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Unified theoretical treatment of dissociative recombination ofD3h triatomic ions:
Application to H 3

¿ and D3
¿

Viatcheslav Kokoouline and Chris H. Greene
Department of Physics and JILA, University of Colorado, Boulder, Colorado 80309-0440, USA

~Received 14 March 2003; published 9 July 2003!

The dissociative recombination of an H3
1 ion after it is struck by a low-energy electron is important for

understanding observations of H3
1 in diffuse interstellar clouds. At the same time, it is the simplest triatomic

ion and for this reason its theoretical description can serve as a prototype for other polyatomic ions. Mean-
while, experimental determinations of the recombination rate have varied widely, which has resulted in some
controversy and confusion. Until recently, it seemed unlikely that this problem could be resolved by theoretical
studies because the mechanism of H3

1 dissociative recombination remained unclear. A recent study, however
@Kokooulineet al., Nature~London! 412, 891 ~2001!#, provided evidence that the inclusion of the Jahn-Teller
coupling can produce a dissociative recombination rate that overlaps the range of experimental observations.
Here, we propose a theoretical description of the coupling between nuclear and electronic degrees of freedom
in a polyatomic molecule, which describes the competition between autoionization and predissociation of the
Rydberg states formed after an incident electron is captured. The method treats the vibrational and rotational
excitations of the ion, accounts for all symmetry restrictions imposed by the geometry of the molecule,
including vibrational, rotational, and electronic and nuclear-spin symmetries. The framework combines the
multichannel quantum-defect theory, the adiabatic hyperspherical approach, and the techniques of outgoing-
wave Siegert pseudostates. The proposed method can be applied to studies of dissociative recombination of
other triatomic ions, including all the degrees of freedom quantum mechanically. Our calculations of the cross
section and the recombination rate confirm that the Jahn-Teller effect is responsible for the large rate in H3

1 .
Theoretical results for dissociative recombination of H3

1 are in agreement with storage-ring experiments.

DOI: 10.1103/PhysRevA.68.012703 PACS number~s!: 34.80.Ht, 34.80.Kw, 34.80.Lx
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I. INTRODUCTION

Over the past two decades, the process of dissocia
recombination~DR!

H3
11e2→H21H or H1H1H ~1!

of the triatomic hydrogen ion H3
1 has attracted extensiv

attention from both experiment and theory. This process i
practical importance in astrophysics because the ion acts
proton donor in chemical reactions that occur in interste
clouds. It is also important because it is the simplest
atomic ion, and it consequently serves as a key meeting p
for theoretical and experimental efforts to understand po
atomic DR processes. We refer the reader to a numbe
recent review papers@1–6# that summarize the ongoin
problems which have arisen from seemingly contradict
studies of dissociative recombination in this species.

The goal of the present study is to describe a theoret
method that can describe DR in triatomic molecules, incl
ing the full, three-dimensional motion of the rotating, vibra
ing, and dissociating nuclei. The recognition that the Ja
Teller coupling controls the interaction between the incid
electron and the vibrating H3

1 nuclei has stimulated our ef
fects in developing this method. We have attempted to m
the theoretical description as robust and reliable as
present-day description of dissociative recombination in
atomic molecules@7–15#. A reader well versed in DR theor
may find our approach unconventional, because we com
disparate theoretical elements that have not been used in
particular combination before. Accordingly, along the w
1050-2947/2003/68~1!/012703~23!/$20.00 68 0127
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we will provide evidence that the approximations introduc
are physically sensible and mathematically tractable. T
present study is meant to be fully self-contained, which h
required a much lengthier presentation than the prelimin
account discussed in Ref.@16#.

The problems that have hindered a full description of D
in H3

1 to date can be summarized as follows.
~1! In contrast to diatomics, the vibrational degrees

freedom have three dimensions. This alone has proved t
a significant barrier, since essentially all previous theor
have been forced to treat the vibrational degrees of freed
with models of reduced dimensionality.

~2! Partly as a corollary of problem~1!, symmetry-
breaking Jahn-Teller effects have not been treated, e
though evidence existed from H3 photoabsorption studie
@17,18# that the Jahn-Teller mechanism provided the cond
for the strongest coupling between electronic and vibratio
degrees of freedom.

~3! The lone dissociative electronic surfaces of H3 which
are energetically accessible at low-energy fail to cross
ground-state ionic potential surface, which was believed
the past to result in very low DR rates. This makes it ev
more important to develop a theoretical method that can c
rectly describe indirect recombination via intermediate Ry
berg state pathways. The importance of the intermediate
dberg states for H3

1 DR was suggested in recent theoretic
studies on predissociation of H3 states@4,19–21#.

~4! For the techniques most successful in treating
complicated Rydberg state interactions, namely, those
multichannel quantum-defect theory~MQDT!, it is still chal-
©2003 The American Physical Society03-1
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lenging to incorporate dissociative channels. This is the c
even though there has been a significant progress along
lines, mostly through the work of Jungen@9,11,13–15# and
Suzor-Weiner@7–9#.

~5! Rotational degrees of freedom, almost always
glected in DR calculations, even for diatomics, could pla
significant role in H3

1 . Rotation could be important becaus
DR is thought to hinge on the time reverse
autoionization—the capture of an incident electron into
Rydberg state—and because rotational autoionization
vides the broadest autoionization widths observed to dat
H3 Rydberg states.

Our approach to deal with these five problems combi
theoretical elements that have not previously been unified
be specific, hyperspherical coordinate techniques have b
applied with increasing frequency and success in recent y
@22–27# to describe vibrational excitations and two-body
three-body dissociation of triatomics. Yet the application
hyperspherical methods to describe the coupling betwee
incident electron and the vibrational or dissociative degr
of freedom has apparently not been considered previou
We show that it can be carried out, and that it permits
natural inclusion of the Jahn-Teller coupling. Our detail
calculations confirm that the dissociative recombination
H3

1 is controlled by the Jahn-Teller mechanism, in agr
ment with a recent suggestion and estimate@28#. Finally, we
adapt a recently proposed method@29# that utilizes vibra-
tional channel functions obeying Siegert pseudostate bou
ary conditions to describe the nonperturbative coupling
tween ionization and dissociation channels.

