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Optical-model potential for electron and positron elastic scattering by atoms

Francesc Salvat*
Facultat de Fı´sica (ECM), Universitat de Barcelona, Societat Catalana de Fı´sica (IEC), Diagonal 647, 08028 Barcelona, Spain

~Received 30 March 2003; published 14 July 2003!

An optical-model potential for systematic calculations of elastic scattering of electrons and positrons by
atoms and positive ions is proposed. The electrostatic interaction is determined from the Dirac-Hartree-Fock
self-consistent atomic electron density. In the case of electron projectiles, the exchange interaction is described
by means of the local-approximation of Furness and McCarthy. The correlation-polarization potential is ob-
tained by combining the correlation potential derived from the local density approximation with a long-range
polarization interaction, which is represented by means of a Buckingham potential with an empirical energy-
dependent cutoff parameter. The absorption potential is obtained from the local-density approximation, using
the Born-Ochkur approximation and the Lindhard dielectric function to describe the binary collisions with a
free-electron gas. The strength of the absorption potential is adjusted by means of an empirical parameter,
which has been determined by fitting available absolute elastic differential cross-section data for noble gases
and mercury. The Dirac partial-wave analysis with this optical-model potential provides a realistic description
of elastic scattering of electrons and positrons with energies in the range from;100 eV up to;5 keV. At
higher energies, correlation-polarization and absorption corrections are small and the usual static-exchange
approximation is sufficiently accurate for most practical purposes.
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I. INTRODUCTION

Elastic scattering has a prominent effect on the trans
of fast electrons and positrons through matter. Owing to
smallness of the electron massme, these particles may un
dergo relatively large angular deflections in sing
interaction events and, as a consequence, their traject
are tortuous. Knowledge of accurate differential cross s
tions ~DCS! for elastic scattering of electrons and positro
is necessary for studies of electron and positron transpo
matter, which are needed for many practical applicatio
These include quantitative analysis in surface electron
positron spectroscopies, detector design and characteriza
radiation dosimetry, and radiotherapy treatment plann
Electron-transport calculations are frequently performed
means of Monte Carlo simulation~see, e.g., Refs.@1,2#!,
which requires systematic tabulations of elastic DCSs
functions of the projectile kinetic energyE and the scattering
angleu.

For projectiles with kinetic energy larger than, sa
;5 keV, elastic collisions can be described by means of
static-field approximation, in which the target atom is co
sidered as a frozen charge distribution and the interac
with the projectile is assumed to reduce to the electrost
interaction~see, e.g., Ref.@3#!. In the case of projectile elec
trons, an approximate local exchange potential@4# may be
added to the electrostatic interaction~static-exchange ap
proximation!. Elastic DCSs and spin-polarization function
can then be calculated by using the relativistic~Dirac!
partial-wave expansion method. With the aid of availa
numerical algorithms~see, e.g., Ref.@5#!, this kind of calcu-
lation is feasible for energies up to;10 MeV. DCSs and
spin-polarization functions calculated from the static-fie
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~or static-exchange! approximation agree well with availabl
experimental data in this energy range; the differences
frequently of the same order of magnitude as the uncert
ties in the measured data.

When the kinetic energy of the projectile decreases be
;5 keV, the accuracy of the static-field and static-exchan
approximations deteriorates progressively. We recall t
these approximations can be regarded as equivalent to
first-order term of a perturbative expansion of the transit
matrix. The effect of second-order terms increases when
energy of the projectile decreases and can be accounte
approximately by using optical models@6–12#, in which the
interaction is described by means of a local complex pot
tial. An optical-model potential consists of the static fie
~electrostatic interaction, with a local exchange correction
the case of electrons!, the correlation-polarization potentia
~which accounts for the polarization of the target charge d
tribution under the action of the electric field of the proje
tile!, and an absorptive imaginary potential~which describes
the loss of flux due to the coupling with inelastic channel!.
For projectles with relatively low energy, up to a few hu
dred eV, very accurate elastic DCSs can be obtained f
coupled-channel optical calculations@13,14#, in which a fi-
nite set of scattering channels is treated with the coup
channel formalism and the rest of the channels are taken
account by means of an approximate nonlocal complex
larization potential~see, e.g., Refs.@13,14#!. At these ener-
gies, convergent close-coupling calculations have also b
performed for selected elements~see Ref.@15#, and refer-
ences therein!.

Optical models provide a convenient methodology
elastic-scattering calculations at intermediate energies~from
;100 eV to ;5 keV), for which second-order effects ar
appreciable and more rigorous coupled-channel calculat
are difficult due to the large number of open inelastic ch
nels. Byron and Joachain@9# describe a systematic procedu
©2003 The American Physical Society08-1
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to construct the imaginary potential from an eikonal analy
of the second term of the Born series, which is evalua
approximately by closure. The calculation of the absorpt
potential by the eikonal-Born method requires knowledge
atomic wave functions and is fairly laborious. A number
groups have proposed simpler methods that require know
only the atomic electron density, usually combined w
some empirical information~e.g., total cross sections!. For
example, Furness and McCarthy@6# proposed an absorptio
potential that is proportional to the electron density and
versely proportional to the square of the ‘‘local’’ kinetic e
ergy of the projectile. Staszewskaet al. @11,12# have derived
an absorption potential for electrons by considering
atomic electron cloud as an inhomogeneous electron gas
assuming that inelastic collisions of the projectile are bin
collisions described by the Rutherford DCS with Pau
principle restrictions. This ‘‘quasifree’’ model has had qu
remarkable success in describing elastic electron scatterin
relatively low energies and has been recently generalize
the case of positron scattering by Reid and Wadehra@16#.
However, the underlying model for binary collisions~Ruth-
erford scattering with Pauli blocking! neglects electronic
screening and the proposed absorption potential contain
empirical parameter that has a relatively strong influence
the potential.

