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Electron capture into large-l Rydberg states of multiply charged ions escaping from solid surfaces
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We have investigated the electron capture into larg+dberg states of multiply charged ionic projectiles
(e.g., the core charges=6, 7, and 8 escaping solid surfaces with intermediate velocities-( a.u.) in the
normal emergence geometry. A model of the nonresonant electron capture from the solid conduction band into
the moving large angular-momentum Rydberg states of the ions is developed through a generalization of our
results obtained previously for the loweases (=0, 1, and 2. The model is based on the two-wave-function
dynamics of the Demkov-Ostrovskii type. The electron exchange process is described by a mixed flux through
a moving plane(“Firsov plane”), placed between the solid surface and the ionic projectile. Due to low
eccentricities of the largeRydberg systems, the mixed flux must be evaluated through the whole Firsov plane.
It is for this purpose that a suitable asymptotic method is developed. For intermediate ionic velocities and for
all relevant values of the principal quantum numinerZ, the population probability,, is obtained as a
nonlinearl distribution. The theoretical predictions concerning the ions, £l vii, and Arvii are compared
with the available results of the beam-foil experiments.
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I. INTRODUCTION ate velocity region. In particular, we realized that the inter-
mediate stages of the ion-surface interaction, under the men-
Interactions of multiply charged ions or Rydberg atomstioned beam-foil conditions, require more details in quantum
with solid surfaces have attracted considerable attention ovelynamics based on the nonresonant electron-capture mecha-
the past decade. A number of theoretical studies that havgism. Moreover, we observed that the experimentally avail-
appeared in the literature deal with the problem of electromple | distributions of the Rydberg states at=1 a.u. are
capture and recapture at low velocities<1 a.u.). The clas-  qualitatively different from the theoretical results for fast
sical over barrier moddlL,2] and its extended dynamic Ver- jons (,~10 a.u.) obtained within classical transport theory
sion[3,4] reflect global physical aspects of the problem. Thergy
guantum descriptions of the resonant charge exchange have Taking into account the above facts, we analyzed the ex-

been focused on calculating the transition matrix elementﬁerimental datd12—14 as a surface effect, considering the
and transition rateg] as well as basic matrix elemerii] electron-capture process along the outgoing part of the ionic

\év(;trrl]edthaen fa?ge&']vgélé ;Ltgzﬁ%] [;enréutrrk]):tglc()am Tgf?g{;‘":he trajectory. Our mod€]10,11,15 is based on a generalization
b g P 9 of the Demkov-Ostrovskii methodologhl6], used previ-

method[8] have been used in the nonperurbative calcula- . . e
tions of the energy shifts and widths. Also, the mixing of theOUSIy in _the_ theory of atom|c_ collisions. The _electron-capture
| states and the most active members ofriraanifolds can  Probability is expressefll5] in terms of a mixed flux (t)
be recognized by the last two methods. through a moving “Firsov” planeS:, placed betwee.n. the
On the other hand, the analysis of the Rydberg state popdonic projectile and the backside of the foil. The position of'
lation of multiply charged ions traversing thin foils at high the Firsov plane is not arbitrary, but is chosen such that it
velocities ¢>1 a.u.) has indicated that the bulk effects areseparates the space where the foil potential is strong, from
relevant under these experimental conditions. The higly-  the space where the atomic potential is strong, i.e., qualita-
dberg states, observed as a result of the beam-foil interactiofively, the plane is placed in the “interaction-free” region
have been treated within the framework of classical transpofeetween the foil and the atom.
theory[9]. To calculate the fluxd (t) we need two wave functions
Recently, a theoretical studyL0,11] of the one-electron W¥,(r,t) and \IIZ(F,t) of an active electron. While the first
capture into the Rydberg states of multiply charged ions afunction evolves from an initial electron statetatt;,, the
intermediate velocitiesu~=1 a.u.) has been carried out. This second function represents a state that evolves towards a
analysis has been motivated by a series of beam-foil experfixed final electron state at=t;,. In the proposed two-
ments[12—14 with the ionic projectiles characterized by the wave-function dynamics, for the evaluation of physically rel-
core charge¥ =6, 7, and 8, not yet studied by the above evant quantities it is sufficient to know the statieg and V',
cited models. The absence of any explanation of the experexclusively on theSg plane. Let us note that a “volume
ments[12—-14 by the method$1—8] indicated to us that the calculation” for a transition amplitude can also be converted
resonant mechanism could not be sufficient for a completéo a “surface calculation” within the framework of the
description of the charge exchange process in the intermedBardeen transfer Hamiltonian methdt7], but considering
the quasistationary transition problem.
The model[10,1]] of electron captures from the foil va-
*Electronic address: hekata@ff.bg.ac.yu lence band into moving bound statggth n~Z), however,
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has been developed by restricting to the case oflldRyd- s s
berg statege.g.,| =0, 1, and 2. Namely, in the low- case -
the ionic Rydberg states have large eccentricities so that only 3
a narrow cylindrical region around the ionic trajectory is rel-
evant for the electron-capture process. Accordingly, it has p ; zz
been possiblg10,1]] to calculate the mixed electron flux ol o1 ¥
[(t) through theSg plane by restricting our analysis exclu- v, »
sively to the central part of that plane. The population prob-
ability P, at t=t;;,—>, determined completely by the a(t)
mixed flux, has been calculated and compared with experi- - vt >
ments. All available low-experimental facts concerning the

ions Svi, Clvii, and Arvii have been reproduced by the FIG. 1. Geometry of the process.

model.

