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Nonstationary multistate Coulomb and multistate exponential models for nonadiabatic transitions

V. N. Ostrovsky*
V. A. Fock Institute of Physics, The University of St. Petersburg, 198904 St. Petersburg, Russia

~Received 12 March 2003; published 15 July 2003!

The nonstationary Schro¨dinger equation is considered in a finite basis of states. The model Hamiltonian
matrix corresponds to a single diabatic potential curve with a Coulombic;1/t time dependence. An arbitrary
number of other diabatic potential curves are flat, i.e., time independent and have arbitrary energies. Related
states are coupled by constant interactions with the Coulomb state. The resulting nonstationary Schro¨dinger
equation is solved by the method of contour integral. Probabilities of transitions to any other state are obtained
as t→` in a simple analytical form for the case when the Coulomb state is populated initially~at instant of
time t→10). The formulas apply both to the cases when a horizontal diabatic potential curve is crossed by the
Coulomb one and to a noncrossing situation. In the limit of weak coupling, the transition probabilities are
interpreted in terms of a sequence of pairwise Landau-Zener-type transitions. Mapping of the Coulomb model
onto an exactly solvable exponential multistate model is established. For the special two-state case, the well-
known Nikitin model is recovered.
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I. INTRODUCTION

Solving the Schro¨dinger equation in a finite basis set
states is of importance in various applications of quant
mechanics, and, in particular, in atomic collision theo
When an exact analytical solution can be achieved, then t
sitions between several closely coupled states~channels!
with a full account for nonadiabatic effects are describ
The solutions may then be used as dynamic models o
reference~etalon! problems for developing various approx
mations, such as advanced semiclassical and adia
schemes.

The models can be subdivided into nonstationary and
tionary ones, originating from the time-dependent and tim
independent Schro¨dinger equation, respectively. Anothe
classification principle groups models into two-state a
multistate ones. The difficulties in analysis increase in tr
sition from nonstationary to stationary models and from tw
state to multistate models. The multistate models can
solved exactly in only a few cases. Each such solution c
tributes to our understanding of nonadiabatic dynamics
complicated systems.

Demkov and Osherov@1–6# applied contour integra
methods to solve a particular multistate model both in s
tionary and nonstationary formulations. This Demko
Osherov model generalizes the well-known two-st
Landau-Zener model@7–10# to the multistate case via a sp
cial choice of Hamiltonian matrix with linear dependence
time t. The other exactly solvable multistate generalization
the Landau-Zener model is the bow-tie model@11# and its
recent generalization suggested by Demkov and Ostrov
@12,13#. Here, the exact solution was also achieved by us
the contour integral method. All these multistate models c
tain an infinite number of parameters.

Demkov @3# and Demkov and Osherov@1# made an im-
portant remark that if one replaces the time variablet by 1/t
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in the Demkov-Osherov Hamiltonian, then the model~re-
ferred to as theCoulomb modelbelow! is also solvable by
the contour integral method. However, the solution w
never actually implemented. The probable reason for this
in the difficulty of interpreting the 1/t singularity in the
Hamiltonian in physical terms. One of the key points in t
present study is the observation that the situation of inte
to physics corresponds to the initial~at time t→10) popu-
lation of the Coulomb potential curve. In this approach, t
singularity lies at the edge of the time interval under cons
eration and does not create problems. We obtain in a sim
analytical form the probabilities of transitions to any oth
state ast→`.

Some aspects of thetwo-stateCoulomb problem were
considered before. Recently, Osherov and Ushakov@14# de-
rived an exact solution of thestationarytwo-state Coulomb
model. Tantawiet al.@15# provided an exact solution of th
nonstationary two-state Coulomb model and approximate
lution of the multistate nonstationary model. Much earli
Child @17# and Bandrauk@18# studied Coulomb model in a
different formulation. The coupling between diabatic sta
was presumed not to be a constant, as in the Landau-Z
model and in the present model, but time dependent, nam
;1/t. Child used the WKB approximation, whereas Ba
drauk solved exactly the two-state model problem by red
ing it to Whittaker’s equation. An extension of this form o
the Coulomb model the to multistate case meets difficult

Contrary to previous authors, we obtain in this paper
act analytical results for the nonstationary Coulomb mo
with an arbitrary number of states. Section II contains a ex
formulation of the model in the basis of diabatic states a
Sec. III describes some essential properties of the adiab
basis. Further solution of the model in terms of contour
tegral is developed~Sec. IV! and its asymptotic behavior i
discussed~Sec. V!. For the semiaxis (0,t,`) problem, the
solutions are fully specified and the transition probabilit
are extracted and physically interpreted~Sec. VI!. In the case
of the two-state model, our results are compared with th
of previous works~Sec. VI E!. The related multistate expo
©2003 The American Physical Society10-1
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nential model is introduced in Sec. VII. In the two-state ca
it is shown to be identical to the well-known Nikitin mode
~Sec. VII B!. Section VIII contains the concluding discu
sion.

