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Nonstationary multistate Coulomb and multistate exponential models for nonadiabatic transitions
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The nonstationary Schdinger equation is considered in a finite basis of states. The model Hamiltonian
matrix corresponds to a single diabatic potential curve with a CoulomHitt time dependence. An arbitrary
number of other diabatic potential curves are flat, i.e., time independent and have arbitrary energies. Related
states are coupled by constant interactions with the Coulomb state. The resulting nonstationatingahro
equation is solved by the method of contour integral. Probabilities of transitions to any other state are obtained
ast— in a simple analytical form for the case when the Coulomb state is populated in{aaligstant of
timet— +0). The formulas apply both to the cases when a horizontal diabatic potential curve is crossed by the
Coulomb one and to a noncrossing situation. In the limit of weak coupling, the transition probabilities are
interpreted in terms of a sequence of pairwise Landau-Zener-type transitions. Mapping of the Coulomb model
onto an exactly solvable exponential multistate model is established. For the special two-state case, the well-
known Nikitin model is recovered.
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I. INTRODUCTION in the Demkov-Osherov Hamiltonian, then the moded-
ferred to as theCoulomb modebelow) is also solvable by
Solving the Schidinger equation in a finite basis set of the contour integral method. However, the solution was
states is of importance in various applications of quantunmever actually implemented. The probable reason for this lies
mechanics, and, in particular, in atomic collision theory.in the difficulty of interpreting the 1/singularity in the
When an exact analytical solution can be achieved, then trardamiltonian in physical terms. One of the key points in the
sitions between several closely coupled stafelsannels  present study is the observation that the situation of interest
with a full account for nonadiabatic effects are describedto physics corresponds to the initi@t timet— +0) popu-
The solutions may then be used as dynamic models or dation of the Coulomb potential curve. In this approach, the
reference(etalon problems for developing various approxi- singularity lies at the edge of the time interval under consid-
mations, such as advanced semiclassical and adiabatiration and does not create problems. We obtain in a simple
schemes. analytical form the probabilities of transitions to any other
The models can be subdivided into nonstationary and stastate ag— .
tionary ones, originating from the time-dependent and time- Some aspects of thawo-state Coulomb problem were
independent Schdinger equation, respectively. Another considered before. Recently, Osherov and Ushdkdy de-
classification principle groups models into two-state andived an exact solution of thstationarytwo-state Coulomb
multistate ones. The difficulties in analysis increase in tranmodel. Tantawiet al[15] provided an exact solution of the
sition from nonstationary to stationary models and from two-nonstationary two-state Coulomb model and approximate so-
state to multistate models. The multistate models can bhition of the multistate nonstationary model. Much earlier,
solved exactly in only a few cases. Each such solution conchild [17] and BandrauK18] studied Coulomb model in a
tributes to our understanding of nonadiabatic dynamics irdifferent formulation. The coupling between diabatic states
complicated systems. was presumed not to be a constant, as in the Landau-Zener
Demkov and OsheroM1-6] applied contour integral model and in the present model, but time dependent, namely
methods to solve a particular multistate model both in sta—~1/t. Child used the WKB approximation, whereas Ban-
tionary and nonstationary formulations. This Demkov-drauk solved exactly the two-state model problem by reduc-
Osherov model generalizes the well-known two-stateing it to Whittaker's equation. An extension of this form of
Landau-Zener mod¢lF—10] to the multistate case via a spe- the Coulomb model the to multistate case meets difficulties.
cial choice of Hamiltonian matrix with linear dependence on  Contrary to previous authors, we obtain in this paper ex-
timet. The other exactly solvable multistate generalization ofact analytical results for the nonstationary Coulomb model
the Landau-Zener model is the bow-tie mof@&l] and its  with an arbitrary number of states. Section Il contains a exact
recent generalization suggested by Demkov and Ostrovskiprmulation of the model in the basis of diabatic states and
[12,13. Here, the exact solution was also achieved by usingec. Il describes some essential properties of the adiabatic
the contour integral method. All these multistate models conbasis. Further solution of the model in terms of contour in-
tain an infinite number of parameters. tegral is developedSec. I\V) and its asymptotic behavior is
Demkov[3] and Demkov and Osherdd] made an im-  discussedSec. ). For the semiaxis (&t<c) problem, the
portant remark that if one replaces the time varidlddy 1t  solutions are fully specified and the transition probabilities
are extracted and physically interpre{&ec. V). In the case
of the two-state model, our results are compared with those
*Email address: Valentin.Ostrovsky @pobox.spbu.ru of previous works(Sec. VIB. The related multistate expo-
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nential model is introduced in Sec. VII. In the two-state case, 0

it is shown to be identical to the well-known Nikitin model

(Sec. VIIB). Section VIII contains the concluding discus-

sion.

