PHYSICAL REVIEW A 68, 012708 (2003
Optical-model potential for electron and positron elastic scattering by atoms

Francesc Salvét
Facultat de Fsica (ECM), Universitat de Barcelona, Societat Catalana dsida (IEC), Diagonal 647, 08028 Barcelona, Spain
(Received 30 March 2003; published 14 July 2003

An optical-model potential for systematic calculations of elastic scattering of electrons and positrons by
atoms and positive ions is proposed. The electrostatic interaction is determined from the Dirac-Hartree-Fock
self-consistent atomic electron density. In the case of electron projectiles, the exchange interaction is described
by means of the local-approximation of Furness and McCarthy. The correlation-polarization potential is ob-
tained by combining the correlation potential derived from the local density approximation with a long-range
polarization interaction, which is represented by means of a Buckingham potential with an empirical energy-
dependent cutoff parameter. The absorption potential is obtained from the local-density approximation, using
the Born-Ochkur approximation and the Lindhard dielectric function to describe the binary collisions with a
free-electron gas. The strength of the absorption potential is adjusted by means of an empirical parameter,
which has been determined by fitting available absolute elastic differential cross-section data for noble gases
and mercury. The Dirac partial-wave analysis with this optical-model potential provides a realistic description
of elastic scattering of electrons and positrons with energies in the range~fft®0 eV up to~5 keV. At
higher energies, correlation-polarization and absorption corrections are small and the usual static-exchange
approximation is sufficiently accurate for most practical purposes.
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I. INTRODUCTION (or static-exchangeapproximation agree well with available
experimental data in this energy range; the differences are
Elastic scattering has a prominent effect on the transpoifrequently of the same order of magnitude as the uncertain-
of fast electrons and positrons through matter. Owing to theies in the measured data.
smallness of the electron masg, these particles may un- When the kinetic energy of the projectile decreases below
dergo relatively large angular deflections in single-~5 keV, the accuracy of the static-field and static-exchange
interaction events and, as a consequence, their trajectori@pproximations deteriorates progressively. We recall that
are tortuous. Knowledge of accurate differential cross secthese approximations can be regarded as equivalent to the
tions (DC9) for elastic scattering of electrons and positronsfirst-order term of a perturbative expansion of the transition
is necessary for studies of electron and positron transport imatrix. The effect of second-order terms increases when the
matter, which are needed for many practical applicationsenergy of the projectile decreases and can be accounted for
These include quantitative analysis in surface electron angpproximately by using optical model6—12], in which the
positron spectroscopies, detector design and characterizatidnteraction is described by means of a local complex poten-
radiation dosimetry, and radiotherapy treatment planningtial. An optical-model potential consists of the static field
Electron-transport calculations are frequently performed byelectrostatic interaction, with a local exchange correction in
means of Monte Carlo simulatiofsee, e.g., Refs[1,2]),  the case of electropsthe correlation-polarization potential
which requires systematic tabulations of elastic DCSs agwhich accounts for the polarization of the target charge dis-
functions of the projectile kinetic enerdyand the scattering tribution under the action of the electric field of the projec-
angle6. tile), and an absorptive imaginary potentiahich describes
For projectiles with kinetic energy larger than, say,the loss of flux due to the coupling with inelastic chanhels
~5 keV, elastic collisions can be described by means of théor projectles with relatively low energy, up to a few hun-
static-field approximation, in which the target atom is con-dred eV, very accurate elastic DCSs can be obtained from
sidered as a frozen charge distribution and the interactiosoupled-channel optical calculatioh$3,14], in which a fi-
with the projectile is assumed to reduce to the electrostatipite set of scattering channels is treated with the coupled-
interaction(see, e.g., Ref3]). In the case of projectile elec- channel formalism and the rest of the channels are taken into
trons, an approximate local exchange poterfidlmay be account by means of an approximate nonlocal complex po-
added to the electrostatic interactidstatic-exchange ap- larization potential(see, e.g., Refd.13,14)). At these ener-
proximation. Elastic DCSs and spin-polarization functions gies, convergent close-coupling calculations have also been
can then be calculated by using the relativistirac) performed for selected elementsee Ref.[15], and refer-
partial-wave expansion method. With the aid of availableences therein
numerical algorithmgsee, e.g., Ref5]), this kind of calcu- Optical models provide a convenient methodology for
lation is feasible for energies up to 10 MeV. DCSs and elastic-scattering calculations at intermediate enerdies
spin-polarization functions calculated from the static-field~100 eV to~5 keV), for which second-order effects are
appreciable and more rigorous coupled-channel calculations
are difficult due to the large number of open inelastic chan-
*Electronic address: cesc@ecm.ub.es nels. Byron and Joachaj@] describe a systematic procedure
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to construct the imaginary potential from an eikonal analysiamodel is intended for systematic calculation of the electron
of the second term of the Born series, which is evaluated@nd positron elastic-scattering databases required for Monte
approximately by closure. The calculation of the absorptiorCarlo simulation of low-energy electron and positron trans-
potential by the eikonal-Born method requires knowledge ofort in amorphous media. We concentrate on the energy
atomic wave functions and is fairly laborious. A number of range from~100 eV to~5 keV, which is of interest, e.g.,
groups have proposed simpler methods that require knowinp electron surface spectroscopy and microdosimetry. The
only the atomic electron density, usually combined withdetails of the optical-model potential are described in Sec. II.
some empirical informatiorfe.g., total cross sectionsFor ~ The calculation of cross sections for binary collisions of the
example, Furness and McCartf§] proposed an absorption Projectile with a homogeneous electron gas, which are
potential that is proportional to the electron density and in-€eded to obtain the absorption potential, is described in the
versely proportional to the square of the “local” kinetic en- APpendix. In Sec. Ill, we briefly consider the required modi-
ergy of the projectile. Staszewsk#al.[11,12] have derived fications of a conyentlonal Dirac partlal—waye method to
an absorption potential for electrons by considering thecOmpute phase shifts for a complex central field and we in-
atomic electron cloud as an inhomogeneous electron gas, afi@duce the set of observables that are calculated by our com-
assuming that inelastic collisions of the projectile are binaryPuter code. In Sec. IV, we analyze the dependence of the
collisions described by the Rutherford DCS with Pauli-calculated DCSs on the model parameters and justify the
principle restrictions. This “quasifree” model has had quite Selection of default values for these parameters. Section V
remarkable success in describing elastic electron scattering §@ntains a fairly extensive comparison of calculation results
relatively low energies and has been recently generalized tWith available experimental data for scattering by noble
the case of positron scattering by Reid and Wadéhe. gases and mercury. Sec. VI contains some concluding re-
However, the underlying model for binary collisiofRuth- ~ marks.