II. MODEL FORMULATION: DIABATIC BASIS

The wave functionuC& is expanded over the basis o
diabatic channel statesua& (a50,1,2, . . .N21) as

uC~ t !&5(
a

ca~ t !ua&. ~2.1!

The coefficientsca(t) in this expansion are functions of tim
t. They are subject to a set of coupled equations obtaine
substitutinguC& into the nonstationary Schro¨dinger equation
@H(t)2 id/(dt)#uC&50 with the Coulomb model Hamil-
tonianH(t):

S 2 i
d

dt
2

Z

vt
1D0Dc0~ t !1(

j
Vjc j~ t !50, ~2.2a!

S 2 i
d

dt
1D j Dc j~ t !1Vj* c0~ t !50, ~2.2b!

whereVj is the t-independent coupling between the 0th a
j th channels,v is velocity parameter, and parameterZ is
interpreted as charge. Hereafter, a latin index, sayj, runs over
all channel labels, except 0. A greek index, saya, acquires
all values including 0. A convenient way to label states is
ascribe positive~negative! integer indicesj to the states with
parametersD j.0 (D j,0) in a way such that largeru j u cor-
respond to largeruD j u, i.e.,

•••,D23,D22,D21,D0,D1,D2,D3,•••.
~2.3!

The set of equations~2.2! presents an exact formulation o
our nonstationary multistate Coulomb model, thereby de
ing its HamiltonianH(t). Explicitly, the Hamiltonian matrix
H(R), R5vt, is described by the nonzero elements

H j j 8~R!5D jd j j 8 , H j 0~R!5H0 j* ~R!5Vj ,

H00~R!52
Z

R
1D0 . ~2.4!

The diabatic potential curvesUa(R) are diagonal element
of the Hamiltonian matrix in the chosen basis, i.e.,

U0~R!52
Z

R
1D0 , U j~R!5D j . ~2.5!

In the 0th channel, the Coulomb potential with the chargZ
is therefore operative, whereas all other diabatic poten
curves are horizontal@see Fig. 1 where diabatic and adiaba
potential curves are shown for the (N56)-state Coulomb
model#. The parameterDa is the diabatic ‘‘dissociation
limit’’ for the ath channel. The diabatic potential curve
U0(R) andU j (R) cross at the points
01271
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Rc j5
Z

D02D j
, ~2.6!

where U0(Rc j)5U j (Rc j). In the adiabatic picture consid
ered below, these crossings are replaced by avoided cr
ings.

III. ADIABATIC BASIS

A. Adiabatic potential curves and dissociation limits

The adiabatic potential curvesWa(R) are R-dependent
eigenvalues of the Hamiltonian matrixH(R) ~2.4!. These
eigenvalues are zeros of the determinantD(W,R)5det@WI
2H(R)#, whereI is anN3N unit matrix:

D~W,R!5~W2D01Z/R!)
j

~W2D j !

2(
k

uVku2)
j Þk

~W2D j !. ~3.1!

Crossings of diabatic potential curves at the pointsRc j are
replaced by pseudocrossings of adiabatic curvesWa(R). The
long-range behavior of adiabatic potential curves and the
lated basis states are essential in the subsequent ana
since they define the form of the wave function’s large-utu
asymptotes. First of all, the adiabatic dissociation limits

da5 lim
R→`

Wa~R! ~3.2!

are different from their diabatic counterpartsDa , being ei-
genvalues of the separated-atom limit Hamiltonian

H(0)5 lim
R→`

H~R!. ~3.3!

They are defined by equations

D~da!50 ~3.4!

FIG. 1. Diabatic~solid curves! and adiabatic~dots! potential
curves for the multistate Coulomb model withN56 as functions of
time t. Labeling of diabatic curves is shown. The dash-dotted l
indicates asymptote of the Coulomb diabatic curve.
0-2
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with

D~E![ lim
R→`

D~E,R!5~E2D0!)
j

~E2D j !

2(
k

uVku2)
j Þk

~E2D j !. ~3.5!

The determinantD(E) ~3.5! is a polynomial factorizable in
terms of its rootsda :

D~E!5)
a

~E2da!. ~3.6!

In the limit when Vj→0 for all j, the adiabatic levels ap
proach diabatic levels:da→Da . For arbitrary couplingsVj ,
the ordering of adiabatic levels is similar to Eq.~2.3!:

•••,d23,d22,d21,d0,d1,d2,d3,•••. ~3.7!

B. Large-R asymptotes of adiabatic potential curves:
Fractional charges

A deviation of the adiabatic potential curveWa(R) from
its dissociation limitda has the Coulomb asymptote

Wa~R!5da2
ZAa

R
1O~R22!. ~3.8!