Il. MODEL FORMULATION: DIABATIC BASIS

The wave function|¥) is expanded over the basis of

diabatic channel statefa) (¢=0,1,2...N—1) as

|ﬂf<t>>=§ Yo(t) ). (2.1

The coefficients),(t) in this expansion are functions of time

-3

=t (R)

t. They are subject to a set of coupled equations obtained by

substituting| ') into the nonstationary Schdinger equation
[H(t)—id/(dt)]|¥)=0 with the Coulomb model Hamil-
tonianH (t):

d z
("E‘WDO ¢o<t>+$ Vig()=0, (2.23

(2.2b

d
(_|&+DJ :,bj(t)+V]"1//o(t)=0,

FIG. 1. Diabatic(solid curveg and adiabatiqdoty potential
curves for the multistate Coulomb model wkh=6 as functions of
time t. Labeling of diabatic curves is shown. The dash-dotted line
indicates asymptote of the Coulomb diabatic curve.

z

ch:DO_ D] ’

(2.6

where Uy(R¢j) =Uj(R¢;). In the adiabatic picture consid-
ered below, these crossings are replaced by avoided cross-

whereV; is thet-independent coupling between the Oth andings.

jth channelsp is velocity parameter, and parametéris
interpreted as charge. Hereatfter, a latin index,jsayns over
all channel labels, except 0. A greek index, sgayacquires

all values including 0. A convenient way to label states is to

ascribe positivénegative integer indiceg to the states with
parameter®;>0 (D;<0) in a way such that largéj| cor-
respond to largefD], i.e.,

. <D_3<D_,<D_;<Dy<D;<D,<D3<---.
(2.3

The set of equation@.2) presents an exact formulation of

I1l. ADIABATIC BASIS
A. Adiabatic potential curves and dissociation limits

The adiabatic potential curvesV,(R) are R-dependent
eigenvalues of the Hamiltonian matriA(R) (2.4). These
eigenvalues are zeros of the determinagiV,R)=de{ W
—H(R)], wherel is anNXN unit matrix:

A(W,R)=(W-Do+Z/R)[] (W-D))
]

our nonstationary multistate Coulomb model, thereby defin-

ing its HamiltonianH(t). Explicitly, the Hamiltonian matrix
H(R), R=vt, is described by the nonzero elements

4
Hoo(R):_—+D0.

= (2.9

The diabatic potential curvedJ ,(R) are diagonal elements
of the Hamiltonian matrix in the chosen basis, i.e.,

Z
Uo(R):__+D0,

In the Oth channel, the Coulomb potential with the chatge

- Ivil2IT ov-by)). 3.0
k j#k

Crossings of diabatic potential curves at the poRysare
replaced by pseudocrossings of adiabatic cuWg$R). The
long-range behavior of adiabatic potential curves and the re-
lated basis states are essential in the subsequent analysis,
since they define the form of the wave function’s laftje-
asymptotes. First of all, the adiabatic dissociation limits

d,= lim W,(R)

R—x

(3.2

are different from their diabatic counterpaids,, being ei-
genvalues of the separated-atom limit Hamiltonian

is therefore operative, whereas all other diabatic potential

, . o S HO= lim H(R). (3.3
curves are horizontdbee Fig. 1 where diabatic and adiabatic R0
potential curves are shown for thé&\€6)-state Coulomb
model. The parameteD, is the diabatic “dissociation They are defined by equations
limit” for the «th channel. The diabatic potential curves
Uo(R) andU;(R) cross at the points A(d,)=0 (3.9
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with \Vid

Coj(R—®) =N, =, C,o(R—2)=N,, (3.14
D,—d,

A(E)=lim A(E,R)=(E-Dg)]] (E-D))
]

R—

where the normalization factdt, is determined by

-> [Vil?Il (E-Dy. (3.9 N 2=1+> & (3.19

k J#k @ ] (DJ _ da/)z
The determinan\(E) (3.5) is a polynomial factorizable in  on considering the term Z/R in Eq. (2.5 as a perturbation
terms of its rootd,, : in the basis of R—«) adiabatic states, we obtain an alter-

native expression for the adiabatic fractional chafge

AE)=II (E-dy. (3.6 2 -1
@ _ 2_nN2— |VJ|

Aa—|Ca0(R—>OO)| —Na— 1+2 D—d2 .

In the limit whenV;—0 for all j, the adiabatic levels ap- i (Dj—da) (3.16

proach diabatic levelsl,— D, . For arbitrary coupling¥;, '

the ordering of adiabatic levels is similar to Hg.3): It is easy to check that this formula is equivalent to Egs.

