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Generalized Levinson theorem for singular potentials in two dimensions
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The Levinson theorem for two-dimensional scattering is generalized for potentials with inverse square
singularities. By this theorem, the number of bound stathsjn a givenmth partial wave is related to the
phase shifts,(k) and the singularity strength of the potential. When the effective potential has an inverse
square singularity at the origin of the forn?/p? and inverse square tail at infinity such @& p?, Levinson’s
relation givessy(0)— Sm(°) = w[NE+ (| v|— | u|)/2].
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I. INTRODUCTION scattering in 3D, when bound states are removed from the
regular potentia[4,5]. The short distance behavior of the
The Levinson theorem sets up a relation between theingular potential is defined by the inverse square asymptotes
number of boundb) states\® in a givenl th partial wave and ~ at the originV(r)~ Bo/r? therefore, the resulting effective
the phase shifi,(k). The theorem was proved for three- potential for the partial yvavél, (partial potentia) in the 3D
dimensional(3D) central potentials/(|r|), see the review Case has the asymptotic form
[1,2]. Levinson’s relation for thd-wave phase shift gives
8,(0)— 8,(%)=wNP. If the half-bound(hb) state occurs for U/ (F) = V() + [(1+1) ~ v(v+1)
the swave type (=0), this is modified tody(0)— 5y() ! 2 r—0 2 7
= '7T(N8+ 1). The Levinson theorem is one of the most beau-
tiful results of scattering theory; it was a subject of studies bywith the singularity strengthv=/(I+1/2)%+ Bo— 1/2#1.
many authord2—-7]. Recently, the Levinson theorem was One can see that the singular potential acts as a correction to
established for lower-dimensional systems, which play arthe centrifugal barrier(l +1)/r?. The scattering problem for
important role in modern physics of condensed matter and isuch potentials with an inverse square singularity was solved
field theoried 8—12). first by Swan, who has generalized the Levinson theorem for
In the case of 2D systems, Levinson’s relation for thesingular potentials in the 3D ca$g|. It reads
partial wave phase has the usual 3D form; but the half-bound
state for thep-wave (=1) contributes exactly like the
bound state and gives an additiorako Levinson’s relation
[13]. Let us remind that a half-bound state is the zero-energy
solution for the case when the eigenfunction is finite, butin addition to the general importance for the scattering
does not decay fast enough at infinity to be square integrabléheory, the generalized Levinson theorétpis useful for the
In the 2D case, a possibewave half-bound state does not inverse scattering theory, because it gives a possibility to
contribute at all to Levinson'’s relation, but only thevave  determine the parameter of the singular core of the potential
half-bound state does. An experimental justification of thefrom the scattering data.
Levinson theorem in the 2D case was made in Réf4] for In the present paper we establish the 2D analog of the
the 2D plasma. All mentioned papers, which discuss the 2@eneralized Levinson theorefh). Singular potentials appear
version of the Levinson theorem, consider potentials that aren  different 2D systems: in the (®1)-dimensional
less singular thafr| 2. This is a standard assumption, which O(3)-models like  —SU(N;) skyrmions inN;-flavor me-
results in the above-mentioned form of the Levinson theoson fields[15], in the 2D —O(3) spin textures as charged
rem. guasiparticles in ferromagnetic quantum Hall systédf,
At present singular potentials become an object of interin different models of 2D magnets as an effective potential of
est. Singular potentials naturally appear in singular inversaoliton (vorteX-magnon interactiofl7-20.
problems, i.e., in a supersymmetric approach to the inverse The paper is organized as follows. In Sec. Il we formulate
the scattering problem in the 2D case. We discuss the pos-
sible supersymmetric nature of singular potentials. The scat-
*Electronic address: denis_sheka@univ.kiev.ua; tering problem is solved for the simplest example of a sin-
http://users.univ.kiev.ua/denis_sheka gular potential, i.e., for the centrifugal model, in Sec. Ill. The
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generalized Levinson theorem is proved in Sec. IV. A discus- A. Potentials with inverse square singularity

sion and concluding remarks are presented in Sec. V. Let us consider potentials with inverse square singularity.