The theoretical description of the DR process in H3
1 is

complicated by several factors. The only possible disso
tive channels in the energy range of interest are associ
with the ground electronic state of the neutral triatomic m
ecule. The potential surface of this state does not cross
ionic potential surface. The resulting small overlap of t
neutral and ionic nuclear wave functions would sugges
relatively slow DR rate, inconsistent with the fast dissoc
tion observed in storage-ring experiments. Another com
cation results from the necessity to treat three-dimensio
vibrational dynamics of the ion and the neutral molecu
Moreover, one should include many coupled potential s
faces corresponding to the H3

11e2 system with various
Rydberg states of the neutral molecule. Finally, the rotat
of the ion should be included in order to try to understand
disagreements among different experiments, where rota
may or may not play a key role.

A number of techniques have been developed to treat
sociative recombination of a diatomic molecule. Whereas
rect processes can be described using a treatment deve
by O’Malley @30#, methods that include indirect pathway
are primarily based on MQDT.@11,13,31# MQDT applica-
tions have successfully described the coupling of ma
coupled Rydberg, ionization, and dissociative channels,
cluding rotational excitations. MQDT has also been used
treat the competition between autoionization and predis
ciation of Rydberg states. At first glance, however, the pr
ence of three internuclear distances instead of one ren
01270
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these techniques inapplicable to thee-H3
1 collision. This is

because a crucial factor of these techniques is the exist
of only one adiabatic coordinate, namely, the internucl
distance.

In this situation the hyperspherical adiabatic approa
@32#, applied extensively to triatomic systems during the l
decade@23,33,34#, seems well suited to fit DR of H3

1 into
the familiar framework of dissociative recombination of d
atomic ions. In our treatment the only adiabatic vibration
coordinate is the hyperradius. To demonstrate the simpli
and the similarity of the problem to the diatomic case, Fig
presents the lowest hyperspherical adiabatic potentia
H3

1 , and a number of adiabatic hyperspherical poten
curves of the neutral molecule.~The neutral curves are ca
culated using theab initio three-dimensional H3 potential
from Refs.@35–37#.! The dashed line shows the position
the ground vibrational level of the ion, which is the on
vibrational level populated in the relevant experiments. T
neutral states are seen to cross the ionic potential, giving
to a nonzero vibrational overlap. After viewing this pictur
and after realizing that the neutral hyperspherical poten
curves that lie energetically above the ionic ground-state
tential curve will have a nonzero imaginary part reflecti
the possibility of autoionization occurring at that value ofR,
one sees that the usual O’Malley-type diatomic DR meth
can now describe DR for H3

1 , except that the internuclea
dis-

FIG. 1. The problem of DR of H3
1 in the hyperspherical adia

batic approximation. The lowest hyperspherical adiabatic poten
~thick full line! of the H3

1 and number of hyperspherical adiabat
potentials of the neutral molecule~thin lines!. Lower family of lines
~darker lines! dissociate to the H21H channel; the upper family
~lighter lines! dissociate to the H1H1H channel. To calculate hy-
perspherical adiabatic curves we used the three-dimensional3

1

potential from Ref.@48# and the H3 potential from Refs.@35–37#.
Since the density of hyperspherical states is high, only every te
H3 potential curve is shown in the figure. The dashed line shows
position of the ground vibrational level of the ion, which is the on
one populated in the relevant experiments.
3-2
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tance is replaced by the hyperradius. This is the crudest l
of approximation, adopted to estimate the ‘‘direct’’ DR ra
in Ref. @28#. Even though the more accurate MQDT-bas
approach developed in this paper does not use
O’Malley-type methodology, it is still useful for qualitativel
visualizing the way recombinative capture of the electr
takes place. For more complex systems, however, where
level of resonance-by-resonance detail pursued in the pre
study is unnecessary or unfeasible, this approximate te
nique may be a useful way to proceed.

The use of the hyperspherical adiabatic method sign
cantly simplifies the treatment but it fails to account for t
reason that why previous theoretical efforts were unable
explain the large DR rate observed in storage-ring exp
ments. A resolution of this discrepancy requires understa
ing the role of the Jahn-Teller effect in the electron-H3

1

coupling@28#. The full ab initio inclusion of this Jahn-Teller
coupling, through an extension of the work of Staib a
Domcke @38,39# and of Stephens and Greene@17,18# is a
second vital element of our treatment.

Our previous paper@28# estimated lower and upper limit
for dissociative recombination of the rotationless ion. T
lower limit assumes that only direct paths to dissociat
contribute to the DR rate, because all Rydberg states
assumed to autoionize back to the electron-ion complex.
upper limit refers to a calculation carried out under the
sumption that electron capture into a Rydberg state reson
ultimately leads to predissociation, without any loss due
autoionization. In the present paper, we consider the c
petitive character of predissociation and autoionization o
a Rydberg state is populated. Such a competitive chara
was successfully incorporated into a description of diatom
molecules in studies by Giusti@7# and by Jungen and co
workers @10,13–15#, but it has never been able to descri
dissociative channles for triatomics. In principle, the ad
batic hyperspherical approximation reduces the problem
H3

1 DR to a model, for which one of the two mentione
approaches—that of Jungen or Giusti—can be applied. H
ever, because of a large number of hyperspherical chan
such an approach is difficult to implement in the pres
problem. Having initially attempted to use Giusti’s approa
we have finally chosen to employ a different approach for
description of the competition between ionization and dis
ciation @29#.

The paper is organized as follows. In the following se
tion, we review the relevant symmetry properties of the H3

1

ion. We consider transformations of rotational, vibration
and nuclear-spin wave functions of the ion under operati
from the symmetry group of H3

1 . Section III is devoted to a
discussion of the Jahn-Teller coupling in H3

1 . Section IV
describes the way vibrational motion of H3

1 is incorporated
into the present approach. We use the adiabatic hypersp
cal approach to handle vibrational dynamics of the three
clei. Section V describes the treatment of dissociative ch
nels. The treatment employs outgoing Siegert states in
dissociative channels. In Sec. VI, we construct the total w
function of the H3

11e2 complex and calculate the tota
scattering matrix for collisions between the ion and the el
01270
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tron. For this goal we use frame-transformation techniq
@11,13,31,40#. In Sec. VII, we present calculations of the D
cross section and rate. We discuss different schemes of
ergy averaging over different degrees of freedom relevan
different conditions in experiments. Section VIII discuss
the results. Section IX is devoted to a DR calculation
D3

1 . We briefly discuss the similarities and the differenc
between the H3

1 and D3
1 ions and we compare our resul

with existing experimental observations. Finally, Sec. X p
sents our conclusion.