(3.11). Representatiof3.16) testifies that
ce<dog<d_,<d_<dp<d;<d,<dz<---. (3.7)

0<A,<1. (3.17

B. Large-R asymptotes of adiabatic potential curves:

; In the Appendix, we also prove that
Fractional charges

A deviation of the adiabatic potential curw&’,(R) from S A=1 (3.19
its dissociation limitd,, has the Coulomb asymptote z '

These properties together with formy&8) allow us to call
A, the fractional adiabatic charges

Consider now a functional form of the long-range behav-
The “effective charge” ZA,) in the ath adiabatic channel ior of a time-dependent wave function in tlah adiabatic
can be found by expanding expressithl) to the order channel. It is governed by characteristic adiabatic phase fac-

ZA, -
WQ(R)=da—T+O(R 2). (3.9

R—l: tor
dA . A~
A — :H (d,—D)). (3.9 expg —i | W,(vt")dt" | ~F, (1), (3.19
“dE Elg i @ !
which has the same form fdr— *+«. Here, thestandard
Using representatio(B.6), we obtain asymptotic solutioris
dA F(t)=|t|'Peexp —id t 3.2
BlIl e, 5.0 W)= |t] Poexp(—id 1) (320
E=d, 77¢ with
A _da—Da d,—D, 31 _ZA, 3
I | et (311 Bo=— (3.21
where we imply fora=0 that the prefactor equals unity: C. Weak-coupling case

(da_ Da)/(da_ DO):l
The adiabatic basis statgés) can be expanded over the
diabatic basigy) as

In case of weak coupling, the standard second-order per-
turbation theory gives the relation

o v?
|@)=2 coy(RIY). (3.12 i~Pi=5,~p, (322

o ) ) ) between adiabatic and diabatic dissociation limits. Using
In the limit R—<, we straightforwardly obtain the relation inese approximations in formul®.16), we obtain

(Dj=da)Cqj(R==) =V Cuo(R—>)  (3.13 vil®

Aj=———+0(V3), (3.23
for expansion coefficients,,(R). Hence, (Dj—Do)
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Wk
T (D;—Dg)?

1 E-D, A,
Ag=1- +O(V3). (3.24 1/g(E)= E_dOH (E—d;>:2 =g (49

] a

We see, in the case of weak coupling, that all fractionawhere the coefficients\, are expressed by formuld.11).

charges are smallAj~V?), exceptA, which is close to AN explicit solution forF(E) is given by

unity. For weak Cpqpling, the parametek/,—Zsignifies the E 7dE

potential curve splitting at the avoided crossiRg . F(E)=ex;{ _if -
vg(E)

IV. SOLUTION OF THE TIME-DEPENDENT PROBLEM IN (4.10

TERMS OF CONTOUR INTEGRAL

=II (E-d,) "4,

a

o _ with B, given by formula(3.21). On taking into account
On substituting the Laplace transformation Egs. (4.7) and (4.4), we finally obtain the contour integral
representation of the wave-function components

b= | dEcErexn—iEn 4.0
¢ l//o(t):QdeEexq—iEt) l'k[ (E-Dy)

into relations(2.2), the set of coupled equations

d z x[I (E-d,) B2, (4.113

—id—E[<Do—E)§o+E vigj}——fo:o, (4.23 a
i 1%
(Dj—E)§+ V] &=0 (4.2b ‘//j(t):Vijchexq_iEt)[!;Ij (E_Dk)}

for the functions{,(E) can be derived. We find; from Eq. _
(4.2b) and substitute this expression into F4.23 to get the <[] (E-d,) B2, (4.11b

single first-order differential equation for the functiég(E):

|VJ-|2 7 where Q@ is some common normalization factor.

(E— DO—Z = D-)go -—&=0. (43 Each solution of the set df first-order differential equa-
! ! v tions (2.2) can be considered as a column vecfi) with
componentsy,(t) labeled by subscripk. The set ofN first-

order differential equation$2.2) hasN linear independent

'dE

It is now convenient to introduce the function

F(E)=g(E)&(E), (4.4 solutions, i.e. N different column vectors/”(t) labeled by
superscripty, v=1,2, ... N. The significance of this super-
where script is specified as follows. For eaghand for all «, the
) componentsy’(t) are expressed as contour integrals of the
g(E)=E— DO_E |VJ| _ (4.5 same form(4.11), but with different choices of the integra-
7 E—D; tion contourC” in the plane ofg, considered as a complex-
valued variable.
On comparing this latter formula to E¢3.5), g(E) is ex- The simple choice of integration contours refers to the
pressed in terms dk (E) as fact that the integrands have exactly branch pointsg,
=d,. We choose the integration contowt”” in the
g(E)=A(E)H (E_Dj)—ll (4.6) complexE plane in the following way: it starts &=d,