Under the mentioned experimental conditioii2-14,  mixed flux for larget Rydberg states, from which the experi-
the larget Rydberg state populationl®3) represents a mentally verifiable population probability can be obtained.
more complicated problem in comparison to the logase. This paper is organized as follows. In Sec. II, we formu-
In order to S|mpllfy the anaIySiS of the experimental data, W€ ate the e|ectr0n_capture pr0b|em, exposing the |argg_
shall distinguish two physically different cases of the large- namics and the asymptotic procedure. An explicit model of
distributions corresponding to the Rydberg states with fixedhe larget Rydberg state population is developed and com-

values of the quantum number In the first case, the experi- pared with experiments in Sec. Ill. Some concluding remarks
mental curves have an upper limit Bt =n—1 for all will be given in Sec. IV.

tested values of the ionic core charges and velocities. This Atomic units @?=#%=m,=1) will be used throughout
kind of larget distributions is characteristic for lowerval-  the paper unless indicated otherwise.
ues (roughly, 5<n<7 or 8 of the ionic projectiles S,
Clvi, and Arvii. We realized that the electron-capture
mechanism is dominant under these conditions. In the second Il. FORMULATION OF THE PROBLEM
case, however, the lardedistributions have the upper limits A. Large-l quantum dynamics
ltnr<n—1, indicating that an additional, reionization-type
procesq 11,18 is active inside the ion-surface system. This
kind of larget distributions prevails in the case of higher-
values of the Rydberg states of the iongi &nd Clvil, and
especially for the Awviil ion.

In this paper, we present a generalization of the low-
model [10,1]] to the larget Rydberg systems. Due to the

complexities of interplay between the electron-capture and> " X " . ;
reionization processe@equiring a separate analysiswe with intermediate velocities according to the classical law

shall restrict ourselves to the lowar-cases where the R—vt. The instant position of th& plane with respect to

electron-capture process is dominant. Heuristically, the folth€ ion is denoted by(t). We indicate the ionic region by

lowing two facts determine the electron-capture dynamics/A- For the large-Rydberg states, all parts of ti% plane

under the mentioned conditions. Namely, the largydberg are re_levant, including those with large values of the radial
states are characterized by very small eccentricities and wePordinatep. , _ ,

can expect that the space region of the electron transitions 1h€ active electron is described simultaneously by the
extends far from the ionic trajectory. Beside this, the electrorstates  [Wy(1))=U(tj,,t)|Wy(tin))  and  [W,(1))
capture into a moving Rydberg state occurs at large ion=U(t;,,t)|W(tfin)). The evolution operatord (t;, ,t) and
surface distanceB>1, which indicates that an asymptotic (j(t, t) are determined by the one-electron Hamiltonians
methodology can be used in the study of the process. Ac|:| (t) andFi(t):

cordingly, in contrast to the low-case, we need the mixed ! 2

flux through the whol&S: plane. This means that sufficiently

. 1
N _ 2
accurate asymptotic expressions for wave functibngr ,t) Hi() == 5V + Uyt (Ua+Uawm), (2.13
and\Pz(F,t), valid on the entire Firsov plane, must be found.

The evaluation of functionﬂfl(F,t) and \IfZ(F,t) on the ) 1
S plane is performed by means of a suitable asymptotic Hz(t)=—§V2+ Upa+[Uu®(2)+Uam]. (2.1b
method. These functions are obtained by an analytical con-
tinuation from the regions where they are mainly localized
(the solid region and the ionic core vicinity, respectiyely ~ The regions inside and outside the solid are defined by the
the whole Firsov plane. A similar procedure has been useteaviside functior® (z). We denoted the Coulomb potential
previously in the case of proton neutralization at solid sur-of the electron-ionic core interaction By ,, whereasUy,
faces[15]. Using the obtained functions we calculate the=—Uy®(—z)—(42) 10O(2) is the electron-solid interac-

~
Pl

The two-state model of electron captures into Rydberg
states of multiply charged ions escaping solid surfaces has
been explicated in more detail in our previous pap&s11].

Here we expose the facts relevant to the population of the
largel Rydberg states.

In Fig. 1, we present the process in a normal emergence
geometry, taking that the pointlike projecti&>1 moves
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tion potential, andU,y is the interaction potential of the |et us note that fort=t;,—o we have P, W¥,(t))
active e'lectron Wlth the ionic core image. =|W,(t)), which means that the amplitud®t) tends to-
The intermediate stages of the electron-capture procesgards the transition amplitud@= (W ,(tin)| ¥ 1(tin)) Of

can be describefi10,11,15,1¢ by the probability that the the process. Therefore, for=t;;,, the probabilityP,, ob-
single active electron, whose behavior is determined simuleains the standard quantum-mechanical form.

taneously by the state vectdi(t)) and|W(t)), is in the From the scheme presented, we recognize a technically
atomic regiorV, . The related probability amplitude is given sjgnificant role of the Firsov plane within the framework of
by the two-state model proposed. Namely, the mixed fl{ty,
- Eq. (2.3, as well asI'N(t) and P,, are completely deter-
A()=(W(1)[Pa| W1 (1)), (228 mined by the values of wave functionls; and ¥, on that

o . ) plane. This fact considerably simplifies the subsequent cal-
where the projection operat¥, (in the coordinate represen- ¢ jations, because it is not necessary to have the functions in
tation is specified by the Heaviside functidd(z—R+a).  the entire space. The instant position of the Firsov plane is
For a largel Rydberg state, the amplitud®(t) can be ex- determined[10] by the variational requiremendP,,/da

pressed as =0, with the boundary conditionga(t;,)=0 and da(t;i,)
¢ =0. Explicit calculations concerning the kinematics of the