erford scattering with Pauli blockingneglects electronic

screening and the proposed absorption potential contains an Il. OPTICAL POTENTIAL
empirical parameter that has a relatively strong influence on
the potential. As mentioned above, elastic scattering of electrons and

Various approximate forms of local exchange andpositrons with kinetic energi larger than~5 keV is accu-
correlation-polarization potentials have been derived byately described by the static-field approximation. Within this
means of the local-density approximatighDA), i.e., by  approximation, the structure of the target atom, of atomic
considering that each volume element of the target electronumberZ, is fully characterized by giving the nuclear and
cloud behaves as if it were part of an homogeneous electroglectronic charge distributions. For projectiles with energies
gas of the same densifg7-19. It has been established that less than~10 MeV, the nucleus can be represented as a
these local potentials provide a fairly accurate description ofoint charge. The electronic densjiyr) of free atomgav-
exchange and polarization effects in elastic scattering oéraged over degenerate states in the case of open)skells
electrons and positrons by neutral atoms. The appeal of thespherically symmetrical; the electron densities used in the
approximations is that they can be applied to more compleyresent calculations were generated by means of the multi-
systems such as molecules and solids, where close-couplimgnfiguration Dirac-Fock code of Descla[@4]. The poten-
methods are impracticable. It is therefore natural to questiotial energy of the projectile at a distancérom the nucleus
whether the LDA is also capable of describing absorptiorof the target atom is given by
effects accurately. In the present paper, we consider a LDA to
the absorption potential that is based on Lindhafg@] di- ZoZ€?
electric formalism, which accounts for the effect of Pauli V(r)=
blocking consistently. The Lindhard theory also accounts for
Debye screening, an effect which is disregarded in the qua- o
sifree model. In the case of electron scattering, exchange +f p(r’)4wr’dr’), (1)
effects are introduced in the absorption potential model by '
using the Born-Ochkur approximatiof21-23. To leave
room for possible empirical corrections, the proposed abwheree is the absolute value of the electron charge Zpel
sorption potential contains two parameters, the energy gais the charge of the projectile.

A, which should be of the order of the first excitation thresh- When the projectile is an electron, we must account for
old of the target atom, and a global strength fa&igy,. The  the occurrence of rearrangement collisions, in which the pro-
absorption potential is then completely determined by thegectile exchanges places with an atomic electron. A conve-
local electron density of the target and the parameteasdd  nient method to handle electron exchange effects is to re-
Aps- FOr the cases for which enough experimental informaplace the nonlocal exchange interaction by an approximate
tion is availablelmostly noble gasesthe optimum values of local potential(see, e.g., Ref4], and references thergirin
these parametefge., obtained by fitting experimental infor- the present calculations, we use the exchange potential of
mation are found to be nearly independent of energy, thuscurness and McCarth}6,7,25, which is derived directly
confirming the physical consistency of the absorption modelfrom the formal expression of the nonlocal exchange inter-

Our main objective here is to devise an optical-modelaction by using a WKB-like approximation for the wave
potential with defined empirical parameters. The proposedunctions:

1(r
—Z,e? —f p(r")4mr' 2dr’
r rJo

012708-2



OPTICAL-MODEL POTENTIAL FOR ELECTRON AND . .. PHYSICAL REVIEW 48, 012708 (2003

V(1) =[E-V(r)]— HIE—Vg(r) 2+ 4mage’p(r)} 2, gas correlation energy with respectgo It is customary to
(2)  express this potential as a function of the density parameter

/3
where a, is the Bohr radius. Bransdeet al. [4] conclude r Ei 3 I ©6)
that for scattering by H and He this effective potential de- S agldmp(r)]
scribes exchange effects accurately for projectiles with ki- )
netic energies larger than about 1 hartree. which is the radius of the sphere that contajos an aver-

age one electron of the gas, in units of the Bohr radags
For electrons, we shall use the parametrization of the corre-
lation potential given by Perdew and Zund2#],

Slow projectiles cause the polarization of the charge cloud
of the target atom and, in turn, the induced dipole moment
acts back on the projectile. When the projectile is far from
the atom, the polarization potential energy can be approxi-

A. Correlation-polarization potential

2
e
v (n=- o (0.03111r,~0.0584-0.00133dn

mated by means of the Buckingham potential, —0.0084) (73
v ap62 . forre<1, and
\ =T T o o o
P 2(r?+d?)? €2 1+(7/6)Byr X2+ (413) B,r g

VI (n=—- (7b)

3.0 172 2
wherea,, is the dipole polarizability of the target atof26] 2o (14 Bar g™+ Bar
andd is a phenomenological cutoff parameter, which serve
to prevent the polarization potential from diverging rat