—e+io, where exp{iEt)—0 for t<0 (¢ is a small param-
o _ S eten. The contour follows vertically downwards, circum-
The factorization relatior3.6) is utilized to recast Eq4.6)  vents the branch poird, counterclockwise, and continues

as vertically upwards back tE=d, +&+i> (see Fig. 2 One
can say that the contout?”™ hooks on the related branch

g(E)=(E—dO)H ( E—d ) 4.7 pointd,,; both its ends go to i.nfinity in direCtiOEH.‘f‘iOO in
i \E-D; the complexE plane. On using these contours in formula

(4.11), we obtain exactlyN basic linear independent solu-

The differential equation for functioR (E), Eq. (4.4), is  tions ¢ (t). For the dynamic problem, behavior of these

obtained from Eq(4.3) as solutions aft|— is essential and is considered in the fol-
lowing section.

d Z
i—F(E)= ——F(E). (4.9
dE vg(E) V. LARGE-TIME ASYMPTOTES OF SOLUTIONS, [t|—

In order to carry out integration explicitly, we decompose In order to illustrate the method of calculating the o
1/g(E) into the sum of elementary fractions asymptotes for the contour integrds11), we first consider
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fmE Y3 (1= =) =2F()Q,_exp(3 B, )sinh(wB )T (~iB,)
| : x| 1 (dy_Dk)}H (d,—dy) Aot
; i k 5y
el 1] =2F,(1)Q, exp 7B, )sinh( 7B, (~iB,)
| i 4.8
i i Re E XAV(LIY (dy=dy) %
& *—¢ \C/ ®
d-s d-z d-1 do di de 21
= y(t)Qy, T\/GX[Z(Z?TB),)—:LN7
xexd —iargl'(iB,)][1 (d,—ds) ',
OFy
FIG. 2. ComplexE plane with branch points,, of the integrand (5.53

in representation(4.11) for wave function. The cut§shown by . . B
dash-dotted lingsgo from branch points upwards, i.e., dg+ic. where we used expressi¢8.1) for A, relation VA =N,
The branch points are dissociation limits of adiabatic potential(3-16, and formula
curves; the plot corresponds to the six-state Coulomb model of Fig.
. . 1 _
1. The integration contow ~~ is also shown, see text. |F(|y)|2= i ' (5.5b
y sinhwy
the =0 component4.113 of ¢} (t): o ) ) )
By a similar calculation, we obtain far=j components of
_ . 0P
¥3~ ()=, | dEexp(—iEV)| [] (E-Dy
Cy, k Vj
d,—D;

P (t o) = Wy (t—+®). (550

<[] (E—dy)1As~1, (5.1)
0 Formulas(5.5¢ imply population of a single 4th) adiabatic
channel in the limitt— —. Indeed, there is an obvious
correspondence between E@3.13 and (5.59. We choose

. the normalization facto@,, so that thet— —c asymptote
Yy (H)= QV—I dE(E—dy)"Bf1 of the solutiony?™ (t) corresponds to population of thgh
Cy- adiabatic channel with unit probability:

We rewrite integral5.1) identically as

xexd —i(E—d)t]f(E), (5.2 S () =N D, 568
where the factor v
P (t——2) =N ——F (1), (5.6b
fy(E):exp(—idyt)[]_k[ (E—Dk)ﬂ;{ (E—d,)~i8s1 : 7dy,=Dj
Y

(5.3  Here,N, is factor (3.19 introduced earlier. Normalization
(5.6) is achieved on taking
is singled out in the integrand. It has no singularity at the

pointE=d,, . For evaluation of integral asymptote it is there- 1 2770\/—_
fore sufficient to replacé,(E) by its magnitude aE=d., (Qy-) "=\ Vvexp27p,) -1
i.e., by f,(d,). The integration variable is then changed to

y=—i(E—d,)t with the result that the standard integral rep-

xexd —iargl(i d,—dj) P,
resentation for thé" function[16] exfl —iarg (Iﬁy)]{sl;[y( v~ ds)

(5.7

Another possibility for constructing a set of linear inde-
pendent solutions is to choose the integration contour in for-
is obtained. Here, the integration cont@lin the complexy ~ mula(4.11) asC”*, which is obtained frong ?~ by rotation
plane starts fromt o, encircles the poing=0 counterclock- counterclockwise over angle. One can then say that the
wise, and returns ta-c. Finally, we see that the asymptote contourC”" hooks on the branch poit, ; both its ends go
is equal to the standard asymptotic solutiBr20 multiplied  to infinity in the directionE— —i in the complexkE plane.
over some constant<{independentfactor: We denote such solutions @8 (t). They have asymptotes