II. SYMMETRY OF THE H 3
¿ ION

Although the symmetry of the H3
1 ion has been discusse

many times ~see, for example, the work of Bunker an
Jensen@41# or Ref. @42#!, we believe that a brief descriptio
of the symmetry issues related to the problem will be use
in order to make the following theoretical development mo
self-contained.

The total Hamiltonian of H3
1 commutes with all opera-

tions @41#: translation of the ion along a space-fixed dire
tion; rotation of the ion about a space-fixed axis pass
through the center of mass of the ion; permutation of sp
and spin coordinates of the electrons; permutation of
space and spin coordinates of the nuclei; and inversion of
coordinates of all the particles of the ion through the cen
of mass. As a result, the full Hamiltonian groupGf ull can be
written as a direct product of groups corresponding to
above symmetry operations:

Gf ull5GT^ Ks^ S(e)
^ GCNPI, ~2!

whereGT is the symmetry group of pure translations of t
ion, Ks is the rotational group,S(e) is the group of electron
permutation, andGCNPI is the group including permutation
of nuclei and total inversion. The effect and the meaning
the translation group is trivial in our case. Since we consi
only the singlet electronic ground state 1s2 of the ion, the
operations of electron permutation are also trivial. Thus,
consider here only the symmetry operations associated
the product of the following two groups:

Gf5Ks^ GCNPI. ~3!

The complete nuclear permutation-inversion~CNPI!
group of H3

1 is D3h(M ) and it includes 12 elements@41,42#.
For the lower excited rovibrational states of H3

1 , the rota-
tional and vibrational motions remain uncoupled. The int
action of the nuclear spin with spatial motion is known to
very weak. Therefore, every operationO from D3h(M ) can
be cast as a product of three operations: nuclear-spin pe
tation PI , a rotationR, and a permutation of spatial dis
placements of nuclei from the symmetric configuration,PQ :
O5O(I )O(R)O(Q). Table I summarizes the relations b
tween O and O(I )O(R)O(Q) for all the elements of the
D3h(M ) group @41,42#.

The total wave functionF t
n.sym of the ion can thus be

represented as a product of three parts,
3-3
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F t
n.sym5F IR~a,b,g!Fv~Q!. ~4!

Herea,b,g are the three Euler angles defining the orien
tion of the molecule-fixed axis with respect to the spa
fixed coordinate system.Q is the triad of coordinates de
scribing internuclear distances. Our goal is to construct
elements of the product on the right-hand side of Eq.~4! and
to determine how these products transform under the s
metry operations ofD3h(M ).

The rotational partFR(a,b,g) of the total wave function
for the H3

1 is taken to be a symmetric top wave function,
our level of approximation.~This should be adequate at com
paratively small internuclear distances where we anticip
the capture process occurs, and where the pathway is ch
between preionization and predissociation.!

R~a,b,g!5uN1,K1,m1&

5F2N111

8p2 G 1/2

@Dm1,K1
N1

~a,b,g!#* . ~5!

Table II gives the transformations of the rotational functi
under elements of the rotational subgroup ofD3h(M ). The
phase of the Wigner function is chosen as by Varshalov
et al. in Ref. @43#.

Vibrational wave functions

Fv~Q!5uv1 ,v2
l 2& ~6!

TABLE I. This table demonstrates the effect of operations fro
the CNPI group of H3

1 , D3h(M ) group. EveryD3h(M ) operation
is recast as a product of three operations acting as elements o~1!
the molecular point groupD3h , ~2! the molecular rotation group
~equivalent rotations!, and ~3! nuclear-spin permutation groupS3.
For the elements of equivalent rotation, we adopt the notation
Bunker and Jensen@41#, whereRa

a means a rotation through ang
a about the axisa. Elementsr i of the nuclear-spin permutatio
groupS3 act just as ordinary permutations of the nuclear-spin p
jections (mI561/2) on the molecule-fixed axisz. We choose mo-
lecular coordinate axes as shown in Fig. 3. Only six elements of
D3h(M ) group are shown in the table. The remaining six operati
are obtained from those already specified.

D3h(M ): E ~123! ~12! E* (123)* (12)*

Point groupD3h E C3 C2 sh C3sh sv

Equivalent rotation R0 Rz
2p/3 Rx

p Rz
p Rz

2p/3 Ry
p

Nuclear-spin permutation r0 r123 r12 r0 r123 r12
01270
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of the ion are specified by the triad of quantum numb
v1 ,v2

l 2. The quantum numberv1 describes the symmetri
stretch mode, which of course preserves the equilateral c
figuration (C3v) of the ion. The value ofv2 indicates the
number of asymmetric radial vibrational quanta. Finally, t
quantum numberl 2 measures the angular momentum abo
the main symmetry axis of the molecule, generated by vib
tion @44#. l 2 can have values2v2 ,2v212, . . . ,v222,v2.

The significance of negativel 2 is that for states withl 2

Þ3k̃ ~here and below,k̃ is an arbitrary integer number!, the
pair of functions uv1 ,v2

2 l 2&, uv1 ,v2
l 2& correspond to two

states with opposite senses of vibrational rotation. B
uv1 ,v2

6 l 2& with l 2Þ3k̃ have the same vibrational energy an
transform according to the two-dimensionalE representation
of the vibrational subgroup ofD3h @41#. The states withl 2

50 are always ofA1 symmetry. The states withl 253k̃, but
l 2Þ0, can be ofA1 or A2 symmetry. In order to avoid intro-
duction of one more index distinguishing theA1 or A2 states
with l 253k̃, l 2Þ0, we give a positivel 2 number toA1
states, and a negative one toA2 states. With this convention
aboutl 2 labels, the effect of the symmetry operations of t
vibrational function are specified in Table III. We would lik
to note that actual values ofv2 and l 2 are not used in our
treatment. We need to know only properties of a given vib
tional function with respect to permutation operations, i.
we need to know only what is the symmetry of the functio
Moreover, the indicesv2 and l 2 are becoming very approxi
mate for higher vibrational excitations. In contrast, the sy
metry of the vibrational function can always be identified

In the present treatment, the mutual phase of degene
statesuv1 ,v2

l 2& with l 2Þ3k̃ is handled with slight differences
from the convention of Refs.@44,45#. This is done to obtain
vibrational wave functions that transform exactly
uN1,K1,m1& under operations fromD3h(M ). Transforma-
tions of uv1 ,v2

l 2& with the present choice of phases is giv
by Table III. Using the present convention, the Hougen qu
tum number@44,45# is g5k1 l 2.

