PHYSICAL REVIEW A 68, 013601 (2003
Perturbation theory of spin-1 Bose-Einstein condensates
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We generalize the perturbation theory of weakly interacting bosons to Bose-Einstein condensates with
hyperfine spinF=1. Analytical expressions of second-order self-energies beyond the mean-field approxima-
tion are derived at zero temperature. We further extend the perturbation theory to the finite-temperature case,
and derive the corresponding self-energies. We evaluate these self-energies near the poles of the first-order
(mean-field Green'’s functions within the on-shell approximation, and expand the results in powers of wave
number in the long-wavelength limit. Excitation spectra for each mode are obtained analytically at low tem-
peratures. We also derive the ground-state energy and thermodynamic quantities such as free energy of the
system.
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[. INTRODUCTION eigenstates and eigenspectra of spin-2 Bose condensates.
We generalize the perturbation theory of scalar Bose con-
Bose-Einstein condensates of alkali-metal atoms have irdensate$11-13 to vectorial spin-1 Bose condensates under
ternal degrees of freedom due to the hyperfine structures d¢he single-condensate assumption. It is now understood that
the atoms. These are frozen in a magnetic field, but recedf€ ground-state of spin-1 Bose gas can be “fragmented”
experiments have produced spin-1 ang<eudospinspin-  [14]- Despite this fact, the phase diagram for single conden-
1 Bose condensates. The former is produced in opticallySates remains highly valuable and gives the best agreement
confined?3Na[1-3] and 87Rb [4], which is characterized by ~With experiment§ 2]. This paper is organized as follows. In
the three hyperfine spin staté=1me==1,0, and the Sec. Il, after giving the specifications of the Hamiltonian, the

latter in magnetically confined’Rb with hyperfine states ,? Qrma] atr;]d anc.)malo'uilsmgIe(—jp?.rtlctlje \C/ivree_nsftlr,l]ncgm ,
IF=2me=1) and|F=1m.= 1) [5]. Generally, only at- rices in the spin variablgsire defined. We give the Dyson’s

: ) i 4 : . equations expressing thex®3 matrix Green’s functions in
oms in the low lying hyperfine spin states are confined in th§, s of the %3 self-energies. Solving these matrix Dys-
optical potential. Atoms in the higher hyperfine spin state

) X S X Son’s equations, we obtain the formal expression of the
"Z‘g" leave gr;e potential by spin-flip scattering. In the case ofGreen’s functions in terms of the self-energies. Within the
Na and *'Rb, which are alkali-metal atoms with nuclear first-order calculations, in which the self-energies are ap-
spin|=3/2, their hyperfine spin states afe=2, andF=1  proximated by the lowest-order terms of the ladder diagram,
is regular, i.e., the higher spin stefte=2 has higher energy. we derive the energy spectrum that coincides with the results
While the experiments have reported so far the spin-1 andf previous studie$6,7]. We then discuss the second-order
spin; Bose condensates, the spin-2 Bose condensates agpproximation, in which the self-energies include the
pear feasible using tHe= 2 multiple of bosons such #&Na  second-order terms of the order Omo(agt)m (F=0,2),

and *'Rb. _wheren, is the density of the condensate, amgdanda, are
An important feature of Bose condensates with spin dethe swave scattering lengths for two colliding atoms with

grees of freedom is that, in addition to the repulsive two-igig] angular moment&,= 0 (spin singlet andF,=2 (quin-
body hard-cc_Jre collisions that give rise to density quctua—tup|e), respectively. Summing the set of diagrams, we repre-
tions, atoms in the condensates can also couple to each othgdnt the second-order self-energies and derive excitation
through the spin-exchange interaction. The competition bespectra for each mode. In Sec. Iil, we generalize the pertur-
tween these two interactions leads to complex ground-staigation theory in Bose system with spin degrees of freedom at
structures. H46] and Ohmi and Machid7] showed that  zero temperature, which is developed in Sec. Il to the finite-
the ground-states of spin-1 bosons are either ferromagnetigmperature case. In Secs. IV and V, we evaluate the self-
or “polar” states, depending on the scattering lengths in dif-gnergies near the poles of the first-order Green’s functions,
ferent angular momentum channels. They also developed thghich is the on-shell approximation, and expand excitation
mean-field theory for describing a vectorial Bose Conde“Spectra in powers of the wave number in the long-
sates by generalizing the Gross-Pitaevskii equation under thgavelength limit analytically. We also derive the analytical
restriction of gauge and spin rotational symmetries. l&w expressions of the ground-state energy and thermodynamic

al. [8] constructed an algebraic representation of the spin-}yantities such as free energy of the system. Results are sum-
Bose condensates to study the exact many-body states, apfhrized in Sec. VI.

found that spin-exchange interactions cause a set of collec-

tive dynamic behaviors. Recently, the properties of spin-2 Il. GREEN'S FUNCTION METHOD
Bose condensates are also investigated. Ciolzinai. [9]
generalized the approach for the spin-1 Bose condensates
developed by Ho to study the ground-state structure of the We consider an assembly of homogeneous dilute Bose-
spin-2 Bose condensates. Koashi and Ugd} studied the condensed gas with hyperfine spin stite 1, which con-

A. Basic equations and definitions
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sists of N atoms, enclosed in a box of volum&and inter- B. Bogoliubov prescription and ground-state structure
acting through two-body potentidl .. g/ (r). The natural In an ideal Bose gas, all the particles will be in the state

basis set to characteriz_e such a system is thg hyperfine SR}\r/]th zero momentum. From the operatdrs(r), we separate
stategme=+1,0). In this case, the wave function has three o ' snerators corresponding to creation and annihilation of

components, and written as . . , - -
P particles in the state witlp=0: ,(r)=¢&,+ ¥, (r), where

& (1) £,=ag,/\V, and the prime means to omit the tepw: 0.
. . The number of particles which are ip=0 state (\g
p(r)=| o(r) |. (D =vele,) becomes infinite a¥— . If we neglect the right-
& (1) hand side in the commutation relatipé, ,gg]z SaplV, the
operatorst,, and 51 can be regarded asnumber within the
In this representation, the spin operators are first approximation. This approximate procedure clearly ne-
. glects fluctuations in the occupation number of the conden-
1 010 1 0 —-i 0 sate. It is convenient to writé,= \/n—oga, where(, is nor-
F=—=|1 0 1|, F="2|i 0 ~—i|, (2 malized ast'e=1. _ _ N
01 0 V2 0 i 0 .'Ifhe ground-state structure &f, is determined by mini-
mizing the energy with a fixed particle numbe&;7]. If we
10 0 use the point-contact interaction
F,=10 0 0. U e /(r):“ﬁz[c& 8550+ CF ot - F 551 18(1)
0 0 -1 aa’ BB m nYaa’ YBp st aa BB
o o %
Here, ¥ ,(r) and sz(r) are the boson field operators, satisfy- = E?ga, ﬁﬁ,g(r), (5)

ing the usual Bose commutation relations which are
[ (1), ihg(r')1=0, [P, (1), ¥5(r")]=8(r—1") 8,5. As-  which is approximately valid in a dilute gas, the energy of
suming periodic boundary conditions, the field operatorthe condensate is expressed I:Esfdr[—MnOJr(ng/Z)(cn
can be expanded in terms of creation and annihilation opers+ cs(F))1, where(F)={*F,3(5. The coefficient, and
ators characterized by wave vectap, #(r)=(1/ ¢, are related to the spin-singleE{=0) and quintuple K,

\/V)Epa&)eip'r. =2) swave scattering lengtre: . Note that the assumption
In the second quantized formalism, the grand canonicabf a two-body point-contact interaction gives rise to a diver-
Hamiltonian of the system is given by gent ground-state energy, and renormalized coupling con-
A . stants should be substituted to eliminate this divergéh6k
K=H-uN There are two types of ground-state structures depending on
i 52y2 i the sign of the spin-depgndent part of interagtion, icg.,
:f drzp;ﬂ(r)[ — _M}%(r) <0 andc,>0. When the interaction for the spin-exchange
2m channel is ferromagnetic,<0, the ferromagnetic state

emerges and the energy is minimized @)2=1. In this

+f drf dr' gL PErU gar g case, the condensate wave functipnin the ferromagnetic
ground-state is given byl=(1,0,0)". When the interaction
x(r—r’)lA//B,(r’)z,Za,(r)bf for the spin-exchange channel is antiferromagnetic 0,
the polar state emerges and the energy is minimized by
E|Z0+\7, (3) (F)2=0. In this case, the condensate wave functigin the

polar ground-state is given bygz(o,l,O)T. According to
where the chemical potential is chosen so thatN)=N.  the current estimatg6], the scattering lengths ofNa are
Here and henceforth, an implicit summation is to be carriec®2=(52+5)ag anday=(46*4)ag; and those fo’’Rb are
out over all repeated spin indius. With the grand canoni@.=(107+4)ag anda,=(110+4)ag, whereag is the Bohr
cal Hamiltoniark , we introduce the time-dependent Heisen-2dius. If the inequalities suggested by current estimaje (

. 23] 87
berg picture for Schidinger operators, and the field ~ o for N? a”daOEaZ for *'Rb) are true, then the con-
densates of®Na and®'Rb are the polar state and the ferro-

magnetic state, respectively.

The separation off;a(r) into the condensate and noncon-
densate parts modifies the Hamiltonian in a fundamental
way. The grand canonical Hamiltonian is now given by

operators have a time dependency given %(B(rt)
=KV y(M(r)e K" Using these operators, the single-
particle Green’s function is defined as

(Wl TLdkal 1D i p(r't) ][ W)

iIGP(rt,r't")= (4) 1
) ,\IJ, ,\I]. 1 A~ A
(ol ¥o) K:EO_MNO+VEO (ﬁwp—u)agaapﬁ; Vi
where | W) denotes the ground-state wave function of the A
system andr is the time-ordered product of operators. =E;— uNy+K’, (6)
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where we denote’iwpzthZ/Zm. The interaction Hamil- sifications for all the irreducible self-energy diagrams: Dia-

tonian V separates into the several distinct paHg:is the ~ grams with one ingoing and one outgoing noncondensate
part which does not include noncondensate opeaﬁérand particle, and Tﬁe corre_spondlng sum of matrix glements is
V; denotes the parts which includg;), where the indey denoted by21;(p); diagrams with two outgoing non-
- ) -~ condensate particles, and the corresponding sum of matrix
indicates the number ay/. In a normal systemny=0), . @By, A . Lo

N p - ! elements is denoted hy74(p); diagrams with two ingoing
only Va 1s pres(%nt. We also note thiithas no term contain- 4 condensate particles, and the corresponding sum of ma-
ing a singlea,,, because these would violate momentumy.iy elements is denoted Y28 (p).

conservation. Correspondingly, we must introduce two anomalous exact

The Heisenberg picture after the Bogoliubov prescriptionGreen,S function@’ff(p) and G'gf(p), which represent

is modified, and the field operataf,(r) becomesyi,(rt)  the appearance and disappearance of two noncondensate par-
= Nol ot i, (rt), Where gy (rt) =™ (ne ™' ticles from the condensate. The anomalous Green’s functions
After the Bogoliubov prescription, the single-particle are defined in terms of Heisenberg operators:
Green’s function, Eq(4), is modified as . .

