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Theory of light-induced drift. V. Roles of accommodation of normal and tangential momenta
in surface light-induced drift

Frank O. Goodman*
Department of Applied Mathematics, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1

~Received 3 December 2002; published 11 July 2003!

Surface light-induced drift~SLID! of a rarefied gas in cells with flat-plate and circular-cylindrical geometries
is studied, and exact analytical solutions to the model rate equations are obtained in the limit of large Knudsen
number. The model rate equations, which have not appeared before, have been tailored specifically in order to
study the roles played in SLID, in a physically realistic setting, by both the tangential momentum and the
normal momentum molecule-surface accommodation coefficients. Because the model equations are new~to the
best of our knowledge!, the results are generally different from those of previous work, although emphasis is
placed on obtaining relations between the present and previous results; applications to experiments may be
made by means of those relations.
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I. INTRODUCTION

In Papers I–IV of this series of papers@1–4#, the phenom-
enon of light-induced drift~LID ! was discussed, and exa
treatments of models of surface and bulk LID~SLID and
BLID, respectively!, in both one dimension~1D! and three
dimensions~3D!, were presented and compared. In order
understand the material here~‘‘here’’ means ‘‘in the present
paper’’!, it is necessary for readers to have read and un
stood Papers I and II, which considered 3D SLID in, resp
tively, flat-plate ~FP! and circular-cylindrical~CC! geom-
etries, and at least a partial understanding of Papers III
IV would be beneficial. As in the previous Papers@1–4#
where SLID is discussed, the limit of large Knudsen num
~the ratio of molecular mean free path to cell width! is un-
derstood. Dimensionless variables are formed as in Pap
and II.

With the exception of the model due to Streater and Va
man @5# earlier work @6–10# on SLID has considered
Maxwellian-type molecule-surface tangential momentum
commodation coefficients ~TMACs a j t), with
j [(g,e)[~ground,excited! state, incorporated into th
Maxwell-Boltzmann rate equations~MBREs!, whereas Pa-
pers I and II used ‘‘overall’’ accommodation coefficien
~ACs a j ) in the MBREs@1,2#. The author@11# has expressed
the opinion that, with a physically realistic model o
molecule-surface collisions that takes proper account of
differences between the ACs for tangential momentum
normal momentum~NMACs a jn), the important results for
SLID, namely, the three ratiosI xs /I qd , I 1e /I qd , andI qd /q0
@1,2#, should depend essentially only on the differenceDa t
between the TMACs, and should be essentially independ
of the differenceDan between the NMACs, with the obviou
notation

Dak5agk2aek :k[~n,t !. ~1.1!

*Also at Department of Physics, University of Waterloo and t
Guelph-Waterloo Physics Institute, Ontario, Canada.
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The quantitiesI appearing above are integrals over the m
lecular velocity distributions, first defined in Appendix A o
Ref. @1#. Vaksman@11# has tried, without success, to con
vince the author thatDan does, in fact, play a role in SLID
The problem is that Streater and Vaksman’s paper@5# on
SLID, in which it is claimed thatDan plays an important
part, is not relevant to the models of SLID of the type@1,2#
under the present discussion because it makes assump
about the roles of the accommodation coefficients, which
quite different from those made here. It is the purpose of t
paper to make, and to work out the consequences of, a m
of SLID that takes proper account of theDak , and to try to
resolve the issue discussed above. To be specific, we con
trate on exact calculation, in 3D, of the ratiosI xs /I qd ,
I 1e /I qd , andI qd /q0 with g50 for smallq0, for both FP and
CC geometries;g is a rate parameter that models the spo
taneous relaxation of molecules from excited state to gro
state, and the reason we setg50 is explained in Sec. II C
below. The model is described, in the context of FP geo
etry, in Sec. II, and the changes necessary for CC geom
are documented in Sec. III. Section IV contains discuss
and conclusion.