Various approximate forms of local exchange a
correlation-polarization potentials have been derived
means of the local-density approximation~LDA !, i.e., by
considering that each volume element of the target elec
cloud behaves as if it were part of an homogeneous elec
gas of the same density@17–19#. It has been established th
these local potentials provide a fairly accurate description
exchange and polarization effects in elastic scattering
electrons and positrons by neutral atoms. The appeal of t
approximations is that they can be applied to more comp
systems such as molecules and solids, where close-cou
methods are impracticable. It is therefore natural to ques
whether the LDA is also capable of describing absorpt
effects accurately. In the present paper, we consider a LD
the absorption potential that is based on Lindhard’s@20# di-
electric formalism, which accounts for the effect of Pa
blocking consistently. The Lindhard theory also accounts
Debye screening, an effect which is disregarded in the q
sifree model. In the case of electron scattering, excha
effects are introduced in the absorption potential model
using the Born-Ochkur approximation@21–23#. To leave
room for possible empirical corrections, the proposed
sorption potential contains two parameters, the energy
D, which should be of the order of the first excitation thres
old of the target atom, and a global strength factorAabs. The
absorption potential is then completely determined by
local electron density of the target and the parametersD and
Aabs. For the cases for which enough experimental inform
tion is available~mostly noble gases!, the optimum values of
these parameters~i.e., obtained by fitting experimental infor
mation! are found to be nearly independent of energy, th
confirming the physical consistency of the absorption mod

Our main objective here is to devise an optical-mo
potential with defined empirical parameters. The propo
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model is intended for systematic calculation of the elect
and positron elastic-scattering databases required for M
Carlo simulation of low-energy electron and positron tran
port in amorphous media. We concentrate on the ene
range from;100 eV to;5 keV, which is of interest, e.g.
in electron surface spectroscopy and microdosimetry. T
details of the optical-model potential are described in Sec
The calculation of cross sections for binary collisions of t
projectile with a homogeneous electron gas, which
needed to obtain the absorption potential, is described in
Appendix. In Sec. III, we briefly consider the required mod
fications of a conventional Dirac partial-wave method
compute phase shifts for a complex central field and we
troduce the set of observables that are calculated by our c
puter code. In Sec. IV, we analyze the dependence of
calculated DCSs on the model parameters and justify
selection of default values for these parameters. Sectio
contains a fairly extensive comparison of calculation resu
with available experimental data for scattering by nob
gases and mercury. Sec. VI contains some concluding
marks.

II. OPTICAL POTENTIAL

As mentioned above, elastic scattering of electrons
positrons with kinetic energyE larger than;5 keV is accu-
rately described by the static-field approximation. Within th
approximation, the structure of the target atom, of atom
numberZ, is fully characterized by giving the nuclear an
electronic charge distributions. For projectiles with energ
less than;10 MeV, the nucleus can be represented a
point charge. The electronic densityr(r ) of free atoms~av-
eraged over degenerate states in the case of open she! is
spherically symmetrical; the electron densities used in
present calculations were generated by means of the m
configuration Dirac-Fock code of Desclaux@24#. The poten-
tial energy of the projectile at a distancer from the nucleus
of the target atom is given by

Vst~r ![
Z0Ze2

r
2Z0e2S 1

r E0

r

r~r 8!4pr 82dr8

1E
r

`

r~r 8!4pr 8dr8D , ~1!

wheree is the absolute value of the electron charge andZ0e
is the charge of the projectile.

When the projectile is an electron, we must account
the occurrence of rearrangement collisions, in which the p
jectile exchanges places with an atomic electron. A con
nient method to handle electron exchange effects is to
place the nonlocal exchange interaction by an approxim
local potential~see, e.g., Ref.@4#, and references therein!. In
the present calculations, we use the exchange potentia
Furness and McCarthy@6,7,25#, which is derived directly
from the formal expression of the nonlocal exchange int
action by using a WKB-like approximation for the wav
functions:
8-2
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Vex
(2)~r !5 1

2 @E2Vst~r !#2 1
2 $@E2Vst~r !#214pa0e4r~r !%1/2,

~2!

where a0 is the Bohr radius. Bransdenet al. @4# conclude
that for scattering by H and He this effective potential d
scribes exchange effects accurately for projectiles with
netic energies larger than about 1 hartree.

A. Correlation-polarization potential

Slow projectiles cause the polarization of the charge clo
of the target atom and, in turn, the induced dipole mom
acts back on the projectile. When the projectile is far fro
the atom, the polarization potential energy can be appr
mated by means of the Buckingham potential,

Vpol~r !52
ape

2

2~r 21d2!2
, ~3!

whereap is the dipole polarizability of the target atom@26#
andd is a phenomenological cutoff parameter, which ser
to prevent the polarization potential from diverging atr
50. Following Mittleman and Watson@27#, we write

d45 1
2 apa0Z21/3bpol

2 ~4!

and considerbpol as an adjustable energy-dependent para
eter, which can be determined by fitting the measured DC
at small angles~see below!. It is found that the magnitude o
polarization effects decreases when the energy of the pro
tile increases~i.e., bpol increases withE), reflecting the fact
that atomic electrons do not react instantaneously to exte
electric fields. From a comparison of results from calcu
tions using the potentialVst(r )1Vex

(2)(r )1Vpol(r ) with
available experimental DCS data for elastic scattering
electrons by atoms withE>100 eV, Seltzer@28# suggested
the following empirical formula:

bpol
2 5~E250 eV!/~16 eV!. ~5!

In what follows we shall use this recipe, which yields DC
at small angles that are consistent with measurements
noble gases and mercury, and assume that the long-r
polarization potential~3! is the same for electrons and pos
trons.

In a more elaborate model proposed by O’Connell a
Lane @17#, the short-range polarization field is obtained
using the LDA and assuming that the projectile is slow. T
physical picture behind this model is that when the projec
penetrates the atomic volume its charge is dynamic
screened by the atomic electrons. Thus, when the proje
is an electron, atomic electrons are repelled to form a ‘‘C
lomb hole’’ surrounding the projectile position, an effe
which is usually referred to as ‘‘correlation.’’ According t
the LDA, the correlation energy of the projectile atr is the
same as if it were moving within a free-electron gas of d
sity r equal to the local atomic electron density. Followin
Padial and Norcross@18#, the correlation potentialVco(r ) is
calculated as the functional derivative of the free-electr
01270
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gas correlation energy with respect tor. It is customary to
express this potential as a function of the density param

r s[
1

a0
F 3

4pr~r !G
1/3

, ~6!

which is the radius of the sphere that contains~on an aver-
age! one electron of the gas, in units of the Bohr radiusa0.
For electrons, we shall use the parametrization of the co
lation potential given by Perdew and Zunger@29#,

Vco
(2)~r !52

e2

a0
~0.0311 lnr s20.058410.00133r sln r s

20.0084r s! ~7a!

for r s,1, and

Vco
(2)~r !52

e2

a0
b0

11~7/6!b1r s
1/21~4/3!b2r s

~11b1r s
1/21b2r s!