A(t)=J [(t)dt, (2.2  S¢ plane are presented in Sec. IV A of R¢LO]. For the

tg experimental situation discussed in this pagdargel, but

lowern values of the Rydberg states of the iongi SClvii,
and Arviil, see Introductiof) the instant positiom=a(t) of
the S plane is determined with sufficient accuracy by Eq.
(4.20 of Ref.[10].

where the mixed flux (t) is given by the following surface
integral over the Firsov plane:
) da) - o
—2iv| 1-——=|e, | ¥3V¥,-dS

[
-4
2)s, dR
2.3 The electron-capture model exposed in Sec. Il Ais formu-
whered §=dS?—:-Z andé. is the unit vector of the axis. In Eq lated exclusively within the framework of quantum dynamics
7 ) ' i [
(2.2b), we took into account the fact that the population prac-" these plane. For large ion-surface distandeswhere the

tically begins att=t,#0. The parametet, will be deter- Rydberg state populations are dominant, the Firs_ov plane is
mined by means ofg energetic argume(ﬁ?ec. I110. Note located far from both the solid surface and the ionic core. For

that the quantityl =1(t,a(t)) represents a functional of the this reason, the function¥(r,t) and W(r,t) figuring in

positiona(t) of the Sz plane. the mixed fluxI(t), Eq. (2.3, can be represented in the
We consider the active electron which is initially in a stateVicinity of the S plane by corresponding asymptotic forms

defined by the sefuy in=(¥in,N1m.in,Mw in) Of the para- (R>1,r>1, andr,>1).

bolic quantum numbers, wheng,, is the continuous energy Through the process, the staiel(F,t), representing an

parameter, i.e., the initial electron energy is givenBfy’,  eigenstate of the Hamiltoniafi,(t) at the initial time t

= — ¥4/2. The ionic Rydberg state, detectedtatt;,—*,  =t;,,=0, is mainly localized inside the solid. In the vicinity

is described by the index set, ¢j,=(n,I,m) of spherical of the Sz plane, and forR>1, it can be expressed in the

guantum numbers. The final eigenenergy is giverEﬁ%in form

=—y4,/2, where y,o=Z/n is the corresponding discrete _ . .

energy parameter. Therefore, we defih®,11,15,1the fol- Vi(r,t)=exdhy ,,, (1 ,t)]d)ﬁ,ll}wM(r,R), (2.9

lowing neutralization probabilityrN(t) per unit y;, :

Vo, A

v o

B. The asymptotic procedure

where® {1\ , (r,R) is the eigenfunction of the Hamiltonian
N — Nyl"M,in — 2 1AM
TR =T, “Min(t)=]A(D)]* (243 : . )

VA fin H.(t) corresponding to the eigenenergyEy’(R)

=—v(R)?/2. By uy=(y(R),n;y,my) we denoted the in-
termediate parabolic set satisfying the conditiqny

Nt =T Aminty =g TV #Min(t)/dt. (2.4 — wm,in Whent—ti,. The function exthy,, ()] repre-
VA, fin VA, fin . .
sents a space-time correction factor. On the other hand, for
Note that the quantities given by Eq@.43 and (2.4 de-  the function®{;) , (r,R) we have the following asymptotic
pend, for allte[tj,,tsi,], not only on the initial condition  {5,:
but also on the fixed final condition at the tirhg,—c°.
The experimentally verifiable population probabili@y, o =M=l (r,Rexg—su(r,R)],

of the Rydberg state, ¢, from all valence-band states of i i (2.63
the solid is determined by '

The neutralization rat€N(t) per unitvy,, is given by

where®{;, 'is the eigenfunction of the metal Hamiltonian

Pu=| 2 > T’;"”_M"“(t)d%n, t—oe. (240  Hy=-1V2+U,,, whereasy(r,R) represents a correction
pawg, Mo AT function.
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An asymptotic expression of the functimf\ﬂl?MM can be

obtained directly from the energy eigenvalue problem of th
Hamiltonianl3|,\,I expressed in parabolic coordinates. For the

parabolic quantum numbersi;y=nyy =0 and my
=my in=0, which give the main contributiof10,11] to the
electron-capture process, we get

o), (r,R)=Ny(Riexp — y2), (2.6b)

where Ny (R) is an unknown function oR. Note that the

factor Ny (R) cannot be determined by a normalization of

the function®{y), , because the validity of E¢2.6b) is

restricted exclusively to the vicinity of th&: plane.
What we can do, however, is to connect expressib)
with the expression foFPl(F,t) valid inside the solid. We

use the known JWKB form for the eigenfuncti 1,)\’MM ,

€
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t—ts,. The factor ex[hAvVA(r*,t)] represents a space-time

correction. Fort=t;;,—, the statelIfé(F,t) turns into an
eigenstate of the Hamiltonia »(t).

In the vicinity of theSr plane, the functio® ), , can be
expressed by the following asymptotic form:

2 _ 2) __ 2
oR,, ~oD-0f),

(raexd —sa(ra,R)], (2.9

wheredbﬁf)VAyﬁn(r*A) is the eigenstate of the atomic Hamil-

tonian A= — $V2+ U, . The fact that functior(2.8) repre-
sents the largé-Rydberg state foR— o will be taken into
account through an appropriate asymptotic expression for the
(D'S'\Z'Z’Afin(FA) function (Sec. Il B).