The ‘‘effective charge’’ (ZAa) in the ath adiabatic channe
can be found by expanding expression~3.1! to the order
R21:

Aa

dD

dEU
E5da

5)
j

~da2D j !. ~3.9!

Using representation~3.6!, we obtain

dD

dEU
E5da

5 )
gÞa

~da2dg!, ~3.10!

Aa5
da2Da

da2D0
)
gÞa

da2Dg

da2dg
, ~3.11!

where we imply fora50 that the prefactor equals unity
(da2Da)/(da2D0)⇒1.

The adiabatic basis statesua) can be expanded over th
diabatic basisug& as

ua)5(
g

cag~R!ug&. ~3.12!

In the limit R→`, we straightforwardly obtain the relation

~D j2da!ca j~R→`!5Vj* ca0~R→`! ~3.13!

for expansion coefficientscag(R). Hence,
01271
ca j~R→`!5Na

Vj*

D j2da
, ca0~R→`!5Na , ~3.14!

where the normalization factorNa is determined by

Na
22511(

j

uVj u2

~D j2da!2
. ~3.15!

On considering the term2Z/R in Eq. ~2.5! as a perturbation
in the basis of (R→`) adiabatic states, we obtain an alte
native expression for the adiabatic fractional chargeAa ,

Aa5uca0~R→`!u25Na
25S 11(

j

uVj u2

~D j2da!2D 21

.

~3.16!

It is easy to check that this formula is equivalent to Eq
~3.11!. Representation~3.16! testifies that

0,Aa,1. ~3.17!

In the Appendix, we also prove that

(
a

Aa51. ~3.18!

These properties together with formula~3.8! allow us to call
Aa the fractional adiabatic charges.

Consider now a functional form of the long-range beha
ior of a time-dependent wave function in theath adiabatic
channel. It is governed by characteristic adiabatic phase
tor

expS 2 i E t

Wa~vt8!dt8 D;Fa~ t !, ~3.19!

which has the same form fort→6`. Here, thestandard
asymptotic solutionis

Fa~ t !5utu ibaexp~2 idat ! ~3.20!

with

ba5
ZAa

v
. ~3.21!

C. Weak-coupling case

In case of weak coupling, the standard second-order
turbation theory gives the relation

dj2D j5
uVj u2

D j2D0
~3.22!

between adiabatic and diabatic dissociation limits. Us
these approximations in formula~3.16!, we obtain

Aj5
uVj u2

~D j2D0!2
1O~V3!, ~3.23!
0-3
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A0512(
j

uVj u2

~D j2D0!2
1O~V3!. ~3.24!

We see, in the case of weak coupling, that all fractio
charges are small (Aj;Vj

2), exceptA0 which is close to
unity. For weak coupling, the parameter 2Vj signifies the
potential curve splitting at the avoided crossingRc j .

IV. SOLUTION OF THE TIME-DEPENDENT PROBLEM IN
TERMS OF CONTOUR INTEGRAL

On substituting the Laplace transformation

ca~ t !5E
C
dEja~E!exp~2 iEt ! ~4.1!

into relations~2.2!, the set of coupled equations

2 i
d

dE F ~D02E!j01(
j

Vjj j G2
Z

v
j050, ~4.2a!

~D j2E!j j1Vj* j050 ~4.2b!

for the functionsja(E) can be derived. We findj j from Eq.
~4.2b! and substitute this expression into Eq.~4.2a! to get the
single first-order differential equation for the functionj0(E):

i
d

dE F S E2D02(
j

uVj u2

E2D j
D j0G2

Z

v
j050. ~4.3!

It is now convenient to introduce the function

F~E!5g~E!j0~E!, ~4.4!

where

g~E!5E2D02(
j

uVj u2

E2D j
. ~4.5!

On comparing this latter formula to Eq.~3.5!, g(E) is ex-
pressed in terms ofD(E) as

g~E!5D~E!)
j

~E2D j !
21. ~4.6!

The factorization relation~3.6! is utilized to recast Eq.~4.6!
as

g~E!5~E2d0!)
j

S E2dj

E2D j
D . ~4.7!

The differential equation for functionF(E), Eq. ~4.4!, is
obtained from Eq.~4.3! as

i
d

dE
F~E!5

Z

vg~E!
F~E!. ~4.8!