II. THE MODEL IN THE CONTEXT OF FP GEOMETRY

A. General considerations

The geometry is as described in Paper I, with the la
beam running in thex direction, the plates perpendicular t
the z direction, and with Cartesian coordinates (vx ,vy ,vz)
used for the molecular velocity space. In steady state,
molecular velocity distribution is piecewise Maxwellian
vx and, at tangential momentum accommodation, molecu
are redistributed into a~one-piece! Maxwellian distribution
in vx ; also, at normal momentum accommodation, m
ecules are redistributed into a Maxwellian distribution invz .
For these reasons, the analysis is greatly simplified if vel
ity variables (s1 ,s2) are defined such that the bulk Maxwel
ian distributionm(s1 ,s2) is constant, that is,

~s1 ,s2!5~erfvx ,erf uvzu!, ~2.1a!
©2003 The American Physical Society03-1
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m~s1 ,s2!5
1

2
:21,s1,1, 0,s2,1. ~2.1b!

The third velocity componentvy is trivially integrated out as
in Paper I.

We define intervalsDs(u) of s1 as follows. The interval of
s1 inside which the laser excitation operates is denoted
Ds( i ) and the remaining interval ofs1 by Ds(o), with u
[( i ,o)[ ~inside,outside! in an obvious notation. Thus, w
have

Ds( i )1Ds(o)52. ~2.2!

In practice,Ds( i ) will be a single interval (sa ,sb) of s1, but
it could consist of several disjoint intervals; if we use t
language of a single interval, then

Ds( i )5sb2sa5d~erf!, ~2.3!

in which d(erf) stands for (erfvb2erfva) as in earlier Pa-
pers@1–4#.

In Paper I, only two distribution functionsf j entered the
analysis, but here, because of the redistribution of molec
overs1 at tangential accommodation, we have four functio
f j

(u) ; for example,f e
( i )(s1 ,s2) is the distribution function for

excited molecules~e! inside ~i! the laser excitation interval
and is independent ofs1 in that interval. The two concentra
tions cj of Paper I are replaced by fourcj

(u) here, that is,

cj
(u)5E ds1

(u)E ds2f j
(u)5Ds(u)E ds2f j

(u) , ~2.4!

where*ds1
(u) stands for the integral with respect tos1 over

the intervalDs(u) and *ds2 stands for the integral with re
spect tos2 over the interval (0,1). The normalization cond
tion on cj

(u) is as follows:

cg
( i )1cg

(o)1ce
( i )1ce

(o)51. ~2.5!

The following definitions help in simplifying the analysis
Modified ~indicated by mod! a jk are defined by

a jnmod5a jn~12a j t !, ~2.6a!

a j tmod5a j t~12a jn!, ~2.6b!

and combinations~indicated by comb! of a jk by

a j comb5a jn1a j t2a jna j t . ~2.7!

We note thata jnmod is the probability of accommodation o
normal momentum, but not of tangential momentum, dur
a molecule-surface collision, with the analogous meaning
a j tmod, and thata j comb is the probability ofsomeaccommo-
dation~normal momentum or tangential momentum or bo!
during a collision, that is,a j comb512(12a jn)(12a j t).
The analogous probability of accommodation of both norm
and tangential momenta during a collision is given
a jna j t . We note the following ‘‘closure’’ relations that fol
low from Eqs.~2.6! and ~2.7!:
01340
y

es
s

g
f

l

a j comb5a jnmod1a j tmod1a jna j t5a jnmod1a j t

5a j tmod1a jn . ~2.8!

For future use, we define the following differences, produc
and sum involving thea jk and thea j comb:

Dak5agk2aek :k[~n,t !, ~2.9a!

Dacomb5agcomb2aecomb5~12agt!Dan1~12agn!Da t

1DanDa t , ~2.9b!

Pak5agkaek :k[~n,t !, ~2.9c!

Pacomb5agcombaecomb, ~2.9d!

Sacomb5agcomb1aecomb. ~2.9e!