(OIT[ 4" ko1t g f (r't")]|O)

olT ) " 110 iG,aﬁ(rt,r,t,): ’ (10)
=nolaLptiG ), (@) iG'sB(rt,r't’)= (O olr) & Kﬁ(r/tl)“O). (11

(0[0)
where the prime denotes the noncondensate part. Here, the

ground-statdO) is not an eigenstate o and differs from
the statgdW¥,) in Eq. (4).

Dyson’s equations for a scalar Bose-condensed system are
first derived by BeliaeJ11,12. We generalize these equa-
tions for this Bose-condensed system with spin degrees of

] freedom, with are written as follows:
C. Dyson’s equations

~ raf _r~aB a ) 1B
Using the operator which is defined d6,=—uNg G'1T(P)=Gg"(p)+ G5 (p)2{1(p)G'17(P)
+Kg, whereKo=S . o(fiwp— p)ahap, the field operator +G(p)213(p)G' (p), (12
in  the interaction picture is written asyy(rt) 5 s
=Ko’ g(r)e Kot The ground-staté0) of the operator G'#5(p)=G§"(p)213(p)G' 1 (—p)
K, is an eigenstate of the particle number in the momentum +GE(p)SY2(p)G 2 (p), (13)
space, which is expressed E»=|N,0,0 ...), where the 0 H 2
number of particles in each component of spin is arbitrary G’ B (p)=G2Y(—p)S2(p)G' %
and the sum of the particles in zero momentum state is equal 21(P)=Go (= P)221(P)G 31 (P)
to the total number of particles. The zero-order Green's +GY(—p) 21— p)G' ¥ (p), (14
function, which is the Green’s function for an ideal Bose-
condensed gas, becomes G'i(=p)=G5#(—p)+ G5 (P23 (PG 15(P)
iGEA(rt,rt)=(O| T[4 () ' [(r't)]|0).  (8) +G§(—p)IN(—p)G'H(—p). (15
After a simple calculation, its Fourier transform is expressedoverall four-momentum conservation determines the direc-
as tion of the momentum flow. Equationd2) and (15) are
clearly equivalent equations f@’{£(p). Dyson’s equations
. Og (12)—(15) become a single-matrix equation
Ge¥(p)= £ © ? a

w— oyt ulh+isd’ . . . A
G'(p)=Go(p) +Go(P)2(P)G'(P), (16)
where we use the notation= (p,w). Note that there is no

backward propagation in time, or hole propagation in EqWhere

(9).

The presence of the condensate leads to the appearance of o, Gu(p)  GiAp) 1
self-energy diagrams of an anomalous type. These terms N Gu(p) Gi(—p)| (17)
stem from the interaction of particles which are not in the
condensate with particles in the condensate, and they contain . S(p) Sip)
operatoré" at certain vertices. By the Bogoliubov prescrip- S(p :{ } (18)

251(p) Zai(—p)

tion, these operators behavecasumbers, and there exist the
terms which contain the interaction potential, at which the
number of the noncondensate particles is not conserved. It & (p):[GO(p) 0 } (19)
follows that we can make the following three types of clas- 0 0 Go(—p) |
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In Egs.(17)—(19) matrix elements are also thex3 matrices, s o+ wp— plh+ (-p)
and the elements i’ (p) and Gy(p) are defined by the G'11 (p)= D(p) , (24)
Fourier components of Eqé7), (8), (10), and(11).

Due to the isotropy of space, all quantities depend on the
magnitude of the wave vectq: Using the Lehmann repre- fg/gg(p): ,
sentation of the anomalous Green'’s functi@®&%(p) and 0= oyt pulh—SAp)+is
G'5F(p), we find that they are even functions of frequency
w [16]; from these fuﬁnctions andBEq@7), (35), and(36), it &' (p) 1
is easily seen that {4 (p) and=57(p) are also even func- o1 (P)=— - N
tions of p=(p,w). ézince the inztleraction Hamiltonian pre- ooyt ulh=iZy (p)+i1o
serves the total number of particles, the anomalous self- S5Hp)
energies are symmetric in the operatogs, and 4//2. G S (p)=— ﬂ (27)
Therefore, with any diagram fa€58(p), we can associate D(p)
exactly the same diagram f&rfzﬁ(p), obtained by replacing
all ingoing lines in the diagram fokE58(p) with outgoing

1

(29

(26)

where

lines, andvice versaThis procedure reverses the direction in S -2 (-p) 2

which all internal lines are traversed. However, we can re- fD(p):[w— }

verse the direction in which all internal lines are traversed by 2

changingp to — p in the matrix element corresponding to the SEH P+ (—p) 2
given diagram foB 58(p). SinceX4£(p) is an even function —[ p— = 5 = —,u/ﬁ}

of p, it follows that=5(p) =2 5(p),G'5{(p) =G’ 5 (p).
Since rotational symmetry alorgaxis is not b_roken, the 215 (P2 L (p). (28)

z component of the total angular momentum is conserved,

and the matrix structures &’(p) and2(p) are determined For the polar state, since the condensed particles agg in

[17]. Due to spin conservation, the nonzero elements of nor=(0,1,0)", the nonzero elements of the anomalous Green's

mal Green’s functions and self-energies are the diagonal efunctions and self-energies are the elements in which the

ements for both the ferromagnetic and the polar states. F@um of the spin indices are zero. Then, the matrix Green’s

ferromagnetic state, since condensed particles arggin functions and self-energies are expressed as

=(1,0,0)" and the interaction Hamiltonian preserves the to-

tal number of the particles, the existence of the anomalous pG'1+1+(p) 0 0
Green’s functions and self-energies are forbidden except for G/ _ 0 G'%p) 0
G;, (p) andX;,"(p). Then, the matrix Green’s functions pCu(P) PG (P L ’
and self-energies are expressed as 0 0 pG 11 (P) 29
G' 11" (p) 000 0 1 (p) 0 0
Gup= 0 Gnue 0 | @0 Sup=| O (0> B R R 0)
0 0 G (P) 0 0 211 (P)
2 (P 0 0 0 0 oG'12 (P)
Sap=| 0  E¥Np 0 |, @) Cip)=| 0 G'Bp 0 |
0 0 211 (P) G2 (p) 0 0
(31
r++
G’ (p) 0 O 0 0 212 (P)
1 = 0 0 0 22
iGiop) ’ ool (22) Sp)=| 0 o2 19(P) 0o |. 32
210 (P) 0 0

25, (p) 0 0 Since the ground-state structure of the condensate wave
_ function £ is invariant under spin reflection, the Green's
>12(P) = 0 0 9f. 23 functions and self-energies are also symmetric under spin
00 reflection: ,G'11"(p)=4G'11 (P), o211 (P)=p2u1 (P).
oG 12 (P)=,G'1, (P), and %1, (P)=p2 1, (P). By these
By these matrix forms and Dyson’s equatid®), the matrix ~ matrix forms and Dyson’s equati@fé), the matrix inversion
inversion yields yields

0
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o+o,—ulhi+, S (—p)
pG I1+(p)_ 0 +(p) ’ (33) (p) ,ulraﬂ /.lel(p/zlplzip)gvl
Go%m:w+wvaﬂn2%ep> 34 +—¢M_Mﬂw(—mzmzpmﬁ, (39)
1 pDO( p) ,
af no
+7( )_ . pE]J.r27(p) (35) z’12(p): h avl sz(p 0 O)gvlgvz (40)
G ROR
a Mo
S 2580 =7 00 E T s (OI0). (41)
G'¥%p)=— =2 (36)
12 Do(p)’
P To obtain the chemical potential, we must let all four par-
where ticles in FM BB,(k,k’;P) belong to the condensed phase,
and divide by one power afy,. We then have
IlJr(p)_ +l+(_p) 2 =n é«T é«T FO (0 Oo)ér g (42)
pP+(P)=| 0= 2 K106 116 pyt myvygvy\ D 6w by
(p)+ SH(—p) 2 To proceed further, we must know the explicit value of the
_{wp_ 5 pM/ﬁ} scattering amplitudé ., 54 (k,k’). At small momenta, we
neglect the wave-vector dependence of the lowest-order term
+o212 (P)p212 (P), (37 in Eq. (A12): T a0 ppr(kK)=T,, e wheref°_, ppr 1S
the momentum-independent partfof,, rppr(K,K") and is de-
B 2 09(p) — 22— p) |? fined in Eq.(5). This approximation is allowed when the
pPo(p)=| w— 2 wavelength is long compared to the characteristic size of the
interaction region, which has an order of magnitude given by
szO(p)+p200(_ 2 . .
B PR 11 ~ ulh the scattering amplltudeaa BB
P 2 P Substituting the effective potentleII ,(k,k’;P) in
4 3091) 500y, 38 Eqs (A12) into Egs.(39), (40), and(42) and the value of
12l P)p21(P) 39 var pp (GK';P) in Egs.(A13) into Egs.(41), we find
Note that the matrix Green’s function@’(p) and self- n 52 52\ 2
energiess(p) are symmetric matrix for both the ferromag-  2{%(p)= fgll E(f‘;ﬂwlﬂo pav) t| 1
netic and the polar states.
D. First-order Green'’s function F0
X(faﬂz #1V2f#2ﬁ vary fﬂlﬂz “szﬂzﬁ vyr)

The typical interatomic potential involves a hard core.

This brings a problem for the perturbation theory in terms of dq

1

the bare potentiaUaa,ﬁ_ﬁr(r). Since Uaa,ﬁﬁ,(r) can be Xf
large, the first few terms in such a perturbation expansion are

no longer sufficient. Indeed, one has to sum over an infinite

number of terms, i.e., the ladder-type diagram. In the ladder 1
approximation, effective potential“ia,’ﬁﬁ,(k,k’;P) in-
volves the sum over all the ladder diagrams to infinite order
inU,, gg(r), taking into account the repeated scattering of
two particles in a gas. In Appendix A, we derive the effective
potentlall“w BB ,(k,k’";P), and show the connection be-
tweenl",m BB,(k k’;P) and thesswave scattering amplitude

faa, s (K,K") within the ladder approximation, which is
Egs.(A12) or (Al13).
The self-energies are determined by the special values

(27‘r)3 ho

Ng f0
A m “'1i sz

S¥(p)=+

dq

ﬁ2p2
4m

ﬁZ 2
a +id

+2u—

(43

2
fO F0
apy By fhyViataly

1 1

dJ|

X ¢ Lo

which Ffw,’ﬁﬁ,(k,k’ ; P) takes when two out of four particles (2m)°
involved in a process belong to the condensed phase. Each

particle of the condensed phase carries a fagtyy ¢, , we
find

2p—
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2

ﬁZ 2
ap F0 F0
221 (p) g,ulg,uz m /"'10‘ /.Lzﬁ ( ) fp,lvl /.szzfvla vy

(49)

50

2 2
_ =0 30
'U‘_nogﬂlgﬂz m #1"1#2"2 ( ) fﬂlﬂs H2V3" H3V1.V3l)

m

Xf dqg 1 N 1 [ ¢
3 h2 2 ﬁZ 2 V1S vy
@m7\ 5, -t T s P s
m m
(46)

where we use Eq(A9). For dimensional reasons, all the
integral terms in EQs.(43)—(46) are of the order of
(noaﬁt) 2 within the first-order approximation, we neglect

the integral terms in Eq$43)—(46).