F(z)=—;f(—y)z‘1e‘ydy (5.4)
2isinwz )z

012710-5



V. N. OSTROVSKY PHYSICAL REVIEW A68, 012710 (2003

Y3t (t—0) =N, F (1), (5.89 ImE

P () =N, ¢ 5.8 / \
(ﬂ] (*) )_ 'ydy_Dj 'y( )1 ( ) / \

provided the normalization factor is chosen as / \

—A |" d-s d-z d-1 do di  de A\‘| Re E
-1 - ¢ ¢ —— ¢ ¢ | ——
(Q,4) '=(Q,.)7" (5.9 ! |
The physical interpretation ap”* (t) is now clear: these are \j/ /F

such solutions of the nonstationary Sairger equation that
end up in theinal (t—) population of a single yth) adia-
batic state. This can be compared with the meaning of solu-
tions 7~ (t) that correspond to thimitial (t— —) popula- (@)
tion of a single fyth) adiabatic state.

Most often, model nonstationary problems are considered Im E
on the full time axis,— e« <t<o, The initial conditions are
imposed att— —oo. By investigating asymptotes of these
solutions att—o one finds state-to-state transition ampli-
tudes. Mathematically, this implies finding asymptotes of so-
lutions ] (t) in the limit t—co.

The Coulomb model has an important property: the point
t=0 corresponds to the essential singularity of solutions
(t). In particular, this means that starting from solution
¥ (1) fixed by initial conditions att——o0, one obtains !
different results at— depending on whether the singular —a+
pointt=0 is circumvented via the upper or lower half plane !
of complex variablet. The physical interpretation of such

d-s d-z  d-1do di de ReE

C->2+

solutions requires special analy$i9]. Instead of this, we
limit ourselves below to the alternative formulation of the ()
problem on the semiaxis<0t<<o.

FIG. 3. Same as in Fig. 2, but with different integration con-
tours. The cuts are drawn from the branch poitijsdownwards.

VI. THE COULOMB MODEL ON THE SEMIAXIS 0 <t< o Plot (a) shows contouC® which corresponds to the initialt-
+0) population of the emerging potential curBeshown in Fig. 1;

A. Imposing initial condition at t—+0 (b) same contour deformed to sequence of cont@urs. The latter

We start with the analyses of a particular solution of form representation is convenient to evaluate transition probabilities as
(4.11) with the integration contour different from those dis- {1~ S€€ text
cussed in previous sections. Namely, we consider cort6ur
that lies entirely within the larggs| domain where|E| yB(t) = st dEE 120~ lexg —iEt)
>|d,|,|D,|. Such a contour starts &=A—ix», goes up- B
wards to theE>0 half plane, circumvents all the branch
points counterclockwise along the semicircle with radiys
and goes downwards = — A—ix; hereAis a sufficiently _ 270
large positive numberA>|d,|,|D,| for any « [see Fig. =—QPFizl \ 7 Vexp2mziv)—1

3(a)]. Then, integral€4.11) are approximately simplified to

=2i sin(i7wZ/v)(it)"?*T(—-izlv)

Xexd —iargl'(iz/v)], (6.2
z/fg(t)ZQBf BdEE’izéﬁﬁ’lexp(—iEt), (6.1a .
) P == Vi), (6.2

wf(t)zvaBf BdEE*'Eﬁﬂfzexp(—iEt). (6.1  We used here again expressidbs4) and (5.5b. Formulas
¢ (6.2 testify that the solutiony(t) of the nonstationary
Schralinger equation corresponds to the population of the
Note that in this approximationgd w,-B/dt=Vj ¥5. If we ex-  Oth adiabatic state at the instant of titae +0. (It should be
press coefficient®, via A, according to formuld3.21) and  emphasized that at this instant adiabatic and diabatic bases
employ sum rulg3.18), then Eqs(6.1) are cast as coincide. The related potential curve initiallgfor t=+0)
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lies atE= — andemerges from the abyss time increases. and the related transition probability as
Below, we denote this initial state @& The reader has to 1
keep in mind that this initial adiabatic state generalyes Ps..=|Fp..|>= (1-p )( IIp )
not correlate smoothlyadiabatically with the Oth adiabatic For B 1 —exp(—27Zlv) Yoy 0
state att—o, due to the presence of the pseudocrossings (6.10
described above. Note that the oscillatory factor in BcRa .
stems from the characteristic Coulomb phase of the emergin-ghe general relatiof.3]

> (1—py>( 11 p,s) =1-1Ip, (611

o<y b4

potential curve,
t 7 b
~ex —if ——|dt’
vt’

NtiZ/U

ex;{ =i ftE(t’)dt’

The normalization facto© ? is to be chosen as

3 2 ] )
(QF) 1= \/T\/eXFXZﬂ'Z/v)—lexp[—l argl'(iZ/v)].