At the origin, the potential has an asymptote suctVég)
Il. SCATTERING IN TWO DIMENSIONS: NOTATIONS, ~ Bolp?; the corresponding partial potenticb)
SINGULAR POTENTIALS

The quantum states of a spinless particle in a cefdral Um(P)p:O Z_’
ally symmetri¢ potential V(p) in two dimensions can be
described by the radial Schdimger equation with
HYm(p)=EPrn(p) (23 v=m’+ Bo#m. (6)

Singular potentials such as for(®) appear in various 2D
nonlinear field theories, e.g., for the scattering problem of
linear excitations by topological solitof$5-19.

Moreover, singular potentials naturally appear from regu-
lar ones under the Darboux transformati¢as,23. Let us
Un(p)=V(p)+—. @0 yecall the principle of the Darbougsupersymmetrictrans-

P formations for the 2D casgl8]. We suppose that spectral
problem(2a) has at least one bound stalg<0. Assuming

can be analyzed at large distances from the originR, that we Sta_‘rt from the reguI%(r) potential under conditi(ﬂjs
whereR is a typical range of the potenti&l(p). In view of  then the eigenfunctionso=4(p) may have the following
the asymptotic behaviod ,,(p) ~m?/p?, which is valid for ~ asymptotic behavior:

fast decreasing potentialq p), in the leading approximation
in 1/p we have the usual resy21]

for the Schrdinger operatoH = — V§+ U(p) with the par-
tial potential

2

The behavior of the eigenfunctions in the potentigp)

[ml when p—0,

Po(p) e (7)
p

~Y2exp(—kp) when p—,
Eocdimi(kp)+ om(K)Yim(kp), k=+E>0, (33
Ym* Jmi( P " Imit P where k= —&,>0.

To explain the method we introduce the Hermitian conju-

wherek is a “radial wave number,J,,, andY ,, are the Bessel i -
)gate lowering and raising operatdtk3]

and the Neumann functions, respectively. The quantit
on(k) stems from the scattering; it can be interpreted as the

scattering amplitudg21,22. In the limiting casekp>|m|, it A=— i+\/\/(p), AT:i + E+W(p), (8)
is convenient to consider the asymptotic form of E2p), dp dp p
where the superpotential
e L ood ko ML s (3b)
o —— —_———
Um \/;CO P 2 4 m(K) |,

d
W(p)= %'” o C)

where the scattering phase, or the phase shiftk)= ) ) )
—arctano,,(K). The phase shift contains all information iS such thaiy,=0. By introducing these operators we can

about the scattering process. represent the Schdinger operatoH in the factorized form
For regular 2D potential§/(p), the 2D analog of the ot
Levinson theorem has the forf8,9,13 H=A'A+&, (10)

the factorization energy, coincides with the energy of the
bound state. Such a factorization makes it possible to refor-
mulate initial problem(10) in terms of the eigenfunction

TpmzAwm of the spectral problem

Sm(0) = () = T(NE NP8 11 ). (4)

Here the potential/(p) satisfies the asymptotic conditions

2 — ~ ~

LILT:)p V(p)=0, (58 H=AAT+50=—Vi+ Un(p), (11
o, where the partial potential

lim p2V(p)=0, (5b)

p:OO

~ 1 d
, , , o Un(p)=Un(p) + — = 25-W(p). (12
which provide a regular behavior at the origin, and fast de- P P

caying at infinity. o N _
Now we switch to the singular potentials, having in mind Taking into account condition$7), one can derive the
to reestablish the Levinson theorem. asymptotic behavior of the partial potentldy,,
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2 in accordance with the results of Reff,20]. Note that
— with »=[m[-1 when p—0, Levinson’s relation has the same form for both phase shifts
~ p 3
U,.(p)~ " dmands,,
7z when - p—ce. Om(0) = () =3,(0) = 3,,(<).
13