=0. Following Mittleman and Watsof27], we write

Yor r<=1, whereB,=0.1423,3,=1.0529 and3,=0.3334.
For positrons, we use the parametrization of the correlation
potential proposed by Ja[i9]:

d*=3Faya,Z %3 (4) 2
i P VE(r)= < {0.58351 0,91 12
and consideb,, as an adjustable energy-dependent param- 2o
eter, which can be determined by fitting the measured DCSs +[0.00255 Iir ) —0.0575In(rg)}  (8a)
at small anglegsee below:. It is found that the magnitude of

polarization effects decreases when the energy of the projeder r¢<0.302,

tile increasedi.e., by, increases wittE), reflecting the fact o2

that atomic electrons do not react instantaneously to external Vg)(r)= =~ [0.461525-0.045 495—2] (8b)
electric fields. From a comparison of results from calcula- ag

tions using the potentiaNg(r)+VE (r)+Vy(r) with

available experimental DCS data for elastic scattering ofor 0.302<r<0.56,

electrons by atoms witkE=100 eV, Seltzef28] suggested 5
the following empirical formula: V()= €l 4.3637 + —6.5755+0.4776,
“ a| (rgt+2.5° (rgt+2.5?2
be=(E—50 eV)/(16 eV). (5)
1.43275
In what follows we shall use this recipe, which yields DCSs + r<+2.5 —0.314 (80)

at small angles that are consistent with measurements for
noble gases and mercury, and assume that the long-rangsr 0.56<r.<8, and
polarization potentia(3) is the same for electrons and posi-

trons. e?
(M) (ry= T — -6 -3
In a more elaborate model proposed by O'Connell and Veo ()= ao[ 15375.8678; °+44.5047 ; °—0.262
Lane[17], the short-range polarization field is obtained by (8d)

using the LDA and assuming that the projectile is slow. The

physical picture behind this model is that when the projectilefor r=8. It is worth stressing the fact that these param-
penetrates the atomic volume its charge is dynamicallgtrized potentials correspond to slow projectiles; the correla-
screened by the atomic electrons. Thus, when the projectiléon potential increase&lecreases in magnitudevhen the

is an electron, atomic electrons are repelled to form a “Couvelocity of the projectile increases, and tends to zero at high
lomb hole” surrounding the projectile position, an effect energies.

which is usually referred to as “correlation.” According to ~ To obtain the global correlation-polarization potential
the LDA, the correlation energy of the projectilerats the V(Cg)(r), we consider thatl) at large distances it must re-
same as if it were moving within a free-electron gas of den-duce to the long-range polarization potentigl,(r) and(2)

sity p equal to the local atomic electron density. Following at small radii, where the atomic electron density is large, the
Padial and NorcrosgL8], the correlation potentiaV 4(r) is ~ LDA correlation potential given by Eqg7) and (8) is a
calculated as the functional derivative of the free-electronfower bound forvgg’(r). Accordingly, we set
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P Vpol(r)

wherer, is the outer radius at Whicldg)(r) and V(1)
cross. Notice that the correlation potential for electrons, Egs.
(7), tends to zero for large and, therefore, definitiof®) is
unambiguous, i.e., the potential§;’(r) andV,(r) cross at
least once. For positrons, whanincreases, the potential
Vv{H(r), Egs.(8), tends to a constant value-0.262 hartree,
which is the binding energy of the positronium negative)ion
At high energies, the empirical polarization potential is
larger than_V(c;)(r) for all r and vi(r) is set equal to 107
Viol(r). With Seltzer’s recipe, Eq(5), the correlation- 1
polarization potential defined by E¢) is free from fitting
parameters.
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FIG. 1. Inverse mean free paths for binary collisions of electrons
(solid curve$ and positrongdashed curvgsmoving with kinetic
energyE in free-electron gases of various densities, corresponding

For projectiles with kinetic energy above the first excita-t0 the indicated values of the plasma enekgy
tion threshold, there is a loss of flux from the elastic channel ] o
to inelastic channels. To model this effect, the optical potenthan the first excitation energy, of the target atom and,
tial must contain a negative imaginary partW,,{r). ltcan  accordingly, we should sek=¢;. In the case of positron
be easily shown that the quantity £3X,,{r) represents the Scattering, positronium formation is often the first inelastic
absorption probability per unit time of the projectilerasee, ~channel to open. For atoms whose ionization poterntial
e.g., Ref.[30]). We can write an alternative expression for larger than the positronium binding energ,|~6.8 eV
this absorption probability per unit time by invoking the (Such as the noble gageshe threshold energy for positro-
LDA, i.e., considering that the projectile interacts as if it Nium formation is eps=1—|E;. For atoms with |
were moving within a homogeneous electrons gas of density-6-8 €V, positronium formation is possible at all energies,
p(r) with velocity I.e., ep=0. Hence, for positron scattering we should Aet
= €ps-

To describe the binary collisions of the projectile with the
local free-electron gas we use the Born approximation with
the generalized oscillator strength obtained from Lindhard’s
dielectric function, as described in the Appendix. This theory
) accounts for the effects of Pauli blocking and electronic

screening consistently. However, in the case of electron scat-
tering the Born-Lindhard formulation disregards the effect of
Assuming that the interactions with the electron gas are bielectron exchange in inelastic interactions. To describe this
nary collisions, the LDA predicts an interaction probability effect, we employ the Born-Ochkur approximati@i—23,
per unit time equal to _po,(E_,p,A), whereo,(E, ,p,A) which yields the correct DCS for collisions with free elec-

B. Absorption potential

v =(2E_/m)Y? (10)

corresponding to the local kinetic energy

E—Vg(r)—V{)(r) forelectrons,

B (r)= max(E—V(r),0)

for positrons.

is the cross sectiofiper electron in the gasfor collisions
involving energy transfers greater than the energy gap
Notice thatpop E, ,p,A) is the inverse mean free paite.,

trons at rest. Figure 1 displays calculated inverse mean free
paths po,{E,p,A) with A=0 for binary collisions with
free-electron gases of various densities, corresponding to the

the interaction probability per unit path lengthf the projec-

indicated values of the plasma enerfsee Eq.(6)] E,
tile in the electron gas. Consequently, we set