For the ferromagnetic state, the condensate wave function

can be chosen tg/,, and the first-order self-energies are

2(cptcy) 0 0
47Tﬁn0
lel(p)(l): m 0 ChtCs 0 )
0 0 Ch—Cs
(47)
Ak cp,tecs 0 O
7hn
SppW=—=| 0 0 0| (4§
0 0 0
47Th2no
fM(l): (ChtcCy). (49

The resultant first-order Green’s functions are derived using

Eqgs.(24)—(28),

A B

r++ _ p o p
G D= e hris wrElhi-is 0

C C

N p B p
2 P=0TEih+is wrEli-is OV
GNP =—r, (52

1 o—wptid
G’ 11 (p)zm, (53
where

Ep=[(fiwp)*+20uDhiwy]*?, (54

PHYSICAL REVIEW A68, 013601 (2003

2
No
gp=lhwy+2 [cd|, (55
1 (1)
Ap= 2E, 5= [Eptiu'”/+ wpl, (56)
Bp= 2E, S [—E +f:U~( )+wp] (57)
C ! an (58)
=5z [—mt].
p 2E,

The excitation energies of collective modes are determined
by the poles of above Green’s functions. The density-wave
mode has a Bogoliubov spectruy. The spin-wave mode
has a free particle spectrubmo,; and there exists the “quad-
rupole” spin-wave mode, which has a free-particle-like spec-
trum with a finite gap 2(47%2ny/m)|cg|. For the system to
be stable, the chemical potentigk(*) should be positive,
which means,+cs>0.

For the polar state, one can choose the condensate wave
function aspZ,, and the first-order self-energies are

At cptcs O 0
T no
pzll(p)(l): m 0 2¢y 0 , (59
0 0 c,tcq
0 0 c4
A7hn
Zup)V=—""1 0 ¢ O], (60
cs 0 O
47Th2n0
p:“(l): m n- (61)

The resultant first-order Green’s functions are derived using
Egs.(33)—(38),

AS BS
oG ()= - : (62
w—EYh+i6 w+EYh—is’
A B
G'%p) = p _ p , 63)
w(P) w—EYi+is w+ENA—i6 (
cs cs
G'1 - 64)
' (P)= —Eplﬁ+|5 w+EpIﬁ—|5 (
c" c"
GIOO _ p _ p , (65)
oG adP) w—EYi+is w+ENA—id
where
A7h’nyc 12
ESV=| (hwp?+2——Wp 0 | (66)
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po p.B ne p.B P& A
N ( >< ) 77 \z< )Zﬂ
ﬂpsal pAﬂ,\ ﬂpSa, p4ﬁ‘,\ o 4
a) psﬂ \Ihﬂ
b) C)
o po
N7 ,,,;\
Zﬂ ﬂl
ﬂ na Pa
.0/ S 7 pzﬁ\ ﬂpﬂ' N
Paﬂ"\ PA W f)
d) e) FIG. 1. Topologically different diagrams of
s v P z 5 order (1pa? )"
WS A ~ TR
1)
@ 7 ( )
,Qp‘ﬁ'
LGN
i)
1, H C(ﬁ H H _ 1, -
- 1 ) A NoCyrn) Qreen,sa;unctpngo (p) with the first-order _Greens func
T Ep+ Tﬂnp , (67)  tion G i”(p) (i,j=1,2). We therefore consider the loops,

which can be built out oG'{#(p) andT", ;.. (kk';P).
There are ten essentially different loops and we show them in

2
sm__ L [_ s(m) . 277 NoCsn) tw,, (69 Fig- 1. Arectangle denotes the constant part of the effective
P ZES(") P m potential which corresponds tdi{/m)"fga,’ﬁﬂ, , and a rect-
angle with a cross denotes a sum of two rectangles, one
1 47h%NoCqrn being a direct interaction and the other an exchange interac-
s(n) _ (n) (69) . . .
P opsn) m : tion. The two differ only by an interchange of the upper or
P

the lower ends. The sum of the two rectangles introduces a

In this case, the excitation forms are all of the Bogoliuboy@ctor

form, which areE] andE;. The former is the density-wave 0 . 0 .
mode and the Iattper is th't)e spin-wave mode. For the system to Lo ppr(PP5PIHT gor 0 (ZPP'P)
be stable, the chemical potentigh(*) should be positive, n2 . 2
which meanss,>0. = (Taar ppr T T par ap) = 1T aar ppr - (70)
Note that above excitation energies for both the ferromag-
netic and the polar states coincide with the results of previ-
ous studie$6,7]. If the first-order Green’s function&’¢£(p), G'#(p), and
G’;‘f(p) are expanded in powers of the effective potential
E. Second-order approximation an,’ﬂﬁ,(k,k’;P), then in the lowest approximation the dia-

For the second-order approximation to the self-energie§"@MS C’iéjﬁ) in Fig. 1 become loops with two continuous
(p). But all such loops are already included in

and the chemical potential, we must retain quantities of thdnes 0f Gg , : _ _
order (noagt) 12 The integral terms in Eq$43)—(46) are of I’w,’ﬁﬁ,(k,k ;P) and must therefore be omitted. This omis-

the order of f‘oagt)llz- The diagrams containing one loop sion is represented in Fig. 1 by the strokes across the con-

. : . . o tinuous lines. It is convenient to separate out contributions,
with three or more continuous lines give contributions of the

same order. The summation over sets of diagrams, whicWhICh are explicitly linear and quadratic ﬁi
differ only in the number of continuous lines in a loop, is
automatically performed if one replaces the zero-order 3(p)=21(p) P+ 314(p) @, (70)

a’,ﬁ’ﬁ” 1
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31p) =21 p) P+ (p) @, (72
M:M(l)JFM(Z)- (73

Here, the first-order term&;,(p)®, =.(p)®), and u®
have been given in Eq447)—(49) and (59)—(61) for the
ferromagnetic and polar states, respectively. For further con-
venience, we call second-order contributions from the inte-
gral terms in Eqs(43)—(46) type-| contributions, and denote
their contributions to the self-energies and the chemical po-
tential as> (p)' andu', respectively. Similarly, the contribu-
tions from the diagrams in Fig. 1 are called the type-II con-
trilPutions and their contributions are denoted>s®)" and
J7

Let F&~9(p;,p,,P3.P4) and F™'(p;,p,) denote the
contributions from the diagrams in Fig. 1, which are written
as follows:

an’,ﬁﬁ’(pl7p2;p31p4)

i\2( d*q %2 Sa
s e

PHYSICAL REVIEW A68, 013601 (2003

Fz,a’ﬁﬁ/(pl;p21p31p4)

(2 dq A o
= — —f G’ 11
h f (2m)* m PP

><<p3+p4—q)e'ﬁ1’32(q>—f

aja’ BB
(78)
FLa’BB’(;pllpZ!pSip4)
= I_ Zf d'q ﬁ_2~o h_z?o
h (277)4 m @1@BiBm @’ BB’
XG' S p +p,—q)G ), (79
Fia’ﬁﬁ’(pl!pZ!p3rp4;)
S\ 4 )
f T e ,G'P12(q)
(2m)* m eap.BBm o' ah.B'BY
XG'3%2(p, +p,—q), (80)

XFayal oG’ 1B1(p3 p1+a), (74)

anr,gﬁ/(pl,pzips,pa,)
i 2[ d*q
=|— /,31“1 +
(ﬁ) (2m) (Ps—p1+q)

h2, h2, B!
Xﬁfa“'vﬁlﬁiﬁfalaiﬁﬁ'c’/ 1 1(q) (75)

an',/gg/(plapz;ps,pd

_ ,alal /ﬁlﬁl
ﬁ) | ooy oyt e O3 (WO
><(|03+|o4—q)—G’“lal(q)G’ﬁlel

><(pS—’—p4 q)] ‘7‘10‘ BB’ (76)

Fia’ﬁ,ﬁ'(plyp2!p3;p4)

2 4
=[5 f R — G"Blal
il ) (2m)t m aalpe

2

i d*q A%
aa(plva) ( )f ﬁmfaa ﬁlﬁiG’ﬁlﬁ(Q) (81

ool S5,
aﬁ(plp21)_ g (277)4 m aa! :Blgl

x| 6'53%(q)- ( ) GGy~ )

Xh2_o
—f ’ ,Zaégﬁé 3 (82)

m @1%,.818,

i d*q o 0
F 5 (iPaPa) = ( )f > )4[ sP1(q)— (ﬁ)gzzzgz

h2,
al ag B 51
meaza ﬁﬁ/G ! (Q)G ! ( Q)}

A2,

S A

(83

Here momentum conservation is assumed to hold every-
where. Everywhere on the right-hand side of E@4)—(83),
the value of the first-order approximationu® or

NN (e
X(pl+p2_q)G, l Z(Q) alaé,a/ﬁ’:
(77)

oxPshould should be substituted fpr.
The self-energies involve special values of the functions