2
~7b!

for r s>1, whereb050.1423,b151.0529 andb250.3334.
For positrons, we use the parametrization of the correla
potential proposed by Jain@19#:

Vco
(1)~r !5

e2

a0
$0.583510.91r s

21/2

1@0.002 55 ln~r s!20.0575# ln~r s!% ~8a!

for r s,0.302,

Vco
(1)~r !5

e2

a0
@0.461 52520.045 49r s

22# ~8b!

for 0.302<r s,0.56,

Vco
(1)~r !5

e2

a0
F2

4.3637

~r s12.5!3
1

26.575510.4776r s

~r s12.5!2

1
1.432 75

r s12.5
20.3149G ~8c!

for 0.56<r s,8, and

Vco
(1)~r !5

e2

a0
@215 375.8679r s

26144.5047r s
2320.262#

~8d!

for r s>8. It is worth stressing the fact that these para
etrized potentials correspond to slow projectiles; the corre
tion potential increases~decreases in magnitude! when the
velocity of the projectile increases, and tends to zero at h
energies.

To obtain the global correlation-polarization potent
Vcp

(6)(r ), we consider that~1! at large distances it must re
duce to the long-range polarization potentialVpol(r ) and ~2!
at small radii, where the atomic electron density is large,
LDA correlation potential given by Eqs.~7! and ~8! is a
lower bound forVcp

(6)(r ). Accordingly, we set
8-3
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FRANCESC SALVAT PHYSICAL REVIEW A68, 012708 ~2003!
Vcp
(6)~r ![H max$Vco

(6)~r !,Vpol~r !% if r ,r cp,

Vpol~r ! if r>r cp,
~9!

where r cp is the outer radius at whichVco
(6)(r ) and Vpol(r )

cross. Notice that the correlation potential for electrons, E
~7!, tends to zero for larger and, therefore, definition~9! is
unambiguous, i.e., the potentialsVco

(6)(r ) andVpol(r ) cross at
least once. For positrons, whenr increases, the potentia
Vco

(1)(r ), Eqs.~8!, tends to a constant value (20.262 hartree,
which is the binding energy of the positronium negative io!.
At high energies, the empirical polarization potential~3! is
larger thanVco

(1)(r ) for all r and Vcp
(1)(r ) is set equal to

Vpol(r ). With Seltzer’s recipe, Eq.~5!, the correlation-
polarization potential defined by Eq.~9! is free from fitting
parameters.

B. Absorption potential

For projectiles with kinetic energy above the first exci
tion threshold, there is a loss of flux from the elastic chan
to inelastic channels. To model this effect, the optical pot
tial must contain a negative imaginary part2 iWabs(r ). It can
be easily shown that the quantity (2/\)Wabs(r ) represents the
absorption probability per unit time of the projectile atr ~see,
e.g., Ref.@30#!. We can write an alternative expression f
this absorption probability per unit time by invoking th
LDA, i.e., considering that the projectile interacts as if
were moving within a homogeneous electrons gas of den
r(r ) with velocity

vL5~2EL /m!1/2 ~10!

corresponding to the local kinetic energy

EL~r !5H E2Vst~r !2Vex
(2)~r ! for electrons,

max„E2Vst~r !,0… for positrons.
~11!

Assuming that the interactions with the electron gas are
nary collisions, the LDA predicts an interaction probabili
per unit time equal tovLrsbc(EL ,r,D), wheresbc(EL ,r,D)
is the cross section~per electron in the gas! for collisions
involving energy transfers greater than the energy gapD.
Notice thatrsbc(EL ,r,D) is the inverse mean free path~i.e.,
the interaction probability per unit path length! of the projec-
tile in the electron gas. Consequently, we set

Wabs5Aabs\
1
2 ~2EL /m!1/2rsbc~EL ,r,D!, ~12!

whereAabsis an empirical parameter, which should be of t
order of unity. The factor12 in this equation comes from th
interpretation of (2/\)Wabs(r ) as the probability of absorp
tion per unit time. This factor has nothing to do with e
change corrections, as incorrectly stated by various auth
and must be used for both electrons and positrons.

The energy gapD in Eq. ~12! is introduced to account fo
the fact that excitations of the target atom are possible o
when the energyW lost by the projectile is larger than th
first inelastic threshold. For electron scattering, inelas
channels are open when the energy of the projectile is la
01270
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than the first excitation energye1 of the target atom and
accordingly, we should setD5e1. In the case of positron
scattering, positronium formation is often the first inelas
channel to open. For atoms whose ionization potentialI is
larger than the positronium binding energyuE1su;6.8 eV
~such as the noble gases!, the threshold energy for positro
nium formation is ePs5I 2uE1su. For atoms with I
,6.8 eV, positronium formation is possible at all energie
i.e., ePs50. Hence, for positron scattering we should setD
5ePs.

To describe the binary collisions of the projectile with th
local free-electron gas we use the Born approximation w
the generalized oscillator strength obtained from Lindhar
dielectric function, as described in the Appendix. This theo
accounts for the effects of Pauli blocking and electro
screening consistently. However, in the case of electron s
tering the Born-Lindhard formulation disregards the effect
electron exchange in inelastic interactions. To describe
effect, we employ the Born-Ochkur approximation@21–23#,
which yields the correct DCS for collisions with free ele
trons at rest. Figure 1 displays calculated inverse mean
paths rsbc(E,r,D) with D50 for binary collisions with
free-electron gases of various densities, corresponding to
indicated values of the plasma energy@see Eq. ~6!# Ep
5(4pre2\2/m)1/2, as functions of the kinetic energyE of
the projectile. For kinetic energies larger than;100Ep , the
cross sections for electrons and positrons are approxima
equal. For lower energies, the cross sections for electrons
smaller due to the effects of Pauli blocking and electron
change. For positrons with kinetic energy below the plasm
excitation threshold (;Ep), the cross section decreas
when the kinetic energy of the projectile decreases due to
screening of the projectile charge by the gas electrons.