=(4mpe’h?/m)*2 as functions of the kinetic enerdy of
the projectile. For kinetic energies larger thariOCE,, the
cross sections for electrons and positrons are approximately
equal. For lower energies, the cross sections for electrons are
whereA,,sis an empirical parameter, which should be of thesmaller due to the effects of Pauli blocking and electron ex-
order of unity. The factog in this equation comes from the change. For positrons with kinetic energy below the plasmon
interpretation of (2)W,,{r) as the probability of absorp- excitation threshold {E,), the cross section decreases
tion per unit time. This factor has nothing to do with ex- when the kinetic energy of the projectile decreases due to the
change corrections, as incorrectly stated by various authorscreening of the projectile charge by the gas electrons.
and must be used for both electrons and positrons. It is worth stressing the fact that we are considering only
The energy gap in Eq.(12) is introduced to account for binary (close collisions of the projectile with the local elec-
the fact that excitations of the target atom are possible onlyron gas and, therefore, neglecting the effect of plasmonlike
when the energWV lost by the projectile is larger than the interactions. The same is true for the quasifree model of
first inelastic threshold. For electron scattering, inelasticStaszewskeet al. [11,12. Plasmonlike excitations involve
channels are open when the energy of the projectile is largeelatively small momentum transfers and correspond to dis-

Waps=Aandi 3(2EL /M) Y5p o d Ey,p,A), 12
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tant (dipolelike) interactions. In the case of low-energy pro- by the direct and spin-flip scattering amplitudes, given by
jectiles, the probability of distant interactions with a target[3,31]
atom can be even larger than that of close collisions. Due to 1
their delocalized character, it is not clear that how distant _ .
interactions can be described in terms of a local potential f(a)_ﬁ E {6+ 1)[exp(2i = —¢-1)~1]
determined by only the atomic electron density. To account )
for the global effect of distant interactions, we shall consider + €[ exp(2i 5,—¢) —1]}P((coso) (15
Aaps @S an empirical parameter and allow it to take values
larger than unity. and
Summarizing, the optical-model potentials for electrons 1
and positrons obtained from the present LDA formulation are g(0)==— > [exp(2id,_;)
. 2ik 2 K
given by
H 1
VD) =Vo1) VG0 + V1)~ Wpdr) (13 A2 O a)[Pdteost, (9
respectivelyk is the relativistic wave number of the projec-
and tile, which is related to the kinetic enerdsy by

V(1) =Vl(r) + V(1) = iWpd 1), (14) (cfik)*=E(E+2mc?), (17)

respectively. The static, exchange, and correlation potentiaﬁ?erec is the velocity of light m_vacuumP{;(cos_&) and
are free of adjustable parameters. The long-range polariza.¢(C0Sf) aré Legendre polynomials and associated Leg-
tion potential contains the cutoff parametgy,, which has endre functions, respectively.

been empirically determined. The absorption potentl®)

depends on the energy gdp and the strength parameter A. Numerical calculation of the phase shifts

Aabs: We shall show below that with equal to the first The phase shifts, represent the large-behavior of the
inelastic threshold and\,,s~2, the present optical-model Dirac spherical wavetsee, e.g., Ref32))

potential yields DCSs for elastic scattering of electrons by

noble gases and mercury that are in good agreement with 1
available experimental data for projectiles with kinetic en- Yem(r) = T
ergy larger than-100 eV (see Sec. Y. Calculation results

also reveal that exchange, correlation-polarization, and ab- - ) ) ]
sorption effects are appreciable only for projectile electrondvhere, »(r) are the spherical spinors and the radial func-
and positrons with kinetic energies less than about 5 ke\ions Pe.(r) andQg,(r) satisfy the coupled system of dif-
Moreover, these corrections are important only for relativelyferential equation$32]

large radial distances, because at small radii the interaction is

(18)

Pee(NQ (1) )
iQed(NQ_ (D]

_ 2
dominated by the intense Coulomb field of the nucleus. dPEK:_prK+w e
Therefore, it is legitimate to use nonrelativistic quantum dr r ch
theory, as we have done here, to derive local corrections to 40 E_v
the static potential/(r). E - K
P SI( ) dr t=— ch PEK+ FQEK . (19)

Ill. THE DIRAC PARTIAL-WAVE ANALYSI . . .
c SIS The relativistic quantum numbek is defined as «

The spherical symmetry of the potentids3) and (14) =({—])(2j+1), wherej and ¢ are the total and orbital
allows the elastic DCSs to be calculated by using convenangular-momentum guantum numbers, which are both deter-
tional partial-wave expansion methods. As indicated abovenined by the value ok; j=|«|—1/2, € =]+ «/(2|«]|).
positrons are repelled by the nucleus and can only “see” the In the present calculations, the phase shifts are obtained
outer part of the atom. As a consequence, DCSs for elastiitom the numerical solution of the radial equatidd$) us-
scattering of slow positrons could be calculated by solvingng the subroutine packagenpIAL [33], which has been ex-
the nonrelativistic Schidinger equation. This is not the case tended to cover the case of complex spherical potentials. The
for electrons, which are attracted by the Coulomb field of thefunctionrV()(r) is replaced by the natural cubic spline that
nucleus and can reach large velocities at small radial disinterpolates the values of this function for a given grid of
tances, a fact that requires the use of the Dirac equation tadii, dense enough to ensure that interpolation errors have a
compute elastic-scattering DCSs and spin-polarization funcaegligible effect on the computed radial functions. The inte-
tions. However, as the numerical effort required to solve theyration of the radial equations is started rat 0, where
Schralinger equation is not significantly less than the effortPg,(0)=Qg,.(0)=0, and extended outwards up to a dis-
needed to solve the Dirac equation, we shall use the latter faancer., beyond the effective range of the interaction poten-
both electrons and positrons. tial. In the interval between consecutive grid points, the ra-

The scattering of relativistic electrons or positrons by adial functions are determined from their exact power-series
central fieldV(r) (real or complexis completely described expansions, which are summed up to the desired accuracy.
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With this method truncation errors are completely avoided p%j((r): —krn_,_4(kr),
and, therefore, the radial functions are only affected by un-
avoidable round-off errors.