(6.4) C. Interpretation: Crossing and noncrossing mechanism
of transitions

together with formuld6.8) ensures satisfaction of the unitar-
(6.3 ity relation

po

B. Probability of transitions from the emerging If one considers the weak-coupling regime where ap-
potential curve proximation(3.23 applies, the physical meaning of param-

The amplitude of transition from the emergifiystate to eters

an arbitraryy state is obtained by deforming the integration 2
RS . ; 2mZA 27Z|Vi]
contour as shown in Fig.(B) and evaluating the integral p;=exp — H~exg —-————| (6.13
over the contout”™, v(D;—Dg)?
FOHY=(QB)(Q,/+)‘1 is revealed. Formulés.13 is the standard expression for the
nonadiabatic transition probability in the two-state Landau-
_[exp2mp,) 1 exfi argl(iZ/v) Zener model with coupling/; and difference of slopes of
exp(27Zlv)—1" g diabatic potential curve.5) at the point of pseudocrossing
R¢j (2.6):
—iargl'(i d,—dj) '"Ps
g (By)]ﬁl;[y( b% 5) d 7 (DO_D]')Z
BlUo(R~Uj(Rlg-r,= 5 =—= -
dR ¢ RZ Z
_ exp2mp,)—1 H D cj 6.1
~ Voxpzaziv) 1| f, AT [P, (614
(6.5 Formula (6.10 has a clear physical interpretation. The

final statesy<0 are populated via the passage of series of
_ crossingsR;; between the initial-state diabatic potential
q)y:argF(iZ/v)—argF(iBy)Jrare(H (dy—dg)'ﬁﬁ>. curve Uy(R) and the final-state curvas;(R) (j<0), (2.6)
0 6.6 [or series of pseudocrossings between the adiabatic potential
' curvesW,(R)]. Formula (6.10 means diabatic passage of
In evaluating the product in the formula above, we took into@ll pseudocrossingR;;, <y, which gives a product of

account that arg{,—d) =i for 5>y. Upon introducing ~ €lementary probabilitiesl{,-,p;) and adiabatic passage of
the pseudocrossing.,, with probability 1-p,. The el-

p.=exp—2mB,), (6.7  ementary probabilitiep; are given by Landau-Zener for-
mula (6.13 in the case of weak coupling. As the couplings
the sum rule(3.18 then becomes increase, the elementary probabilities are appropriately
renormalized, being expressed via partial adiabatic charges
> ﬁaZE, 11 pazexp< _ %) (6.8 A, as specified above. Besides this, formulé.10
a v @ v also contains a kind of normalization factor

] . N [1—exp(—27Z/v)]* which is close to 1 in the case of weak

amplitude(6.5) as The potential curves);(R) with j>0 do not experience
1 2 any crossings in the domain<<<oc. Therefore, population
= _ \/ — Py / H D explid.) of the final statey>0 cannot be explained in terms of the
5>y 1—exp(—2mZlv)| 525 " ° ” pseudocrossings passage. Within the simple adiabatic picture

(6.9  these states are not populated at all. According to this the
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probabilitiesP,_,; are strongly suppressed due to the factor
po<1 which enters the product in formu(6.10. Indeed, in
the weak-coupling and adiabatic limit one has from Eg.
(3.24 Ap=1 andpy~exp(—27Z/v)<1.

We illustrate these general considerations by application
to the six-state model with potential curves shown in Fig. 1.
The transition probabilities from the emerging state are as
follows:

O =, NWRO

1

(6.153

e ——

(6.15b + (R)

Po_. o= _3(1—p_»y),
0~ 271 exp—2mzlv) P31 P2
FIG. 4. Adiabatic potential curves for the exactly solvable mul-
1 tistate exponential model of Sec. VIl A. The curves 1,2,3,4,5
become degenerate in the lintit> —oo. Fort— o potential curves
diverge exponentially.