It is worth stressing the fact that we are considering o
binary ~close! collisions of the projectile with the local elec
tron gas and, therefore, neglecting the effect of plasmon
interactions. The same is true for the quasifree model
Staszewskaet al. @11,12#. Plasmonlike excitations involve
relatively small momentum transfers and correspond to

FIG. 1. Inverse mean free paths for binary collisions of electro
~solid curves! and positrons~dashed curves! moving with kinetic
energyE in free-electron gases of various densities, correspond
to the indicated values of the plasma energyEp .
8-4
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tant ~dipolelike! interactions. In the case of low-energy pr
jectiles, the probability of distant interactions with a targ
atom can be even larger than that of close collisions. Du
their delocalized character, it is not clear that how dist
interactions can be described in terms of a local poten
determined by only the atomic electron density. To acco
for the global effect of distant interactions, we shall consid
Aabs as an empirical parameter and allow it to take valu
larger than unity.

Summarizing, the optical-model potentials for electro
and positrons obtained from the present LDA formulation
given by

V(2)~r !5Vst~r !1Vex
(2)~r !1Vcp

(2)~r !2 iWabs~r ! ~13!

and

V(1)~r !5Vst~r !1Vcp
(1)~r !2 iWabs~r !, ~14!

respectively. The static, exchange, and correlation poten
are free of adjustable parameters. The long-range pola
tion potential contains the cutoff parameterbpol , which has
been empirically determined. The absorption potential~12!
depends on the energy gapD and the strength paramete
Aabs. We shall show below that withD equal to the first
inelastic threshold andAabs;2, the present optical-mode
potential yields DCSs for elastic scattering of electrons
noble gases and mercury that are in good agreement
available experimental data for projectiles with kinetic e
ergy larger than;100 eV ~see Sec. V!. Calculation results
also reveal that exchange, correlation-polarization, and
sorption effects are appreciable only for projectile electro
and positrons with kinetic energies less than about 5 k
Moreover, these corrections are important only for relativ
large radial distances, because at small radii the interactio
dominated by the intense Coulomb field of the nucle
Therefore, it is legitimate to use nonrelativistic quantu
theory, as we have done here, to derive local correction
the static potentialVst(r ).

III. THE DIRAC PARTIAL-WAVE ANALYSIS

The spherical symmetry of the potentials~13! and ~14!
allows the elastic DCSs to be calculated by using conv
tional partial-wave expansion methods. As indicated abo
positrons are repelled by the nucleus and can only ‘‘see’’
outer part of the atom. As a consequence, DCSs for ela
scattering of slow positrons could be calculated by solv
the nonrelativistic Schro¨dinger equation. This is not the cas
for electrons, which are attracted by the Coulomb field of
nucleus and can reach large velocities at small radial
tances, a fact that requires the use of the Dirac equatio
compute elastic-scattering DCSs and spin-polarization fu
tions. However, as the numerical effort required to solve
Schrödinger equation is not significantly less than the eff
needed to solve the Dirac equation, we shall use the latte
both electrons and positrons.

The scattering of relativistic electrons or positrons by
central fieldV(r ) ~real or complex! is completely described
01270
t
to
t

al
t
r
s

s
e

ls
a-

y
ith
-

b-
s
V.
y
is
.

to

-
e,
e
tic
g

e
s-
to
c-
e
t
or

by the direct and spin-flip scattering amplitudes, given
@3,31#

f ~u!5
1

2ik (
,

$~,11!@exp~2idk52,21!21#

1,@exp~2idk5,!21#%P,~cosu! ~15!

and

g~u!5
1

2ik (
,

@exp~2idk5,!

2exp~2idk52,21!#P,
1~cosu!, ~16!

respectively.k is the relativistic wave number of the projec
tile, which is related to the kinetic energyE by

~c\k!25E~E12 mec
2!, ~17!

where c is the velocity of light in vacuum.P,(cosu) and
P,

1(cosu) are Legendre polynomials and associated L
endre functions, respectively.

A. Numerical calculation of the phase shifts

The phase shiftsdk represent the large-r behavior of the
Dirac spherical waves~see, e.g., Ref.@32#!

cEkm~r !5
1

r S PEk~r !Vk,m~ r̂ !

iQEk~r !V2k,m~ r̂ !
D , ~18!

whereVk,m( r̂ ) are the spherical spinors and the radial fun
tions PEk(r ) andQEk(r ) satisfy the coupled system of dif
ferential equations@32#

dPEk

dr
52

k

r
PEk1

E2V12mec
2

c\
QEk ,

dQEk

dr
52

E2V

c\
PEk1

k

r
QEk . ~19!

The relativistic quantum numberk is defined as k
5(,2 j )(2 j 11), where j and , are the total and orbita
angular-momentum quantum numbers, which are both de
mined by the value ofk; j 5uku21/2, ,5 j 1k/(2uku).

In the present calculations, the phase shifts are obta
from the numerical solution of the radial equations~19! us-
ing the subroutine packageRADIAL @33#, which has been ex-
tended to cover the case of complex spherical potentials.
function rV (6)(r ) is replaced by the natural cubic spline th
interpolates the values of this function for a given grid
radii, dense enough to ensure that interpolation errors ha
negligible effect on the computed radial functions. The in
gration of the radial equations is started atr 50, where
PEk(0)5QEk(0)50, and extended outwards up to a di
tancer ` beyond the effective range of the interaction pote
tial. In the interval between consecutive grid points, the
dial functions are determined from their exact power-ser
expansions, which are summed up to the desired accur
8-5
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With this method truncation errors are completely avoid
and, therefore, the radial functions are only affected by
avoidable round-off errors.

When V(r )50, the radial functions reduce to familia
forms ~see, e.g., Ref.@32#!