The third part of the total ionic wave function is th
nuclear-spin wave function. It is constructed in the followin
way. Every proton in the ion can be in one of the tw
nuclear-spin states

a5u i 5 1
2 ,mi5

1
2 &

or

b5u i 5 1
2 ,mi52 1

2 & ~7!

f

-

e
s

ot
le and
TABLE II. Transformations of the rotational symmetric-top wave functionuN1,K1,m1& under elements
of theD3h(M ) group. Since the quantum numbersN1 andm1 are not affected by the operations, they are n
specified in the result. All transformations, here and throughout this paper, are passive. In this tab
below,v5eip/3.

Equivalent rotationOR: R0 Rz
2p/3 Rx

p Rz
p Rz

2p/3 Ry
p

O(R)uN1,K1,m1& uK1& v2K1
uK1& (21)N1

u2K1& (21)K1
uK1& v2K1

uK1& (21)N11K1
u2K1&
3-4
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TABLE III. Transformations of the vibrational wave functionuv1 ,v2
l 2& under elements of theD3h point

group. Since vibrations of H3
1 always occur within the plane, the vibrational functionsuv1 ,v2

l 2& transform as
elements of theC3v subgroup of theD3h point group,D3h5sh^ C3v . Therefore, the operationsh leaves the
vibrational states unchanged. In the table, the indexs2 is 1 for all states exceptA2 states, for which it is
21. The indexl 285 l 2 for all states withl 250 (mod 3), andl 2852 l 2 for l 251,2 (mod 3).

Point groupD3h : E C3 C2 sh C3sh sv

O(Q)uv1 ,v2
l 2& uv1 ,v2

l 2& v2l 2uv1 ,v2
l 2& s2uv1 ,v2

l 28& uv1 ,v2
l 2& v2l 2uv1 ,v2

l 2& s2uv1 ,v2
l 28&
ua
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wherei is the spin of proton andmi is its projection on the
molecular symmetry axis (z). The primitive nuclear-spin
wave function is constructed as a product of the individ
spin states for each proton. Each spin wave function of
three nuclei must be a linear combination of the followin

uaaa&,

uaab&,uaba&,ubaa&,

ubba&,ubab&,uabb&,

ubbb& . ~8!

The ordering of substates within each ket is important in E
~8!. Our convention is that the first position in each produ
corresponds to the state of proton number 1 in Fig. 3,
second position is that of proton 2, and the third position
that of proton 3. From these combinations we want to c
struct nuclear-spin wave functions that transform in the sa
way as the vibrational and rotational wave functions de
mined above. Since permutations of the three protons co
tute a reducible representation of theS3 permutation group,
we proceed in the standard way. Specifically, we const
theA andE spin irreducible representations, which transfo
as follows under permutations:

FA
I ~M53/2!5uaaa&,

FA
I ~M51/2!5

1

A3
~ uaab&1uaba&1ubaa&),

FEa

I ~M51/2!5
1

A6
~2uaab&2uaba&2ubaa&),

FEb

I ~M51/2!5
1

A2
~ uaba&2ubaa&). ~9!

In the same way, functionsA and E are constructed forM
523/2 andM521/2. The functionsFA

I are totally sym-
metric under all permutations (A representation!. By direct
application of the transformation matrices of theS3 opera-
tions, one can verify that these combinations transform un
nuclear permutations according to theA and E irreducible
representations. For instance, the operations~12! and ~123!
act onFE

I functions as the following:
01270
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r12FEa

I 5FEa

I ,

r12FEb

I 52FEb

I ,

r123FEa

I 52
1

2
FEa

I 2
A3

2
FEb

I ,

r123FEb

I 5
A3

2
FEa

I 2
1

2
FEb

I . ~10!

For the product of Eq.~4! we need the following func-
tions:

F0
I ~M53/2!5FA

I ~M53/2!,

F0
I ~M51/2!5FA

I ~M51/2!,

F61
I ~M51/2!5FEa

I ~M51/2!6 iFEb

I ~M51/2!. ~11!

It can be shown that statesF0
I (M53/2) andF0

I (M51/2)
are states with the total nuclear-spinI 53/2 ~ortho states! and
statesF61

I (M51/2) have nuclear-spinI 51/2 ~para states!.
We will be referring uniformly to the states of Eq.~11! as
FgI

I , wheregI50 or 61. Thus, these states are charact

ized by two quantum numbersI andMI . The third quantum
numbergI is determined byI.

Using Eqs.~9!, ~11!, and ~10! we determine transforma
tions of states~11! under the nuclear permutations. The r
sults are summarized in Table IV.

Having established the transformation properties of e
individual part of the product wave function in Eq.~4!, we
next consider transformations of the whole product. Consi
again operations~12! and ~123!,

~123!F t
n.sym5v2(K11 l 21gI )F t

n.sym,

~12!F t
n.sym~K1,l 2 ,gI !5~21!N1

s2F t
n.sym~2K1,l 28 ,2gI !.

~12!

TABLE IV. Transformations of the nuclear-spin states und
nuclear permutations.

Nuclear-spin permutationO(I ) r0 r123 r12

O(I )FgI

I FgI

I v2gIFgI

I F2gI

I

3-5
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V. KOKOOULINE AND C. H. GREENE PHYSICAL REVIEW A68, 012703 ~2003!
In the second equation, the quantum numbersK1, l 2, and
gI are explicitly specified because they are changed by~12!.
Since the total ionic eigenfunction should be antisymme
under~12! we determineF t ,

F t5
1

A2
@F t

n.sym~K1,l 2 ,gI !

2~21!N1
s2F t

n.sym~2K1,l 28 ,2gI !#. ~13!

The condition of antisymmetry under~12! is explicitly en-
forced. The wave function must be totally antisymmetric u
der all such binary permutations, which is possible only ifF t

transforms according to either theA28 or A29 representation of

the D3h(M ) group. This requires thatv2(K11 l 21gI )51,
which can be interpreted asG̃53k̃, where G̃5K11 l 2
1gI . The parity of the total state, which is determined as
transformational property under theE* operation, is deter-
mined byK1: the parity is even or odd asK1 is even or odd,
respectively.

We next consider in detail the ortho nuclear-spin sta
For ortho (I 53/2) states,gI50 and the nuclear-spin factor
are identical for both components of the sum in Eq.~13!.
Consequently, a simplified expression results, namely,

F t
rv5

1

A2
@ uN1,K1,m1&uv1 ,v2

l 2&

2~21!N1
s2uN1,2K1,m1&uv1 ,v2

l 28&]. ~14!