Finally, it remains to determine the correction factegs

obtained by the asymptotic procedure of analytic continuaand h, in the functionW(r,t), Eq. (2.7b. For the large-

tion from the solid region. In the region<1 of the Firsov
plane, we have

DA, (HRI=P e (2.60

By equating the JWKB forni2.69 and the asymptotic form

(2.63 of the functiond),(\,ll,)wM in the central partg<<1) of

the Sg plane, we obtain the functioNy(R).
The correction functions,, andhy,, figuring in the wave

function‘lfl(F,t), can be calculated by using an extension of

the lowd procedurd 10] to the largel case. Now, it is insuf-
ficient to consider the very vicinity of the axis (p=0);

case, it will be sufficient to consider thedependence of the
differencehy—s, . In this way, we can obtain the function

\PZ(F,I), which is valid on the entire Firsov plane.

Ill. POPULATION OF LARGE- | RYDBERG STATES

A. The function W ,(r,t) on the S¢ plane

In order to obtain an asymptotic form of the function
¥,(r,t) on the wholeS: plane, we first need to calculate
explicitly the eigenfunctio@f\ﬂl}\’MM(F, R), Eq.(2.5.

We start from the JWKB fornj19] (R>1,r>1) of the

instead, an explicip dependence of the correction factors is function CD,(\Al)\,,LM valid in the central parp~0 of the S¢
necessary. Consequently, the exposed asymptotic procedystane. For the quantum number,=my, ;,=0, giving the

gives the wave functioﬂfl(F,t) on the whole Firsov plane.

The function\lfz(F,t) is mainly localized in the vicinity of

the ionic core and vanishes in the solid region. Namely, the

potential in the Hamiltoniai ,(t) tends to zero foz<0, so

that the eigenfunctions &1 ,(t) and, consequently, the func-
tion ‘IIZ(F,t), are negligible in the solid region. Therefore, in
order to obtain thePz(F,t) function on the Firsov plane, a

main contributior{10,1]] to the electron transitions, we have
[10]

@S]\./?/KB: T 1,yl/2)/+ 1/2e1/472 —(22-1)12y+1/4y—1

ngzler Nim Rl/4yf 1/267 yZ’ (31)

whereg=a(t)/R(t). Expression3.1) has been obtained by

. . . (1)
connection with the solid region is not necessary. For tha[he_ JWKB continuation of the _fun‘_:t'o'q)MA_,uM from the
reason, the asymptotic procedure uses an asymptotic expresplid throughout the narrow cylindrical region around the

sion of theW (r,t) function valid in the atomic region.
The functionW,(r,t) in the coordinate systet@and the

corresponding functionl’é(ﬂt) in the moving coordinate
systemS' (Fig. 1) differ by the Galilean factor:

W,(r,t)=exdivz—i(v22t]¥4(r,t), (2.79
where
Wy(r,)=exghn,, (010G, (R).  (27b

By ®{2) we denoted the eigenfunction of the Hamiltonian
AM,VA

H,(t) corresponding to the eigenenergyE'?(R)

=—ya(R)?%/2. By vo=(Nna,lo,m,) We denoted the interme-

diate spherical set satisfying the conditiop— v 5in When

axis into the vicinity of the ionic core.

On the other hand, the eigenfuncti 1/)%,MM' valid for
all p values of theS¢ plane, is also determined by EQ.63.
Assuming thatV2sy~0 and (Vsy)?~0, and using the
asymptotic expressiofR.6b), we obtain[10] the following
differential equation:ydsy, /dz=Ux+Upy. The particular
solution of the last equation, satisfying the condition

lim,,_ sw(r,R)=0, is given by

ZI Vp?+(R—2)°+R-2z

sy==In

My VP2 +RZ+R

Vp?+(R+2z)?+R+z
x/p2+R2+R

Z
+—In
Y

: (3.2
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wherea/R— 1 for R—0. Note that we have=R—a on the
Firsov plane.
In the vicinity of the Firsov plane, the asymptotic form

®f of the function®{z) , (r,R) follows from Eq.(2.63.

For p~0 we have
dY=Ny,(Re g 77 2—g) . (3.3

Equating the JWKB form, Eq(3.1), and the asymptotic
form (3.3 of the eigenfunctiorﬂ)ﬁ,ll}WM(r*, R) in the central

PHYSICAL REVIEW A68, 012721 (2003

(Ta),
(3.6

Wo(r,t)=exf — Sa(ra,1) +i(yag/2t] DY)

AV fin

whereSa(ra,t)=sa(ra,R) +i (yao/2)t; the factorsa(r »,R)
originates from expressiof2.8). We note that, for the large-
| case, the Legendre polynomial in the hydrogenlike function

CDSE’)VAHH(FA) can be expressed by the standard asymptotic
form with respect td.
The space-time correction factcﬁA(FA,t) can be ob-

part of theSg plane, where both these functions behave asained from the Schdinger equationia\]}é/atzﬂzll}é,

exp(—vy2), we get

N M ( R) =g 1,y1/2y+ 1/261/4}/2 —(2Z2-1)/12y+1/4y—1

X gnlM Rl/4y* 1/2(2_9)2/7. (34)

Inserting expressions.4), (3.3), and(3.2) in Eq. (2.639, we
obtain the eigenfunctioﬁ)ﬁ,,l)A’ﬂM(F, R) on the whole moving

Firsov plane, and for all asymptotic positiorRs% 1) of this
plane.