B. The Maxwell-Boltzmann rate equations

1. Contributions to the MBREs

With the notationḟ [] f /]t, there are four different types
of contribution toḟ j

(u) . The spontaneous relaxation from e
cited state to ground state, modeled@1# by the rate paramete
g, gives contributionsg f e

(u) to ḟ g
(u) and2g f e

(u) to ḟ e
(u) . The

laser excitation, modeled@1# by the rate parameter functio
q( i )5q0 , q(o)50, gives contributionsq0( f g

( i )2 f e
( i )) to ḟ e

( i )

and2q0( f g
( i )2 f e

( i )) to ḟ g
( i ) , with zero contributions toḟ j

(o) .
During molecule-surface collisions, there are also ‘‘annihi
tion’’ and ‘‘creation’’ contributions toḟ j

(u) .
The annihilation contribution, denoted byA j

(u) , is of the
form 2np f j

(u) , wheren stands for the average frequency
the collisions andp stands for the probability of accommo
dation, given that a collision occurs; asn5uvzu and p
5a j comb, we have

A j
(u)52va j combf j

(u) , ~2.10!

wherev stand foruvzu (5erfi s2) in Eq. ~2.10!, and in the
remainder of Sec. II, in order to simplify the notation.

Each creation contribution is of the formnpF, wheren,p
are the analogs of the corresponding annihilation quanti
listed in the previous paragraph, but whereF is more com-
plicated than simplyf j

(u) . F is given by ^ f &v/^v&, , where
^ f & is an appropriate average off j

( i ) or f j
(o) , over s1 if tan-

gential momentum is accommodated and overs2 if normal
momentum is accommodated;^v&, is the value ofv aver-
aged over the Maxwellian distribution (,[m) if normal mo-
mentum is accommodated, and overf j

( i ) or f j
(o) (,[ f j

( i ) or
f j

(o)) otherwise. The factorv/^v&, is, in fact, a gas kinetic
theory ‘‘streaming correction’’ toF @12,13#. If normal, but
not tangential, momentum is accommodated, we say we h
a ‘‘basic contribution’’ of typeN; if tangential, but not nor-
mal, momentum is accommodated, we have typesT(u); if
both normal and tangential momenta are accommodated
have typesNT(u). Table I contains the information necessa
to construct the five basic contributions toḟ j

(u) . The term
3-2
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basic contribution is used because, in forming the MBR
additional factors ofz and (12z) must be inserted in appro
priate places to account for the modifications to the pr
abilities which result from the collision-relaxation process
that are modeled by the probability parameterz. Here, we
assume that those processes occur only in collisions in w
both normal and tangential momenta are accommodated,
is, they occur only in collisions of typesNT @14#.

It is convenient to define the following analogs of th
quantitiescjb j which appear in the earlier parts:

Cj
(u)[cj

(u)b j
(u)5^v&m

21E ds1
(u)E ds2v f j

(u) , ~2.11!

where it follows from Table I and earlier definitions that th
basic creation contributions, denoted byC j

(u) , are given by

C N j
(u)5va jnmodCj

(u)/Ds(u), ~2.12a!

C T j
(u)5

1

2
va j tmod~ f j

( i )Ds( i )1 f j
(o)Ds(o)!, ~2.12b!

C NT j
(u) 5

1

2
va jna j t~Cj

( i )1Cj
(o)!. ~2.12c!

2. The MBREs for FP geometry

As this is the first appearance of these equations,
because it is essential for readers to understand, and h
fully to criticize, them, we write them in full.

ḟ g
( i )5vF1

2
agtmod~ f g

( i )Ds( i )1 f g
(o)Ds(o)!1agnmodCg

( i )/Ds( i )

1
1

2
agnagt~Cg

( i )1Cg
(o)!1

1

2
zaenaet~Ce

( i )1Ce
(o)!

2agcombf g
( i )G2q0~ f g

( i )2 f g
(o)!1g f e

( i ) , ~2.13a!