Only states withG̃53k̃ are allowed.G̃ is reduced now to
G̃5K11 l 2 that coincides the Hougen quantum numbeg
@44# for I 53/2. Note that for the ground vibrational sta
(v1 ,v2 ,l 2)50, the rotational levelN1,K150 does not ex-
ist sinceF t

rv[0. The total symmetry of the state isA28 or A29
depending on whetherK1 is even or odd.

For para states, the nuclear-spin part of the wave func
cannot be factored out. The lowest ortho levels
A28$000%(10) andA29$000%(33), whereas the lowest para le
els areA18$000%(22) andA19$000%(11).

III. THE JAHN-TELLER EFFECT FOR H 3

The Jahn-Teller coupling is a generic non-Bor
Oppenheimer effect in polyatomic molecules havingD3h or
higher total symmetry@46#. Basically, there are two degen
erate electronic states at the equilateral geometry of nu
(C3v nuclear symmetry!. For any distortion away from this
symmetry, the electronic degeneracy is split and the e
tronic states acquire different energies. This is the Ja
Teller effect. When theD3h molecule vibrates, the Jahn
Teller effect couples the nuclear and electronic degree
freedom of the molecule. This section discusses the
played by the Jahn-Teller effect in dynamical processes
volving the H3 molecule.
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A. Vibrational symmetry coordinates

Apart from translations and rotations there are three
brational degrees of freedomQ. In this section, we use
conventional vibrational symmetry coordinatesQ
5(Q1 ,Qx ,Qy) @47#,

Q15 f
1

A3
~Dr 11Dr 21Dr 3!,

Qx5 f
1

A3
~2Dr 32Dr 22Dr 1!,

Qy5 f ~Dr 22Dr 1!, ~15!

where f 52.639 255 bohr21 is a constant. The coordinate
Dr i5r i2r re f describe displacements of the nuclei from t
equilibrium geometry that occurs whenr 15r 25r 35r re f
51.6504 bohr,r i representing the distance between nuclej
and k ~no two indicesi, j, and k are equal!. We introduce
another set of vibrational coordinates (Q1 , r, and f),
changing the pair (Qx , Qy) into the pair (r, f):

Qx5r cosf, Qy5r sinf. ~16!

The coordinateQ1 describes the symmetric stretch of th
molecule, whereas the pair (Qx , Qy) or alternatively the pair
(r, f) describe bends and the asymmetric stretch. Figur
indicates these three vibrational coordinates.

FIG. 2. Normal vibrational coordinates of the H3
1 ion. The

coordinateQ1 ~upper scheme! describes the symmetric stretch o
the molecule. The lower pairQx and Qy represents the doubly
degenerate asymmetric stretch mode: oscillations alongQx andQy

have the same frequencies. An alternative doubly degenerate par,
f can be represented by simultaneous rotation of all six vec
shown in the two lower schemes, withf being the angle of rotation
~phase! andr being the length of the vectors~amplitude of oscilla-
tions!. The motion along the anglef with fixed r produces an
effective angular momentum generated by vibration.
3-6
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UNIFIED THEORETICAL TREATMENT OF . . . PHYSICAL REVIEW A 68, 012703 ~2003!
As was mentioned above, the ion can exist in either anA28
or A29 state, while the total nuclear-spin can either beI
53/2 ~ortho! or I 51/2 ~para!. We limit our treatment of H3

1

DR to thep-wave component of the incident-electron wa
function. In the molecular~body! frame, the electron can
exist in one of the threenp substates. In our treatment w
choose the body-framez axis to coincide with the
symmetric-top axis. Thenps and npp electronic states
transform according to theA19 andE9 irreducible representa
tions of theD3h(M ) permutation group. This is schemat
cally depicted in Fig. 3. Orbitala is symmetric under the~12!
permutation, and can be represented only throughEa9 eigen-
states ofD3h , whereas orbitalb is antisymmetric and is rep
resented throughEb9 eigenstates. The orbitalps is not shown
in the figure. It is symmetric with respect to all permutatio
in the xy plane, and antisymmetric under reflection throu
this plane, which is thesh operation.

B. Jahn-Teller coupling for the npp states of H3

According to group theory for theD3h symmetry, for any
principal quantum numbern, two np electronic substates ex
ist in theH3 molecule that transform according toE9 sym-
metry. They have the same energy at any equilateral ge
etry of the three nuclei. Once this geometry is distorted,

FIG. 3. The figure demonstrates the symmetry of the electro
2p functions in the body frame of H3

1 . We plot the probability
density of two componentspx and py in polar coordinates as a
function of anglew8. The third componentpz would be along theZ
axis, which is perpendicular to the plane of the molecule. By p
and minus signs we specify the phase ofpx and py components.
From the figure it is clear that thepx andpy components are trans
formed according toE representation under operations from t
D3h group. Thepx component~along theX axis! can be associated
with an Ea function, and thepy ~along theY axis! component is
associated with anEb function. For comparison, see the vibration
functions of theE symmetry in Fig. 7. Thepz component~not
shown! transforms according to theA1 irreducible representation
For the complete picture, one has to specify the parity of th
components with respect to reflection through theXY plane. All p
electronic wave functions are antisymmetric with respect to
operation, so the complete notation for the functions isE9 andA19 .
We mention also that the componentspx and py are related to
spherical harmomicsY1,1 andY1,21 in a similar way as the vibra-
tional functionsEa andEb are related touv2

l 2& and uv2
2 l 2& states of

Eqs.~25!.
01270
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D3h symmetry is lifted and the two states are coupled. D
agonalization of the 232 Longuet-Higgins Hamiltonian
yields two different electronic potential surfaces of H3 that
are functions of the three vibrational coordinatesQ1 , r, and
f. These two surfaces are energetically degenerate on
r50. Figure 4 shows the 2ps and 2pp potential surfaces of
H3 as functions of the pairQx , Qy (r,f) coordinates for
fixed a symmetric stretch coordinateQ150. These potential
surfaces are calculated using quantum-defect parame
from Ref. @47#. At the bottom of the figure are the potentia
energy contours for the lowest state 2pp l which has three
local potential minima when the symmetric stretch coor
nateQ1 is clamped. The two highest states 2ps and 2pp2
have only one minimum. The splitting between the two 2pp
states derives from the Jahn-Teller coupling. For comparis
Fig. 5 displays the potential surfaces for 3p states atQ1
50. Here, the three minima of the 3pp l state are situated
much closer to the pointr50. These and all higher Rydber
states of the molecule represent closed dissociation chan