In order to carry out integration explicitly, we decompo
1/g(E) into the sum of elementary fractions
01271
l

1/g~E!5
1

E2d0
)

j
S E2D j

E2dj
D5(

a

Aa

E2da
, ~4.9!

where the coefficientsAa are expressed by formula~3.11!.
An explicit solution forF(E) is given by

F~E!5expS 2 i EE ZdẼ

vg~Ẽ!
D 5)

a
~E2da!2 iba,

~4.10!

with ba given by formula~3.21!. On taking into account
Eqs. ~4.7! and ~4.4!, we finally obtain the contour integra
representation of the wave-function components

c0~ t !5QE
C
dEexp~2 iEt !F)

k
~E2Dk!G

3)
a

~E2da!2 iba21, ~4.11a!

c j~ t !5VjQE
C
dEexp~2 iEt !F)

kÞ j
~E2Dk!G

3)
a

~E2da!2 iba21, ~4.11b!

whereQ is some common normalization factor.
Each solution of the set ofN first-order differential equa-

tions ~2.2! can be considered as a column vectorc(t) with
componentsca(t) labeled by subscripta. The set ofN first-
order differential equations~2.2! has N linear independent
solutions, i.e.,N different column vectorscn(t) labeled by
superscriptn, n51,2, . . . ,N. The significance of this super
script is specified as follows. For eachn and for all a, the
componentsca

n (t) are expressed as contour integrals of t
same form~4.11!, but with different choices of the integra
tion contourC n in the plane ofE, considered as a complex
valued variable.

The simple choice of integration contours refers to t
fact that the integrands have exactlyN branch pointsEg
5dg . We choose the integration contourC g2 in the
complex-E plane in the following way: it starts atE5dg
2«1 i`, where exp(2iEt)→0 for t,0 (« is a small param-
eter!. The contour follows vertically downwards, circum
vents the branch pointdg counterclockwise, and continue
vertically upwards back toE5dg1«1 i` ~see Fig. 2!. One
can say that the contourC g2 hooks on the related branc
point dg ; both its ends go to infinity in directionE→1 i` in
the complex-E plane. On using these contours in formu
~4.11!, we obtain exactlyN basic linear independent solu
tions cg2(t). For the dynamic problem, behavior of the
solutions atutu→` is essential and is considered in the fo
lowing section.

V. LARGE-TIME ASYMPTOTES OF SOLUTIONS, ztz\`

In order to illustrate the method of calculating thet→`
asymptotes for the contour integrals~4.11!, we first consider
0-4



h
e-

to
p-

te

s

e-
for-

e

s

tia
Fi

NONSTATIONARY MULTISTATE COULOMB AND . . . PHYSICAL REVIEW A68, 012710 ~2003!
the a50 component~4.11a! of ca
g2(t):

c0
g2~ t !5Qg2ECg2

dEexp~2 iEt !F)
k

~E2Dk!G
3)

d
~E2dd!2 ibd21. ~5.1!

We rewrite integral~5.1! identically as

c0
g2~ t !5Qg2ECg2

dE~E2dg!2 ibg21

3exp@2 i ~E2dg!t# f g~E!, ~5.2!

where the factor

f g~E!5exp~2 idgt !F)
k

~E2Dk!G )
dÞg

~E2dd!2 ibd21

~5.3!

is singled out in the integrand. It has no singularity at t
point E5dg . For evaluation of integral asymptote it is ther
fore sufficient to replacef g(E) by its magnitude atE5dg ,
i.e., by f g(dg). The integration variable is then changed
y52 i (E2dg)t with the result that the standard integral re
resentation for theG function @16#

G~z!52
1

2i sinpzEC̃
~2y!z21e2ydy ~5.4!

is obtained. Here, the integration contourC̃ in the complex-y
plane starts from1`, encircles the pointy50 counterclock-
wise, and returns to1`. Finally, we see that the asympto
is equal to the standard asymptotic solution~3.20! multiplied
over some constant (t-independent! factor:

FIG. 2. Complex-E plane with branch pointsdg of the integrand
in representation~4.11! for wave function. The cuts~shown by
dash-dotted lines! go from branch points upwards, i.e., todg1 i`.
The branch points are dissociation limits of adiabatic poten
curves; the plot corresponds to the six-state Coulomb model of
1. The integration contourC 12 is also shown, see text.
01271
e

c0
g2~ t→2`!52Fg~ t !Qg2exp~ 1

2 pbg!sinh~pbg!G~2 ibg!

3F)
k

~dg2Dk!G )
dÞg

~dg2dd!2 ibd21

52Fg~ t !Qg2exp~ 1
2 pbg!sinh~pbg!G~2 ibg!

3Ag )
dÞg

~dg2dd!2 ibd

5Fg~ t !Qg2A2pv
Z

Aexp~2pbg!21Ng

3exp@2 i argG~ ibg!# )
dÞg

~dg2dd!2 ibd,

~5.5a!

where we used expression~3.11! for Ag , relationAAg5Ng
~3.16!, and formula

uG~ iy !u25
p

y sinhpy
. ~5.5b!

By a similar calculation, we obtain fora5 j components of
ca

g(t),

c j
g2~ t→1`!5

Vj

dg2D j
c0

g2~ t→1`!. ~5.5c!

