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Generalized Levinson theorem for singular potentials in two dimensions
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The Levinson theorem for two-dimensional scattering is generalized for potentials with inverse square
singularities. By this theorem, the number of bound statesNm

b in a givenmth partial wave is related to the
phase shiftdm(k) and the singularity strength of the potential. When the effective potential has an inverse
square singularity at the origin of the formn2/r2 and inverse square tail at infinity such asm2/r2, Levinson’s
relation givesdm(0)2dm(`)5p@Nm

b 1(unu2umu)/2#.
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I. INTRODUCTION

The Levinson theorem sets up a relation between
number of bound~b! statesNl

b in a givenl th partial wave and
the phase shiftd l(k). The theorem was proved for three
dimensional~3D! central potentialsV(uru), see the review
@1,2#. Levinson’s relation for thel-wave phase shift gives
d l(0)2d l(`)5pNl

b . If the half-bound~hb! state occurs for
the s-wave type (l 50), this is modified tod0(0)2d0(`)
5p(N0

b1 1
2 ). The Levinson theorem is one of the most bea

tiful results of scattering theory; it was a subject of studies
many authors@2–7#. Recently, the Levinson theorem wa
established for lower-dimensional systems, which play
important role in modern physics of condensed matter an
field theories@8–12#.

In the case of 2D systems, Levinson’s relation for t
partial wave phase has the usual 3D form; but the half-bo
state for thep-wave (l 51) contributes exactly like the
bound state and gives an additionalp to Levinson’s relation
@13#. Let us remind that a half-bound state is the zero-ene
solution for the case when the eigenfunction is finite, b
does not decay fast enough at infinity to be square integra
In the 2D case, a possibles-wave half-bound state does n
contribute at all to Levinson’s relation, but only thep-wave
half-bound state does. An experimental justification of
Levinson theorem in the 2D case was made in Refs.@14# for
the 2D plasma. All mentioned papers, which discuss the
version of the Levinson theorem, consider potentials that
less singular thanuru22. This is a standard assumption, whic
results in the above-mentioned form of the Levinson th
rem.

At present singular potentials become an object of in
est. Singular potentials naturally appear in singular inve
problems, i.e., in a supersymmetric approach to the inve
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scattering in 3D, when bound states are removed from
regular potential@4,5#. The short distance behavior of th
singular potential is defined by the inverse square asympt
at the originV(r );b0 /r 2; therefore, the resulting effective
potential for the partial waveUl ~partial potential! in the 3D
case has the asymptotic form

Ul~r !5V~r !1
l ~ l 11!

r 2

;
r→0

n~n11!

r 2
,

with the singularity strengthn5A( l 11/2)21b021/2Þ l .
One can see that the singular potential acts as a correctio
the centrifugal barrierl ( l 11)/r 2. The scattering problem fo
such potentials with an inverse square singularity was sol
first by Swan, who has generalized the Levinson theorem
singular potentials in the 3D case@3#. It reads

d l~0!2d l~`!5pS Nl
b1

n2 l

2 D . ~1!

In addition to the general importance for the scatter
theory, the generalized Levinson theorem~1! is useful for the
inverse scattering theory, because it gives a possibility
determine the parameter of the singular core of the poten
from the scattering data.

In the present paper we establish the 2D analog of
generalized Levinson theorem~1!. Singular potentials appea
in different 2D systems: in the (211)-dimensional
O(3)-models like 3D2SU(Nf) skyrmions inNf-flavor me-
son fields@15#, in the 2D2O(3) spin textures as charge
quasiparticles in ferromagnetic quantum Hall systems@16#,
in different models of 2D magnets as an effective potentia
soliton ~vortex!-magnon interaction@17–20#.

The paper is organized as follows. In Sec. II we formula
the scattering problem in the 2D case. We discuss the p
sible supersymmetric nature of singular potentials. The s
tering problem is solved for the simplest example of a s
gular potential, i.e., for the centrifugal model, in Sec. III. Th
©2003 The American Physical Society07-1
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generalized Levinson theorem is proved in Sec. IV. A disc
sion and concluding remarks are presented in Sec. V.

II. SCATTERING IN TWO DIMENSIONS: NOTATIONS,
SINGULAR POTENTIALS

The quantum states of a spinless particle in a central~axi-
ally symmetric! potential V(r) in two dimensions can be
described by the radial Schro¨dinger equation

Hcm
E ~r!5Ecm

E ~r! ~2a!

for the Schro¨dinger operatorH52¹r
21Um(r) with the par-

tial potential

Um~r!5V~r!1
m2

r2
. ~2b!