Ill. SCATTERING PROBLEM FOR THE CENTRIFUGAL

We see that the eigenspectrum of the new spectral problem MODEL

(11) does not contain the bound stafg. The resulting po- For the analytical description of the scattering problem,

tential has a singularity; in fact, the partial potentig},(p) let us consider the simplest model, which includes the main
corresponds to the particle potentid(p)=B/p? with the  features of the problem, having both inverse square singular-
parameterB=1—2|m|. After a series ofn transformations ity and inverse square tail. The partial potential of this very

such as Eq(11), we removen bound states from the spec- simple centrifugal mode[19] has the form

trum, which results ir ,~ v?/p?, with v=|m|—n. ,

<

— when p<R,
B. Potentials with inverse square tail of p
. S . Usie) =4 (17)
Let us discuss potentials with an inverse square tail, when o )
far from the origin the potentiaV/(p)~ B../p?; the corre- 2 otherwise,
sponding partial potential p
2 with v#m, andu# m.
Um(P)p:w *“—2 This model describes a quasifree particle in each of the
p regionsp<R and p>R. The only effect of the interaction
with with the potentialu is a shift of the mode indices:
o Jp(kp) when p<R,
=m?+ B, #m. r)e« ~ .
p=NMEE BeEm (14 Ymlr) 3,,,/(kp)+ 7 ,(K)Y|,(kp) otherwise.
(18)

Potentials such as foriti4) are of interest in field theories:
in the (2+1)-nonlinearo model of then field [15,18, in  The usual matching condition for these solutions has the
models of 2D easy-axisl9] and easy-plane ferromagnets in form

the cone statg20].

To study the scattering problem let us consider the
asymptotic behavior of the eigenfunctions. Obviously, at
large distancep>R, where the scattering approximation is
valid, one can use the partial wave expansion by the cylinde o
functions of the integer indices only; then the eigenfunction
wﬁq can be written ag, + o, Y|y, With the asymptotic form
(3b).

On the other hand, in the leading approximation ikpl/ |m| = x|
the solution of the Schobinger equatior(2a) with potential 5f,§(k)= 5
(14) can be written as

v

v =0, (19

R

re[---1g=(--")lrto—(---)|r—0, and the prime de-
notesd/dp. The calculations lead to the scattering phase
shift in the form

m—arctano(x=kR),

~ot o I () =3[ () (%)

Uin(p) 31, (Kp) + 0, (K) Y, (kp) ()= : ; . (0
e S T )Yy ()= 3] (2)Y ()
lulm m
x T COS{ kp— > 2" o.(K)|, (19  Using the asymptotic form of the cylinder functions, one can
p find the long- and short-wavelength behavior of phase shift
(20),
where the indices of the cylinder functiops#m, see Eq.
(14). Iml—lul L (KR ps
. ~. -~ m T~ y
The phase shif6,, can be calculated frord,, by compar- ; 2 2
ing Egs.(3b) and (15), Sm(k)~ mi=lv| a2 0? (21)
m— , kR>1,
2 2kR
Sm(K) =3, (k) + Il =ful (16)
m # 2 ' where
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On the other hand, the continuous part of expressi#a

_ mlul pl+ v : . part of expr
m=— . can be directly calculated without discretization:
(|uhr? ] =1v]
f
The Levinson theorem for the centrifugal model can be Imj dgf pdp{G[U ] = G[Uy I} = 5(0) = Sm(<2).
easily derived from Eq(21): (240

frn  ocf [y — |l Combining Eqs(24), one can obtain the Levinson theorem
Om(0) = Sp(e0) = 2 (22) in form (4). However, the method of Green’s functions in the

form proposed by Lif8] does not work for singular poten-
tials of form (23). The reason is that the difference of
Green'’s functionss[ U,,]— G[U™®] in Eq. (24) has a singu-
Now we discuss the general case where the partial potedarity at the origin, hence it is not integrable.
tial has the asymptotic behavior That is why we need to generalize the method for the case
of singular potentials. The idea is to compare the required
2 partial potential,, not with the free particle partial potential
when  p—0, U™ but with another potentidll’,, which could compen-
(23) sate the singularities dfi,,,. As we have mentioned before,

the number of states does not depend on the shape of the
when p—o, potential. It means that repeating the same proof, EB,

can be easily generalized for the syste®i$) ,] andG[ U]

with two different potentiald),, andU},

IV. THE LEVINSON THEOREM

<

Um(p)~

b'\’|3:|\) <

with v#m, and u#m.
Let us enter into a proof of the Levinson theorem. There o %

are three main methods to derive the theorem: the Jost func- Im f dé’f pdp{G[U,]-G[U]}=0, (253

tions method 24], Green'’s functions methof8,12,13, and = J0

the Sturm-Liouville method9,10], which were used for the

3D case, for the details see RE9]. Im fo ng"” 4ol GIU T— GIU* Tt = — mr(NE — NP*
To generalize the Levinson theorem, we use the method e PR PGIUml = GlLUn]}= = 7 (N ™ Ny,
of Green’s functions, as it was done for regular potentials by (25b)

