potential is obtained using E
~136! and ~142! for the ferromagnetic and polar states, r
spectively. At low temperatureskBT!m̃,

fmT
(2).4a1/2m̃Fp2

6

~kBT!2

m̃2
1Ap

2
z~3/2!

~kBT!3/2

m̃3/2

1
7p4

120

~kBT!4

m̃4 G , ~209!

pmT
(2).8m̃a1/2an

1/2Fp2

12

2an
1/21as

1/2

as
1/2

~kBT!2

m̃2

1
6an

5/218an
3/2as17as

5/2

240an
5/2as

5/2
p4

~kBT!4

m̃4 G . ~210!

Expressingn0 in terms of n by means of Eqs.~185! and
~186!, we obtain

fm5 fm~T50!1a1/2
4p\2n~cn1cs!

m F2p4

15

~kBT!4

m̃4 G ,

~211!

pm5pm~T50!1a1/2
4p\2ncn

m F2p4

15

2an
3/21as

3/2

an
3/2as

3/2

~kBT!4

m̃4 G ,

~212!

where f,pm(T50) is the temperature-independent part of t
chemical potential and is given in Eqs.~178! and ~181!. At
high temperatureskBT@m̃,
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fm5 fm~T50!2a1/2
4p\2n~cn1cs!

m F8p
kBT

m̃

22~an2as!A2pz~3/2!
~kBT!3/2

m̃3/2 G , ~213!

pm5pm~T50!2a1/2
4p\2n~cn1cs!

m F8p
kBT

m̃
~an

3/2

12as
3/2!2A2pz~3/2!

~kBT!3/2

m̃3/2
~4an2as!G , ~214!

where we use the density of particles,n, instead of the den-
sity of the condensate,n0.

We can calculate the free energy from the chemical
tential. By definitionm5(]/]n)(F/V)V,T and using the ex-
pressions of the chemical potential in terms ofn in Eqs.
~211!–~214!, the free energy is written as follows:

fF

V
5

fE0

V
2S n~cn1cs!

3

p D 1/24p\2n2~cn1cs!

m

45p4

45

3S kBT

4p\2n~cn1cs!/m
D 4

, ~215!

pF

V
5

pE0

V
2S n~cn1cs!

3

p D 1/24p\2n2cn

m

45p4

45

an
3/212as

3/2

an
3/2as

3/2

3S kBT

4p\2n~cn1cs!/m
D 4

, ~216!

at low temperatureskBT!m̃, and

fF

V
5

fE0

V
2S n~cn1cs!

3

p D 1/24p\2n2cn

m

3F16p

3

kBT

4p\2n~cn1cs!/m
22A2pz~3/2!

3S kBT

4p\2n~cn1cs!/m
D 3/2

~an2as!G , ~217!

pF

V
5

pE0

V
2S n~cn1cs!

3

p D 1/24p\2n2cn

m

3F16p

3

kBT

4p\2n~cn1cs!/m
~an

3/212as
3/2!

2A2pz~3/2!S kBT

4p\2n~cn1cs!/m
D 3/2

~4an2as!G ,

~218!
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at high temperatureskBT@m̃. From Eqs. ~215!–~218!,
we can easily obtain all the other thermodynamic functio
From the expressions of free energy, the tempera
dependences of thermodynamic quantities turn out to
the same as the ones in phonon gas, and the spin-exch
interaction is seen to modify the temperature-depend
parts.

VI. CONCLUDING REMARKS

We have studied excitation spectrum and thermodyna
properties of spin-1 Bose condensates under the sin
condensate assumption. Since the excitation spectra
mean-field level had been discussed in previous studies
here included the higher-order scattering effects, which g
energy shifts, damping rates, and thermodynamic quanti
We generalized the field theory, which is used in scalar Bo
condensed system to spin-1 Bose-condensed system.
the Bogoliubov prescription, we obtained the matrix Dyso
equations expressing the Green’s functions in terms of s
energies. Solving these matrix Dyson’s equations, we
rived the formal expressions of the Green’s functions
terms of self-energies. Within the first-order calculations,
obtained the energy spectrum that coincides with the res
of previous studies. We then discussed the second-orde
proximation, in which all the diagrams of the order
(n0aF t