Formulas~5.5c! imply population of a single (gth! adiabatic
channel in the limitt→2`. Indeed, there is an obviou
correspondence between Eqs.~3.13! and ~5.5c!. We choose
the normalization factorQg2 so that thet→2` asymptote
of the solutionca

g2(t) corresponds to population of thegth
adiabatic channel with unit probability:

c0
g2~ t→2`!5NgFg~ t !, ~5.6a!

c j
g2~ t→2`!5Ng

Vj

dg2D j
Fg~ t !. ~5.6b!

Here, Ng is factor ~3.15! introduced earlier. Normalization
~5.6! is achieved on taking

~Qg2!215A2pv
Z

Aexp~2pbg!21

3exp@2 i argG~ ibg!# )
dÞg

~dg2dd!2 ibd.

~5.7!

Another possibility for constructing a set of linear ind
pendent solutions is to choose the integration contour in
mula ~4.11! asC g1, which is obtained fromC g2 by rotation
counterclockwise over anglep. One can then say that th
contourC g1 hooks on the branch pointdg ; both its ends go
to infinity in the directionE→2 i` in the complex-E plane.
We denote such solutions ascg1(t). They have asymptote

l
g.
0-5
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c0
g1~ t→`!5NgFg~ t !, ~5.8a!

c j
g1~ t→`!5Ng

Vj

dg2D j
Fg~ t !, ~5.8b!

provided the normalization factor is chosen as

~Qg1!215~Qg2!21. ~5.9!

The physical interpretation ofcg1(t) is now clear: these are
such solutions of the nonstationary Schro¨dinger equation tha
end up in thefinal (t→`) population of a single (gth! adia-
batic state. This can be compared with the meaning of s
tionscg2(t) that correspond to theinitial (t→2`) popula-
tion of a single (gth! adiabatic state.

Most often, model nonstationary problems are conside
on the full time axis,2`,t,`. The initial conditions are
imposed att→2`. By investigating asymptotes of thes
solutions att→` one finds state-to-state transition amp
tudes. Mathematically, this implies finding asymptotes of
lutions c j

g2(t) in the limit t→`.
The Coulomb model has an important property: the po

t50 corresponds to the essential singularity of solutio
c(t). In particular, this means that starting from soluti
cg2(t) fixed by initial conditions att2→`, one obtains
different results att→` depending on whether the singul
point t50 is circumvented via the upper or lower half pla
of complex variablet. The physical interpretation of suc
solutions requires special analysis@19#. Instead of this, we
limit ourselves below to the alternative formulation of th
problem on the semiaxis 0,t,`.

VI. THE COULOMB MODEL ON THE SEMIAXIS 0 ËtË`

A. Imposing initial condition at t\¿0

We start with the analyses of a particular solution of fo
~4.11! with the integration contour different from those di
cussed in previous sections. Namely, we consider contouC B

that lies entirely within the large-uEu domain whereuEu
@udau,uDau. Such a contour starts atE5A2 i`, goes up-
wards to theE.0 half plane, circumvents all the branc
points counterclockwise along the semicircle with radiusA,
and goes downwards toE52A2 i`; hereA is a sufficiently
large positive number,A@udau,uDau for any a @see Fig.
3~a!#. Then, integrals~4.11! are approximately simplified to

c0
B~ t !5Q BE

C B
dEE2 i (dbd21exp~2 iEt !, ~6.1a!

c j
B~ t !5VjQ BE

C BdEE2 i (dbd22exp~2 iEt !. ~6.1b!

Note that in this approximation,idc j
B/dt5Vjc0

B . If we ex-
press coefficientsba via Aa according to formula~3.21! and
employ sum rule~3.18!, then Eqs.~6.1! are cast as
01271
u-

d

-

t
s

c0
B~ t !5Q BE

C BdEE2 iZ/v21exp~2 iEt !

52i sin~ ipZ/v !~ i t ! iZ/vG~2 iZ/v !

52Q Bt iZ/vA2pv
Z

Aexp~2pZ/v !21

3exp@2 i argG~ iZ/v !#, ~6.2a!

c j
B~ t !52

i t

iZ/v21
Vjc0

B~ t !. ~6.2b!

We used here again expressions~5.4! and ~5.5b!. Formulas
~6.2! testify that the solutioncB(t) of the nonstationary
Schrödinger equation corresponds to the population of
0th adiabatic state at the instant of timet→10. ~It should be
emphasized that at this instant adiabatic and diabatic b
coincide!. The related potential curve initially~for t510)

FIG. 3. Same as in Fig. 2, but with different integration co
tours. The cuts are drawn from the branch pointsdg downwards.
Plot ~a! shows contourC B which corresponds to the initial (t→
10) population of the emerging potential curveB shown in Fig. 1;
~b! same contour deformed to sequence of contoursC g1. The latter
representation is convenient to evaluate transition probabilities
t→`, see text.
0-6
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lies atE52` andemerges from the abyssas time increases
Below, we denote this initial state asB. The reader has to
keep in mind that this initial adiabatic state generallydoes
not correlate smoothly~adiabatically! with the 0th adiabatic
state att→`, due to the presence of the pseudocrossi
described above. Note that the oscillatory factor in Eq.~6.2a!
stems from the characteristic Coulomb phase of the emer
potential curve,

expF2 i E t

E~ t8!dt8G'expF2 i E tS 2
Z

vt8
D dt8G;t iZ/v.