""" 9(p1,P2,Ps,Ps) and F™"I(py,py), together with a
factor Jno £, for each particle of the condensed phase:
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2P = (—In0)LE5,F s o p(POIOP) Lart L5 F s g s(POIOD) Lart L F o s (P00

b F a5y (POIOPI Ly + L0, L Py, p(POOP) + L0 L0 F a0 s OPOIP) +FL s (910,000 Lty

+F o, (PiOP.0]L s, L +FL (P3P, (84)
a . b . t =d .
2’:I.Z‘B(p)” (_InO)[Faa BB (p’_p10!0)§ai§31+Faaivﬁlgi(p’_p10!0)§aiéﬂi+gﬂlFaﬁﬁlvﬁi(p’O!_plo)gﬁibf
+ L5 F g (POPIO L0 FG g o (0D = Pi0) g+ LLFG o0 (0-PuPI0) g
+§,31§ﬁ2 aﬁﬂlﬁz(po p0)+§3§ Faaﬁﬂ(pOO p)]+F (p.p;), (85)
250(P)" = (N0 L0y L5, F o000, = P)F 0 L Fa g 000, = D) F L0 FL (0P, —PO) Ly
gal ay Utﬁﬁ (0 P.p, 0)§ﬁ +£a1 ay a! a‘g(o P, 0 p)ga +§a1 aja QB(O;_p.O,p)ga:’L
+Faﬁlﬂﬁi(;p,0,— P.0) g Lprt Faaiﬁlﬁ(p,o,o,—p;)éﬁléa;HFLﬁ(;p,—p)- (86)
|
The chemical potential is determined by the terms arising Ne [ 4mwh2\2 dq
from the excitation of two particles out of the condensate, fzgg(p)@):f( (cht cs)zf 3
where they interact repeatedly and then drop back into the (2m)
condensate. The sums of contributions from diagrams of
these types are, respectively,(0;0) andF;(0,0;): < Aqt Bq+2Cq 1
fio—E, hwk+|5 R
m 4m
p'1h=LFD (0:0) L g+ {1LEF, 4(0,0). (8D
+@(c +c )j ﬂB (89
m n-ws (27T)3 qr
To carry out the frequency integration in E¢84)—(83), it is
convenient to note thab,(p) = G,,(p). The frequency in-
tegrations are now performed and the results should be sub-
stituted into Eqs(84)—(87). ne | 4712\ 2 d
Adding the type-I terms in Eq$43)—(46) to type-Il terms fgll(p)(Z):_O( 77 ) J q (Cp—Co)?
in Egs. (84)—(87), we obtain the second-order self-energies h m (2m)°
and chemical potential. For the ferromagnetic state,
A +By+2C
Fo By extis 20
1 (p)®P= (4Wﬁ2> f da_| _MNu(Eq B o7 A
p)'<)= -
m (2m)3| hwo—Eq—Ex+id 2
Xﬁw—ﬁwq—ﬁwk+i5+[(cn Cs)
_ N11(—Eqg, —Ey) (CqtCo)? 262
ho+Eq+E—id “h%g® #%p? 5202 ﬁzp2
m 4m m
TP da_g 88 il 90
?(Cn Cs) W q ( ) (Cn s) (27 )3 ( )
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Tt gL L T
Al m (2m)3| hw—Eq—Ex+id

(Cotcy)?
h2q2
m

. fN12( - Eq [ Eq)
hi0+'Eq+'Ek_‘i5

AL +c)f da 91)
m n-ws (277)3 g

2

47h
f/_,’(2):

(et [ 2

C C

n S. (277)3
A7h? 1

X Cq+28q+n°T(C”+CS)W , (92

m

wherek=p—q, and
N12(Eq, E) = 2(C+C5) 2(2ABy+2CCit AjA

+4CAY, (93)
iN1AEq,E) =2(Cpt o) A(2BAL+2C A +2C By
+3C4Ci)- (94)

For the polar state,
i p><2):@(4wﬁ2)2f dg | pNu(EG.ER)
" Al om (2m)3| io—ES—Ep+i5

_ lel(_ES’_EE)_'_ (Cn+cs)2
ho+ES+ER—id n°q®  h°p

2

m 4m
41h dq N
t (277)3[(Cn+CS)Bq
+(3cp+¢5)Bgl, (95

pzoo(p)(z):@(‘lﬁiz)zf dg oN11(Eg,ER)
H Alom (2m)?| hio—EN—EQ+is

_ pNgl(_Env_EE) I pNil(ES’EE)
ho+Eq+Eg—i6 ho—Eg—Eg+id

 NI(—ES.-ER) | (ch+2ch)

ho+ESHER—i6 h°9° h%p?

m 4m
Azh dq N s
2 (ZT)g[Can+(Cn+CS)Bq]1

(96)
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oy No(4mh?\2 L dg [ NiAESED)
@L(p)‘”ﬁ( )f :

m (2m)° | ho—E5—Eg+is
- oNio(—Eg, —E}) +4Trﬁf dq
ho+Egt+Eg—ié m (2m)°
X | (ch—Cs)CqtcsCq
o 47h? 2 ) 1 } @7
- C Ch—Co)>—|,
2 S n S ﬁwq

pN1AEq . ER)
ho—El—ER+is

no(4mh?\? dq
00 y)(2)— 9
p>12(P) ﬁ( m ) J' (2

_ pNTZ(_Env_EE) 4 pNiz(ESvEﬁ)
ho+Eq+Eg—i6 fho—Eq—Eg+id

 NG(—ES-ED
ho+EqtEy—io

4Wﬁf dq
m J (2m)?

no 4mh? (C3+2c2)

X|c,Ch+2cCo+ = :
na sTan 2 hawg
(98)
47h? dg
(2) — n n S s s
P =— J(zw)S Cn(Ch+2B0+2B5) + 2¢4(CS+BY)
2 (A2 2
ng 4mh* (Cj+2cs) -
2 m fiwg | (99
where

lel(Es:EE)Z(Cn+Cs)2Ag(AE+BE+2CE)
+4cy(Cy+Co) CHCR+AD) +4CZBEAT
(100
NI (Eq, EQ) = 2CA(2ABR+2CHCR+AjAL+4CRAD),
(102)
oNS1(ES,ER) =2(Cy+Co)2(ASBL+ CECH) +ACZAAR

+8c4(Cnt Cs)CeAR, (102

oN1o(ES ER) = (Co+Cs) 2CY(AR+BR+2Cp) +4c2C3Ch
+2¢4(Cnt Cs) (AgBi+ BAR+ALCK

+B3CY), (103

NIL(ED ER) =2c2(2BJAT+ 2CPAT+ 2CPBL + 3CICY),
(104
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N3 ES ER)=2(Cp+Cs) A(BGAR+ CECR) +4cC4(CntCo)

X(CgAL+CEBY) +4c2CiCy. (105

PHYSICAL REVIEW®8, 013601 (2003
A%(p)=22p) D — @1, (113

ATT(P) =31 (PP —u@h. (114

Once we have obtained a specific form for self-energies

and chemical potential, we then substitute these terms intbOr the polar state, Green's functions including the second-

Egs. (24)—(28) and Eqgs.(33)—(39) to calculate the Green’s Order corrections are
functions. Since the second-order terms are small correc-

tions, we can express the Green'’s functions in a form analo-

gous to the first-order Green’s functions in E¢S0)—(53)
and (62)—(65). For the ferromagnetic state,

Aptia™ " (p)
w—Eplh— A" (p)*

G’ 11 (p)=

Bp+fa++(p)
w+Ep/h+ AT (p)"

(106)

G’ N(p)= (107)

w—w,—(A%(p)+is’

1
w—w,—(A~ (p)+id

G’y (P)= (108

Cp+f:8++(p)
w—Ep/h— AT (p)*

- Cp+f,8++(p)
w+Ep/hi+ AT (p)

fG’I;(P):

(109
where
., ho
AP =5 [0 (PP E 1y (= p) B = 2P h]
p

wh o @) 5++ 2)
+ S [ (P2 (—p)
p

1
=20 PIh =255 () PN+ 5[4 ()P

-2 (—p)@)], (110

fM(l)

4E;
+20 (—p) P21 @it =315 (p) @]},

(112

ra’ T (p)h= {225 (P Phoy—wD[E " (p)?

f,u(l){ﬁw [ 2++(p)(2)
3 pLf<~11

4E;

343 ()@= 2]

—wVE PP+ (—p)®@

— 2Pt =23, (p) 1},

1
BPI= = S2 (p) P+
p

(112

G’ (p)= Aptpa®(p)  Bptpe(p)
P2 1 w—EYi—pA(p)"  w+EYhi+,A%p) "
(119
G'%p)= Aptpa(p)  Bptpa'(p)
P w—ENR—A"(p)T w+ENA+ AP
(116
6 (p)= CotpB(p)  CptpB(p)
P w—EYh—ANp)T ot EYh+ A D)
(117
G'%p)= CotpB"(P) _ Co+pB"(P)
P w—Epih—pAN(p)* 0+ EpifitpAN(p)
(1189
where
S\t hop 2) ++ 2) (2)
pA (p)_ZZES[pzll (P) '+ p2 1y (=P = 2pu ]
p

(1)
7
S e (P @42y (- )P - 2
p

1
—pEf{(p)(z)]ii[pEH’(p)(z)

-0 (=p) @], (119

pM(l)
4E3
+o311 (= p) @ =2,uPh— 31 (p) @,

(120

pa*(p)/h= {231 (P Phoy— w20 (@

1 _ s
B (P)IN=— 315 (p)@+ 2
Ep

+ .50 (—p)@—2,u®/h]
— ot () @+ S (- p)@—2,u@h
-2 (PP, (121)

and we can obtain the terma"(p)~, ,"(p), and ,3"(p)
by replacing the subscripts of self-energies, which are
and "7, with ® and E;, with EJ in corresponding terms.

(1)
{ho [psz(p)(z)
3 p
4E,S)
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ll. FINITE-TEMPERATURE EXTENSION in the latter expression we replagewith i w,, and integra-

So far, we have studied Bose-condensed system with spitr|10n with summation. Effective potential at finite tempera-

T ,. . . .
degrees of freedom at the absolute zero of temperature. ng;resl“w, BB’(k’k ;P) are derived in Appendix B.

finite temperatures, the problem becomes more complicate .Oll%'k?hgt g&i;?vseomﬁ :riggl 0;:2”&2?;?;%%5%9 C?ﬁé”g“gg&?
But to a great extent, the discussion and calculations at finit P y P

T ..
temperatures duplicate the corresponding material in the pré/21Ues, Whichl',,, 55, (k,K';P) takes when two out of four
articles involved in a process belong to the condensed

ceding section. To avoid the duplication, we discuss the dh‘ph )
ference betweef =0 andT#0. phase:

@ Mo
A. Temperature Green's function Elf(p):?Zzlrzﬁ,ﬂlvl(p/lp/ziP)§V1
If we consider the finite-temperature case, the definition n
of the Green'’s functions becomes slightly different. With the + 27T (—pl2,p/2;P)¢ (124)
. S~ . . h SH1T maBiavy S vy
grand canonical Hamiltonial, the grand partition function
and statistical operator are written @g=e #?=tre”AK » No. -
andpg=2Zg'e #K=ef?"M) respectively where we use the 212(P)= 2T o, 5, (PO0)L, o, (129
short-hand notatioB=1/kgT, and(} is the thermodynamic
potential. We introduce the modifieddependent Heisenberg

picture, and the field operator assumes the fabp,(r7)

—_ oKlh Kl ; ;
~¢€ ’w?(r)e' o Trf1'en, the single-particle temperature 1 ghtain the chemical potential, we must let all four par-
Green’s function is defined as ticles in Fla,’[,ﬁ,(k,k’;P) belong to the condensed phase,