The behavior of the eigenfunctions in the potentialV(r)
can be analyzed at large distances from the origin,r@R,
whereR is a typical range of the potentialV(r). In view of
the asymptotic behaviorUm(r);m2/r2, which is valid for
fast decreasing potentialsV(r), in the leading approximation
in 1/r we have the usual result@21#

cm
E }Jumu~kr!1sm~k!Yumu~kr!, k5AE.0, ~3a!

wherek is a ‘‘radial wave number,’’Jm andYm are the Besse
and the Neumann functions, respectively. The quan
sm(k) stems from the scattering; it can be interpreted as
scattering amplitude@21,22#. In the limiting case,kr@umu, it
is convenient to consider the asymptotic form of Eq.~3a!,

cm
E }

1

Ar
cosS kr2

umup
2

2
p

4
1dm~k! D , ~3b!

where the scattering phase, or the phase shiftdm(k)5
2arctansm(k). The phase shift contains all informatio
about the scattering process.

For regular 2D potentialsV(r), the 2D analog of the
Levinson theorem has the form@8,9,13#

dm~0!2dm~`!5p~Nm
b 1Nm

hbd umu,1!. ~4!

Here the potentialV(r) satisfies the asymptotic conditions

lim
r50

r2V~r!50, ~5a!

lim
r5`

r2V~r!50, ~5b!

which provide a regular behavior at the origin, and fast
caying at infinity.

Now we switch to the singular potentials, having in min
to reestablish the Levinson theorem.
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-
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A. Potentials with inverse square singularity

Let us consider potentials with inverse square singular
At the origin, the potential has an asymptote such asV(r)
;b0 /r2; the corresponding partial potential~2b!

Um~r! ;
r→0

n2

r2
,

with

n5Am21b0Þm. ~6!

Singular potentials such as form~6! appear in various 2D
nonlinear field theories, e.g., for the scattering problem
linear excitations by topological solitons@15–19#.

Moreover, singular potentials naturally appear from reg
lar ones under the Darboux transformations@4,5,23#. Let us
recall the principle of the Darboux~supersymmetric! trans-
formations for the 2D case@18#. We suppose that spectra
problem~2a! has at least one bound stateE0,0. Assuming
that we start from the regular potential under conditions~5!,
then the eigenfunctionc0[cm

E0(r) may have the following
asymptotic behavior:

c0~r!}H r umu when r→0,

r21/2exp~2kr! when r→`,
~7!

wherek5A2E0.0.
To explain the method we introduce the Hermitian con

gate lowering and raising operators@18#

A52
d

dr
1W~r!, A†5

d

dr
1

1

r
1W~r!, ~8!

where the superpotential

W~r!5
d

dr
ln c0 ~9!

is such thatAc050. By introducing these operators we ca
represent the Schro¨dinger operatorH in the factorized form

H5A†A1E0 , ~10!

the factorization energyE0 coincides with the energy of the
bound state. Such a factorization makes it possible to re
mulate initial problem~10! in terms of the eigenfunction
c̃m5Acm of the spectral problem

H̃5AA†1E052¹r
21Ũm~r!, ~11!

where the partial potential

Ũm~r!5Um~r!1
1

r2
22

d

dr
W~r!. ~12!

Taking into account conditions~7!, one can derive the
asymptotic behavior of the partial potentialŨm ,
7-2
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Ũm~r!;5
n2

r2
with n5umu21 when r→0,

m2

r2
when r→`.

~13!

We see that the eigenspectrum of the new spectral prob
~11! does not contain the bound statec0. The resulting po-
tential has a singularity; in fact, the partial potentialŨm(r)
corresponds to the particle potentialV(r)5b/r2 with the
parameterb5122umu. After a series ofn transformations
such as Eq.~11!, we removen bound states from the spec
trum, which results inŨm;n2/r2, with n5umu2n.

B. Potentials with inverse square tail

Let us discuss potentials with an inverse square tail, w
far from the origin the potentialV(r);b` /r2; the corre-
sponding partial potential

Um~r! ;
r→`

m2

r2
,

with

m5Am21b`Þm. ~14!

Potentials such as form~14! are of interest in field theories
in the (211)-nonlinears model of then field @15,18#, in
models of 2D easy-axis@19# and easy-plane ferromagnets
the cone state@20#.