~6.3!

The normalization factorQ B is to be chosen as

~Q B!215A2pv
Z

Aexp~2pZ/v !21exp@2 i argG~ iZ/v !#.

~6.4!

B. Probability of transitions from the emerging
potential curve

The amplitude of transition from the emergingB state to
an arbitraryg state is obtained by deforming the integrati
contour as shown in Fig. 3~b! and evaluating the integra
over the contourCg1,

F0→g5~Q B!~Qg1!21

5A exp~2pbg!21

exp~2pZ/v !21
exp@ i argG~ iZ/v !

2 i argG~ ibg!# )
dÞg

~dg2dd!2 ibd

5A exp~2pbg!21

exp~2pZ/v !21S )
d.g

exp~pbd! Dexp~ iFg!,

~6.5!

Fg5argG~ iZ/v !2argG~ ibg!1argS)
d

~dg2dd!2 ibdD .

~6.6!

In evaluating the product in the formula above, we took in
account that arg(dg2dd)5 ip for d.g. Upon introducing

pa5exp~22pba!, ~6.7!

the sum rule~3.18! then becomes

(
a

ba5
Z

v
, )

a
pa5expS 2

2pZ

v D . ~6.8!

We use Eqs.~6.7! and~6.8! to finally rewrite the transition
amplitude~6.5! as

FB→g5A 12pg

12exp~22pZ/v !S )
d,g

pdD 1/2

exp~ iFg!,

~6.9!
01271
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and the related transition probability as

PB→g5uFB→gu25
1

12exp~22pZ/v !
~12pg!S )

d,g
pdD .

~6.10!

The general relation@13#

(
g

~12pg!S )
d,g

pdD 512)
g

pg ~6.11!

together with formula~6.8! ensures satisfaction of the unita
ity relation

(
g

PB→g51. ~6.12!

C. Interpretation: Crossing and noncrossing mechanism
of transitions

If one considers the weak-coupling regime where a
proximation~3.23! applies, the physical meaning of param
eters

pj5expS 2
2pZAj

v D'expS 2
2pZuVj u2

v~D j2D0!2D ~6.13!

is revealed. Formula~6.13! is the standard expression for th
nonadiabatic transition probability in the two-state Landa
Zener model with couplingVj and difference of slopes o
diabatic potential curves~2.5! at the point of pseudocrossin
Rc j ~2.6!:

d

dR
@U0~R!2U j~R!#uR5Rc j

5
Z

Rc j
2

5
~D02D j !

2

Z
.

~6.14!

Formula ~6.10! has a clear physical interpretation. Th
final statesg<0 are populated via the passage of series
crossingsRc j between the initial-state diabatic potenti
curveU0(R) and the final-state curvesU j (R) ( j ,0), ~2.6!
@or series of pseudocrossings between the adiabatic pote
curvesWg(R)]. Formula ~6.10! means diabatic passage
all pseudocrossingsRcd , d,g, which gives a product of
elementary probabilities ()d,gpd) and adiabatic passage o
the pseudocrossingRcg , with probability 12pg . The el-
ementary probabilitiespd are given by Landau-Zener for
mula ~6.13! in the case of weak coupling. As the coupling
increase, the elementary probabilities are appropria
renormalized, being expressed via partial adiabatic cha
Aa , as specified above. Besides this, formula~6.10!
also contains a kind of normalization facto
@12exp(22pZ/v)#21 which is close to 1 in the case of wea
coupling and low velocityv.

The potential curvesU j (R) with j .0 do not experience
any crossings in the domain 0,t,`. Therefore, population
of the final stateg.0 cannot be explained in terms of th
pseudocrossings passage. Within the simple adiabatic pic
these states are not populated at all. According to this
0-7
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probabilitiesP0→ j are strongly suppressed due to the fac
p0!1 which enters the product in formula~6.10!. Indeed, in
the weak-coupling and adiabatic limit one has from E
~3.24! A0'1 andp0'exp(22pZ/v)!1.

We illustrate these general considerations by applica
to the six-state model with potential curves shown in Fig.
The transition probabilities from the emerging state are
follows:

P0→235
1

12exp~22pZ/v !
~12p23!, ~6.15a!

P0→225
1

12exp~22pZ/v !
p23~12p22!, ~6.15b!

P0→215
1

12exp~22pZ/v !
p23p22~12p21!,

~6.15c!

P0→05
1

12exp~22pZ/v !
p23p22p21~12p0!,

~6.15d!

P0→15
1

12exp~22pZ/v !
p23p22p21p0~12p1!,

~6.15e!