ic

s

e

s

FIG. 4. The figure demonstrates how the Jahn-Teller effect p
duces a high rate of dissociative recombination. One 2ps potential
surface and two 2pp potential surfaces@47# of the neutral molecule
are shown. The conical intersection is produced by Jahn-Teller c
pling. When an electron arrives, it scatters first into a low-lyi
vibrationally excited Rydberg state$011%. Then, after the nuclei
vibrate, the system finds its way with high probability into a 2pp
state having high vibrational excitation, near the point of coni
intersection. The contour plot at the bottom of the figure represe
the lowest 2pp1 surface. All three potential surfaces are shown
the reduced 2D space of dimensionless normal coordinates.
coordinates used here are the normal asymmetricQx , Qy coordi-
nate, withr andf their polar components@17,18#. The third vibra-
tional coordinate—the symmetric stretch coordinateQ1—is kept
constant for this graph.
3-7
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V. KOKOOULINE AND C. H. GREENE PHYSICAL REVIEW A68, 012703 ~2003!
in the low-energy region that is our present focus. Howev
these play a vital indirect role as an intermediate pathw
that ultimately leads to dissociative recombination. Durin
collision, the electron is captured into an excited Rydb
state, which is attached, most likely, to a doubly degene
E vibrational state. Once the capture occurs, the sys
nonadiabatically transfers into lower Rydberg states. The
scent transfers energy into the vibrational motion of the
clei. Upon reaching the lowest Rydberg states 2pp, the sys-
tem dissociates.

The mechanism of such a descent was proposed and
cussed previously by Schneideret al. @4,19#. Although these
authors did not include the Jahn-Teller coupling note that
would hardly be possible in their approach of reduced
mensionality becauseE vibrational states cannot be proper
represented. The importance of the intermediate H3 Rydberg
states for H3

1 DR was also suggested in theoretical stud
by Tashiro and Kato@20,21#.

At this step of the treatment we describe the collision
an incidentp-wave electron with the ion, using the collisio
matrix SL,L8(Q), whereL is the body-frame projection o
the electron angular momentuml 51. We neglect angula
momenta other than that ofp wave for both the incident and
the scattered partial waves. Then,SL,L8(Q) represents an
amplitude for the reaction

FIG. 5. Potential surfaces of 3pp and 3ps of H3 molecule. The
dimensionless normal coordinates are the same as in Fig. 4. T
and higher Rydbergnp states play an important role in the proce
of dissociative recombination. Once the system H3

11e2 is recom-
bined, the dissociation occurs via intermediate, mainlynpp, Ryd-
berg states, ending on the 2pp repulsive potential. Then the three
atomic molecule drives to the disintegration on H21H or H1H
1H fragments.
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e2~ l 51,L8!1H3
1~Q!→e2~ l 51,L!1H3

1~Q! ~17!

with the nuclei clamped. In fact, the electron scatters fr
one irreducible representationL to anotherL8, while the
nuclei do not have time to move. Therefore, Eq.~17! de-
scribes the short-range H3

11e2 collision in the Born-
Oppenheimer approximation, where nuclear degrees of f
dom are not yet coupled to the electronic degrees of freed
The scattering matrix includes the Jahn-Teller coupling.
stead ofS we use the reaction matrixKL,L8

0 (Q) in the form
proposed by Staib and Domcke@39#. For np states it has the
form @17,18,39#

KL,L8
0

~Q!

5S K0,0 K0,1 K0,21

K1,0 K1,1 K1,21

K21,0 K21,1 K21,21

D
5S tan@pmL50~Q!# 0 0

0 dr2 lr exp~ if!

0 lr exp~2 if! dr2
D ,

~18!

wheremL50 , d, and l are quantum-defect parameters o
tained from the difference between theab initio potentials of
H3

1 @48,49# and H3 @47#.
We would like to point out that the parametersd andl as

calculated in Ref.@47#, should be multiplied by factor2p in
order to be used in the present treatment. The reason is
there are two different conventions for normalizations of t
K matrix ~see, for example p. 2554 of Ref.@50#!, differing by
the factor of2p. This difference in the conventions is re
flected by the values of the parametersmL50 , d, l. Unfor-
tunately, in Refs.@18,47#, d and l were extracted fromab
initio calculations implying one convention, but they we
used in theK matrix as if they were in the other conventio
In our previous work, Ref.@28# we have usedd andl from
Ref. @47# without realizing this incompatibility. Thus, the DR
cross section estimated in Ref.@28# should be multiplied ap-
proximately byp2 in order to account for the incompatibil
ity.

The parametermL50 varies slowly withQ. Thep-waveK
matrix written in Eq.~18! does not include the zeroth-orde
phase shiftpmL

0 5pmL(Q50) ~where m21
0 5m1

0 and m0
0

50). It can be included using the eigenvalues tan(pm̃)
5UTK0(Q)U of matrix ~18! through the equation

K~Q!5U tan@p~m̃1mL
0 !#UT. ~19!

We use the valuesm61
0 50.395, d523424 cm21, andl5

238 830 cm21 from Ref. @47#.
The electron-ion scattering matrix for a fixed nuclear co

figurationQ can be written in terms of the diagonal matrix
eigenphase shiftspm̃ using

S~Q!5Ue2p i (m̃1mL
0 )UT, ~20!

se
3-8
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UNIFIED THEORETICAL TREATMENT OF . . . PHYSICAL REVIEW A 68, 012703 ~2003!
where the matrix indices specify different possible proje
tions L of the electron angular momentuml onto the
symmetric-top axis (z axis! of the ion.

Since the parameters of theK matrix of Eq. ~18! have
been fitted toab initio potential surfaces of H3 and H3

1 ,
information about potentials ofnp states of H3 has been
incorporated into our quantum-defect description, and t
can be represented within the Born-Oppenheimer appr
mation by

Un
L~Q!5U1~Q!2

1

2nn,L
2

. ~21!

Here, the indexL distinguishes between aps state or one of
the twopp states. The effective quantum number is given
nn,s5n2mL50. The effective quantum numbersnn,p1,2

of

the npp states are calculated by diagonalizing the matrix
Eq. ~18!. This gives

nn,p1,2
~Q!5n2p21arctan~dr27lr!2me

0 , ~22!

where the integern is the principal quantum number. Equ
tions ~21! and ~22! can be used to calculate the Bor
Oppenheimer potential surfaces given in Figs. 5 and 4. T
calculation adopts theab initio H3

1 ionic potential surface
given in Refs.@48,49#.