TABLE I. Information necessary to construct the five basic c

ation contributions toḟ j
(u) . The abbreviations*ds1

(u) and*ds2 are
defined just after Eq.~2.4!. Additional factors ofz and (12z) must
be inserted in appropriate places when forming the MBREs,
discussed in Sec. II B 1.

Origin of
Type contribution n p ^ f & k

N f j
(u) ^uvzu& j

(u) a jnmod *ds2f j
(u) m

T( i ) f j
( i ) ^uvzu& j

( i ) a j tmod
1
2 *ds1

( i ) f j
( i ) f j

( i )

T(o) f j
(o) ^uvzu& j

(o) a j tmod
1
2 *ds1

(o) f j
(o) f j

(o)

NT( i ) f j
( i ) ^uvzu& j

( i ) a jna j t
1
2 *ds1

( i )*ds2f j
( i ) m

NT(o) f j
(o) ^uvzu& j

(o) a jna j t
1
2 *ds1

(o)*ds2f j
(o) m
01340
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ḟ g
(o)5vF1

2
agtmod~ f g

( i )Ds( i )1 f g
(o)Ds(o)!1agnmodCg

(o)/Ds(o)

1
1

2
agnagt~Cg

( i )1Cg
(o)!1

1

2
zaenaet~Ce

( i )1Ce
(o)!

2agcombf g
(o)G1g f e

(o) , ~2.13b!

ḟ e
( i )5vF1

2
aetmod~ f e

( i )Ds( i )1 f e
(o)Ds(o)!1aenmodCe

( i )/Ds( i )

1
1

2
~12z!agnagt~Ce

( i )1Ce
(o)!G1q0~ f g

( i )2 f e
( i )!

2g f e
( i ) , ~2.13c!

ḟ e
(o)5vF1

2
aetmod~ f e

( i )Ds( i )1 f e
(o)Ds(o)!1aenmodCe

(o)/Ds(o)

1
1

2
~12z!agnagt~Ce

( i )1Ce
(o)!G2g f e

(o) . ~2.13d!

A crucial check on these, or any MBREs of this type, is t
‘‘unitarity check,’’ that is,

(
j

(
u

ċj
(u)5(

j
(

u
E

21

1

ds1E
0

1

ds2 ḟ j
(u)50. ~2.14!

C. Steady-state solution to the MBREs

The steady-state solution for thef j
(u) , denoted hereafte

by simply f j
(u) , is obtained by solving the four~linear! equa-

tions, which result from settingḟ j
(u)50 in Eq. ~2.13!, for the

four functionsf j
(u) . The general form of the results may b

written as follows:

f j
(u)5

~vA1q0B!v1~vE1F !g

~vC1q0D !v1~vG1H !g
, ~2.15!

where the eight quantitiesA–H, which are to be regarded a
abbreviations ofAj

(u) –H j
(u) , are polynomials in the severa

parameters which appear in the MBREs~2.13!, but are inde-
pendent ofv.

Thus, in the general case, thef j
(u) are ratios of two qua-

dratic polynomials inv, which renders the remainder of a
exact analysis exceedingly complicated, if not intractab
Previous Papers@1–4# of this series of papers have deve
oped methods that are able to handle cases in which thef j

(u)

are ratios oflinear polynomials inv @15#, and we keep that
restriction here. It follows from the form of Eq.~2.15! that
linear polynomials are obtained ifg50, and we now restrict
discussion to that case. This restriction has been comm
made before@1,2,16,17#, but not for the reason here, particu
larly when applications to experiments have been conside
@1,2#.

With g50, thef j
(u) may be written in the following form,

which is a simplified version of Eq.~2.15!:

-

s

3-3
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f j
(u)5

vAj
(u)1q0Bj

(u)

vC1q0D
, ~2.16!

which serves to define the ten quantitiesAj
(u) ,Bj

(u) ,C,D, the
last two of which are chosen to be independent ofj ,u.