P0→25
1

12exp~22pZ/v !
p23p22p21p0p1~12p2!.

~6.15f!

In the weak-coupling, slow-collision limit one has expone
tially small magnitudes exp(22pZ/v) andp0, whereasp22 ,
p21 , p1, and p2 are smaller than 1 by some;1/v decre-
ments. Therefore, probabilities of nonadiabatic pass
P0→22 and P0→21 are of the order of 1/v, probability of
diabatic passageP0→0 is close to unity~more exactly it is
less than 1 by;1/v decrement!, and the probabilities of
noncrossing transitionsP0→1 and P0→2 are exponentially
small.

It should be emphasized in the model under considera
that there is only one~or none! path that joins initial and fina
states via passage of a sequence of pseudocrossing.
means that multipath interference effects are not poss
The Demkov-Osherov@1# model has the same propert
whereas, in the generalized bow-tie model, multipath in
ference is operative, although the interference phase ca
be varied continuously@12#.

D. Other state-to-state transition probabilities

It is substantially more difficult to find other state-to-sta
transition probabilities. The transition amplitudes can
written down in terms of solutionscg1(t). Indeed, if one
considers set of amplitudesFa→g as a matrixFag , then
(F21)ga5c j

g1(0), where
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c j
g1~0!5VjQg1ECg1

dEF)
kÞ j

~E2Dk!G)
a

~E2da!2 iba21

~6.16!

~note that att50 the diabatic states actually are simult
neously adiabatic states!. However, the analytical evaluatio
of these contour integrals for the general case seems t
prohibitively difficult.

E. Two-state Coulomb model

Consider now an application of general results to the s
plest particular case, the two-state system (N52). The label
j takes only one value that according to our convention co
be either 1 or21.

1. Case when diabatic potential curves cross

The case of crossing diabatic potential curves correspo
to j 521 where

d05 1
2 ~D211D01k!, ~6.17a!

d215 1
2 ~D211D02k!, ~6.17b!

A215
d212D21

d212d0
5

1

2k
~D212D01k!, ~6.17c!

A0512A21 , k5A~D212D0!214uV21u2,
~6.17d!

and the probabilities of diabatic and adiabatic passages
respectively,

PB→05
p21~12p0!

12p21p0
5

p212exp~22pZ/v !

12exp~22pZ/v !
,

~6.18a!

PB→215
12p21

12p21p0
5

12p21

12exp~22pZ/v !
, ~6.18b!

p05exp~22pZA0 /v !,

FIG. 4. Adiabatic potential curves for the exactly solvable m
tistate exponential model of Sec. VII A. The curvesj 51,2,3,4,5
become degenerate in the limitt→2`. For t→` potential curves
diverge exponentially.
0-8
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p215exp~22pZA21 /v !5exp~22pZ/v !/p0 ,
~6.18c!

with the unitarity relation

PB→01PB→2151. ~6.18d!

Note that in our notations,PB→21 is the probability of adia-
batic passage.

In the weak-coupling-adiabatic case one hasp0!1, and
the transition probabilities are reduced toPB→0'p21 and
PB→21'(12p21), being straightforwardly interpreted i
terms of Landau-Zener-type pseudocrossings.

2. Noncrossing case

Here, j 51 and

d05 1
2 ~D11D02k!, ~6.19a!

d15 1
2 ~D11D01k!, ~6.19b!

A15
d12D1

d12d0
5

1

2k
~2D11D01k!, ~6.19c!

A0512A1 , ~6.19d!

and the probabilities of adiabatic and diabatic passages
respectively,

PB→055
12p0

12exp~22pZ/v !
, ~6.20a!

PB→15
~12p1!p0

12exp~22pZ/v !
, ~6.20b!

p05exp~22pZA0 /v !,

p15exp~22pZA1 /v !5exp~22pZ/v !/p0 .
~6.20c!

As discussed above, in the weak-coupling-adiabatic case
hasp0!1 and the transition probabilityPB→1'p0 is expo-
nentially small. The transition probabilities coincide wi
those obtained by Tantawiet al @15#.
n
-
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VII. RELATED MULTISTATE EXPONENTIAL MODEL

A. Multistate model

Introduce effective timet instead oft

t5exp~ht!, ~7.1!

where the constanth is presumed to be positive. Fort pass-
ing along real axis from2` to `, time t varies from 0 tò .
Therefore, mapping~7.1! is convenient when the nonstation
ary problem is considered on the semiaxis 0,t,`. In terms
of effective time, the nonstationary Schro¨dinger equation is

i
d

dt
uC&5HtuC&, ~7.2a!

with the effective Hamiltonian

Ht5h exp~ht!H5h exp~ht!H(0)1C, ~7.2b!

where the matrixH(0) is defined by formula~3.3! and the
matrix C has only one nonzero element:C0052hZ/v. Both
H(0) andC are constant~time-independent! matrices. In par-
ticular, H(0) was introduced in Sec. III as separated-ato
limit Hamiltonian; its eigenvalues were denoted asda .