PO—»—lzl_qu_Zﬂ_Zlv) p—3p—2(1_p—1)1

(6.159

P ! (1=po) W0=V,Q,. | dE[kl;[ (E—Dk)}H (E—d,) A1

0—0 1_exq_2ﬂ_z/v)pf3p72pfl Po), v+ ] a (6 1@
(6.159 :
(note that att=0 the diabatic states actually are simulta-
1 neously adiabatic statedHowever, the analytical evaluation
Poﬂfl_exq_zwz/v) P-3P-2P-1Po(1—P1), of these contour integrals for the general case seems to be
(6.150 prohibitively difficult.
1 E. Two-state Coulomb model
Po_2=7= exp(—27Z1v) P-3P-2P-1PoP1(1—P2). Consider now an application of general results to the sim-

(6.15h plest particular case, the two-state systéw=2). The label
j takes only one value that according to our convention could

In the weak-coupling, slow-collision limit one has exponen-be either 1 or—1.

tially small magnitudes exp{27Z/v) andpy, whereap _»,
p_1, P1, andp, are smaller than 1 by some 1/v decre-
ments. Therefore, probabilities of nonadiabatic passage The case of crossing diabatic potential curves corresponds
Po_._, and P,_,_, are of the order of 1/, probability of toj=—1 where

1. Case when diabatic potential curves cross

diabatic passag®,_.q is close to unity(more exactly it is do=1(D_;+Dg+x) (6.173
less than 1 by~1/v decrement and the probabilities of 02t -1t Eo R
noncrossing transition®,_, and Py_, are exponentially d_;=3(D_;+Dy—«), (6.17h
small.

It should be emphasized in the model under consideration A :d—l_D—l =i(D “Dotx), (6179
that there is only onéor none path that joins initial and final 1 d_;—dy 2k Y 7O ' '

states via passage of a sequence of pseudocrossing. This ~ >
means that multipath interference effects are not possible. Ag=1—A_1, «k=\(D_1—Do)*+4[V_,J%
The Demkov-Osheroy1] model has the same property, (6.179
whereas, in the generalized bow-tie model, multipath interyy the probabilities of diabatic and adiabatic passages are,
ference is operative, although the interference phase Can”Péspectiver
be varied continuouslj12]. ’
P _P-1(1-po) p-_i—exp(—2nZlv)

B0 1—p_1po  1l—exp—27Z/v)

D. Other state-to-state transition probabilities

It is substantially more difficult to find other state-to-state (6.183
transition probabilities. The transition amplitudes can be _1l-p, 1-p,
written down in terms of solutiong/”* (t). Indeed, if one PB**l_l—p_lpo_ 1—exp—27Zlv)’ (6.180
considers set of amplitudes,, ., as a matrixF,,, then
(Fil)ya:lpj}ﬂr(o)! where po:eXF(_Z’FZAO/U),

012710-8
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P =exp(—2mZA_,lv)=exg —27Z/v)/po, VII. RELATED MULTISTATE EXPONENTIAL MODEL
(6.180 A. Multistate model
with the unitarity relation Introduce effective timer instead oft
Ps_ot+Pp__1=1 (6.189 t=exp 57), (7.0

Note that in our notations?5_. _, is the probability of adia- Where the constanj is presumed to be positive. Ferpass-
batic passage. ing along real axis from-o to %, timet varies from O to=.

In the weak-coupling-adiabatic case one Ipgs<1, and  Therefore, mapping7.1) is convenient when the nonstation-
the transition probabilities are reduced R ,~p_, and &7 problem is considered on the semiaxist3<. In terms
Ps. ,~(1—p_,), being straightforwardly interpreted in of effective time, the nonstationary Sclinger equation is
terms of Landau-Zener-type pseudocrossings. d
W) =H W), (7.2a

2. Noncrossing case T
Here,j=1 and with the effective Hamiltonian

H,=pexpnr)H=nexp ) HO+C, (7.2

. where the matrixH(® is defined by formula3.3) and the
d;=3(D1+Do+x), (6.19B  matrix C has only one nonzero elemefy,= — 7Z/v. Both
H(© andC are constanttime-independentmatrices. In par-
ticular, H® was introduced in Sec. Ill as separated-atom
limit Hamiltonian; its eigenvalues were denoteddas

Thus, our initial Coulomb model is considered on the
Ap=1-Ay, (6.190  semiaxis ift is mapped on the exactly solvable multistate
. . . ) exponential model with Hamiltoniakl .. The behavior of
and the_ probabilities of adiabatic and diabatic passages arﬁotential curves in the exponential model is illustrated by
respectively, Fig. 4. For 7——, there are \—1) degenerate states
(j=1,2,3...) with zero eigenvaluegof course, by the

do=3(D;+Dgy—«), (6.192

A _di-D; 1
Ud,—dy 2k

(—D,;+Dg+x),  (6.190

1_
Ps.o== Po , (6.208  choice of origin of the ordinate axis the eigenvalue could be
1-exp—27Zlv) changed to any constanfThe remaining Oth eigenvalue in
(1-py) this limit equals— nZ/v. As 7 increases the degeneracy is
Py 1= P1)Po , (6.20h lifted, and in ther— o asymptotic limit there ar&l potential
1-exp(—27Zlv) curves exponentially diverging ad,nexp(y7). Generally,
some(pseud® crossings occur in between. More exactly, the
Po=exp(—2mZAg/v), number of pseudocrossings is equal to the number of nega-
tive eigenvalues of the operatdd® (we presume that
Dy=exp — 2w Z A, v) =exp( — 2mZ/v)/Po. 750) ¢ P (we p