The obtained eigenfunction of the Hamiltonidhy, en-

ables us to evaluate the time-dependent wave function

W¥,(r,t). Namely, inserting Eq(2.6a into Eq.(2.5) and tak-
ing into account thaty= y;,+O(1/R?) and Nim=N1M.in s
we get

W4(r,t) =Ny (R)exd — yinz—Su(r,t) +i(yi/2)t],
(3.59

where Sy (r,t)=sy(r,R) —hy(r,t) +i(y3/2)t. The space-
time correction factoBy,(r,t) follows from the Schrdinger
equation i9¥,/at=H,¥,, with the initial condition
«Ifl(r,t)eqﬂMl}Wm(r,R) for t—t;,=0.

Using the approximation§2Sy,~0 and VSy)?~0, and
performing the transformationz(t) — (éy,nm), Whereéy
—(it+zly)/2 and npy=(—it+z/y,)/2, we get
—dSyldéy=Up+Uym . A particular solution of the last
equation, satisfying the conditioBy(r,t)—0 for t—0, is
given by the following expression:

I Vp°+(R—-2)*+R~-z
n
\/pz-i- RZ+R
z | Vp?+(R+2)°+R+z
. n .
1V~ ¥in Vp?+R%+R

Equation(3.5a, with Sy (r,t) andNy(R) given by Egs.

Z
_iv-l-yin

Swu

(3.5b

combined with the final conditior\Ifé(F,t)—>d>§\2,)VAfin(FA)
when t—t,=0c°. Using the approximationﬂZSAw’O and
(VSp)2~0, and performing the transformationr (,t)
—(&a,mp), Where Ea=—(it+ralyp0)/2 and pa=(—it
+rA/’)’A0)/2, we get_ &SA/&§A= UM+ UAM .

The physically relevant particular solution f8z can be
obtained by the adiabatic limit requiremeritl0,11]:
Sa(Fa, )= —[(2Z—1)/(4yaoR) Ir a+i(2Z—1)/(4v), for
v—0. The solution satisfying the last condition is given by

22-1

In(z/R) Z N
4yn0

AT 4(|U - ’)/AocOS®A) B \/_6

Zy

| 27—-1
"z,

4v
(3.7

where the angl® , is defined in Fig. 1, whereas

(3.8a

C= yio—4v2—4iv'yAOCOSA,

Z,=2C\p%+ (z+R)2—2r o(yao— 2iv €0SO ») + 4R(2iv

— ¥A0C0SO 4), (3.8b

Zo=4R(/C+2iv — y50c0S0 »). (3.80

Equation(3.6), with the factorSa(r,t) given by Eq.(3.7),
represents our final expression for the time-dependent func-

tion W(r t).

C. The neutralization rate I'N and probability TN

Physically relevant details of the electron-capture process
at intermediate stages of the ion-surface interaction can be
recognized by an explicit evaluation of the mixed fl(x),

Eq. (2.3, as well as the neutralization rafd'(t) and prob-
ability TN(t), Egs.(2.4a and(2.4b. We shall focus on those
space-time and energetic properties of the Highecess that

(3.5b and(3.4), represents our final expression for the wave@'® different from the low-characteristics.

function W ,(r t).

B. The function W,(r,t) on the S¢ plane

The function\lfé(ﬁt), Eq. (2.7, evolves during the time
t toward the largd- Rydberg stateb(?) (FA), so that at

AVA fin
intermediate stages of the ionic motion we have

Using expression£3.5a and (3.6) for the statesl(rt)
and\Pé(F,t), respectively, we get

1(t)= i J + a +iv| 1 Zda
(t)—E s Yin VAoa AT
X(I),(Az,lifinNMe_Vi”Ze_SZ_SMethdS, (3.93
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TABLE |. The numerical values of the coefficients=a;(Z)
for the ionic core charge&=6, 7, and 8.

z 6 7 8
ag 9.77 2.84 0.27
a, 1.80 0.56 0.10
a, 4.13 1.12 0.12

we consider the parabolic splitting of thi(t) levels, i.e., at
a given ion-surface distand@>1, we have(see, for ex-
ample, Ref[7])

) (R z? . 2Z—1 3(Z-1) n(2n;a—n+1)
FIG. 2. Rel(R,p) as a function of ion-surface distan&eand A"‘A( ) 2n? 4R 87 R? '
radial coordinatep for Clvi (v=2.50 a.u.) ion withn=7 and| (3.11
=6.
whereua=(n,n1a,Mpy=0) andn;4=0,1,... n—1.
where z=R-—a, whereas W=(yi2n— yiO)IZ—vz(l For a givenZ, the following three classes of the energy
—2a/R)/2. Expression(3.9a, with the initial statemy,;, terms exist, depending on their behaviors with respect to the
=0, is different from zero only for the Rydberg states with conduction band of the foil. The terms of the first class do
m=0, i.e., we have not intersect the bottom—-U,) of the conduction band,
whereas the terms of the second class intersect the bottom
> and rapidly overflow the Fermi level. The third-class terms
H(t)= JO I(R,p)dp. (3.90) intersect the bottom, remaining below the Fermi level. We
define the parameteRy as the minimal value of the ion-
Although expressioii3.9b) is obtained under the asymptotic surface distance at which the energy terms of the third class
condition (R>R,=uvt,), we can extend its validity over all intersect the bottom of the conduction band:
ion-surface distance® with a sufficiently high accuracy. The
errors due to extrapolation of the asymptotic forms of wave Ry=min[R| EXZ,LA( R)+£AE/2=—Uy], (3.12
functions ¥, and ¥, to smaller values oR do not affect
significantly the mixed flux (t), because of the variational whereAE is the energy distance between the neighbor mem-
method of determining th&8c-plane positior] 10]. bers of the manifold. The obtained valuesRy, for differ-
In Fig. 2, we present the quantity RER,p) as a function ~€ntn and for the experimentally relevant value.s.ij are
of Randp for the Clvii ion with n=7, =6, and the ex- diven by Ry=ap+a;n+a,n’, where the coefficients;
perimental value [13,14 of the ionic velocity ¢  —a(Z) (i=0,1,2) are exposed in Table I.