To study the scattering problem let us consider
asymptotic behavior of the eigenfunctions. Obviously,
large distancesr@R, where the scattering approximation
valid, one can use the partial wave expansion by the cylin
functions of the integer indices only; then the eigenfunct
cm

E can be written asJumu1smYumu with the asymptotic form
~3b!.

On the other hand, in the leading approximation in 1/kr,
the solution of the Schro¨dinger equation~2a! with potential
~14! can be written as

cm
E ~r!}Jumu~kr!1s̃m~k!Yumu~kr!

}
1

Ar
cosS kr2

umup
2

2
p

4
1 d̃m~k! D , ~15!

where the indices of the cylinder functionsmÞm, see Eq.
~14!.

The phase shiftdm can be calculated fromd̃m by compar-
ing Eqs.~3b! and ~15!,

dm~k!5 d̃m~k!1
umu2umu

2
p, ~16!
01270
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in accordance with the results of Refs.@9,20#. Note that
Levinson’s relation has the same form for both phase sh
dm and d̃m ,

dm~0!2dm~`!5 d̃m~0!2 d̃m~`!.

III. SCATTERING PROBLEM FOR THE CENTRIFUGAL
MODEL

For the analytical description of the scattering proble
let us consider the simplest model, which includes the m
features of the problem, having both inverse square singu
ity and inverse square tail. The partial potential of this ve
simplecentrifugal model@19# has the form

Um
cf~r!55

n2

r2
when r,R,

m2

r2
otherwise,

~17!

with nÞm, andmÞm.
This model describes a quasifree particle in each of

regionsr,R and r.R. The only effect of the interaction
with the potentialUm

cf is a shift of the mode indices:

cm
cf~r !}H Junu~kr! when r,R,

Jumu~kr!1s̃m~k!Yumu~kr! otherwise.
~18!

The usual matching condition for these solutions has
form

Fc8

c G
R

50, ~19!

where @•••#R[(•••)uR102(•••)uR20, and the prime de-
notes d/dr. The calculations lead to the scattering pha
shift in the form

dm
cf~k!5

umu2umu
2

p2arctans̃m
cf~¸[kR!,

s̃m
cf~¸!5

Junu8 ~¸!Jumu~¸!2Jumu8 ~¸!Junu~¸!

Junu~¸!Yumu8 ~¸!2Junu8 ~¸!Yumu~¸!
. ~20!

Using the asymptotic form of the cylinder functions, one c
find the long- and short-wavelength behavior of phase s
~20!,

dm
cf~k!;H umu2umu

2
p1AmS kR

2 D 2umu

, kR!1

umu2unu
2

p2
m22n2

2kR
, kR@1,

~21!

where
7-3
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Am52
pumu

~ umu!! 2

umu1unu
umu2unu

.

The Levinson theorem for the centrifugal model can
easily derived from Eq.~21!:

dm
cf~0!2dm

cf~`!5p
unu2umu

2
. ~22!

IV. THE LEVINSON THEOREM

Now we discuss the general case where the partial po
tial has the asymptotic behavior

Um~r!;5
n2

r2
when r→0,

m2

r2
when r→`,

~23!

with nÞm, andmÞm.
Let us enter into a proof of the Levinson theorem. The

are three main methods to derive the theorem: the Jost f
tions method@24#, Green’s functions method@8,12,13#, and
the Sturm-Liouville method@9,10#, which were used for the
3D case, for the details see Ref.@9#.

To generalize the Levinson theorem, we use the met
of Green’s functions, as it was done for regular potentials
@8#. We consider the noncritical case, when the Schro¨dinger
equation has no half-bound states.

The idea of Lin’s method is to count the number of sta
in the system by two different ways.

The continuous part of the spectrum is discretized
count the number of scattering states. The total~infinite!
number of states in the system does not depend on the s
of the potential, i.e., as it was stressed by@8#, the total num-
ber of states is not altered by an attractive field, except
some scattering states are pulled down into the bound-s
region. It results in

Im E
2`

`

dEE
0

`

rdr$G@Um#2G@Um
free#%50, ~24a!

where G@Um#[Gm(r,r,E;Um) and G@Um
free#

[Gm(r,r,E;Um
free) are Green’s functions with and withou

potential, respectively, and retarded Green’s function is
fined by

Gm~r,r8,E;Um!5(
k

cm
E ~r!cm

E ~r8!

E2Emk1ıe
.

In this method, the number of bound states,

pNm
b 52Im E

2`

0

dEE
0

`

rdr$G@Um#2G@Um
free#%.