D. Exact analytical solution

Proceeding by analogy with the working in previous P
pers, we make the definition
o

re

.
ie
, b

p
t

or

01340
-

Xj
(u)5Bj

(u)/D2Aj
(u)/C, ~2.17!

where thef j
(u) may be written

f j
(u)5Aj

(u)/C1aXj
(u)/~v1a!, ~2.18!

wherea is the important laser excitation quantity, given
terms ofq0 here by
a

q0
5

~agcombaetmodagn1aecombagtmodaen!d~erf!/21PanSacomb

PacombPan
. ~2.19!
of

est
in
the
re-
as

-

m-
use
is
but

r
t is
With the integration written now in terms ofv rather than
s2 ~2.1a!, and with^v&m5p21/2, it follows from Eqs.~2.4!
and ~2.11! that @18#

cj
(u)/Ds(u)5E

0

`

dvuds2 /dvu f j
(u)5Aj

(u)/C1Xj
(u)Ga ,

~2.20!

Cj
(u)/Ds(u)5^v&m

21E
0

`

dvuds2 /dvu f j
(u)

5Aj
(u)/C1p1/2Xj

(u)aHa , ~2.21!

where the functionsGa[G(a), Ha[H(a)[12G(a) are
defined in Appendix D of Paper I.

The exact solution is now found by solving the system
nine equations, four from each of Eqs.~2.20! and~2.21! and
one from Eq.~2.5!, for the eight quantitiescj

(u) ,Cj
(u) . The

integrals over 1,q(vx), vx , analogous to those in Paper I a
as follows:

I 1 j5cj
( i )1cj

(o) , ~2.22!

I q j5q0E ds( i )E ds2f j
( i )5q0cj

( i ) , ~2.23!

I x j5E ds( i )vxE ds2f j
( i )1E ds(o)vxE ds2f j

(o)

5~cj
( i )/Ds( i )1cj

(o)/Ds(o)!d~exp!/p1/2, ~2.24!

in which d(exp) stands for (e2va
2
2e2vb

2
) as in earlier Papers

@1–4#, and where thecj
(u) are already calculated in Eq

~2.20!. The general exact results for the important quantit
are readily obtained from the procedure described above
are too long to be usefully presented here@19#. However,
interest lies in the special case of small laser excitation
rameterq0, that is, Eq.~2.19! of smalla, and we now presen
the exact leading terms for this case@20#. ~It turns out that
the results for FP and CC geometries have the same f
when written in this manner.!
f

s
ut

a-

m

d~erf!

d~exp!

I xs

I qd
5

PacombDa t1lPa tDacomb

Pa tPacomb
1O~ ut ln q0u!,

~2.25!

p21/2
I 1e

I qd
5

11lzaet

zaenaet
1O~ ut ln q0u!, ~2.26!

I qd /q05d~erf!/21O~ utu!, ~2.27!

where the parametersl,t are given, for the present case
FP geometry, by

lFP5212~s12 lna!/p, ~2.28!

tFP5q0ln q0 , ~2.29!

wheres('0.58) is Euler’s constant@1#. Thus, for FP geom-
etry, unpleasant logarithmic behavior in the term of larg
size, for smallq0, found also in Paper I, seems to persist
the present model. However, that logarithmic behavior in
present model may be negligible in practice, making its p
dictions very different from those of the model in Paper I,
discussed in Sec. IV below.

Results~2.25!–~2.29! were obtained by solving the sys
tem of equations~2.5!, ~2.20!, and ~2.21! exactly, and then
expanding in terms of increasing order in the small para
eter a ~or q0); this is perhaps the best procedure, beca
making small-a simplifications before solving the system
dangerous, easily leading to results that look reasonable
which are wrong. However,a posteriori, it turns out that
Eqs.~2.25!–~2.29! are still obtained if terms of order large
than a are neglected in the system of equations before i
solved. TheaHa (5a2aGa) in Eq. ~2.21! contains a term
of the order ofa and one of the order ofua2ln au, and the
second one may be safely neglected; that is, theaHa may be
safely replaced bya in Eq. ~2.21!. The Ga must be kept in
Eq. ~2.20!, as it is of the order ofua ln au; it is helpful to
replaceGa by aga with ga[Ga /a after solution in order that
the a may cancel nicely at simplification.
3-4
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For completeness, exact expansions of the FP results
g50, both of the present model and of that in Paper I,
cluding all terms of order smaller thanua ln au, are collected
in Appendix A.