When V(r)=0, the radial functions reduce to familiar

0,i _ :
forms (see, e.g., Ref32)) E(r)= krn_(kr) 1t «<0,

1/2
E+ 2mecz>
(20b

P2 (r)=krj (kr),

12 wheren,(x) are spherical Neumann functions. To calculate
%’r{(r): 2) Krj._.(kr) if >0, the phase shif6,, the numerical solution for=r is ex-
E+2mgc pressed as a linear combination of the regular and irregular
0 _ solutions for the free particle,
Pen(r)=krj_,4(kr),
12 Pe.(1)=C0g8,)PZL(r) +sin(5)PRL(r)  (21)
O r . .
E’K(r)=—(—) krj_.(kr) if k<0,
E+2mc? or, equivalently,
(203
wherej,(x) are spherical Bessel functions. For the null po- Pe (r)=exp(is,) [P () —iP2(r)]
tential andr >0, the radial equations admit a second inde- .
pendent solution, which is irregular a0, +exp(—i8,)3[PRUr) +iPZ(N)]. (22
0,i - _
Pe(r) krn,(kr), The phase shif, is determined by matching this outer ana-
112 lytical form to the inner numerical solution at,, requiring
Q%L(r)z— —) krn,_,(kr) if k>0, continl_Jity of the radial functiorPg,(r) and its derivative.
E-+2mgc? This gives

Doud PYI(r.) +iPLL(r) - [(PEN) (r.)+i(PE)’ (r.)]

2i8,)= & =
R0 0 (1) 1P (1)]—Doud PEL(T)—1PY(r)]

(23

where the primes indicate derivatives with respect tnd  E. In the present calculations when>50a, and |V(C§)(r)|
Dou=PE(r.)/Pe(r.) is the logarithmic derivative of the <10 °E, we setV{*)(r)=0. This truncation of the poten-
outgoing numerical radial function at the matching point.tial allows a considerable reduction of the computation time
Formula(23) gives the phase coefficients expfg for arbi-  and only affects the DCS at very small angles2°), where
trary finite-range complex potentials. The phase shifts of at is slightly underestimated.

real potential are all real. When the potential is complex, the

phase shifts are also complex; their imaginary part decreases B. Observable quantities

when |k| increases because, for sufficiently large angular ] ) )
momenta, the centrifugal barrier prevents the projectile from ©OUr computer code delivers the scattering amplitudes, the
perceiving the short-range imaginary potential. elastic DCS, the totalintegrated elastic cross section, and

The calculations presented here have been performed withherman’s spin-polarization function. For thg usual case of
a FORTRAN 77 code, in which all real variables are repre- electron and posnron t_)ear_ns that are not spin polarized, the
sented in double precision. Wheéhnis sufficiently large, the DCS for elastic scattering is
absolute value of the phase shift decreases monotonously do
with €. Our computer code calculates phase shifts for in- —:|f(0)|2+|g(9)|2_ (24)
creasing orderd up to a certain valué ., for which &, dQ
becomes smaller than 10 8. At this point, the partial-wave
expansiong15) and(16) have converged to the required ac-
curacy(usually more than six decimal plagdsr all angles. q
It is convenient to mention here that, due to the long-range _ | 99 H i 2 27ai
polarization potential, the absolute value of the pha%e sr?ift Ue'_J dQ dQ_szo [IF(0)*+Ig(o)"]sin odo.
decreases very slowly with. A simple trick to speed up the (25
calculation consists of neglecting the polarization potential
for larger, where it becomes negligible in comparison with The code also delivers the momentum-transfer cross section

The total elastic cross section is
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do
Omt= f d_Q(l_ cosh)d(}, (26) :\ bpoi=10 e — Ar (Z=18) |
e bpoi=S E=500eV .

which plays an important role in the simulation of electron- ~
positron transport processes. Scattering amplitudes an&s 1971
DCSs are tabulated for a grid of angles, which is denseS
enough to allow the integrals to be evaluated by means of
log-log interpolation.

Elastic scattering causes the spin polarization of initially
unpolarized beams3]. The degree of polarization of projec-
tiles scattered in the directiofl is given by the Sherman
function

do/dQ

f( 0) . ( 0) f* ( 0) ( 0) 10—160 1 1 1 1 ; 1 1 1 1 llo 1 1 1 1 15
. g - g 6 (deg)

S(0)=i 2

SNTTPTEN P @0

FIG. 2. Effect of the polarization cutoff parametey, on the

elastic DCS. The solid curve represents the DCS calculated with the

For certain target atolms and projeptile kineti_c- energies.,, th%E potential. The other curves are DCSs obtained from the SECP
absolute value o8(6) is close to unity at §peC|f|c gcatterlng potential with the indicated values df,,. For §>20°, they all
angles. Under these circumstances elastic scattering produc§$tically coincide.

highly polarized electron beams, although their intensity is
relatively small. The Sherman function is experimentally de-

termined by means of double-scattering experim81s35. low energy,A has a small effect on the DCS._ A; indicated
above, we shall sef equal to the threshold excitation energy

for electrons and equal to the positronium formation thresh-
IV. DEPENDENCE ON THE PARAMETERS old for positrons. This recipe may also be used to describe

We have performed extensive comparisons of electrof§lastic scattering_by pos_,itive ions. However, when the kint_atic
elastic DCSs calculated with the static-exchaf®) poten- ~ €Nergy of the projectile is of the order c_)f or less than the first
tial Vst(r)JrVg;)(r) and with the SE plus correlation- excitation _threshold, the energy gap is expected to have a
polarization(SECP potentialvst(r)+Vg;)(r)+v(cg)(r), us- more significant effect on the DCS. Nevertheles_s, in the ex-
ing experimental values of the dipole atomic polarizabilitytreme cases wheie<A the optical-model potential reduces

ap [26]. For projectiles with kinetic energies larger than to t_he §tat|c-exchqng§ plus cqrrelatlon-polarlzatlon F’Ote”t'?‘"
500 eV, the effect of atomic polarization on the DCS isWhlch is the effective interaction expected when all inelastic

limited to small angles<15°) and decreases in magnitude channels are closed. . . .