~24b!
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On the other hand, the continuous part of expression~24a!
can be directly calculated without discretization:

Im E
0

`

dEE
0

`

rdr$G@Um#2G@Um
free#%5dm~0!2dm~`!.

~24c!

Combining Eqs.~24!, one can obtain the Levinson theore
in form ~4!. However, the method of Green’s functions in th
form proposed by Lin@8# does not work for singular poten
tials of form ~23!. The reason is that the difference o
Green’s functionsG@Um#2G@Um

free# in Eq. ~24! has a singu-
larity at the origin, hence it is not integrable.

That is why we need to generalize the method for the c
of singular potentials. The idea is to compare the requi
partial potentialUm not with the free particle partial potentia
Um

free, but with another potentialUm
! , which could compen-

sate the singularities ofUm . As we have mentioned before
the number of states does not depend on the shape o
potential. It means that repeating the same proof, Eqs.~24!,
can be easily generalized for the systemsG@Um# andG@Um

! #
with two different potentialsUm andUm

! :

Im E
2`

`

dEE
0

`

rdr$G@Um#2G@Um
! #%50, ~25a!

Im E
2`

0

dEE
0

`

rdr$G@Um#2G@Um
! #%52p~Nm

b 2Nm
b!!,

~25b!

Im E
0

`

dEE
0

`

rdr$G@Um#2G@Um
! #%5dm~0!

2dm~`!2dm
! ~0!1dm

! ~`!, ~25c!

whereNm
b! anddm

! (k) are the number of bound states and t
scattering phase shift for the system with the partial poten
Um

! 5V!1m2/r2.
Note that choosingV!50, one can obtain Levinson’s re

lation for the regular potentials in the form of Lin@8#, see
Eqs.~24!, which leads to the Levinson theorem~4!.

However, in the case of a singular potential, we need
chooseV! in the form, which has the same singularities
the potentialV. To solve the problem we setUm

! 5Um
cf ; hence

both partial potentialsUm and the centrifugal potentialUm
cf

have the same features. Therefore, Eqs.~24! with account of
Levinson’s relation~22! lead to the following form:

dm~0!2dm~`!5pS Nm
b 1

unu2umu
2 D . ~26!

Let us discuss the result. To explain the meaning of
extra term (p/2)(unu2umu) in the generalized Levinson rela
tion ~26!, let us remind that in the partial wave method t
scattering data are classified by the azimuthal quantum n
ber m, which is the strength of the centrifugal potential.

In the presence of the potential with an inverse square
at infinity such asUm;m2/r2, the effective singularity
7-4
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strength is shifted by the valueumu2umu, and the long-
wavelength scattering data are changed by (p/2)(um
u2umu), see Eq.~16!. The same situation takes place for t
potentials with an inverse square singularity at the ori
such asUm;n2/r2. The effective singularity strength i
shifted now by the valueunu2umu, which results in a
change in the short-wavelength scattering phase shift
(p/2)(umu2unu). As a result, the correction to Levinson
relation is

p
umu2umu

2
2p

umu2unu
2

5p
unu2umu

2
.

Such a correction looks like a modification in the classific
tion of the scattered states, both at the origin (cm→cn) and
at the infinity (cm→cm). However, we need to stress th
the singularity strengthsn andm can assume any real value
while the quantum numberm is always an integer.

V. CONCLUSION

In conclusion, we have established the analog of
Levinson theorem in the case of two-dimensional scatte
for central potentials, which are independent of both the
ergy and the azimuthal momentumm, but have inverse
square singularities and tails.

The presence ofm-dependent potentials can essentia
change the scattering picture: the symmetrydm(k)
n-

s

.
v.

01270
n

y

-

e
g
-

5d2m(k) is broken, so it is not enough to take into accou
partial waves withm>0 only. As a result, Levinson’s rela
tion ~26! has a different form for oppositem. Moreover, the
threshold behavior for the half-bound states changes, so
contribution of the half-bound states in form~4! may be not
adequate.

The generalized Levinson theorem~26! can be applied to
different physical problems. For example, it becomes a c
tral point in the singular inverse method@4#, giving a possi-
bility to derive the potential from the scattering phase sh
At the same time it provides a method to count bound sta
The method can be used in various 2D field theories w
applications to physics of 2D plasma@14#, nuclear physics
@15#, quantum Hall effect@16#, and 2D magnetism@17–20#.

The method of the 2D radial Darboux transformation
considered in the paper, can be applied to the supersym
ric quantum mechanics, e.g. for the problem of pha
equivalent potentials, even for energy-dependent poten
@4,5,23#.
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