=2.50 a.u.). The situation is similar for the Trt). From In Fig. 3, we present the neutralization raﬁé:'/;ﬁx"“
Fig. 2 we recognize that the electron transitions are mainly=T"%, per unit y for the largel Rydberg stateva fin
localized at the ion-surface distand@s-n; note also thata =(n,I,m=0) of the Clvi ion as a function of the ion-
wide regionp~R of the Firsov plane is active in the process. surface distanc&®. For the y values we takey=yn(n,l),

The neutralization ratd’™™ of the Rydberg state’a i,  which give the main contribution to the electron-capture
=(n,l,m=0) can be expressed in terms of the mixed flux
I(t) as follows: 05

2 R 0al n=8 CWVII,v=2.50 a.u.
FN"‘_MJ”(t)= —(f Rel(t)d R) Rel (t) ' =3
VA, fin v R
9 ~ 03|
2( (R &
+; f ImI(t)dR) ImlI(t). (3.10 22l
R
9
The parameteR, can be calculated by comparing the spec- o1r
tra of the Hamiltoniangd;(t) andH,(t). Namely, we com- 00 ,

pare the position of the energy manifold of the Hamiltonian

Az(t) evolving into the final Rydberg IeveE(AZ)VAf

—Z2/(2n?) for t=t;,—, with the conduction band of FIG. 3. The neutralization ratdé #Min=T"Y (per unity) as a
the solid. Taking into account that the common symmetry offunction of the ion-surface distangfor the Clvi (v=2.50 a.u.)
the eigenproblems of both Hamiltonians is a parabolic oneion with =5 and y=y,(n,1).
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=2¢, where ¢ is the foil work function, toyy,= v2Uo.

For the graphite foils, used in the experiments under consid-
eration, we hav§¢l4,10,11 ¢=3 eV andU,=10 eV. As an
example, we take again the @l ion with v =2.50 a.u.

From the curves presented we recognize a selective con-
tribution of the conduction-band electrons. With the increase
of the principal quantum numbem, the maxima of the
y-distribution curves are shifted toward the Fermi leyel
= yg; compare Figs. @) and 4b). The results concerning
the y contribution to the population of the largeRydberg
states are different in comparison to the lbwesults[11]. To
point out this difference, in Fig.(4) we also represent the
result forl=1 (dashed ling In Fig. 4, the monotonic rise of
the neutralization probabilities with increasiigsuddenly
0.25 ceases at=6. This is the position where tHedistribution
has a minimum.

[ CWMI (b) The n selectivity of the electron-capture process on ke
020 Vv=280au scale(Fig. 3 and the specifi¢ behavior on they scale of

B Fig. 4 have a common origin in a complicate oscillatory
character of the integran{R,p) of Eq. (3.9b. More pre-
cisely, the electron-capture process dominates at critical ion-
surface distanc®&.=R.(n,l), whereas the distribution of

the mixed flux forR=R, is dominant forp.~n, see Fig. 2.

Accordingly, the functiorT(Rc ,pc)=T(n,l) is an oscillatory

04

03 |-

0.2 -

T () (au)

0.1

0.0

T () (au)
(=]
o)
1

0.05 |- function ofn andl, and it generates the mentioned nonmono-
N tonic features. This property of the mixed flux is a conse-
0.00 L . . L quence of the two-state formalism, and could be interpreted

04 05 06 0.7 0.8 0.9 as a “quantum interference” of the statekl(F,t) and
v (@u) W,(r.,t). The interference pattern formed on the Firsov plane

FIG. 4. Neutralization probabilitie3?(=) (per unity) as a depends on quantum numbersnd|.
function of the energy parameteye(yp,yuo), for Clvi (v
=2.50 a.u.) io_n, f_orn:_8 andp:9, respectively. The low-result D. Comparison with experiments
I =1 (dashed lingin Fig. 4(a) is taken from Ref[11]. ] . ]

The electron exchange during the intermediate stages of

probability; see Fig. 4. From Fig. 3 we recognize the mono_the ion-surface interaction results in the final Rydberg system

tonic shift and lowering of position and height of the maxi- (n.l) at typ—e. The experimentally verifiable population
mum, respectively, with the increase of the principal quanpmbablllty Pni, EQ. (2'40’. can be calculated explicitly for

tum numbem for 6=<n=<9. At the same time, the widths of all relevant val_ues of th_e _|on-sur_face parameters. . .

the bell-shaped neutralization rates are increasing. The ca%%l-:; hfxﬂfr?r;itﬁz: g;?[glgtltirjﬂskv)\:lIiht;eigﬁgsp/?regl \‘/’:’I'thaﬁga"'
n=28 is an exception. Consequently, the population of the P . - . ' ’ .
larged Rydberg states has a selective character, with maxi'—A‘r VI, .I_n. the cited references, the relative level population
mum atn~8 ' probabilities have been measured and the curves reported