PEk
0,r ~r !5kr j k~kr !,

QEk
0,r ~r !5S E

E12mec
2D 1/2

kr j k21~kr ! if k.0,

PEk
0,r ~r !5kr j 2k21~kr !,

QEk
0,r ~r !52S E

E12mec
2D 1/2

kr j 2k~kr ! if k,0,

~20a!

where j ,(x) are spherical Bessel functions. For the null p
tential andr .0, the radial equations admit a second ind
pendent solution, which is irregular atr 50,

PEk
0,i ~r !52krnk~kr !,

QEk
0,i ~r !52S E

E12mec
2D 1/2

kr nk21~kr ! if k.0,
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PEk
0,i ~r !52kr n2k21~kr !,

QEk
0,i ~r !5S E

E12mec
2D 1/2

kr n2k~kr ! if k,0,

~20b!

wheren,(x) are spherical Neumann functions. To calcula
the phase shiftdk , the numerical solution forr>r ` is ex-
pressed as a linear combination of the regular and irreg
solutions for the free particle,

PEk~r !5cos~dk!PEk
0,r ~r !1sin~dk!PEk

0,i ~r ! ~21!

or, equivalently,

PEk~r !5exp~ idk! 1
2 @PEk

0,r ~r !2 iPEk
0,i ~r !#

1exp~2 idk! 1
2 @PEk

0,r ~r !1 iPEk
0,i ~r !#. ~22!

The phase shiftdk is determined by matching this outer an
lytical form to the inner numerical solution atr ` , requiring
continuity of the radial functionPEk(r ) and its derivative.
This gives
exp~2idk!5
Dout@PEk

0,r ~r `!1 iPEk
0,i ~r `!#2@~PEk

0,r !8~r `!1 i ~PEk
0,i !8~r `!#

@~PEk
0,r !8~r `!2 i ~PEk

0,i !8~r `!#2Dout@PEk
0,r ~r `!2 iPEk

0,i ~r `!#
, ~23!
-
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the
d
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tion
where the primes indicate derivatives with respect tor and
Dout[PEk8 (r `)/PEk(r `) is the logarithmic derivative of the
outgoing numerical radial function at the matching poi
Formula~23! gives the phase coefficients exp(2idk) for arbi-
trary finite-range complex potentials. The phase shifts o
real potential are all real. When the potential is complex,
phase shifts are also complex; their imaginary part decre
when uku increases because, for sufficiently large angu
momenta, the centrifugal barrier prevents the projectile fr
perceiving the short-range imaginary potential.

The calculations presented here have been performed
a FORTRAN 77 code, in which all real variables are repr
sented in double precision. When, is sufficiently large, the
absolute value of the phase shift decreases monotono
with ,. Our computer code calculates phase shifts for
creasing orders, up to a certain value,max for which dk
becomes smaller than;1028. At this point, the partial-wave
expansions~15! and~16! have converged to the required a
curacy~usually more than six decimal places! for all angles.
It is convenient to mention here that, due to the long-ran
polarization potential, the absolute value of the phase s
decreases very slowly with,. A simple trick to speed up the
calculation consists of neglecting the polarization poten
for large r, where it becomes negligible in comparison wi
.
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E. In the present calculations whenr .50a0 and uVcp
(6)(r )u

,1026E, we setV(6)(r )50. This truncation of the poten
tial allows a considerable reduction of the computation ti
and only affects the DCS at very small angles (&2°), where
it is slightly underestimated.

B. Observable quantities

Our computer code delivers the scattering amplitudes,
elastic DCS, the total~integrated! elastic cross section, an
Sherman’s spin-polarization function. For the usual case
electron and positron beams that are not spin polarized,
DCS for elastic scattering is

ds

dV
5u f ~u!u21ug~u!u2. ~24!

The total elastic cross section is

sel5E ds

dV
dV52pE

0

p

@ u f ~u!u21ug~u!u2#sinudu.

~25!

The code also delivers the momentum-transfer cross sec
8-6
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OPTICAL-MODEL POTENTIAL FOR ELECTRON AND . . . PHYSICAL REVIEW A68, 012708 ~2003!
smt5E ds

dV
~12cosu!dV, ~26!

which plays an important role in the simulation of electro
positron transport processes. Scattering amplitudes
DCSs are tabulated for a grid of angles, which is de
enough to allow the integrals to be evaluated by mean
log-log interpolation.

Elastic scattering causes the spin polarization of initia
unpolarized beams@3#. The degree of polarization of projec
tiles scattered in the directionu is given by the Sherman
function

S~u![ i
f ~u!g* ~u!2 f * ~u!g~u!

u f ~u!u21ug~u!u2
. ~27!

For certain target atoms and projectile kinetic energies,
absolute value ofS(u) is close to unity at specific scatterin
angles. Under these circumstances elastic scattering prod
highly polarized electron beams, although their intensity
relatively small. The Sherman function is experimentally d
termined by means of double-scattering experiments@34,35#.

IV. DEPENDENCE ON THE PARAMETERS

We have performed extensive comparisons of elect
elastic DCSs calculated with the static-exchange~SE! poten-
tial Vst(r )1Vex

(2)(r ) and with the SE plus correlation
polarization~SECP! potentialVst(r )1Vex

(2)(r )1Vcp
(2)(r ), us-

ing experimental values of the dipole atomic polarizabil
ap @26#. For projectiles with kinetic energies larger tha
;500 eV, the effect of atomic polarization on the DCS
limited to small angles (u,15°) and decreases in magnitud
when the value of the polarization cutoff parameterbpol in-
creases. For energies below 500 eV, the effect of the po
ization potential extends to intermediate and larger ang
and alters both the absolute value and the position of
minima of the DCS. The dependence of the DCS onbpol is
illustrated in Fig. 2 for the case of 500-eV-electron scatter
by argon atoms. The displayed DCSs were obtained from
SE potential and from the SECP potential with different v
ues ofbpol . For angles larger than about 20°, the effect
the correlation-polarization correction is negligible forE
larger than;500 eV. When reliable measurements of t
DCS at small angles are available, the cutoff parameter
be determined by fitting the data, even if these are relat
The empirical formula~5! was inferred from a comparison o
similar calculations with a large amount of experimental d
published by numerous authors on noble gases and mer

The effects of the absorption potential parametersAabs
and D on the DCSs are entangled. For kinetic energiesE
larger than;500 eV and neutral atoms,D has a small influ-
ence on the DCS and, therefore, its precise value is not
portant. The effect of this parameter becomes more vis
when the kinetic energy of the projectile decreases. Figu
displays DCSs for 100 eV electron scattering by argon ato
calculated withD50 and withD equal to the first excitation
energy~11.6 eV!, both with Aabs52. Even at this relatively
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low energy,D has a small effect on the DCS. As indicate
above, we shall setD equal to the threshold excitation energ
for electrons and equal to the positronium formation thre
old for positrons. This recipe may also be used to desc
elastic scattering by positive ions. However, when the kine
energy of the projectile is of the order of or less than the fi
excitation threshold, the energy gap is expected to hav
more significant effect on the DCS. Nevertheless, in the
treme cases whereE,D the optical-model potential reduce
to the static-exchange plus correlation-polarization poten
which is the effective interaction expected when all inelas
channels are closed.