3 )1/2 are summed and are included in the self-energ

whereaF t
(F t50,2) is thes-wave scattering length in the

channel with total spinF t . We further extended Green’
function method to the finite-temperature case, and deri
the corresponding self-energies. The main results are the
lytical expressions of the excitation spectrum and thermo
namic quantities. We evaluated the self-energies within
on-shell approximation, and expanded the results in pow
of wave number in the long-wavelength limit. Excitatio
spectra for each mode were obtained analytically at low te
peratures. We also derived the analytical expressions of
ground-state energy and thermodynamic quantities. From
expressions of free energy, the temperature dependenc
thermodynamic quantities turn out to be the same as the o
in phonon gas, and the spin-exchange interaction is see
modify the temperature dependent parts.
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APPENDIX A: EFFECTIVE POTENTIAL

In this appendix, we derive the effective potential with
the ladder approximation. Since there exists a set of lad
diagrams, all of which are of the same order in the gas d
sity, the ladder diagrams are all of equal importan
We need to sum over all the ladder diagrams, yield
the t matrix Gaa8,bb8

0 (p1 ,p2 ;p3 ,p4). The equation for
Gaa8,bb8

0 (p1 ,p2 ;p3 ,p4) can be written explicitly as
1-21
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Gaa8,bb8
0

~p1 ,p2 ;p3 ,p4!

5Uaa8,bb8~p12p3!1
i

\E d4q

~2p!4

3Uaa
18 ,bb

18
~p12q!G0

a18a1~q!

3G
0
b18b1~p11p22q!

3Ga1a8,b1b8
0

~q,p11p22q;p3 ,p4!. ~A1!

It is convenient to writeGaa8,bb8
0 (p1 ,p2 ;p3 ,p4) in the cen-

ter of mass frame of the scattering pair of atoms. We de
the total wave vector and the total frequency of the scatte
pair asP5p11p25p31p4, where the last equality follows
from the conservation of total four-momentum in a homog
neous system, and we also define the relative wave vec
k5(p12p2)/2,k85(p32p4)/2. Since the instantaneous inte
action potentialUaa8,bb8(r) is not time dependent, its Fou
rier componentUaa8,bb8(q) does not depend on the fourt
componentv of q, and neither doesGa1a8,b1b8

0 (q,p11p2

2q;p3 ,p4). One can thus perform the frequency integr
Writing Eq. ~A1! in terms of variables in the center of ma
frame, we have

Gaa8,bb8
0

~k,k8;P!5Uaa8,bb8~k2k8!

1E dq

~2p!3
Uaa1 ,bb1

~k2q!

3
1

\2k2

m
2

\2q2

m
1 id

Ga1a8,b1b8
0

~q,k8;P!,

~A2!

where\2k2/m5\Ã2\2P2/4m12m.
We show the connection between the free-space scatte

amplitude andt the matrixGaa8,bb8
0 (k,k8;P). The following

argument is a generalization of the scalar Bose-conden
system@11,12#. Introducing the quantityxaa8,bb8

0 (k,k8;P)
defined by

Gaa8,bb8
0

~k,k8;P![E dq

~2p!3
Uaa1 ,bb1

~q!xa1a8,b1b8
0

3~k2q,k8;P!, ~A3!

one can verify thatxaa8,bb8
0 (k,k8;P) satisfies the following

integral equations:
01360
e
g

-
rs

.

ng

ed

xaa8,bb8
0

~k,k8;P!5~2p!3d~k2k8!daa8dbb8

1
1

\2k2

m
2

\2k2

m
1 id

E dq

~2p!3

3Uaa1 ,bb1
~q!xa1a8,b1b8

0
~k2q,k8;P!.

~A4!

Equation~A4!, multiplied by \2k2/m2\2k2/m1 id, is the
same as the inhomogeneous Schro¨dinger equation for the
relative motion of two particles with spin. It is therefore ea
to express its solution in terms ofcaa8,bb8

p (k), which is the
normalized wave function of the relative motion of particl
and satisfies the equation

F\2p2

m
2

\2k2

m
1 idGcaa8,bb8

p
~k!

2E dq

~2p!3
Uaa1 ,bb1

~q!ca1a8,b1b8
p

~k2q!50. ~A5!