III. THE MODEL IN THE CONTEXT OF CC GEOMETRY

The analysis follows that for FP geometry in Sec. II, w
changes as follows. The geometry is as described in Pap
with cylindrical polar coordinates (vx ,V,z) used for the mo-
lecular velocity space. At normal momentum accommo
tion, molecules are redistributed into a Maxwellian distrib
tion in V, and Eq.~2.1a! is replaced by

~s1 ,s2!5~erfvx ,e2V2
!, ~3.1!

the third velocity componentz being trivially integrated out
as in Paper II. The bulk Maxwellian distributionm(s1 ,s2) is
again given by Eq.~2.1b!. Now, in Sec. III, thev used in
Section 2 stands forV@5(2 ln s2)

1/2# instead ofuvzu, with
the Maxwellian averagêv&m5p1/2/2 instead ofp21/2.

The frequency parametern of Sec. II B 1 is now@2# given
by n52V/p, which means that the MBREs for CC geom
etry may be obtained from those~2.13! by means of the
following replacements, in an obvious notation:

ḟ j
(u)→~p/2! ḟ j

(u) , ~3.2a!

q0→Q0[~p/2!q0 , ~3.2b!

g→G[~p/2!g. ~3.2c!

The replacement of Eq.~3.2b! is also made in Eqs.~2.15!
and ~2.16!. In Eq. ~2.18!, the replacement

a→A[~p/2!a ~3.3!

must be made, withA/Q0 (5a/q0) given via Eq.~2.19!.
Results~2.20! and ~2.21! undergo more severe chang

because of the difference between the substitutions~2.1a!
and ~3.1! and the difference between the values of^v&m
(5p1/2/2 now!; we get@21#

cj
(u)/Ds(u)5Aj

(u)/C1p1/2Xj
(u)AHA , ~3.4!

Cj
(u)/Ds(u)5Aj

(u)/C12p21/2Xj
(u)A~12p1/2AHA!.

~3.5!

The ‘‘final’’ results ~2.25!–~2.27! remain of the same form
@20#, with the parametersl,t given for CC geometry by

lCC5p/221, ~3.6!

tCC5q0 . ~3.7!

Thus, for CC geometry, logarithmic behavior in the term
largest size is pleasingly absent, as was the case in Pap

Remarks analogous to those made at the end of Sec
concerning safe simplifications in the system of equati
01340
ith
-

II,

-
-

f
II.

II,
s

before it is solved, may be made now: theAHA in Eq. ~3.4!
and that in Eq.~3.5! may be safely replaced byA and zero,
respectively.

For completeness, exact expansions of the CC results
g50, both of the present model and of that in Paper
including all terms of order smaller thana, are collected in
Appendix A.

IV. DISCUSSION AND CONCLUSION

It is clear from Eq.~2.25! that I xs /I qd does in fact depend
on both Da t and Dan , on the latter throughDacomb Eq.
~2.9b!. However, the dependence onDan is likely to be neg-
ligible in the context of current experimental capability f
the following reason. With the molecule-surface systems
current use, thea jk are sure to be close to unity@7–10,22#,
which implies that theDak and (12a jk) are ‘‘small.’’ In
fact @1,2,7–10#, uDaku is probably no larger than about 1022

and (12a jk) no larger than about 1021. This in turn implies
that uDacombu is probably no larger than about 1023 ~indeed,
Dacomb50 if either of agk and either ofaek are equal to
unity!. It follows that theDacomb term may be safely ne
glected in Eq.~2.25! provided thatl is not too large. Of
course,lCC ('0.57) is of the order of unity, butlFP would
be large for sufficiently smalla. With thea jk close to unity,
Eq. ~2.19! which relatesa to q0 may be safely@23# simplified
to read

a'2q0 , ~4.1!