IV. TREATMENT OF H 3
¿ VIBRATIONAL DYNAMICS

USING AN ADIABATIC HYPERSPHERICAL APPROACH

To treat the vibrational dynamics in three dimensions,
employ the adiabatic hyperspherical approach. Although
method has been described several times~e.g., Refs.
@23,33,34#!, a number of alternative definitions exist for th
hyperspherical coordinates. For the sake of brevity, we li
the present discussion to the actual formulas utilized.

A. Hyperspherical coordinates

Keeping aside overall rotations and translations of
system, only three internuclear distance coordinatesQ
[$r 1 ,r 2 ,r 3% are needed to describe the nuclear positions
this notation, for instance,r 1 is the distance between nuclei
and 3. We expressQ in terms of three coordinates, a hype
radiusR and two hyperanglesu and w, which are defined
here by

r 15321/4RA11sinu sinS w1
2p

3 D ,

r 25321/4RA11sinu sinS w2
2p

3 D ,

r 35321/4RA11sinu sinw. ~23!
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In these formulas the hyperangleu ranges from 0 top/2,
while the hyperanglew ranges from 0 to 2p, and the hyper-
radiusR extends from 0 tò .

The two hyperangles and the hyperradius are equiva
to the set of three internuclear distances (r 1 ,r 2 ,r 3). The
hyper-radius can be viewed qualitatively as the ‘‘size co
dinate’’ of the system. At fixed values of the two hype
angles, an increase of the hyperradius expands the size o
system without changing its shape, as is shown in the up
panel of Fig. 6. In contrast, changing the hyperangles a
fixed value of the hyperradius sweeps the system through
possible shapes without changing its overall size. The p
sible shapes of the triangle formed by the nuclei are show
the lower panel of Fig. 6, which resembles a Dalitz plot, R
@51#.

A solution of the vibrational Schro¨dinger equation with an
appropriate interaction potential in the three-dimensional
perspherical space is equivalent to the solution in the sp
of (r 1 ,r 2 ,r 3). Instead of this, we fix the hyperradiusR and
solve the Schro¨dinger equation in the space of two hype
anglesu andw,

FIG. 6. Hyperspherical coordinates for three particles. All po
sible configurations of the three particles can be described b
hyper-radiusRP@0,̀ ) and two hyperanglesuP@0,p/2# and f
P@0,2p). The upper panel shows three configurations for th
different values of the hyper-radius; both hyperangles are fixed.
hyper-radius describes the size of the system, but it says not
about the shape of the three-particle triangle. The shape of the
tem is described by the two hyperangles. The lower panel give
possible configurations of the three-particle triangle for all values
the hyperangles. The anglef is cyclic, u is not. All particle permu-
tations are represented by a change in the anglef. Three two-
particle permutations~12!, ~23!, and~13! correspond to reflections
with respect to axesf52p/2, f5p/6, andf55p/6. The effect
of operations~123! and~132! corresponds to a change of the ang
f on f62p/3. Thus, the hyperspherical angles are well adapte
symmetry properties for a description of the H3

1 vibrational mo-
tion.
3-9
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V. KOKOOULINE AND C. H. GREENE PHYSICAL REVIEW A68, 012703 ~2003!
HRF i~u,f;R!5Ui
1~R!F i~u,f;R!,

HR5
L2

2mR2
1

15

8mR2
1V~R,u,w!. ~24!

In this equation,L2 is the squared ‘‘grand angular mome
tum’’ operator@24# andm5m/A3 is the three-body reduce
mass of the system,m being the atomic hydrogen mas
V(R,u,w) is the molecular potential; in this case it is th
ionic potential surface of H3

1 @48,49#.
We call the resulting eigenfunctionsF i(u,f;R) adiabatic

hyperspherical states and the eigenvaluesUi
1(R) the adia-

batic hyperspherical potential curves. They depend p
metrically on the hyperradius. After the calculation is p
formed at many different values of the hyperradius,
obtain a set of hyperspherical potential curvesUi

1(R). The
lowest ionic hyperspherical curve is shown in Fig. 1. T
first 200 J50 H3

1 hyperspherical curves are displayed
Ref. @28#.

B. Classification of vibrational wave functions

In the reduced two-dimensional space of hyperang
$u,f%, eachC3v symmetry group element is represented
a corresponding transformation of hyperangles. The hy
radius does not influence anyC3v operation. The vibrationa
channel functionsF i(u,f)—hyperspherical states—can thu
be classified according to irreducible representations of
group C3v , namely,A1 , A2, or E. The representationE is
two dimensional, whereby it has two degenerate statesEa
andEb , which can be transformed into linear combinatio
of each other through group symmetry operations. To dis
guish between the twoE states consistently, we chooseEa to
be symmetric under the~12! operation andEb to be antisym-
metric. This choice ofEa and Eb wave functions follows
from Ref. @52#. When the actual vibrational Hamiltonian
numerically diagonalized in the two-dimensional space
the hyperanglesu andf, the resulting two degenerate wav
functions ofE symmetry typically turn out to be mixed, giv
ing in essence combinationsE1,25Ea cosa6Eb sina. In or-
der to recast them as the well-defined pairEa ,Eb , we con-
struct the matrixP12 of the permutation operation~12! in the
basis of the two statesE1,2 and diagonalize it. The eigensta
having the eigenvalue11 is theEa state and the eigensta
with the eigenvalue21 is theEb state.

Figure 7 shows the first severalF i(u,f) eigenstates hav
ing different symmetries for a fixed hyper-radius ofR
52.2 bohr. The wave functions are shown as contour p
in a polar representation of the two hyperangles. The ‘‘a
muthal angle’’ in this representation isf, while the ‘‘polar
radius’’ in this hyperangle space is taken to beu. The corre-
sponding configurations of the nuclei are identified on Fig

All eigenstatesF i(u,f) and corresponding adiabatic po
tential curvesUi

1(R) are thus classified according to one
the irreducible representationsA1 , A2 , Ea , or Eb . Potential
curvesUi

1(R) associated with different irreducible represe
tations can cross, whereas potential curves of the same
metry do not cross.
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The vibrational states of H3 are labeled by the familiar
triad $v1 ,v2

l 2%, wherev1 describes the symmetric stretch v

brational quantum number and thev2
l 2 pair describes two

asymmetric modes (v2 the quantum of the asymmetri
stretch mode andl 2 the vibrational angular momentum!. In
the adiabatic hyperspherical approximation, which negle
the coupling between differentUi