The scattering amplitudef̃ aa8,bb8(k,p) is related to the wave
function caa8,bb8

p (k) by

caa8,bb8
p

~k!5~2p!3d~k2p!daa8dbb81
f̃ aa8,bb8~k,p!

p22k21 id
,

~A6!

where

f̃ aa8,bb8~k,p![24p f aa8,bb8~k,p!

5
m

\2E dq

~2p!3
Uaa1 ,bb1

~q!ca1a8,b1b8
p

~k2q!.

~A7!

If we use the condition that the interaction potential is re
and its Fourier component satisfiesUaa8,bb8(k2k8)
5Uaa8,bb8

* (k82k), which yields

f̃ aa8,bb8~k,k8!2 f̃ aa8,bb8
* ~k8,k!

5E dp

~2p!3 F f̃ aa1 ,bb1
* ~k8,p! f̃ a1a8,b1b8~k,p!

p22k21 id

2
f̃ aa1 ,bb1

~k,p! f̃ a1a8,b1b8
* ~k8,p!

p22k822 id
G . ~A8!

From Eq. ~A8!, the lowest order of the imaginary part o
f̃ aa8,bb8(p,p8) for upu5up8u is expressed as
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Im f̃ aa8,bb8~p,p8!.2p
\2

m
f̃ aa1 ,bb1

0 f̃ a1a8,b1b8
0

3E dq

~2p!3
d~\2q2/m2\2k2/m!. ~A9!

Equation ~A9! is a generalization of the ordinary optic
theorem for the scattering amplitude. Multiplying Eq.~A4!
by @\2k2/m2\2k2/m1 id#caa8,bb8

p* (k) and integrating over
k,

F\2k2

m
2

\2p2

m
1 idG E dk

~2p!3
caa1 ,bb1

p* ~k!

3xa1a8,b1b8
0

~k,k8;P!

5F\2k2

m
2

\2k82

m
1 idGcaa8,bb8

p* ~k8!, ~A10!

where we use the complex conjugate of Eq.~A5!. We next
multiply both sides of Eq.~A10! by caa8,bb8

p (k), and inte-
grate over p. Using the completeness relation
caa8,bb8

p (k), one arrives at

xaa8,bb8
0

~k,k8;P!5F\2k2

m
2

\2k82

m
1 idG E dp

~2p!3

3
caa1 ,bb1

p ~k!ca1a8,b1b8
p* ~k8!

\2k2

m
2

\2p2

m
1 id

.

~A11!

Using the complex conjugate of Eq.~A6! and the definitions
of xaa8,bb8

0 (k,k8;P) and f̃ aa8,bb8(k,k8) in Eqs. ~A3! and
~A7!, one finds

Gaa8,bb8
0

~k,k8;P!5
\2

m
f̃ aa8,bb8~k,k8!1

\2

mE dp

~2p!3

3 f̃ aa1 ,bb1
~k,p!F 1

k22p21 id

1
1

p22k822 id
G f̃ a1a8,b1b8

* ~k8,p!.

~A12!

This last expression givesGaa8,bb8
0 (k,k8;P) completely in

terms of the scattering amplitudef̃ aa8,bb8(k,k8). Using Eq.
~A8!, we have the equivalent expression of Eq.~A12!, which
is
01360
Gaa8,bb8
0

~k,k8;P!5
\2

m
f̃ aa8,bb8
* ~k8,k!1

\2

mE dp

~2p!3

3
f̃ aa1 ,bb1

~k,p! f̃ a1a8,b1b8
* ~k8,p!

k22p21 id
1

\2

mE dp

~2p!3

3
f̃ aa1 ,bb1
* ~k8,p! f̃ a1a8,b1b8~k,p!

p22k21 id
. ~A13!

APPENDIX B: EFFECTIVE POTENTIAL AT TÅ0

The diagrammatic definition of effective potential at fini
temperatures,Gaa8,bb8

T (p1 ,p2 ;p3 ,p4), can be written ex-
plicitly as

Gaa8,bb8
T

~p1 ,p2 ;p3 ,p4!