The strengthAabs of the absorption potential has a dire
impact on the calculated DCS, the absorption correction
ing nearly proportional toAabs. This correction alters the
DCS predominantly at intermediate and large scatter

FIG. 2. Effect of the polarization cutoff parameterbpol on the
elastic DCS. The solid curve represents the DCS calculated with
SE potential. The other curves are DCSs obtained from the S
potential with the indicated values ofbpol . For u.20°, they all
practically coincide.

FIG. 3. Effect of the energy gapD on the calculated DCS. The
solid curve represents the DCS obtained from the SECP pote
with the empirical value ofbpol ~i.e., withAabs50). The dashed and
dotted curves are the results from the optical-model potential w
D511.6 eV and withD50, respectively, both withAabs52.
8-7
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FRANCESC SALVAT PHYSICAL REVIEW A68, 012708 ~2003!
angles and, therefore, the interference between correla
polarization and absorption corrections is weak. This me
that, with the adopted values ofbpol and D, Aabs can be
determined by simply fitting the experimental DCSs at int
mediate and large angles. From the experimental DCS
available for noble gases and mercury~see the following
section!, we have found that the valueAabs52 provides a
satisfactory description of elastic scattering of projecti
with kinetic energies larger than about 100 eV.

We would like to mention that at nonrelativistic energie
the grand total~elastic and absorption! cross section can b
obtained from the optical theorem

sT[sel1sabs5
4p

k
Imf ~0!. ~28!

As grand total cross sections are easier to measure than
tic differential and total cross sections, it may seem plaus
to determine the parameterAabs of the absorption potentia
~12! by requiring that the value ofsT calculated from Eq.
~28! agrees with available experimental data. This wo
yield a consistent description of both elastic and inela
collisions whenever the adopted local absorption potentia
a faithful representation of the true potential. As our LD
potential is only an approximation, this method is not e
pected to be of any practical use here and we have prefe
to determineAabs from experimental large-angle elastic DC
data.

V. COMPARISON WITH EXPERIMENTS

In Fig. 4 we compare calculated DCSs for elastic scat
ing of electrons (100 eV<E,1 keV) by noble gases an
mercury with available absolute experimental data. In th
figures, the dashed curves represent results from the SE
proximation and solid curves are results from the pres
optical-model potential with the parameter values reco
mended above, i.e.,ap from Ref.@26#, bpol given by Eq.~5!,
Aabs52, and D equal to the first inelastic threshold. Th
adopted values ofD for helium, neon, argon, krypton, xenon
and mercury are 19.8, 16.6, 11.6, 9.9, 8.3, and 4.7 eV,
spectively@36#. It is seen that the SE approximation unde
estimates the DCS at small angles and overestimates
large angles. Inclusion of the correlation-polarization pot
tial increases the DCS at small angles to agree very clo
with the experimental values. The absorption potential eff
tively reduces the DCS at larger angles, giving results t
overall agree much better with measured data.

Figure 5 displays a similar comparison for noble ga
and kinetic energies in the keV range. We see that
optical-model potential with the default parameter values
produces the experimental data very accurately. Notice
the relative magnitude of correlation-polarization and a
sorption corrections decreases when the energy of the
jectile increases. In practice, forE.5210 keV these correc
tions can be ignored. A good agreement is also fou
between calculated and measured total elastic cross sec
Fig. 6, even for energies below 100 eV, which are outside
range where the model parameters have been fitted.
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In principle, our method is also applicable to positro
scattering. As the long-range polarization potentials are
same for electrons and positrons, calculations for positr
would only require determination of the absorption poten
parameters. As in the case of electrons, the DCS depe
very weakly on the energy gapD. To determine the param
eter Aabs we would need experimental measurements of
DCS at large angles. As these are still very scarce, we te
tively use the valueAabs52 obtained for electrons and setD
equal to the positronium formation threshold, 8.96 eV
argon. Figure 7 compares DCSs calculated from the opti
model potential with the results of absolute measurement
Dou et al. @58# for elastic scattering of 100 and 300 eV po
itrons by argon atoms. DCSs calculated from the static p
correlation-polarization potential,Vst(r )1Vcp(r ), have a
complicated structure at small angles, which is partia
washed out when absorption is included.

Calculated Sherman functions for spin polarization
elastic electron scattering by the heavier noble gases
mercury are compared with experimental data in Fig. 8. O
results agree moderately well with the experiments for en
giesE larger than;100 eV. In the case of xenon and 50 e
the calculation differs significantly from the measured da
indicating that our optical-model potential may be too simp
to describe the interaction at this low energy. In general,
moderately high energies, the Sherman function is relativ
insensitive to the correlation-polarization and absorption
tentials. This can be understood by recalling that spin po
ization is mostly due to spin-orbit coupling~see, e.g., Ref.
@35#!, which is appreciable only at relatively small radi
distances, where the potential reduces essentially to the C
lomb field of the nucleus. The case of scattering of;150-eV
electrons by xenon is interesting; we see that the SE ca
lation predicts a polarization peak nearu5108°, in accor-
dance with the optical-model calculation and experiment,
with reversed sign. Keeping aside this feature, the result
the two calculations are practically equivalent.