(6.200

As discussed above, in the weak-coupling-adiabatic case one B. Two-state case: Nikitin model

haspy<1 and the transition probabiliti?; .1~ p, is expo- In the two-state casd\l=2, the multistate exponential
nentially small. The transition probabilities coincide with model reduces to the well-known Nikitin model. The Hamil-
those obtained by Tantawi al [15]. tonian matrix for the latter reads

Be *R+ 2 Ae—2Acosge “R — 1 Asinge R

Hnik(R) = (7.3

— 2 Asinge R Be “R— 1 Ae+ 3 Acosge R

with R=vt and model parametess B, 6, Ae, anda (see, andCyy=Ae. This allows us to express the parameters of
for instance, Ref[20]). Comparing this with expression our Coulomb model in terms of Nikitin model parameters as
(7.2b and identifying— @R with 77, one can see that es-
sentially N N

nD,=B—3Acosd, nDy=B+3Acosé,
B—3Acosf — ;Asing

pHO) = , (79

— $Asing B+ 3 Acosé nVi=—31Asing; (7.5a

012710-9
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d,;=B+ LA, ndy=B— LA: 7.5b The model considered here complements the well-known
7 ? 770 2 (7.5D Demkov-Osherov model and retains its flexibility and rich-
A;=1(1+cosf), Ay=2%(1-cosh). (7.50 ness of parameters. In the present paper, we have provided

an analytical treatment and have found closed-form expres-
Our probability (6.200 of nonadiabatic transition is cast in sions for probabilities of transition from physically interest-
terms of Nikitin model parameters as ing state that emerges from the deep energy domain where it

corresponds to a very tightly bound and compact system. In

LT the limit of weak coupling, the probabilities were interpreted

- sml‘{§§(1+cose) in terms of pairwise Landau-Zener-type transitions between

POHl:exp{ — 5 ¢(1—cosf) Snt(0) : adiabatic potential curves. The exact solutions also describe
deviations from this simple picture, in particular, population

Ae without pseudocrossing. We show that our Coulomb model is

=—, (7.6)  mapped via introduction of effective time onto the exponen-
av tial multistate model. For the special two-state case, the re-
flated exponential model coincides with the well-known

which reproduces the well-known transition probability o Nikitin model.

the Nikitin model[20].

VIll. CONCLUSION APPENDIX

Every exactly solvable model improves our understanding N order to prove the sum rul€3.18 we consider the
of physics and mathematics relevant to nonadiabatic transibtegral in the complexe plane
tions. Of course, more physically realistic models are prefer-
able. Bearing in mind that the Coulomb interaction plays a _ é dE
prominent role in physics, the present Coulomb model ap- ‘" Je,0(E)
pears quite natural and appealing. It has many perspectives

of various applicationgsee, for instance, discussion by Tan- g1ong closed contourg; that embraces all the polé, E;

tawi et al[15]). From the same point of view it is physically of the integrandsee Eq(4.9)]. It can be expressed via resi-
more natural to consider the model on the semiaxis of time ges of the integrand as

variable, thus avoiding nonphysical singularity in the origin.
Such a statement of the problem corresponds, for instance, to
the treatment of half collision when one considers processes Icl= 27i E A,. (A2)
that occur as the particles fly apart after close encounter. “«

The two-state Coulomb model is solvable in terms of the
Whittaker functiong 18,15 which have an integral represen-
tation similar to our formula$4.11). Whittaker functions sat-
isfy a second-order differential equation that is equivalent t X
the two coupled first-order equations. From this point ofoPtain
view, the multistate Coulomb model corresponds to a gener-

(A1)

If we enlarge the contour, the asymptotic approximation for
1/g(E) = 1/E+ O(1/E?) (for |E|—) could be employed, as
Jollows from formulas(4.9). By using this asymptote, we

alization of Whittaker functions. These generalized functions |01:27Ti' (A3)
satisfy a set of several coupled first-order differential equa-
tions. Comparison of Eqs(A2) and (A3) completes the proof.
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