5Uaa8,bb8~p12p3!2
1

\2b
(

n
E d3k

~2p!3
Uaa1 ,bb1

3~p12p3!G0
a18a1~k!G0

b18b1~p11p22k!Ga1a8,b1b8
T

3~k,p11p22k;p3 ,p4!. ~B1!

Here, the four-dimensional vectorp represents the momen
tum p and Matsubara frequencyivn . Defining the total wave
vector and total Matsubara frequency of the scattering pai
P5p11p25p31p4 and iÃn5 iv11 iv25 iv31 iv4, and
the relative wave vectors ask5 1

2 (p12p2),k85 1
2 (p32p4),

the sum of ladder diagramsGaa8,bb8
T (k,k8;P) can be rewrit-

ten as

Gaa8,bb8
T

~k,k8;P!

5Uaa8,bb8~k2k8!1E dq

~2p!3

3Uaa1 ,bb1
~k2q!Ga1a8,b1b8

T
~q,k8;P!

3
11 f B~\vP/21q2m!1 f B~\vP/22q2m!

\2k2

m
2

\2q2

m

, ~B2!

where\2kn
2/m5 i\Ãn2\2P2/4m12m.

We next show the connection between the scattering
plitude f̃ aa8,bb8(k,k8) in Eq. ~A7! and the effective potentia
Gaa8,bb8

T (k,k8;P). The following analysis atTÞ0 is a gen-
eralization of the discussion atT50 given in Appendix A.
Introducing the quantityxaa8,bb8

T (k,k8;P) defined by
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Gaa8,bb8
T

~k,k8;P![E dq

~2p!3
Uaa1 ,bb1

~q!xa1a8,b1b8
T

3~k2q,k8;P!, ~B3!

one can verify thatxaa8,bb8
T (k,k8;P) satisfies the following

integral equation:

xaa8,bb8
T

~k,k8;P!2
1

\2kn
2

m
2

\2k2

m

E dq

~2p!3

3Uaa1 ,bb1
~q!xa1a8,b1b8

T
~k2q,k8;P!

5~2p!3d~k2k8!daa8dbb8

1
f B~\vP/21q2m!1 f B~\vP/22q2m!

\2kn
2

m
2

\2k2

m

E dq

~2p!3

3Uaa1 ,bb1
~q!xa1a8,b1b8

T
~k2q,k8;P!. ~B4!

Note that Eqs.~B3! and ~B4! have analogous structures
Eqs. ~A3! and ~A4!, respectively. A comparison with Eq
~A4! shows that the operator on the left side of Eq.~B4! is
just the inverse ofxaa8,bb8

0 (k,k8;P), which means that
xaa8,bb8

T (k,k8;P) can be expressed in terms
xaa8,bb8

0 (k,k8;P) as follows:
e,

.P

.P

et

.J
s
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xaa8,bb8
T

~k,k8;P!

5xaa8,bb8
0

~k,k8;P!1E dq

~2p!3
xaa1 ,bb1

0 ~k,q;P!

3
f B~\vP/21q2m!1 f B~\vP/22q2m!

\2kn
2

m
2

\2q2

m

3Ga1a8,b1b8
T

~q,k8;P!. ~B5!

This equation can be verified by carrying out the operat
indicated on the left side of Eq.~B4! and by using Eq.~A4!.
We take the convolution withUaa8,bb8(q) @see Eq.~B3!#,
which yields our final equation for the scattering amplitu
at finite temperatures as follows:

Gaa8,bb8
T

~k,k8;P!

5Gaa8,bb8
0

~k,k8;P!1E dq

~2p!3
Gaa1 ,bb1

0 ~k,q;P!

3
f B~\vP/21q2m!1 f B~\vP/22q2m!

\2kn
2

m
2

\2q2

m

3Ga1a8,b1b8
T

~q,k8;P!. ~B6!

The above equation expressesGaa8,bb8
T (k,k8;P) in terms of

Gaa8,bb8
0 (k,k8;P), while Gaa8,bb8

0 (k,k8;P) can be expressed
in terms of the free-space scattering amplitu
f̃ aa8,bb8(k,k8) using Eq.~A12! or ~A13!. In other words,
through the intermediate functionGaa8,bb8

0 (k,k8;P), we can

relateGaa8,bb8
T (k,k8;P) to f̃ aa8,bb8(k,k8) directly.
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