I . The strengthA 4, of the absorption potential has a direct
when the value of the polarization cutoff parameligg; in- impact on the calculated DCS, the absorption correction be-
creases. For energies below 500 eV, the effect of the polat- b : i puC
R ) . . ing nearly proportional toA,,s. This correction alters the
ization potential extends to intermediate and larger angIeBCS edominantly at intermediate and large scatterin
and alters both the absolute value and the position of the pr ! y ! ! ge s N9
minima of the DCS. The dependence of the DCShgy) is
illustrated in Fig. 2 for the case of 500-eV-electron scattering
by argon atoms. The displayed DCSs were obtained from the 1¢-15
SE potential and from the SECP potential with different val-
ues ofb,,. For angles larger than about 20°, the effect of _
the correlation-polarization correction is negligible far NE 10716
larger than~500 eV. When reliable measurements of the
DCS at small angles are available, the cutoff parameter car
be determined by fitting the data, even if these are relative.
The empirical formuld5) was inferred from a comparison of
similar calculations with a large amount of experimental data
published by numerous authors on noble gases and mercur  107'®

The effects of the absorption potential paramet®ggs,
and A on the DCSs are entangled. For kinetic enerdtes o b b b b b b L
larger than~500 eV and neutral atom4, has a small influ- 30 60 0 %0 120 150 180
ence on the DCS and, therefore, its precise value is not im- (deg)
when the kinetic energy of the projectile decreases. Figure olid curve represents the DCS obtained from the SECP potential
displays DCSs for 100 eV electron scattering by argon atomgith the empirical value ob, (i.., with A,,=0). The dashed and
calculated withA=0 and withA equal to the first excitation dotted curves are the results from the optical-model potential with
energy(11.6 eV}, both with A,,e=2. Even at this relatively A=11.6 eV and withA =0, respectively, both witlh,=2.

X e~ — Ar (Z=18)
E=100eV

ol

g
% 1077
o]
=1

absorption ™

(=]
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angles and, therefore, the interference between correlation- In principle, our method is also applicable to positron
polarization and absorption corrections is weak. This meanscattering. As the long-range polarization potentials are the
that, with the adopted values @f,, and A, A,,s can be  same for electrons and positrons, calculations for positrons
determined by simply fitting the experimental DCSs at inter-would only require determination of the absorption potential
mediate and large angles. From the experimental DCS dafgarameters. As in the case of electrons, the DCS depends
a.Va.iIa.ble fOI‘ n0b|e gases a.nd meI’CL{lsee the fO||0Wing Very Weak'y on the energy gap To determine the param_
section, we have found that the valuk.,c=2 provides a  gterA,, . we would need experimental measurements of the
sa_tlsfa_lcto_ry descr_lptlon of elastic scattering of projectilespcg at large angles. As these are still very scarce, we tenta-
with kinetic energies larger than about 100 eV. __tively use the value\,,—=2 obtained for electrons and skt
We would like to mention that at nonrelativistic energ|es,equal to the positronium formation threshold, 8.96 eV for
the grand tota(elastic.and absorptigreross section can be argon. Figure 7 compares DCSs calculated fr(;m the optical-
obtained from the optical theorem model potential with the results of absolute measurements by
Ao Dou et al. [58] for elastic scattering of 100 and 300 eV pos-
or=0gt O'abs:TImf(o)' (28)  itrons by argon atoms. DCSs calculated from the static plus
correlation-polarization potentialV(r)+V,(r), have a
complicated structure at small angles, which is partially

As grand total cross sections are easier to measure than elas- S
9 washed out when absorption is included.

tic differential and total cross sections, it may seem plausible Calculated Sherman functions for soin olarization in
to determine the parametéy,, of the absorption potential . ; PN p
elastic electron scattering by the heavier noble gases and

(12) by requiring that the value ofr; calculated from Eq. 4 with . | data in Fia. 8. O
(28) agrees with available experimental data. This woulgMercury are compared with experimental data in Fig. 8. Our