Gop(rr ' 7')= —tpaT [ da(r7) t}ﬁﬁ(r’r’)]]. (122 and divide by one power af,. We then have

=nolt T 1T 0,0;0 : 12
Here, the symboT . orders the operators according to their #0080 Eu g g 0010, (129
value of7. The trace tr implies a sum over a complete set of  Using the value Oﬂ“?m, 55 (KK';P) in Egs. (A12) and
states in the Hilbf:rt space, each contribution being weighteEIAB) and substituting the value &f" (k,k":P) in Eq.
with the operatopg . _ (B6) into Egs.(124—(127), we find
The single-particle temperature Green’s function for non-
condensate part is also defined as follows

a no
2500 =7 (Ll i up(OPI0). (126

a’,Bﬁ’

y Ny 22 22 o
. . . Ell(p):?g‘tl Efaﬁ'l“lyl_l_ m f“#zvﬂl"zfﬂzﬂv”zﬁ
G (rrr' 7) = —tlpeT LY o(rn ¥ iplr' 711
(123

where the trace means the sum over a complete set of eigen- X J dq
states after the Bogoliubov prescription. The diagrams in the (2m)®
technique for absolute zero and the diagrams in Matsubara’s
technique differ only in which integration over frequencies % 1+ fg(hwppiq—p) +Ta(hwpp g~ p)
for T=0 is replaced by summation over discrete “frequen- _ h2p? h%qg°
cies” in iw, for T#0. More precisely, any expression for a ihw,— am +t2p-
correction to a temperature Green’s function, corresponding
to a certain diagram, can be obtained from the expression for P
the Green’s function foff =0, corresponding to the same T ReE Rt Loy (128
diagram, if in the latter expression we replaoewith i w, _—
and integration by the summation, according to the rule
(il2m)fdw- - -——(1IBR)Z,- - -. This fact allows us to im-
mediately extend many results in the preceding section to the S %B(p)= Mo
caseT #0, provided we simply change the notation. In par- h
ticular, Dyson’s equation still holds in Matsubara’s technique
and takes the same form as for the caseO, and can be _
obtained by replacing with iw, in Eq. (16). XJ dg | 1+2fg(hwg—n)
(em?
B. Second-order approximation at finite temperatures M m

2\ 2
o

‘m/ arsBuy' mivysavs

As we note in previous sections, at finite temperatures, 7
any expression for the self-energies, corresponding to a cer- I—— (129
tain diagram, can be obtained from the expression for the heq =
self-energies at =0, corresponding to the same diagram, if m
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apB No h2~0 h? 2~o F0
2‘21 (p) = ?gplgpz Efﬂla’”ﬁﬁ_’_ E f,ulvl ,,uzvzf via, vy
Xf dq l+2fB(hwq—,u)+ 1
3 h2 2 ﬁZ 2 ’
(2m) LG
m m
(130
h2 h2\2. ~
_ 7o ) Fo 0
M—HO§M1§M2 m HiV1:#2V2 (m) KiM3 RoV3 " H3V1 . V3V2

dg [1+2fgfiog—p) 1
(2m)3 h%q°

m m

J|

(131
where we use EqA9) and the notation in Eq.70). If we

substitute the value of the ground-state condensate wa
functions (£, and ¢, into Egs. (128—(131), the self-
energies and the chemical potential for the ferromagnetic an

polar state are obtained by summing spin indexes.

PHYSICAL REVIEW®8, 013601 (2003

(131, which are the type-l contributions, we must add the
contributions from the diagrams containing one loop with
continuous lines, which are the type-Il contribution and give
the contributions of the order oh(,a,?;t)l’z. The essentially

different diagrams of the type-Il contribution are same as the
ones aff =0 and are shown in Fig. 1. We have to express the
diagrams in Fig. 1 in terms of the temperature Green’s func-
tions and change the coefficient of théh-order contribu-
tions (i/4)"(—i) to (—1A)"(—1)° in Egs. (74—(83),
whereC is the number of the condensate factogsappear-

ing in the diagram. To calculate the self-energies and the
chemical potential, we must collect the special values of the
functionsF® -~ 9(p;,p»,P3,p4) andF™"i(p;,p,) for each
quantity like Eqs(74)—(83) at T=0. If we change the coef-
ficient —ing to —ng in Egs. (84)—(87), we can obtain the
desired expressions at finite temperatures.

Adding the contributions from the diagrams in Fig. 1 to
the second-order terms from Eq%28—(131), we obtain the
second-order self-energies and the chemical potential at fi-
nite temperatures. If we replace with iw, in Egs. (88)—
\;82) and Egs.(95—(99), the “temperature-independent”
parts of each quantity are the same as the ones derived at
§=0 for both the ferromagnetic and the polar states. To
istinguish the temperature-dependent parts from the

Within the first-order approximation, in which we neglect [€mperature-independent parts, we denote the temperature-
the integrals in Eq9128—(131), we obtain the self-energies erendent parts, which depend on 'Fhe Bose distribution fgnc-
and the chemical potential, which coincide with the resultgion, by %(p)+ and the temperature independent parts, which

derived at absolute zero of temperature in E4%)—(49) and

do not depend on the Bose distribution functexplicitly, by

(59—(61) for the ferromagnetic and polar states, respec=(P)o: 2(P)=2(p)o+=(p)r. Although at finite tempera-
tively. As a result, the first-order temperature Green’s funciures the condensate dengiiy(T) is temperature dependent,

tions are derived by replacing with i w,, in Egs.(50)—(53)
and(62)—(65).

we neglect the implicit temperature dependence through
no(T) and regard the implicit temperature-dependent terms

For the second-order approximation to the self-energieas temperature-independent terms. For the ferromagnetic
and the chemical potential, we must retain the terms of thetate, the temperature-dependent parts of the self-energies

order of (noa,?it) 12 Besides the integral terms in Eq$28—

and the chemical potential are written as

no [ 4mh?\? d N,(Eq,E N, (—E,,—E Ny(Eq,—E
fsz(p)(Tz):_o f q f 11(Eq,Ex) _f.ll( q K f,(Ea E)+ _f 11(Eq K
h m (277)3 Iﬁwn—Eq—Ek |fL0)n+Eq+Ek q Iﬁwn—Eq+Ek
lel(_Eank) (Cn+cs)2 (Cn_cs)2
Tont BB~ 0 T o Thagt ey - et el T G e (Fare
Axh dq

mJ (2m)?

{(Cn+cs)[2(Aq+ Bq)fB(Eq)+fB(ﬁwq)]+(Cn_Cs)fB(8q)}.

(132

No[4mh?\? dq A,+B,+2C A,+B,+2C
00/ ) (2)— 0 2| _"a™ Pq q q " Bq q
lel(p)T h( m ) f (Zw)a[(cn+CS) |:Ihwn_Eq_ﬁwkf+(quﬁwk)+Ihw—n+Eq_ﬁwkf(quﬁwk)
—4 2—f h —I—ﬁ dq + A,+B,)fr(E,) +f +2c,.fr(h
Csiﬁwn_8q+ﬁwk *(8Q’ wy) m (271_)3{(Cn cs)[( q q) a( q) B(sq)] Cnfa( wq)},

(133

013601-13



S. OHTSUKA AND S. KURIHARA PHYSICAL REVIEW A68, 013601 (2003

o No [ 4mh? dq
lel (p)T _ﬁ( m ) j (27T)3

20§f+(hwq,hwk)]+4wﬁf dq

Aq+Bq+2qu c Ag+Bg+2C,
ifiw,— Eq— &k +(Bque0+ 50 +E—

(Cn_cs)z 7(Eq18k)

{(Cn_cs)(Aq+ Bq)fB(Eq)+(Cn+Cs)[fB(ﬁwq)+2fB(£q)]}y

ifiop—hwg— oy (2m)3
(1349
No [ 4mh?\2 d Ny Eq.E Ny —Eq,—E Eq,—E
fzfer(P)(Tz):—o( ' ) J q [ f 120Eq,B) N1 K . (Eq B0+ - N1 Eq K
Al m (2m)3 |hwn—Eq—Ek ihwn+Eqt+Ey ihw,—Eqt+Ey
lez(_E ) (Cn+cs)2 (Cn_cs)2
ihwn+ Eq— Ekf (Eq.B0+ |hwn+hwq—hwkf*(f“"qﬁ"’k)+ihwn+gq—skf*(8‘1’8k)
A7h dq
+2W(Cn+CS)J' wcqu(Eq), (135
@_ 41rh? dq
T m f(277)3{(Cn+cs)[2(Aq+Bq+Cq)fB(Eq)+fB(ﬁwq)]+(Cn_Cs)fB(8q)}v (136
where the twof . (x,y) thermal functions are defined as
fi(X!y)EfB(X)ifB(y)v (137)

and the functionsNy;(15(X,y) are defined in Eqs(93) and (94). For polar state temperature-dependent parts of the self-
energies and the chemical potential are written as

T+ (2)_no 47Th2) dq
p211 (P)Y ( m f (2m)°

oN11(Eg.ER) B pN11(—Eg, —E)

. s n . s n f+(ES!EE)

3 lel(ES,—EE) pN11(—Eg.EQ)
iﬁwn—Ea-l-EE Iﬁwn-i-E(S]—EE

f_(ES,EE)]

47Th dq

(2m)?
00 (2)._ M0 47-rh2)2 dq
p>11(P)Y —ﬁ( m f (2m)°

| NIELED | NLCELED
iho,—Eq+Ey o, +Eq—Eg

——{(Cp C(AD+ B T(ED) + (3¢, + Co) (ASH B Fa(ED, (139

NL(EDED NG~ ED,—ED)
ihwn—Eg—EE iﬁwn-i-Eg-l—EE
pN11(Eq. ER)  pNiy(—Eg. —Ep)
itw,—Eq— ES ifw,+Eq+ER

f+(EnlErk1)

f.(ES,ED)

f_(ER,EQ)+

_pNi:L(Esl_ E) Nil( E, k)
iﬁwn—E§+Eﬁ ifw,+Eq—Ex

S ﬁ d n n
f(EG.ER) [ + f(z s12¢n(Ag+ By fa(Eg)

+2(cytcs) (At Be)fe(Eg)l (139

ZJ« dq
(2m)®
oN1o(Eg, — EE) oN1o( — Eq Ek)
iﬁwn—Ea-i-EE Iﬁwn-f-Es

lez(Es,EE) . lez(—Es,—EE)
iho,—Eq—Ey  ihwy+Eg+ER

47Tﬁ2
m

L (ES.ED

o212 (P )(2)—

f_(ES,E k)]+—f e {2(cp— o) CSfp(ES) +2¢.ChFR(EN)},

(140
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2\ 2 n n en n,_pEn _en
3PP = no(hﬁ ) / L. i e IR
m (2m)° | lihw,—Eq—Ep  ifiw,+Eq+Ep
oNIAEq, —EQ)  NiL(—Eg,E}) - oNIAEG.EQ)  pNI—Egq —ER) s s
T n n+- n nf*(E B+ s s s s f+(EQ’Ek)
iho,—Ej+ER  ihw,+E)—Ef ifw n—Eq Ef  fiw,+ES+E;

. pNiz(ESv_Eﬁ) Niz( E ) k)

Amh [ d
f(ES ,Eﬁ)] + %f (ZTq)s{chCSfB(Eg)+4CSC§fB(E3)},

(141

iﬁwn—Ea-l-Eﬁ Iﬁwn-i-Ea—Eﬁ
[
@ _4mh [ _da 2C,(AN+ Bl + CS) f5(E!
pMT m (27T)3{ Cnl( q T Pq q) B( q)

+[2(cht+co)(AG+ By +4cColfe(Eg)}, (142
where N11(12)(X y) are defined in Eq9100—(105).