The neutralization rates presented in Fig. 3 exhibit o€ normalized by taking the fact that thp Bvel popula-

. " . tion probability is a unity. The overall uncertainty of the
maxima at the critical distanceé’.~n. We recall that the . ) . 0
corresponding maximpl0,11] for the lowd Rydberg states experimental findings has been estim(e8] (around 209

are positioned aR.~2n. These results can be interpreted Mainly, two kinds of probability distribution graphs have

: ) ) o been presentefll2—14, depending on whethen or | is
quasiclassically: the neutralization process takes place domﬁ-)feol We shall focus on thedistributions
xed. .

ey L s o suace itances where he e85l g i mind tat he recry resented i tis paper ang
) . ellip J y 9€  our previous paper§l0,1]] is developed for the Rydberg
half axisn“/Z~n) is admissible. . . S
For the intermediate ionic velocities~1 a.u. and the states withn~Z (accordingly, the P levels of the ionic
o projectiles are excludedwe choose a normalization that has

large angular momentumsl £3,4,5. . .), the electron- been used previously10,11] in our considerations of the

C"’?pt“re process is nonres_onant in natu_re, i.e., all levels of ﬂ]‘cajw-l experimental curves. Accordingly, we normalize the
foil conduction band contribute to the final Rydberg state. Inexperimental $1 data to the state=6 andl=1, whereas

prdgr o |Ilustra.1t.e this fact, in Fl%f we present the r“:"Utral'the Clvii curves are normalized to the state with-8 and
ization probability T}, (t)==, T /’HM"”(t) for t—w as a

MM VA fin I=1; for the Arviil ions we taken=10 andl=1. The uni-
function of the energy parameter, in the range fronryg fied scaling of the experimental results adopted for both low-
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0.10 [ (a) SVI,v=1.94 a.u. 0.08 __ (a) CIVIl, v=2.50 a.u.
B n=5 | n=5
- I theory N L theory
B L]
& oos| e oxpt. 0.04 - o expt.
* L]
[ - .
0.00 1 1 ? b 1 ] 0.00 1 1 1 ] ] ]
0 1 2 3 4 5 6 0o 1 2 3 4 5 6 71
; i
[ 0.08 O] CIVIl,n=6
010 (b) SVI,n=6
[ o~ |
i 0.04 |-
o gosf - <
[ i . e
[ . 0.00 [ 3 ] 1 1 I ] 1 ]
0002 L L 1 ? r L ¢ 1 2 3 4 5 & 7
0 1 2 3 4 5 8 i
! 0.08 -
L (@ CVIl,n=7
010 (g SVI,n=7 = I
! . S 004l .
o= [ bd - . .
0.05 |- i *e -
0.00 [ 1 1 1 1 1 1 1 1
oot | | . ' ’ . 6 1 2 3,4 5 6 7
0 1 2 3 4 5 6 K
| 0.08 [ () CNVIl,n=8
FIG. 5. Population probabilitieB,,; of the Rydberg states(l) ot 004l
for the Svi ion (v=1.94 a.u.) withn=5, 6, and 7, respectively, as T . . . .
a function of the orbital quantum numbke[0,n—1]. Dots are K
experimental datéRef.[14]). The lowd results {=0,1,2) are taken 0.00 L1 1 L L 1 1 L I
from Ref.[11]. o 1 2 3 4 5 8 7

| and hight values will enable us to establish a character of ~FIG. 6. Population probabilitieB,, of the Rydberg states()

correlation between the theory and experiments for all valuefr the Clvii ion (v=2.50 a.u.) withn=5, 6, 7, and 8, respec-
of | tively, as a function of the orbital quantum number[0, n—1].

Dots are experimental dat@Refs.[13,14]). The lowd results (

In Fig. 5, we present thedistributions of the probability —0.1,2) are taken from Ref11]

P, for n=5, 6, and 7 of the 8I ion escaping the surface
with the velocityv =1.94 a.u. In the same figure, we marked
the experimental datpl4] with dots. The theoretical prob- Finally, in Fig. 7 we present the Al curves fom=5, 6,
abilities in the lowt case(l = 0,1,2, taken from Ref[11], 7, and 8, with the velocity =1.42 a.u. of the ionic projec-

are also exposed in Fig. 5. The theoretical curves follow thdile. The experimental dateoty are taken from Ref{12].
experimental points almost over the whadleegion, but an  The lowd results[11] are presented together with the large-
overestimation produced by our pure electron-capture modelcases discussed in the present paper. An overestimation for
is evident around,x=n—1 for n=6 in Fig. 5b), as well  the casd =7 in Fig. 7(d) can be addressed to the reion-

as forl=5 and 6 in Fig. &). ization mechanism, as in the above-mentioned casesvof S
In Fig. 6, we expose thB,, curves for the CVil ion with  and Clvii ions.
n=5, 6, 7, and 8. The experimental d&fie8,14 (dots cor- We also tested our electron-capture model for all other

respond to the ionic velocity =2.50 a.u. The agreement available experimental data concerning the high&ydberg
between theory and experiments indicates that the electrostates of the ions @, Clvii, and Arviii, not presented in
capture mechanism is sufficient for explaining the experiFigs. 5-7. An agreement between theory and experiments
mental facts presented in FigsaB-6(c). However, the ex- has been found for alldistributions froml =0 to the experi-
perimental data from Fig. (6) report thel threshold atl mentally established threshold valuesl,,<n—1. How-
=ly=5, suggesting that the reionization proc¢3$,18  ever, beyond thd thresholds we found the same type of
can completely destroy the states with6 and 7. Qualita- overestimation in our theoretical predictions as in the cases
tively, thel distributions presented in Fig. 6 can be comparedoresented in Figs.(b,c), 6(d), and 7c,d). This fact indicates
with thel distributions[9] for Z=7,n=6, 7, and 8, obtained that the nonresonant electron-capture mechanism, analyzed
in the high velocity region~9 a.u.), see Introduction. The in this paper, is not sufficient for explaining the complexity