just as before,@1,2,24#. It follows that, wherea1 stands for
the parametera used in Paper I, we havea'a1 in practice. It
turns out from experiment@1# that a'1022, giving lFP
('1.7) also of the order of unity. For theDacomb term to be
of the same order as theDa t term in FP geometry,lFP must
probably be of the order of 10, implying thata is less than
about 231028, that is @1# the laser radiation intensityr *
absorbed by the gas is of the order of nW/mm2 or less, which
is entirely outside, by a factor of the order of 106, the range
of current experimental capability~in current experiments
@7–11#, r * is of the order of mW/mm2). Thus, in the context
of current experiments, Eq.~2.25! may be safely@23# sim-
plified to read

I xs

I qd
'

d~exp!

d~erf!
Da t , ~4.2!

for both FP and CC geometries.
Now we relate results here to those of Papers I and II

follows from Eq.~2.25!, with theDacombterm neglected, and
the analogous result from Paper I, which comes from E
~5.5c! and ~5.9b! therein, that, in an obvious notation,

S Da t

Da D
FP

'
agtaet

agae

~22 lna12s!

p
, ~4.3!

wherea1 is given from@1#
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a1

q0
5

~ag1ae!

agae
, ~4.4!

whereDa,ag ,ae refer to the quantities in Paper I. The an
log of Eq. ~4.3! for CC geometry is

S Da t

Da D
CC

'
agtaet

agae

p

2
. ~4.5!

For FP geometry, it now follows, using Eqs.~6.8! and ~6.9!
of Paper I with Eq.~4.3!, that Da t here is related toDã,
which stands@1# for Da t quoted in previous work, for ex
ample, Ref.@9#, by

~Da t /Dã!FP'~11«!F ln~2X!2
1

2G Y p, ~4.6!

where we have set thea jk to unity on the right-hand side
~RHS!. The analog of Eq.~4.6! for CC geometry is

~Da t /Dã!CC'1. ~4.7!

The explanation for the peculiar-looking RHS of Eq.~4.6!
is that it is the ratio,k̃FP/kFP, of two free-molecule-flow
parameters @25#: in Paper I, kFP was chosen as
2p1/2/@ ln(2X)21

2#, whereX is the dimensionless cell length
whereas, in Ref.@9#, for example,k̃FP was chosen as 2(1
1«)/p1/2, where« is ‘‘a small correction’’ depending on the
dimensionless cell widthY. Peculiar-looking quantities ar
absent from the RHS of Eq.~4.7!, consistently with bothkCC

in Paper II andk̃CC in Ref. @9#, for example, having been
chosen as 3p1/2/4.

A conclusion is that the exact calculations that are m
here may well be unnecessary in order to interpret exis
experimental results, except perhaps in helping to put ea
work on a firmer footing, and this seems to be most clea
evident from Eq.~4.7!, which indicates that the previous ca
culations, givingDã for the difference between the TMACs
are adequate.

In the same context of existing experimental work, o
calculations indicate thatDan may, after all, play no mea
surable part in SLID. This is an interesting and importa
point in view of the fact that, under other conditions, it h
been claimed@5,11# that Dan does play an important part.

It would, of course, be very interesting if SLID exper
ments, which need the full form of Eq.~2.25! for their inter-
pretation, could be done, for example, using systems
which the a jk are not close to unity@22#. The difference
between the forms oflFP and lCC clearly emphasizes th
conclusion@2# that CC geometry is more preferable than
geometry for SLID experiments.

As with the models@1–4# presented in Papers I–IV, nu
merical results may be obtained by iteration of the analyt
01340
e
g
er
y

r

t

in

l

steady-state equations, and, independently, by integratio
the MBREs with respect to time, as thoroughly described
Paper I.