Thus, our initial Coulomb model is considered on t
semiaxis if t is mapped on the exactly solvable multista
exponential model with HamiltonianHt . The behavior of
potential curves in the exponential model is illustrated
Fig. 4. For t→2`, there are (N21) degenerate state
( j 51,2,3, . . . ) with zero eigenvalues~of course, by the
choice of origin of the ordinate axis the eigenvalue could
changed to any constant!. The remaining 0th eigenvalue i
this limit equals2hZ/v. As t increases the degeneracy
lifted, and in thet→` asymptotic limit there areN potential
curves exponentially diverging asdghexp(ht). Generally,
some~pseudo! crossings occur in between. More exactly, t
number of pseudocrossings is equal to the number of ne
tive eigenvalues of the operatorH(0) ~we presume that
Z.0).

B. Two-state case: Nikitin model

In the two-state case,N52, the multistate exponentia
model reduces to the well-known Nikitin model. The Ham
tonian matrix for the latter reads
HNik~R!5S Be2aR1 1
2 D«2 1

2 A cosue2aR 2 1
2 A sinue2aR

2 1
2 A sinue2aR Be2aR2 1

2 D«1 1
2 A cosue2aRD , ~7.3!
of
as
with R5vt and model parametersA, B, u, D«, anda ~see,
for instance, Ref.@20#!. Comparing this with expressio
~7.2b! and identifying2aR with ht, one can see that es
sentially

hH(0)5S B2 1
2 A cosu 2 1

2 A sinu

2 1
2 A sinu B1 1

2 A cosu
D , ~7.4!
and C005D«. This allows us to express the parameters
our Coulomb model in terms of Nikitin model parameters

hD15B2 1
2 A cosu, hD05B1 1

2 A cosu,

hV152 1
2 A sinu; ~7.5a!
0-9
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hd15B1 1
2 A, hd05B2 1

2 A; ~7.5b!

A15 1
2 ~11cosu!, A05 1

2 ~12cosu!. ~7.5c!

Our probability~6.20b! of nonadiabatic transition is cast i
terms of Nikitin model parameters as

P0→15expF2
p

2
z~12cosu!GsinhFp2 z~11cosu!G

sinh~pz!
,

z5
D«

av
, ~7.6!

which reproduces the well-known transition probability
the Nikitin model@20#.

VIII. CONCLUSION

Every exactly solvable model improves our understand
of physics and mathematics relevant to nonadiabatic tra
tions. Of course, more physically realistic models are pre
able. Bearing in mind that the Coulomb interaction plays
prominent role in physics, the present Coulomb model
pears quite natural and appealing. It has many perspec
of various applications~see, for instance, discussion by Ta
tawi et al @15#!. From the same point of view it is physicall
more natural to consider the model on the semiaxis of timt
variable, thus avoiding nonphysical singularity in the orig
Such a statement of the problem corresponds, for instanc
the treatment of half collision when one considers proces
that occur as the particles fly apart after close encounter

The two-state Coulomb model is solvable in terms of
Whittaker functions@18,15# which have an integral represen
tation similar to our formulas~4.11!. Whittaker functions sat-
isfy a second-order differential equation that is equivalen
the two coupled first-order equations. From this point
view, the multistate Coulomb model corresponds to a ge
alization of Whittaker functions. These generalized functio
satisfy a set of several coupled first-order differential eq
tions.
J.

ov
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The model considered here complements the well-kno
Demkov-Osherov model and retains its flexibility and ric
ness of parameters. In the present paper, we have prov
an analytical treatment and have found closed-form exp
sions for probabilities of transition from physically interes
ing state that emerges from the deep energy domain whe
corresponds to a very tightly bound and compact system
the limit of weak coupling, the probabilities were interpret
in terms of pairwise Landau-Zener-type transitions betwe
adiabatic potential curves. The exact solutions also desc
deviations from this simple picture, in particular, populati
without pseudocrossing. We show that our Coulomb mode
mapped via introduction of effective time onto the expone
tial multistate model. For the special two-state case, the
lated exponential model coincides with the well-know
Nikitin model.

APPENDIX

In order to prove the sum rule~3.18! we consider the
integral in the complex-E plane

I C1
5 R

C1

dE

g~E!
~A1!

along closed contoursC1 that embraces all the polesE0 , Ej
of the integrand@see Eq.~4.9!#. It can be expressed via res
dues of the integrand as

I C1
52p i(

a
Aa . ~A2!

If we enlarge the contour, the asymptotic approximation
1/g(E)51/E1O(1/E2) ~for uEu→`) could be employed, as
follows from formulas~4.9!. By using this asymptote, we
obtain

I C1
52p i . ~A3!

Comparison of Eqs.~A2! and ~A3! completes the proof.
au-
d H.
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