yield a consistent description of both elastic and inelastid®Sults agree moderately well with the experiments for ener-
collisions whenever the adopted local absorption potential i§i€SE larger than~100 eV. In the case of xenon and 50 eV,
a faithful representation of the true potential. As our LDA the calculation differs significantly from the measured data,
potential is only an approximation, this method is not ex-indicating that our optical-model potential may be too simple
pected to be of any practical use here and we have preferrd@ describe the interaction at this low energy. In general, for
to determineA .. from experimental large-angle elastic DCS moderately high energies, the Sherman function is relatively
data. insensitive to the correlation-polarization and absorption po-
tentials. This can be understood by recalling that spin polar-
V. COMPARISON WITH EXPERIMENTS ization is mostly due to spin-orbit couplingee, e.g., Ref.
[35]), which is appreciable only at relatively small radial
In Fig. 4 we compare calculated DCSs for elastic scatterdistances, where the potential reduces essentially to the Cou-
ing of electrons (100 e#¥E<1 keV) by noble gases and |omb field of the nucleus. The case of scattering-df50-eV
mercury with available absolute eXperimental data. In these|ectrons by Xxenon is interesting; we see that the SE calcu-
figures, the dashed curves represent results from the SE a@tjon predicts a polarization peak ne@#108°, in accor-
proximation and solid curves are results from the presenyance with the optical-model calculation and experiment, but
optical-model potential with the parameter values recomyyith reversed sign. Keeping aside this feature, the results of
mended above, i.eq, from Ref.[26], b, given by EQ.(5),  the two calculations are practically equivalent.
A2, and A equal to the first inelastic threshold. The
adopted values af for helium, neon, argon, krypton, xenon,
and mercury are_19.8, 16.6, 11.6, 9.9, 8.3, .and'4.7 eV, re- V1. CONCLUSION
spectively[36]. It is seen that the SE approximation under-
estimates the DCS at small angles and overestimates it at The proposed optical-model potential and the associated
large angles. Inclusion of the correlation-polarization potencomputer code provide a complete description of elastic scat-
tial increases the DCS at small angles to agree very closeligring of electrons and positrons of intermediate energies
with the experimental values. The absorption potential effec{E>100 eV) by atoms. Apart from the parametérs,, A,
tively reduces the DCS at larger angles, giving results thaandA,,., the potential is completely determined by the local
overall agree much better with measured data. electron density. We have shown that, for projectiles with
Figure 5 displays a similar comparison for noble gaseinetic energy larger than-100 eV, DCSs, total cross sec-
and kinetic energies in the keV range. We see that outions, and spin-polarization functions calculated with the
optical-model potential with the default parameter values re“default” values of the model parameters agree well with
produces the experimental data very accurately. Notice thaxperiments. With this set of parameters, calculated DCSs
the relative magnitude of correlation-polarization and ab-are substantially more accurate than those obtained from the
sorption corrections decreases when the energy of the pratatic-field approximation, which are in common use in
jectile increases. In practice, f&r>5—10 keV these correc- electron-transport simulations by Monte Carlo methods. The
tions can be ignored. A good agreement is also foundalculation of a complete database of DCSs for elastic scat-
between calculated and measured total elastic cross sectidering of electrons and positrons with kinetic energies from
Fig. 6, even for energies below 100 eV, which are outside thd00 eV to 10 keV by neutral atomsZE1-103) is in
range where the model parameters have been fitted. progress and will be made available in due course.
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FIG. 4. Differential cross sections for elastic scattering of electrons by atoms of the elements helium, neon, argon, krypton, xenon, and
mercury. Symbols represent experimental data from R8%-55. Solid curves are results from calculations with the present optical-model
potential(13). The dashed curves represent results from similar calculations with the SE potential.
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FIG. 4 (Continued.
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following expression for the DCS per electron in the gas:

10

\/\/\/\/\/\/\/\/\/\/\/\/\

rE
d?oeg  me* 1 df (QW) AL
dwdQ E WQ dw (AL)
whereW is the energy transfer ang, the so-called “recaoil =
energy,” is defined by 64| §
(1) .
Q= >m =E-W-2JE(E—W)cos¥, (A2)
e
wherefq is the magnitude of the momentum transfer ahd xp_

is the polar scattering angle. Notice that, for a given energy
loss W, the kinematically allowed recoil energies lie in the

interval betweerQ _=Q(W,6=0) andQ =Q(W, =),

Q.=(VExJE-W)2

(A3)

z=(Q/E¢)'"/2

FIG. 9. Schematic representation of the GOS of a FEG. The
shaded strip is the Lindhard continuum, which corresponds to

Conversely, for a given recoil energy, the interval of allowedgjectron-hole excitations. The resonance Imeescribes plasmon

energy losses extends frowi=0 to

w=2\EQ-Q. (A4)

excitations; forz=0 the plasmon reduced energyxs=E,/Eg.
The dashed curve represents the energy-momentum conservation
limit, Eq. (A26), for a projectile with kinetic energf =9Eg. The

kinematically allowed excitations lie below this curve.

The quantitydf (Q,W)/dW is the generalized oscillator
strength(GOS per electron of the FEG. Lindhaf@0] used

d’oreq  2me* 1 dfi(z,x)

the random-phase approximation to derive a closed analyti- = (A9)
cal expression for the dielectric function of the FEG, dxdz  EEr xz dx
€,.(g,w), which is a function of the wave numbgrand the
angular frequencw or, equivalently, of the recoil enerd)  with the GOS
and the energy transf&/=7% . Knowledge of the dielectric
function allows the calculation of the energy loss per unit
path length(stopping power of charged particles in the 2 2
FEG; the result is consistent with that of the Born approxi- dfi(zx) _ 6x Zxa(z.X) ,
mation if we set dx 16mx? [ 22+ x*F1(2,X) 12+ x*3(2,X)
(A10)
df W 2W 1 -1
LQW) L ’ (A5)
dw WES Q €.(Q,W) where
where
3 (E, 2 5 |23
2:— — —
_me* X 16(&) (3772 " (ALD
Ep=\4mpe?h?/m.=1/3r, Y (A6)
is the plasma energy of the FEG. It is convenient to introducéﬁnd
the Fermi energy,
) Llom 23 . 20 1,1 L X 2|nz—x/4z+1
_ 2 yaa L[ 97) T M€ UzX)=5% 82 1\ 2 42) M zmwa—1
EF 2me(377 P) 2( 4 ) Is ﬁz ’ (A7)
. 1 1 e X 2| z+x/4z+1
and the reduced variabl¢g5] 8z “Taz) |Mzexiaz—1
(A12)
x=W/Er and z=3%(Q/Ep'2 (A8)