IV. CALCULATIONS AT T=0

In previous sections, we worked out the single-particle
Green'’s functions for Bose-condensed system with spin de-
grees of freedom. The formalism developed is valid for an
arbitrary temperature if there exists the condensate. In this
section, we use the results obtained in previous sections to
study the energy spectrum &t 0. In particular, we give the
explicit expressions for the self-energies which contain infra-
red divergent terms. As well-knowid 1,12, for scalar Bose-
condensed gas these divergent contributions cancel out in the
final expressions for physical quantities such as the long-
wavelength excitation spectrum.

A. Excitation spectrum

At zero temperature, the Green’s functions are given by
Egs. (106—(109 and (115—(118). The functions in Egs.
(110—(114) and Eqs(119—(121) are linear combinations of
the second-order corrections to the self-energies and chemi-
cal potential. At zero temperature, we then substitute the
temperature-independent part of the self-ener@&3(p),
and the chemical potential(z) Note that, in second-order
self-energies and chemical potential, the integrals which do
not involve frequencyw can be carried out exactly.

figh " (p, £ Ep)g =pa'?

AP hwp)o=pat? —

A__(p,&‘p)():;ba

fa(p)o= a'?

16p mp
§5+lg—glz—fﬁ(p)0a (143

28p 3p°

3 807p°

+(Ep+ hw) al’?

1
4+im ZB_
p?]

=, "+, (EpFhw), (144

32p

15 p2 (ﬁwp ﬁw)

= Q0+ A\ (hoy—fiw), (145

32p

V2 45 2 ( an aS)

16
— gas(gan-f- as)—4\/§i 7T|as|5/2]

8
+(8p—ﬁw)al/2 §(C¥n_ as)2

2] 2

Ef957

+i\p (ep—fw), (146

where we define the notationa=([Nng(c,+cs)®/ 7)Y,

Since we consider the dilute limit of Bose-condensed sysesy=Cs(n)/(Cn+Cs), and,u A7h?ng(c,+cs)/m. For the
tem with spin degrees of freedom, it is convenient to studypolar state, we obtain

the behavior of the Green’s functions near the poles that we
have obtained within the first-order approximation. In this
region, we may writd7 | =E{" in a(p) and 8(p), and

we need to retain only terms of first order of aboElgS(”
Fhw) in A(p)*. For small wavelengths, which means
small compared to the inverse of the coherence lemgjth

<p [p=4mno(cs+c,)], we find the explicit expressions.
For the ferromagnetic state, we obtain

013601-15

1/2|
pa++(p)02a !

p . P
—Cy+im=Cy|=—B8" " (p)o,
P p ]

(147)

p

0a%(p)o= ' 503+in04 =—,B%p)o, (148
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5

A" (P, ED)g = V| o 1’2Ecs—mz Ce

2

+ al/Z(ES+ ho)| Co+im= P 5Cs
p?

EPQ;++px;*(E;:hw), (149

5

AP, Ep)g = a?u al’zpcg—mp Cio
P p°

2

+(En+ﬁw)a1/2 C11+|7Tp C12
p?

=0+ A EpFiiw), (150
where the constantS; (i=1,...,12) are defined as

1/2
ds

180“%/2( 1/2+

— 5/2 2 1/2
Cy= o 111297+ 1120

+12140) %0~ 1460023~ 191 %l — 15037,

(153

L
C3:£/2 %GQS/zJr iana3/2+8a§/2 ' (153
. M@+ 3at2a2+ 5ay) | 15

24012

/2 2 12
[1031x2*+ 103102l

C5:
QOa%/Z a%lz-l— agz)

+ 118603 s— 334,02~ 28% 02 + 15227,
(159

2

5/2 1/2 2
1050[%/2 1/2+ 1/2)5[4a +20a, +40a; as

C6:

+40032a3%+ 260,02 — 15020+ 11a3],  (156)

8(apt+ ag)(apt+ a%’zayz—k ag) (157
" 3(ap+al?)
2a1/2( an+ 2a1/2a;./2)
8~ 3(al 12, 1/2 2 (158
1|28 8
Co=—/|= a2+~ ana¥?+16a2?|, (159
o, 3 3%«
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7ab+ 220 a5+ 3605 Y+ 4302

Ci0= , (160
960203
Cu=4(a*+2a%?), (162)
an+3a?al?+ 504 (162
- 12012

For small wavelengthp|<p, the normal Green’s func-
tions near to their poles may be written in the following
forms:

Aptia " (p)

GH* —(1—F+
1G11 (P)=(1—¢A, —w_Ep/ﬁ_fQ;Jr

Byt (p)
w+ Ep/ﬁ+fQ;+
)

1
GNP = ( % —, (164
o—w,—{AT(p,wy) +i6

: (163

(1-7p; )
o—ep—A"(p,gplh)+id

G (P)= (165

for the ferromagnetic state, and

Ap pa (p)

o) =(1—\F*
P= ) o

B Bp+pa" ()

: 166
w+Eyh+,0, " (160

+pa”(p) Bp+pa®(p)
ENAi— 0% wtENA+,0%
(167

for the polar state. Comparing with the first-order Green'’s
function given by Eqs(50)—(53) and (62)—(65), one sees
that the quantities\,, a(p), and(}, are the second-order
corrections. These corrections are small for a low-density gas
since these all are proportional t3/><1.

The quasiparticle energy is determined by the pole of the

Green’s functions. In the wavelength rangep, the quasi-
particle spectrum for the ferromagnetic case is

GAp)=(1- A°°)

~p 28 3 p°
E,+Q "= 1+ = a'?|—imo=a¥u=, (168
P b 3 80 pS
hwptp'= Ml pz[l 64a1/2} (169
f A ~5 A 1
P 252 45
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o ~|1p? 64
eptil), :M{Eﬁ[l—ﬁallz(an—as)z

8
1+ §(9an+ ars)all2

+2|a's|

— 427 oV g%, (170

and for the polar case

5
p
e

a7y

Q++_M :SL/Z [l+af1/2C5]_i7T;La1/2
p

5
QOO /.Lallzp [1+ Ct’llZCQ] —i W%ﬁallzclo.
(172

Equations(168), (171), and (172 show that for a smalp,

one of the quasiparticles for the ferromagnetic state and two

PHYSICAL REVIEW®8, 013601 (2003

dp
n—ng=i I|mf

o—
(179
and for the polar state
dp do
n—ney=i lim f 2 p)32 e’ G (p,w)
s—0" T
= —a" %+ 2a3)n,. (176

Equationg175) and(176) give the relation between the den-
sity of particles in the condensate,, and the total number
of particles in the system.

We then calculate the ground-state energy by integrating
the chemical potential. For the ferromagnetic state using Egs.
(49 and(92), the chemical potential up to the second-order
approximation is

1+ ﬂ)allz

3 177

=

for the polar state are phonons. The second-order approxima-

tion also gives a correction to the sound velocity, and axpressingn, in terms ofn by means of Eq(175), we have

damping rate proportional tp°®, which is connected with a

process of decay of one phonon into two. This damping rate 4mh?n(c,+Cs)

corresponds to a finite lifetime for phonons. mw=—m
The mean number of particlég, with a given wavelength

p in the ground-state of the system is related to the residue of

the Green’s function at its upper pole. For the ferromagneti®y definition u= (d/9n)(E/V), we obtain the ground-state

state,(N, can be calculated using the Green’s functions, Eqs®"€9Y for the ferromagnetic state

(163—(165), we obtain

32
T3

n(c,+cg)3\ 2
T ) '

(178

(Eo  2mh2n2(cy+cy) 128( n(c,+ce)®| 2
— |1+ —| — |
rede 15 20 \Y, m 15 T 179
N —i i |w5 -F o 179
Np |§I|r2+JOO2 T(pw)= 70 1+ 3@ }
- (173 We can apply the same calculation for the polar state. Using
Egs.(61) and(99), the chemical potential up to the second-
The leading terms of the imaginary parts Qt and order approximation is

s " (p) cancel in Eq(173), and N, is real. For the polar 8
ant = a1/2[5a5/2+2a a3/2+8a5/2 .

state pNp can be calculated using Eq4.66) and (167), we pt= m (180
obtain
Expressingyg in terms ofn by means of Eq(176), we obtain
— +teodw pal?
N =i lim f —el“ GYp,w)bf=—{—+ al? 4mh?n(c,+c 32
P PEN 2m - PTH Pl 2 ’ pﬂz$an 1+§(aﬁlz+2aglza;l
1/ 1 an’ n(c,+cg)3| 12
a¥42C;+Cy— al’Cr— —-Cuy[. (174) X( ntCs ) _ (18
o
B. Ground-state energy Then, we obtain the ground-state energy for the polar state
To find the total number of particles with+#0, we need oEo 2mh2n?(c,+ Co) 128 ., e 1
to knowN,, for aIIwaveIengths. We therefore use the lowest- =~ 15 \%n +2ag%a, )
order form forN this means we neglect the terms propor- 3 12
tional to o2 in Eqs (173 and(174). For the ferromagnetic % N(Cq+Cs) (182
state, we find T ’
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V. CALCULATIONS AT T#0 for the ferromagnetic and polar states, respectively. The
In this section, we consider the case of finite tem era_temperature—independent terms of right-hand sides of Egs.
' P I§183) and (184) coincide with Eqs(175 and(176), respec-

tures. The gengral expressions for the self-energies and t ﬁ/ely. Equationg183) and(184) are nonlinear equations for
chemical potential can be separated by two parts. One part IS =~ (n.s) (1) :
sinceEy"” and ¢pu'~’ are also the functions afy. In

) . n
denoted by2 (p), and g which do not depeneéxplicitly on 0 ! . .
the Bose distribution function, and we obtain these expresgeneral’ such n(_)nllnear_ equations must be solved numert-
sions in Sec. Il. Another temperature-dependent part is deqa"y' However, in two important spe_mal cases, analytical
noted by3(p); and ur which does depend on the Bose results c.an be optamed, as we now dISCUSS.. ~
distribution function, and we obtain these expressions in Sec. We first consider the low-temperature limigT<w.
I1l. In Sec. IV, we worked out the expressions B(p), and Since the Bose distribution function decreases exponentially
1o Near the poles, which are obtained within the first-ordefor ES"<kgT, the dominant contributions in the integral in
approximation. In this section, we try to work out the expres-Egs.(183) and(184) come from the regiom<p. Then, the
sions forX (p); and wt near those poles. integral can be approximated and we obtain

At finite temperatures, the temperature Green'’s functions
are obtained by replacing with iw, in Egs.(106)—(109
and (115—(118 for the ferromagnetic and polar states, re- 8 2 N
spectively. Since the functions(p), B(p), and A(p) are f(N=Ng)= 3 Nga ™"+ 2Nnoa

linear combinations of the self-energies and the chemical po-

m? (kBT)2

3

2|

tential, the temperature-dependent parts of these functions (keT)¥?2 7 (kgT)*

can be separated out. To work out the temperature-dependent + \/ﬂg(S/Z) =~z 20 ~4 |’
corrections, we must substitute the temperature-dependent 5 M

parts 3{?) and x{?) into the functionsa(p), B(p), and (185
A(p).