VI. CONCLUSION

The proposed optical-model potential and the associa
computer code provide a complete description of elastic s
tering of electrons and positrons of intermediate energ
(E.100 eV) by atoms. Apart from the parametersbpol , D,
andAabs, the potential is completely determined by the loc
electron density. We have shown that, for projectiles w
kinetic energy larger than;100 eV, DCSs, total cross sec
tions, and spin-polarization functions calculated with t
‘‘default’’ values of the model parameters agree well wi
experiments. With this set of parameters, calculated DC
are substantially more accurate than those obtained from
static-field approximation, which are in common use
electron-transport simulations by Monte Carlo methods. T
calculation of a complete database of DCSs for elastic s
tering of electrons and positrons with kinetic energies fro
100 eV to 10 keV by neutral atoms (Z51 –103) is in
progress and will be made available in due course.
8-8
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FIG. 4. Differential cross sections for elastic scattering of electrons by atoms of the elements helium, neon, argon, krypton, xe
mercury. Symbols represent experimental data from Refs.@37–55#. Solid curves are results from calculations with the present optical-m
potential~13!. The dashed curves represent results from similar calculations with the SE potential.
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FIG. 4 ~Continued!.
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FIG. 4 ~Continued!.
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FIG. 5. DCSs for elastic scattering of electrons withE51, 2, and 3 keV by noble-gas atoms. Symbols represent experimental data
Refs.@38,50,56#. Solid curves are results from calculations with the present optical-model potential~13!. The dashed curves represent resu
from similar calculations with the SE potential. For clarity, some of the DCSs have been multiplied by the indicated powers of ten
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OPTICAL-MODEL POTENTIAL FOR ELECTRON AND . . . PHYSICAL REVIEW A68, 012708 ~2003!
FIG. 6. Total~integrated! cross sections for elastic scattering
electrons by neon, argon, krypton, and xenon atoms, as function
the kinetic energy of the projectile. Solid curves are results from
present optical-model potential and dashed curves are the resu
calculations with the SE potential. Symbols represent semiempi
values obtained by de Heeret al. @57# from a compilation of ex-
perimental data of different authors.
01270
APPENDIX: CROSS SECTIONS FOR BINARY
COLLISIONS WITH A FREE-ELECTRON GAS

The only nontrivial ingredient of the proposed optica
model potential is the one-electron cross sect
sbc(E,r,D), Eq. ~12!, for binary collisions of electrons and
positrons of kinetic energyE with a degenerate free-electro
gas~FEG! of densityr ~electrons per unit volume! involving
energy losses larger than the energy gapD. The interactions
with the FEG will be described by combining the dielectr
theory of Lindhard@20# with the ~nonrelativistic! first Born
approximation~see, e.g., Ref.@64#!. The latter leads to the

FIG. 7. DCSs for elastic scattering of 100 and 300 eV positro
by argon atoms. Symbols are experimental data from Ref.@58#.
Solid curves are results from calculations with the present opti
model potential~14!. The dashed curves represent results fro
similar calculations with the static plus correlation-polarization p
tential.

of
e
of

al
y atoms.
FIG. 8. Sherman function for elastic scattering of electrons with the indicated kinetic energies by krypton, xenon, and mercur
Symbols are experimental data from Refs.@59–63#. Solid curves are results from calculations with the present optical-model potential~13!;
dashed curves represent results from calculations using the SE potential.
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FRANCESC SALVAT PHYSICAL REVIEW A68, 012708 ~2003!
following expression for the DCS per electron in the gas

d2s feg

dWdQ
5

pe4

E

1

WQ

d fL~Q,W!

dW
, ~A1!

whereW is the energy transfer andQ, the so-called ‘‘recoil
energy,’’ is defined by@64#

Q[
~\q!2

2me
5E2W22AE~E2W!cosu, ~A2!

where\q is the magnitude of the momentum transfer andu
is the polar scattering angle. Notice that, for a given ene
loss W, the kinematically allowed recoil energies lie in th
interval betweenQ25Q(W,u50) andQ15Q(W,u5p),

Q65~AE6AE2W!2. ~A3!

Conversely, for a given recoil energy, the interval of allow
energy losses extends fromW50 to

W52AEQ2Q. ~A4!

The quantityd fL(Q,W)/dW is the generalized oscillato
strength~GOS! per electron of the FEG. Lindhard@20# used
the random-phase approximation to derive a closed ana
cal expression for the dielectric function of the FE
eL(q,v), which is a function of the wave numberq and the
angular frequencyv or, equivalently, of the recoil energyQ
and the energy transferW5\v. Knowledge of the dielectric
function allows the calculation of the energy loss per u
path length ~stopping power! of charged particles in the
FEG; the result is consistent with that of the Born appro
mation if we set

d fL~Q,W!

dW
5

2W

pEp
2

1

Q
ImS 21

eL~Q,W! D , ~A5!

where

Ep[A4pre2\2/me5A3r s
23mee

4

\2
~A6!

is the plasma energy of the FEG. It is convenient to introd
the Fermi energy,

EF5
\2

2me
~3p2r!2/35

1

2 S 9p

4 D 2/3

r s
22mee

4

\2
, ~A7!

and the reduced variables@65#

x[W/EF and z[ 1
2 ~Q/EF!1/2. ~A8!

Expressed in terms of these variables the one-electron D
of the FEG reads
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d2s feg

dxdz
5

2pe4

EEF

1

xz

d fL~z,x!

dx
~A9!

with the GOS

d fL~z,x!

dx
5

6x

16px2

z2x2f 2~z,x!

@z21x2f 1~z,x!#21x4f 2
2~z,x!

,

~A10!

where

x25
3

16S Ep

EF
D 2

5S 2

3p2D 2/3

r s ~A11!

and

f 1~z,x!5
1

2
1

1

8z F12S z2
x

4zD
2G lnUz2x/4z11

z2x/4z21U
1

1

8z F12S z1
x

4zD
2G lnUz1x/4z11

z1x/4z21U.
~A12!

The functionf 2(z,x) takes different expressions on differe
regions of the (z,x) plane~Fig. 9!:

FIG. 9. Schematic representation of the GOS of a FEG. T
shaded strip is the Lindhard continuum, which corresponds
electron-hole excitations. The resonance lineP describes plasmon
excitations; forz50 the plasmon reduced energy isxp5Ep /EF .
The dashed curve represents the energy-momentum conserv
limit, Eq. ~A26!, for a projectile with kinetic energyE59EF . The
kinematically allowed excitations lie below this curve.
8-14



f 2~z,x!5

px

8z
if uz1x/4zu<1 ~regiona!,

p
@12~z2x/4z!2# if uz1x/4zu.1 and uz2x/4zu,1 ~regionb!,

~A13!
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5 8z

tg~z,x! if uz2x/4zu>1 ~regionc!,
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where t is a small positive constant, which is allowed
approach zero at the end of the calculations, andg(z,x) is a
function, whose exact form is irrelevant.