Expressed in terms of these variables the one-electron DCBhe functionf,(z,x) takes different expressions on different
regions of the £,x) plane(Fig. 9):

of the FEG reads
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mX _ .
— if |z+x/4z]<1 (regiona),
8z
fa(2.0)= 8—7;[1—(2—x/4z)2] if |z+x/4z|>1 and |z—x/4z|<1 (regionb), (AL3)
79(2,X) if |z—x/4z|=1 (regionc),
|
where 7 is a small positive constant, which is allowed to dzap,_ 2met 1

approach zero at the end of the calculations, gfmx) is a = —
function, whose exact form is irrelevant. dxdz  EEr xz16y°
The GOS(A10) takes nonvanishing values in the region (A19)
of the (z,x) plane limited by the curveg=4z(z+1) and
x=4z(z—1) (see Fig. 9, the so-called Lindhard continuum,
which represents electron-hole excitations. It can be easil
verified that this is the domain of energy and momentum
transfers that are kinematically allowed in binary collisions x=4z(x¥?~27), xg=E/Eg. (A20)
with the electrons of the gasvhich move with an isotropic
momentum distribution The one-electron DCS for binary For a positron, the maximum allowed energy loss in a single

xZ28[P(z,X)], z<z.

The kinematic allowed interactions correspond to points
(z,x) in the region limited by the axis and the energy- and
omentum-conservation curyef. Eq. (A3)]

collisions[(x,z) e aUb] is given by collision is equal to the kinetic energy of the projectile, i.e.,
() —
oy 27t 1 6 2% o(2,%) Xmax= X - (A21)
dxdz EEg xz 16my? [22+Xzfl(z,x)]2+x4f§(z,x)' When the projectile is an electron, the value of the

(A14) maximum-energy loss is limited by Pauli's exclusion prin-
ciple, which forbids transitions that would place the projec-
In regionc, the GOS is equal to zero except in the neighbor-tile into a filled state below the Fermi level, i.ec(n;gxsz
hood of the plasma resonance liRewhere the denominator —1. Moreover, electrons can undergo exchange interactions.
of expression(A10) vanishes. This line is defined by the The effect of these interactions, which is not included in the

implicit equation original Lindhard theory, can be accounted for by means of
the Ochkur approximatiof21-23, which is obtained by
P(z,x)=2>+ x*f1(z,x)=0, (A15)  considering that the exchange scattering amplitude can be

approximated by the leading term of an expansion of the
and corresponds to excitation of longitudinal free oscillationgBorn-Oppenheimer amplitude in inverse powersEofThe
of the gas, i.e., to plasmon excitation. In regiowe have Born-Ochkur DCS for interactions of an electron with the
FEG is given by

(©) 2
dfczx_ 6 xZ*lim XTI Poreg _ 2”e4idf"(Z'X)F (2,%) (A22)
dx 16mx*  +—oP%(z,X)+ x*7°9%(z,x) dxdz EEg xz dx = &7
6 with
= —2x225[P(z,x)]. (A16)
16x 42 16
Fel(z,X)=1— > (A23)
The plasmon cutoff momentum is defined by the entrance Xe= X (Xg—X)
of the plasma resonance line into the Lindhard continuum, . )
i.e., as the root of the equation in binary collisions, the “struck” electron is promoted to a
o state above the Fermi level; we consider the “primary” elec-
P[2,42(2.+1)]=0. (A17) tron as the most gr]erget|c after the mtgracnop. Recalling that
low-W binary collisions occur preferentially with target elec-
. trons near the Fermi level, the final energies of the two elec-
The quantity trons are equal whew~ (E— Eg)/2. Consequently, we shall
_ _ assume that the maximum allowed energy loss in binary col-
We=XcEr=42(z:+1)Er (AL8) lisions is E—Eg)/2. Thus, for electrons we take
is the maximum energy that can be absorbed by a plasmon x()=(xg—1)/2. (A24)
without degenerating into electron-hole pairs. The DCS for
binary collisions diverges at the poirg,x.). The DCS for Integration of the DCS over kinematically allowed recoil
plasmon excitation is given by energies gives the one-electron energy-loss DCS,
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deeg_ fZerzO'feg 2’7Te4fz+ 1 de(Z,X) dUbC 7Te4 1
dx , dxdz = EE: ), xz  dx FelzX)dz, W:E_E,: ; (A29)
(A25)
with [see Eq(A3)] for positrons and
Z.= %(\/X_i VXg—X). (A26) dop. me* 1 - X . X2 (A30)

. - dx  EEry2|” Xe—X Y
For positrons, and also for plasmon excitation, the exchange FX E (Xe=X)

correction factor~., must be omitted.

The contribution from binary collisions to the energy-lossfor electrons. These expressions coincide with the familiar

: nonrelativistic Rutherford and Mier formulas, which are
DCS is . .
the correct results for collisions of positrons and electrons
dope 27-re4f2+ 6 2% o(2,%) )[,ivcgtr? free electrons at rest, within the first Born approxima-
dx  EErJz 16my? [22+ x?f1(2,) ]+ x*15(2.X) We wish to calculate the total one-electron cross section

opdE,p,A) for binary collisions with energy transfend/
larger than the gap energy, which is

and can be calculated by a single numerical integration. For . d

energy losses much larger than the plasmon-cutoff energy _ [ TmexH9be

W,, the finite width of the Lindhard continuum has a negli- ol Epr4) J dx d (A31)

gible effect and the DCS for binary collisions can be closely

approximated as To compute the integral in EGA25) over the Lindhard con-

tinuum we use an adaptive 20-point Gauss-Legendre algo-

rithm, which delivers results accurate to the order of six sig-

nificant digits. The integrand in EgA31) is tabulated for a
(A28) grid of x values suitably spaced to allow accurate log-log

interpolation, and the integral of the interpolating function is
With this approximation, we have evaluated analytically.

X Fexd(z,x)dz, (A27)

F

dzo'bc_ 2met 1 S(x—422) = met 1 12/,
dxdz EEr xz (x=4z )_EE,:X2§[Z (x792)]
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