To obtain the excitation spectrum at finite temperatures,
we have to made the analytic continuatian,— w+id in 8
the expressions ok, implying that we are now dealing p(”—no)z§noa1/2(aﬁ/2+2“5/2)4‘2”0&1/2
with the self-energies for the retarded Green’s function.

Compared to the =zero-temperature case, the finite- 721 2\ (kgT)2

temperature contributions are multiplied by the Bose distri- X ?(—2 | =5

bution functionfg(e,) =[expl,/ksT) — 1] *. ForksT<, n s/ M

the dominant contributiorzs come from excitations with ener- 1 2\ (kgT)*

gies e;~kgT. For kgT>yu, excitations with energieg, +25 E/Z Em) 71 (186)

~u are important, and we approximate the Bose distribution
function fg(ey) ~kgT/€q.

We next discuss the regidgT> . To calculate the den-
sity of particles in the condensate at high temperatures, we
Using the Green'’s functions, one can calculate the densityse the noncondensate density of an ideal gas:
of particles in the condensate. For a given total densitye

A. Density of condensate

have o
. (189
1 j dg f S = 1
n—nNap)=— — elwnﬁGaa ,i(,) (277) eB wq_l 27Tﬁ
(=)=~ 72 2 PEEEL ")
8 dg If we apply the high-t t imation for the dis-
_S pply the high-temperature approximation for the dis
3 Mo +f (277)3[(Aq+ Bo)Te(Eq) tribution function fg(e,) ~kgT/eq to Egs. (183 and (184
directly, the integral diverges. To avoid an unphysical diver-
+fa(fiwg) +faleg)], (183 gence, we first subtract the noncondensate density of an ideal
Bose gas from;(n—ng), and then carry out the integral
1 . , analytically to obtain
n—ng)=—— e'en® G4¥(q,i
p( O) ﬁﬁ ; j (277)3 p~11 q (l)n)
= —ngata¥?+2a%? +f {(n—ng)==noa?+4nya*q — 7 —
3 0 ( n s ) (277)3 3 m
X[(AR+BNYfa(EDY+2(AS+ B fa(ES)], T (kgT)32
a™ Bq q q" Bq q +3\ 5¢(31—=5—|. (188
(184 M
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8 Ref At (p, =EYR)T
p(n—no)z§noallz(aﬁlz-i-2a§/2)+4n0a1/2 pA (p p/ )T

12 12P| & ag*+ 2ay” 2 (keD)? - (kgT)*
) o keT = patags 3aia )2 =5+ —=7Cug,
X —W(a%2+2a22)7 %n K ®
2 (194
)32
+3 \/>§(3/2) (189 12 172 2
p| a5+ 2a;, (kgT)
ReﬁpAOO(p + En/ﬁ) 1/2 1725 ’IT2
' @n “F‘) 3a1/2a1/2 ~2
B. Energy shifts s a
We discuss energy shifts in this section. We consider only 6 4(kBT)4 kgT
the casep<p and use the on-shell approximation. For the 5,52 L 7 (199
n

ferromagnetic state, there exist three different kinds of exci-
tations. For the corrections to the density modes, the contri-
butions from the interactions between the density-waveyhere the functiorC,; is defined as
modes are the same as the ones in the scalar Bose-condensed

system13]. So the parts that we have to analyze here are the

contributions from the interactions between the spin wave 1

and “quadrupolar” spin-wave modes, and their contributions C13= 52 52, 12, 12
are written as follows: 1800, “ag(an “+ as”)

hiwy, 41rh? zf dqg
spm(p)T No—— E m (277)3

x| = (cy+co* f-(hog,hoy In this regime of temperatures, the condensate density is
oy —hogthog given by the expressiongl85) and (186) in terms of the
particle densityn, and the energy shift turns out to be

[ 26&3 26(,1’5/2 1/2

— 5602 ns— 56a3/2 3/2 56a, g +a1/2a5/2+a B
(196

(eamc)? f_(eq.81)

iho,—eqtey] (190

~ h?
For the low-temperature limkgT<u, the dominant con-  E,+RefiA* ¥ (p, = E,/fi)= v4mn(cst cn)p[ 1+ at?

tributions come from the regiog<p, and the integrals can

be approximated to obtain 674 (kBT)4| KeT

e * ——In—
RefA* " (p, £Ep/h)T 5 w4 %
p| 7 (kgT)? (kT )3’2 6 (197)
1/2 -
S +\2mL (31— 5
2
keT)* KkgT -~ -
! 54) In——|, oy  FeoptREAAMP.op=hopt pat
o M
p? (kgT)*? X —3—+ J_g(s/z)( al )3/2
RefitAp,wp)r=pat?s m {3025 — 55—
o
(192 (198

)3/2
8%\[4“(3/2) eptRefiA ™~ (p,eplhi)

Refi A~ (p,eplh)r=pa™?

47%  (kgT)? =hw, 1+a1/2——(an ag) +—\f
‘_“s~—z
5/2 5/2 4 hZ
+12\[g(5/2 ) ><§(5/2)( 5 ) ]—2 il n05{1+a1’2
o m
\[ 12 n2 6 \/E (KgT)5?2
+— g(5/2 5—2, (193 ” 5{(512) =52 || (199
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E;+ﬁij++(p,iE§/h)t
2

h
= —Vamn(cetc Natp

kgT
{1+ allz C14+ C15’7T ( B4) J, (200)
o
Ep+Reh A®(p, +Ep/h)*
ﬁz 1/2 8 5/2 5/2
= —J4mn(ce+cy)arpy 1+ a¥? —(a*+2a?)
m ap
67" (kgT 4 KkgT
o’ (keD)* keT )| (201)
52 Bt g

where the constan§,,,C,5 are defined as follows:

4
C1=Cs— 5 (a2?+2a%?),

3 (202
1/ 1 2
C15=C13_Z) st e (203
n S

For the high-temperature limikgT>u, the dominant
contributions come from excitations with energie§vﬁ.

Using the high-temperature form of the Bose distribution
function fg(ey) ~kgT/ey, energy shifts are written as fol-

lows:
o +_~ 1P keT
RefA™ " (p, = Ep/fi )T =pa™"=| —13=|, (209
p 2
~ 8 kgT
ReﬁfAOO(p,wp)Tz,u,a —B— T—
3Pl ke
( BT )3/2
+\2mg(312) } (205
Reth77(p,8p/ﬁ)T:877a5[5an+as—2(3an

+a’s)\/75] = B_
p

x| - (an—a1-2\[ag(1

keT 4 5
—2ay)]—= +§(0‘n_a’s) (1-4ay)
"

312
( ) ] , (206

2 (3/2)
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Reh A" (p,=E/h)T

1/2
2may

3(an—

1/2 P

=na [4al/2(4an—as)

kgT
—ap(lla,t+ag)] =
o

4 7 (kgT)¥2
+§aé’2\[§z<3/2> | @0
keT
RefipA%(p, = EYfi) T =pa 1’2p ——Cy, (208
,LL

where the constants,g are given in the integral form which
depends ony,, and ag, and we omit the precise expression
here.

C. Free energy

Free energy of the system can be calculated from the

chemical potential, that is, by definition w
=(d/on)(F/V)y 1. Thus, we first derive the analytical ex-
pression of the chemical potential.

(136 and (142 for the ferromagnetic and polar states, re-
spectively. At low temperaturdesT< u,

7T(B)2

? (ke)? | \/;5(3/2)(kBT)3’2
w = —= = =
6 u? 2 w32

fM(Tz): Loy

77 (kgT)*
— =, (209
120 M4
2 2024 o112 2
1= 87 a2 12 2a,+ a5 (KgT)
pET 12 a;/z ’[Lz
o+ 8aast 7ad? (kT
5/2 502 U ~4 (210
240a, “ag m

Expressingn, in terms ofn by means of Eqs(185 and
(186), we obtain

27" (kgT)*
FETIE
(211)

4mh?n(c,+Cg)
m

w=pu(T=0)+a'

27 23+ ad? (kgT)*
15 aﬁlzaglz ZL4 '
(212

2
yAmhonc,
m

1/

p:Uv:p/'L(TZO)‘I' @

where ,u(T=0) is the temperature-independent part of the
chemical potential and is given in Eq4.78) and (181). At

high temperaturekgT> 1,

013601-20
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47h2n(c,+c keT
f,uzf,u(TZO)—aanS) Sm—
m M
KaT 3/2
—2(an—as)\/271'§(3/2)( 53/)2 ] (213
7
47h2n(c,+c ke T
pﬂ:pM(Tzo)_am#s) m— ad?
m M
(kgT)¥2
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where we use the density of particles,instead of the den-

sity of the condensate,.
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at high temperaturekgT>u. From Egs. (215—(218),

we can easily obtain all the other thermodynamic functions.
From the expressions of free energy, the temperature
dependences of thermodynamic quantities turn out to be
the same as the ones in phonon gas, and the spin-exchange
interaction is seen to modify the temperature-dependent
parts.