The GOS~A10! takes nonvanishing values in the regio
of the (z,x) plane limited by the curvesx54z(z11) and
x54z(z21) ~see Fig. 9!, the so-called Lindhard continuum
which represents electron-hole excitations. It can be ea
verified that this is the domain of energy and moment
transfers that are kinematically allowed in binary collisio
with the electrons of the gas~which move with an isotropic
momentum distribution!. The one-electron DCS for binar
collisions @(x,z)Paøb# is given by

d2sbc

dxdz
5

2pe4

EEF

1

xz

6

16px2

zx2f 2~z,x!

@z21x2f 1~z,x!#21x4f 2
2~z,x!

.

~A14!

In regionc, the GOS is equal to zero except in the neighb
hood of the plasma resonance lineP, where the denominato
of expression~A10! vanishes. This line is defined by th
implicit equation

P~z,x![z21x2f 1~z,x!50, ~A15!

and corresponds to excitation of longitudinal free oscillatio
of the gas, i.e., to plasmon excitation. In regionc we have

d fL
(c)~z,x!

dx
5

6

16px2
xz2 lim

t→0

x2tg~z,x!

P2~z,x!1x4t2g2~z,x!

5
6

16x2
xz2d@P~z,x!#. ~A16!

The plasmon cutoff momentumzc is defined by the entranc
of the plasma resonance line into the Lindhard continuu
i.e., as the root of the equation

P@zc,4zc~zc11!#50. ~A17!

The quantity

Wc5xcEF54zc~zc11!EF ~A18!

is the maximum energy that can be absorbed by a plas
without degenerating into electron-hole pairs. The DCS
binary collisions diverges at the point (zc ,xc). The DCS for
plasmon excitation is given by
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d2spl

dxdz
5

2pe4

EEF

1

xz

6

16x2
xz2d@P~z,x!#, z<zc .

~A19!

The kinematic allowed interactions correspond to poi
(z,x) in the region limited by thez axis and the energy- an
momentum-conservation curve@cf. Eq. ~A3!#

x54z~xE
1/22z!, xE[E/EF . ~A20!

For a positron, the maximum allowed energy loss in a sin
collision is equal to the kinetic energy of the projectile, i.e

xmax
(1)5xE . ~A21!

When the projectile is an electron, the value of t
maximum-energy loss is limited by Pauli’s exclusion pri
ciple, which forbids transitions that would place the proje
tile into a filled state below the Fermi level, i.e.,xmax

(2) 5xE

21. Moreover, electrons can undergo exchange interacti
The effect of these interactions, which is not included in t
original Lindhard theory, can be accounted for by means
the Ochkur approximation@21–23#, which is obtained by
considering that the exchange scattering amplitude can
approximated by the leading term of an expansion of
Born-Oppenheimer amplitude in inverse powers ofE. The
Born-Ochkur DCS for interactions of an electron with th
FEG is given by

d2s feg

dxdz
5

2pe4

EEF

1

xz

d fL~z,x!

dx
Fex~z,x! ~A22!

with

Fex~z,x!512
4z2

xE2x
1

16z4

~xE2x!2
. ~A23!

In binary collisions, the ‘‘struck’’ electron is promoted to
state above the Fermi level; we consider the ‘‘primary’’ ele
tron as the most energetic after the interaction. Recalling
low-W binary collisions occur preferentially with target ele
trons near the Fermi level, the final energies of the two el
trons are equal whenW;(E2EF)/2. Consequently, we sha
assume that the maximum allowed energy loss in binary
lisions is (E2EF)/2. Thus, for electrons we take

xmax
(2)5~xE21!/2. ~A24!

Integration of the DCS over kinematically allowed reco
energies gives the one-electron energy-loss DCS,
8-15
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ds feg

dx
[E

z2

z1d2s feg

dxdz
dz5

2pe4

EEF
E

z2

z1 1

xz

d fL~z,x!

dx
Fex~z,x!dz,

~A25!

with @see Eq.~A3!#

z65 1
2 ~AxE6AxE2x!. ~A26!

For positrons, and also for plasmon excitation, the excha
correction factorFex must be omitted.

The contribution from binary collisions to the energy-lo
DCS is

dsbc

dx
5

2pe4

EEF
E

z2

z1 6

16px2

zx2f 2~z,x!

@z21x2f 1~z,x!#21x4f 2
2~z,x!

3Fex~z,x!dz, ~A27!

and can be calculated by a single numerical integration.
energy losses much larger than the plasmon-cutoff ene
Wc , the finite width of the Lindhard continuum has a neg
gible effect and the DCS for binary collisions can be clos
approximated as

d2sbc

dxdz
5

2pe4

EEF

1

xz
d~x24z2!5

pe4

EEF

1

x2
d@z2~x1/2/2!#.

~A28!

With this approximation, we have
J

By

l,

.G

e

01270
e

or
gy

y

dsbc

dx
5

pe4

EEF

1

x2
~A29!

for positrons and

dsbc

dx
5

pe4

EEF

1

x2 F12
x

xE2x
1

x2

~xE2x!2G ~A30!

for electrons. These expressions coincide with the fami
nonrelativistic Rutherford and Mo” ller formulas, which are
the correct results for collisions of positrons and electro
with free electrons at rest, within the first Born approxim
tion.

We wish to calculate the total one-electron cross sec
sbc(E,r,D) for binary collisions with energy transfersW
larger than the gap energyD, which is

sbc~E,r,D!5E
D/EF

xmax dsbc

dx
dx. ~A31!

To compute the integral in Eq.~A25! over the Lindhard con-
tinuum we use an adaptive 20-point Gauss-Legendre a
rithm, which delivers results accurate to the order of six s
nificant digits. The integrand in Eq.~A31! is tabulated for a
grid of x values suitably spaced to allow accurate log-l
interpolation, and the integral of the interpolating function
evaluated analytically.
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