[8]. We consider the noncritical case, when the Sdimger

equation has no half-bound states. * ® .
The idea of Lin’s method is to count the number of states Im 0 dé 0 pdp{G[Um]—G[Up]}=mn(0)
in the system by two different ways.
The continuous part of the spectrum is discretized to — () = 85 (0) + S5(°), (250

count the number of scattering states. The tghafinite)
number of states in the system does not depend on the shapdereN®: and 5%,(k) are the number of bound states and the

of the potential, i.e., as it was stressed[BY, the total num-  scattering phase shift for the system with the partial potential
ber of states is not altered by an attractive field, except thay* =Vv*+m?/p?.

some scattering states are pulled down into the bound-state Note that choosinyy/*=0, one can obtain Levinson’s re-

region. It results in lation for the regular potentials in the form of L[i8], see
Egs.(24), which leads to the Levinson theorgi).
* * . free;y However, in the case of a singular potential, we need to
Im f,wdgfo pdp{GlUn] -~ G[UnT}=0. (243 chooseV™ in the form, which has the same singularities as

the potentiaV. To solve the problem we set},=U: hence
where GlUn]=Gn(p.p,EUp) and G[Ufree] both partial potentialdJ,, and the centrifugal potential'
=Gn(p.p.&; Ufree) are Green'’s functions with and without have the same features. Therefore, Eg4) with account of
potential, respectively, and retarded Green’s function is delevinson’s relation22) lead to the following form:
fined by
Sm(0)— 6 (OO)=7T(Nb+M). (26)
Y P) PP me "2
Gm(p.p' EUm =2 TE tie
* mk Let us discuss the result. To explain the meaning of the
extra term ¢r/2)(|v| —|u|) in the generalized Levinson rela-
tion (26), let us remind that in the partial wave method the
o . scattering data are classified by the azimuthal quantum num-
b_ fre berm, which is the strength of the centrifugal potential.
TNm=—1m f—xng'o pdp{G[Un] =G[Un"l}- In the presence of thegpotential with an i%ve‘r)se square tail
(24b  at infinity such asU.,~u?/p?, the effective singularity

In this method, the number of bound states,
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strength is shifted by the valupu|—|m|, and the long- =46_,(K) is broken, so it is not enough to take into account
wavelength scattering data are changed by/2f(|m partial waves withm=0 only. As a result, Levinson'’s rela-
|—|u]), see Eq(16). The same situation takes place for thetion (26) has a different form for opposite. Moreover, the
potentials with an inverse square singularity at the originthreshold behavior for the half-bound states changes, so the
such asU.,~1v?/p?. The effective singularity strength is contribution of the half-bound states in for@#) may be not
shifted now by the valugv»|—|m|, which results in a adequate.
change in the short-wavelength scattering phase shift by The generalized Levinson theorg@6) can be applied to
(m12)(/m|—|v|). As a result, the correction to Levinson’s different physical problems. For example, it becomes a cen-
relation is tral point in the singular inverse methdl], giving a possi-
bility to derive the potential from the scattering phase shift.
|m|—|ul Im[—{v| _ |v]—|ul At the same time it provides a method to count bound states.
Ty Ty Tt The method can be used in various 2D field theories with
applications to physics of 2D plasnid4], nuclear physics
Such a correction looks like a madification in the classifica{15], quantum Hall effecf16], and 2D magnetisrfil7—20.
tion of the scattered states, both at the origig,{,) and The method of the 2D radial Darboux transformations,
at the infinity (/m— #,). However, we need to stress that considered in the paper, can be applied to the supersymmet-
the singularity strengths andu can assume any real values, ric quantum mechanics, e.g. for the problem of phase-
while the quantum numben is always an integer. equivalent potentials, even for energy-dependent potentials
[4,5,23.

V. CONCLUSION
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