VI. CONCLUDING REMARKS

We have studied excitation spectrum and thermodynamic
properties of spin-1 Bose condensates under the single-
condensate assumption. Since the excitation spectra at a
mean-field level had been discussed in previous studies, we
here included the higher-order scattering effects, which give
energy shifts, damping rates, and thermodynamic quantities.

tential. By definitionu=(d/dn)(F/V)y 1 and using the ex-

pressions of the chemical potential in termsroin Egs.
(212)—(214), the free energy is written as follows:

vV Vv m 45

F Eo (n(cn+cs)3) Y24 7h%n%(c,+cg) 45m*
aw

4
kT ) 215

47h2n(cy,+cg)/m

PP
VAR m 45 312 312

@, ag

F Eo (n(cn+cs)3)l’24wﬁ2nzcn 457% o2+ 243
v

keT *
X , (216
4mh2n(cy+Ccg)/m
at low temperaturekgT<<z, and
F_ By [n(catcy)®\P2amh’n’c,
vV oV ™ m
16m keT
—_ —2\2wL(3/2
3 4xh’n(cy+cg)/m €312
all 3/2( ) (217
an—ag) |,
47h2n(cy,+cg)/m noUs
oF oo n(c,+cg)®\ Y247h%n%c,
VY, ™ m
>< 16_77- kBT (a3/2+2a3/2)
3 4xhn(c,+cg/m " s
312
kgT
—V2mL(3/2 da,—ay) |,
£ )(4wﬁ2n(cn+c5)/m (42— axy)
(218

condensed system to spin-1 Bose-condensed system. After
the Bogoliubov prescription, we obtained the matrix Dyson’s
equations expressing the Green’s functions in terms of self-
energies. Solving these matrix Dyson’s equations, we de-
rived the formal expressions of the Green’s functions in
terms of self-energies. Within the first-order calculations, we
obtained the energy spectrum that coincides with the results
of previous studies. We then discussed the second-order ap-
proximation, in which all the diagrams of the order of
(noaﬁt)l’2 are summed and are included in the self-energies,

where ar, (F=0,2) is theswave scattering length in the

channel with total spinF;. We further extended Green’s
function method to the finite-temperature case, and derived
the corresponding self-energies. The main results are the ana-
Iytical expressions of the excitation spectrum and thermody-
namic quantities. We evaluated the self-energies within the
on-shell approximation, and expanded the results in powers
of wave number in the long-wavelength limit. Excitation
spectra for each mode were obtained analytically at low tem-
peratures. We also derived the analytical expressions of the
ground-state energy and thermodynamic quantities. From the
expressions of free energy, the temperature dependences of
thermodynamic quantities turn out to be the same as the ones
in phonon gas, and the spin-exchange interaction is seen to
modify the temperature dependent parts.
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APPENDIX A: EFFECTIVE POTENTIAL

In this appendix, we derive the effective potential within
the ladder approximation. Since there exists a set of ladder
diagrams, all of which are of the same order in the gas den-
sity, the ladder diagrams are all of equal importance.
We need to sum over all the ladder diagrams, yielding
the t matrix Fga,ﬁﬁ,(pl,pz;p3,p4). The equation for

Pga,’ﬁﬁ,(pl,pz;pg,,pél) can be written explicitly as
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Fga/,ﬁﬁr(pl,pz;pa,p4) Xaa 55’(k k';P)= (277)35(k_ k,)éaa’ﬁﬁﬁ'
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X GE¥(p+p,—q) (Ad)

XTo o pp (0P P2=CiPs,Pa). (AL Equation(Ad), multiplied by #2x2/m—#h2k3/m-+i5, is the
same as the inhomogeneous Sclimger equation for the
relative motion of two particles with spin. It is therefore easy

It is convenient to Writd“za,vﬁﬁ,(pl,pz;p3,p4) in the cen-  to express its solution in terms df;a,ﬁﬁ,(k), which is the

ter of mass frame of the scattering pair of atoms. We defin@ormalized wave function of the relative motion of particles

the total wave vector and the total frequency of the scatteringnd satisfies the equation

pair asP=p,+ p,=p3+ p4, Where the last equality follows

from the conservation of total four-momentum in a homoge{ #p?  #%k?

neous system, and we also define the relative wave vectofs m _+ 16

k= (p1—p2)/2,k' =(p3s—p4)/2. Since the instantaneous inter-

action potential ./ g (r) is not time dependent, its Fou-

rier componentU (q) does not depend on the fourth — ﬂu p k—a)=0. (A5
aa’ BB’ 2 3 aal,ﬂﬁl(q) lpala’,ﬁlﬁ’( q)_ . ( )

componentw of g, and neither doefa o 5 (A:P1FP2 (2m)

—(;p3,Ps). One can thus perform the frequency integral.
Writing Eq. (A1) in terms of variables in the center of mass 1he scatterlng amplitudg, . 55/ (k,p) is related to the wave

W 5 (K)

frame, we have function 1//aa pp(K) by
T e 55 (K.P)
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where#?k?/m=tiw — h2P?/4m+ 2.

We show the connectlon between the free-space scattenﬂﬁwe use the condition that the interaction potential is real
amplitude and the matrixI”; , .., (k,k’;P). The following and its Fourier component satisfiel,qr gg (k—k')
argument is a generallzanon f the scalar Bose-condensed Y ss (K —K), which yields
system[11,12. Introducing the quanUtWM,,ﬁﬁ,(k,k’,P)
defined by Faar ger (KK) =Tl 5a (K K)

. f dp {fzal,,g,;l(k',pﬁalar,ﬁlﬁ«k.p)

dq ) (2m)3 p?—k2+i6

’. 0
aa Bﬁr(kk P)_J (271.)3Uaal'ﬂﬁl(q)xala,wng’
~ ~% ,
faal,B,Bl(kvp)fala’,ﬁlﬁ’(k 1p)

p2—k'2—i5

X (k—q,k";P), (A3) - (A8)

one can verify thap(aa ﬁﬁ,(k,k';P) satisfies the following from Eqg. (A8), the lowest order of the imaginary part of
integral equations: faar pp(P,P’) for |p|=|p’| is expressed as
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- o 0 0 oy e , . R%( dp
Imfaa’yﬁﬂ’(pvp )_ faal Bﬁlfala Blﬁr aa Bﬁ,(k k P)_ aa .BB,(k ) _f (277)3
x h2q2/m—h2K2/m). (A9) xfaal,ﬁﬁl(krp)filar,glﬁ/(k’,p)+hzj
K>—p?+id (2m)3
Equation (A9) is a generalization of the ordinary optical e pp (K P oo 5.5 (K, p)
theorem for the scattering amplitude. Multiplying Ed\4) S ) i (A13)
by [%2k*/m—h?k?/m+i8]¢fy,, 45 (k) and integrating over p>—k*+io
kl
APPENDIX B: EFFECTIVE POTENTIALAT T+#0
h2k?  h2p? dk . . _ . . -
— T 1is J' _31/,2*;11%1(@ The diagrammatic definition of effective potential at finite
m m 2m) temperaturesl“za,vﬁﬁ,(pl,pz;p3,p4), can be written ex-
0 , plicitly as
X Xayar gy g (KK';P)
hZ 2 2k/2
= +is| P, (K, (A10)
m m e Fla”BB/(pllpZ;p3vp4)
where we use the complex conjugate of E45). We next (py—Ps) — 2 f dsk
multiply both sides of Eq(A10) by ¢, ,,/(K), and inte- Yaar.pp (P1=Ps #2B “n Ve 61
grate over p. Using the completeness relation of
Y 55 (K), One arrives at X(p1—p3)G alal(k)Gﬁlﬁl(pﬁ [ k)Fa o BoB!
X (K,p1+p2—k;p3,Pa). (B1)
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(kK" P)= - +id f
Xaa' pp m m (277.)3 . .
Here, the four-dimensional vectprrepresents the momen-
P (k) ™ (k') tum p and Matsubara frequendw,, . Defining the total wave
aay.BBy @’ By’ vector and total Matsubara frequency of the scattering pair as
h2k?  hep? : P=p;+p,=ps+ps and iw,=iw;+iw,=iws+iw,, and
e the relative wave vectors ds=3(p;— p,).K'=3(pP3— Pa),
the sum of ladder diagran’ , ,..(k,k’;P) can be rewrit-
(A1) aa’.pp
en as
Using the complex conjugate of EGA6) and the definitions
of Xza,yﬂﬁ,_(k,k’;P) and f,, gg(k,K") in Egs. (A3) and K’ P
(A7), one finds Lowr /3/3'( )
' dq
o , h2~ , hz dp :Uaa',ﬁﬁ’(k_k )+J (277)3
U e ppr (KK P)= Efmlﬁﬁ/(k,k HE 2m)? )
1 XUaal,ﬁﬁl(k_q)Fala’,ﬁlﬁ/(QIk,;P)
Xfaal,ﬁﬁl(kyp)|:’<2_p2+i6 X1+fB(ﬁ(1)p/2+q M)+fB(hwp/2 q ,bL) (BZ)
h2 2 th
m m

?Zla’,ﬁlﬁ’(k,!p)-

B
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(A12)  whereh?k2/m=ifw,—h2P%4m+2u.
We next show the connection between the scattering am-
This last expression glveEm BB,(k,k’;P) completely in plitude"fw,’ﬁﬁ,(k,k’) in Eq. (A7) and the effective potential
terms of the scattering amplitude,, 44 (k,k'). Using Eq.  I'aar gpr(K:K';P). The following analysis aT +#0 is a gen-
(A8), we have the equivalent expression of B§12), which  eralization of the dlscussmn dt=0 given in Appendix A.

is Introducing the quantlty(aa ﬁﬂ,(k,k’;P) defined by
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. dq T Xuar g (KK'iP)
DT (K P)= | oY DX q
) . + 0 .
X (k=q';P), (83) R K || e g 0P)
fa(hwppq—p) + fa(fiwppg— 1)
hlky 1202
one can verify tha;s(w ﬁ.B,(k,k’;P) satisfies the following n__~_ %1
integral equation: m m
XTL 0r gy (AK'P). (B5)
d This equation can be verified by carrying out the operation

(kK" :P)— 1 J q indicated on the left side of EqB4) and by using Eq(A4).
Xaa'pp’ h2kh e (2m)3 We take the convolution withJ .,/ z5:(0) [see Eq.(B3)],

which yields our final equation for the scattering amplitude
at finite temperatures as follows:

(k,k";P)

m m
XU ey 8, (DX 0 g, 0 (K= QK P)

=(2m)38(K—K') 8par Sppr

aa BB’

_dg

=Tou g (KK PH] (2 T ay 66,60 P)

fa(hwppq—p) +fa(fwpp_q— 1) dg 7T)3
hlky Rk 2m)3
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XUy, 88 (DXaar g, (K~ AKP). (B4) m m
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Note that Eqs(B3) and (B4) have analogous structures as The above equation epreSQééa pp(KK';P) in terms of
Egs. (A3) and (A4), respectively. A comparison with Eg. Faa BB’(k k';P), wh|IeF (k k’;P) can be expressed
(A4) shows that the operator on the left side of H&4) is in terms of the free space scattering amplitude
JUSt the inverse of)(cm pp(KK';P), which means that fou pp (k") using Eq.(A12) or (A13) In other words,
(k,k";P) can be expressed in terms of through the intermediate functldhm Bﬁ,(k k’;P), we can

(k,k";P) as follows: relatel’’ (k,k";P) to fmrﬁﬁ (k,k") directly.

aa BB’

Xaa BB’ aa’,BB’
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