The models that have been presented here are physi
quite different from the earlier models~Papers I and II! @1,2#.
For example, it is not possible to choose the four ACsa jk in
the present models in order to reproduce the earlier ones
given in Table I, molecule-surface collisions of type
N,T,NT occur with respective probabilitiesa jnmod, a j tmod,
a jna j t here, as opposed to respective probabilities 0,0,a j in
Papers I and II; it is worth emphasizing that the choicea jn
5a j t5a j here does not reproduce earlier models, as it g
the respective probabilitiesa j (12a j ), a j (12a j ), a j

2 . It is
for future experiments to decide which of the two sets
models is more realistic physically, and, more importan
whether or not either set is adequate.

Although a clear distinction between the NMACs and t
TMACs, as is made here, renders the treatment relativ
straightforward, it should be borne in mind that the vario
accommodation coefficients are in fact related; that is, th
may be considered as being different weighted average
the same relaxation probability function. These consid
ations are discussed in the theory presented in Ref.@26#, a
good summary of which is given in Ref.@27#.
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APPENDIX A: EXACT EXPANSIONS, FOR gÄ0 AND FOR
SMALL q0, OF THE RESULTS FROM THE MODELS

HERE AND FROM THOSE IN PAPERS I AND II

The expansions ofI qd /q0 are given by Eq.~2.27! in all
cases. The parametera used in Paper I is nameda1 here and
is given from Eq.~4.4!. The a used in Paper II could be
nameda2 here, with@24# a25(p/2)a1. However, we do not
need to introducea2 because, in the results below, we a
able to use the result

a2ln a25~p/2!a1ln a11O~q0!. ~A1!

Where (e,p)[ ~earlier,present!, the expansions of the quan
tity Q, defined by

Q[p21/2I 1e /I qd , ~A2!

may be written, in an obvious notation, as follows:

aeQ
(FPe)5

22 lna1

p
1S 1

z
212

s

p D1
4

p3/2
a1ln2a1

1O~ uq0ln q0u!, ~A2a!
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aenQ
~FPp)5

22 lna

p
1S 1

zaet
212

s

p D1
4

p3/2
a ln2a

1O~ uq0ln q0u!, ~A2b!

aeQ
(CCe)5S 1

z
1

p

2
21D1

p3/2

2
a1ln a11O~q0!,

~A2c!

aenQ
~CCp)5S 1

zaet
1

p

2
21D1

p3/2

2
a ln a1O~q0!.

~A2d!

We define quantitiesdaj by

daj5Daj /Paj , ~A3!

where j[(t,comb) in the present models and wherej is
absent in the earlier ones, whenDa[(ag2ae) and Pa
[agae . The expansions of the quantityR, defined by

R[
d~erf!

d~exp!

I xs

I qd
, ~A4!

may be written as follows:
n

n

J.F

J.F

nd

ity
i

so
,
c-
s

01340
R(FPe)5
~22 lna12s!

p
da1

4

p3/2
daa1ln2a11O~ uq0ln q0u!,

~A5a!

R(FPp)52
2

p
dacombln a1Fda t2S 11

s

p D dacombG
1

4

p3/2
dacombaln2a1O~ uq0ln q0u!, ~A5b!

R(CCe)5
p

2
da1

p3/2

2
daa1ln a11O~q0!, ~A5c!

R(CCp)5Fda t1S p

2
21D dacombG1

p3/2

2
dacomba ln a

1O~q0!. ~A5d!

The similarities and differences among results~A2! and
~A5! are obvious and somewhat pleasing. The results fore
are consistent with, and extend to a higher order, the res
obtained from Eq.~5.5c! and ~5.9! of Paper I, and those fo
CCe are consistent with, and again extend to a higher or
those obtainable from Eq.~3.2! of Paper II. The FPp and CCp
results are consistent with, and extend to a higher order
sults ~2.25!–~2.29!, ~3.6! and ~3.7! here.
ion

re
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ffi-
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