| distributions of Ref[9] (normalized to thé=1 data in Fig.  of all experimental facts. What can be demonstrated within
6) are significantly lower in the largefregion in comparison the framework of the two-state method is that the reioniza-
to our theoretical results. tion [11] at intermediate stages of the ion-surface interaction
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F because technical details in our calculations concerning these

o2p @ AVl v=142a.. | cases are based on rather different asymptotic methods. An
theory experimentally obtainefil2—14 deviation of thel distribu-

01 . expt tions from the linear lawP,~2I+1 is supported by our

i model. The deviation becomes more pronounced in the high-

ool b1 4 o o ) L | region for all tested ionic projectiles. Accordingly, under

o 1 2 3 4 5 6 7 the experimental conditions discussed<(Z,v~1), the sub-

states of the same Rydberg state are [A&] populated at

02 @ AWVIIl,n=6 random.

[ The extension of our model from loWweases to largé-
Rydberg states reflects the main physical differences between
these two situations in the ion-surface system. Namely, in
contrast to the low-cases, a wide space region around the

! 1 L L outgoing part of the ionic trajectory is active for the latlge-

/ Rydberg systems; this has been taken into account by the
appropriate asymptotic procedui®@ec. Il B). Also, the elec-
(c) AV, n=7 tron capture into the largestates practically begins &
- i . =vty, i.e., after a short period of very irregular variations of
& o f the mixed fluxl(t). Roughly speaking, the values obtained
[ in Sec. Il C are comparable with the mean distance between
[ N the foil atoms. Besides, in the nonresonant electron-capture
00 :) ; ; 3 ", ; é ; process under the lardeconditions, the most active valence-

! band states of the solid are the states which are not close to
the Fermi level.

Few additional concluding comments may be relevant for
the Rydberg state population of multiply charged ionic pro-
jectiles under the beam-foil conditions discussed, as well as
for some recent experimental results.

First, having faced the above-mentioned systematic trends
in overestimation of thé distributions within the framework
of the electron-capture model beyond théhresholds, we

FIG. 7. Population probabilitieB,, of the Rydberg statesi(l) performed an additional investigatiof20] including the
for the Arvin ion (v=1.42 a.u.) withn=5, 6, 7, and 8, respec- reionization mechanisifi1,18 for largel Rydberg states. A

01|

0.0 [

02|

02

ool

tively, as a function of the orbital quantum number[0, n—1]. modified form of the “renormalization” procedure, used pre-
Dots are experimental datéRef. [12]). The lowd results (  viously [11] for the explanation oh thresholds in experi-
=0,1,2) are taken from Ref11]. mentally observed population distributions, is developed. We

found that the reionization will completely destroy those Ry-

dberg states which are characterized by vanishing or very
is, generally, in a competition with the electron-capturesma” eccentricities, resulting in tHehresholds observed in
mechanism(see Sec. IV. experiments. Moreover, the same reionization mechanism is

The calculated population probabiliti€Figs. 5—7 in also responsible for a lowering of thelistributions(around

most cases rise up te=2 and then bend toward a minimum |=~lna=n—1) presented in Figs.(b,0), 6(d), and 1c,d).
at |=3. Most of the experimental datasets, on the other Second, we found that the cited referenEz-14 give a
hand, exhibit a maximum &t=1. This is due to the fact that Sufficiently complete amount of relevant information for a
in our graphical presentation the cdse2 has been consid- comparison with the theoretical results of the present paper.
ered as a low-case, whereas the=3 case is taken as the A most direct extrapolation of the presented results to other
high4 result. Since the valule=2 is positioned in the match- beam-foil experiments at intermediate velocities is related to
ing region, more accurate theoreticﬁhl values forl=2 the |arge|‘ distributions of Xe/lll, reported in Ref[21]
could be obtained as a mean of the Iband large- results. ~ Also, the obtained largeresults can be applied in investi-
These averaged values are in better correlation with thgations of the velocity dependence on the population prob-

available experimenta| data. ablllty Pn|:Pn|(U) aroundv=1 and Compared with the
beam-foil experimental results given in RE22].
IV. CONCLUDING REMARKS Third, one of recent ion-surface experimefgse, for ex-

ample, Refs[23,24)) was performed in the scattering geom-
The analysis presented in this paper represents an attemgiry and a total yield of the scattered multiply charged ions
of completion of our low- results obtained previously has been measured. Accordingly, specific quantum features
[10,17] within the framework of the two-state model of the concerning thel distributions of the Rydberg states, dis-
electron-capture process at solid surfaces. We consider tlieissed in our model, cannot be tested directly by these ex-
correlation of lowt and hight results as a nontrivial fact, periments. On the other hand, in the beam-foil experiment
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[25] only the population dynamics of internal states of themodel adapted to this experimental situation could be ap-
multiply charged ions has been reported, so that the ionplied in the adiabatic limiv <1.
surface effects discussed in the present paper could give only
the §econd—order_cpntribgtion§ to the mer?\sured quantit.ies. ACKNOWLEDGMENTS
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