1(R) states having the
same symmetry, the quantum of excitation in the hyp
radius is thev1 quantum number, while the quanta in the tw
hyperangles are described byv2

l 2. The index i labeling

F i(u,f) can therefore be recast asv2
l 2. Figure 7 gives the

quantum numbers of these hyperspherical eigenfunction
In order for all vibrational states to transform uniform

according to Table III some additional transformations of t
obtained real vibrational wave functions should be p
formed. TheEb and Ea states, constructed in the way d
scribed above, transform accordingly under the~12! opera-
tion, but the mutual phase of these states has not yet b
specified. This phase is important for the construction
properly symmetrized rovibrational ionic eigenstates. An a
propriate, consistent choice of phase is adopted through
following procedure. We have found that our treatment is
simplest if we define an alternative linear combination of t
two degenerateE states,

FIG. 7. The figure gives several adiabatic vibrational wave fu
tions of H3

1 , calculated for a fixed hyperradiusR52.2. The wave
functions are represented with contour plots as functions of the
hyperangles. The connection between the contour plots and a
configurations of the three nuclei is given in the lower panel in F
6. Every contour plot is labeled with a corresponding symmetry a
with a triad of vibrational quantum number$v1 ,v2

l 2%. The quantum
numberv1 is not specified. It is linked to the number of symmetr
stretch quanta. In the adiabatic approximation, the number of s
metric stretch quanta is associated with motion along the hy
radius.
3-10
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uv2
l 2&5

1

A2
~Ea1 iEb!,

uv2
2 l 2&5

1

A2
~Ea2 iEb!, ~25!

where we assume thatl 2.0. The operation~123! transforms
the uv2

6 l 2& wave functions as (123)uv2
6 l 2&5e(s2p i l 2/3)uv2

6 l 2&,
wheres51 or 21. If we keep theEa state fixed,Eb should
be multiplied by 1 or21 to obtain the following transfor-
mations:

~123!uv2
6 l 2&5e(62p i l 2/3)uv2

6 l 2&, l 2.0, ~26!

in agreement with Table III. Finally, we multiply all vibra
tional functionsA2 by i in order to obtain a real reactio
matrix K when outgoing-wave hyper-radial channel fun
tions are real.~In fact, owing to our use of outgoing-wav
hyper-radial Siegert states, our reaction matrix turns out to
complex but symmetric.!

C. Accuracy of the adiabatic hyperspherical approximation
for H 3

¿

After the adiabatic hyperspherical potential curvesUi
1(R)

are determined, we calculate vibrational energiesEi ,v by
solving the adiabatic hyperradial equation

S 2
1

2m

]2

]R2
1Ui

1~R!D c i ,v
1 ~R!5Ei ,vc i ,v

1 ~R!. ~27!

Here$ i ,v%[$v1 ,v2
l 2%. Table V compares the resulting vibra

tional energies determined by a full three-dimensional dia
nalization @49# with those obtained in the adiabatic hype
spherical approximation.

TABLE V. Accuracy test of the adiabatic hyperspherical a
proach: a comparison between several vibrational energies c
lated in the present approach and those from a full thr
dimensional diagonalization@49#.

Symmetry v1 ,v2
l 2

Adiabatic
approximation

(cm21)
Jaquetet al. @49#

(cm21)

A1 000 0 0
A1 100 3188 3178.15
E 011 2516 2521.20
E 111 5554 5553.94
E 022 5001 4997.73
E 122 7896 7869.82
E 031 6978 7005.81
A2 033 7482 7491.89
A2 131 10 243 10 209.55
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V. SIEGERT PSEUDOSTATE DESCRIPTION
OF ESCAPING DISSOCIATIVE FLUX

In this section, we discuss the issues involved in our
scription of the dissociation of the neutral molecule H3. For
brevity, we omit rotational quantum numbers since the ro
tional degrees of freedom play no role in this aspect of
theory.

The initial ionic state of H3
1 in dissociative recombina

tion experiments is the ground$000% vibrational state; it is
bound. Once the electron is captured by the ion, the sys
can dissociate, since the relevant H3 potentials are repulsive
The fact that the system is characterized by attrac
ground-state ionic potential curves but repulsive 2pp H3

curves is evident from Fig. 1. However, the dissociation p
ceeds through a number of excited Rydberg states, which
bound with respect to dissociation. While the system is
one of the excited Rydberg states, autoionization is a co
peting mechanism, especially in the region of configurat
space where the three atoms are close to each other. Us
multichannel quantum-defect theory treats such a system
set of coupled vibrational states: each potential curve~ionic
and neutral! generates a certain number of vibrational leve
These ionic and neutral vibrational states have to be ta
into account. The interaction between them are determine
an appropriate way@7#. In order to describe the process
dissociation, the vibrational continuum of all or certain p
tential curves should be somehow introduced into the mo
It can be done, for example, through discretization of
continuum @11,53# for all necessary potential curves. A
though this procedure can be applied in our case it requir
lot amount of calculations, since the MQDT calculation mu
be carried out for many different values of the hyper-radi

Recently, an alternative to this discretization method w
presented@29#, which utilizes the recently developed Siege
pseudostate’s formulation@54,55#. The Siegert pseudostate
at low energies, which correspond to the ordinary discr
spectrum of each hyperspherical potential curve, coincid
machine precision with the ordinary bound-state vibratio
wave functions. In contrast, the vibrational continuum is d
scribed by Siegert pseudostates that obey outgoing-w
boundary conditions at the outermost surface. The numbe
Siegert pseudostates taken into account in our treatme
limited by the energy of the highest vibrational level that c
contribute to the final DR cross section. For a limited b
size, the vibrational spectrum is discrete. Thus, the to
number of vibrational states in our treatment is finite,
though we include vibrational states belonging to the dis
ciative continuum. These Siegert vibrational pseudostates
introduced in order to permit the dissociative flux to esca
when it reaches the boundary. In familiar techniques usin
box discretized continuum obeying Dirichlet boundary co
ditions, this flux is reflected by the boundary artificially. E
ery bound and Siegert pseudostate of every ionic poten
curve generates a Rydberg series of neutral states.
outgoing-wave boundary conditions enforced for the io
Siegert pseudostates simulate the absorption of the diss
tive flux of the neutral molecule. The next step of the tre
ment is the construction of the scattering matrix describ

u-
-
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the collision of an electron with the ion. The set of ion
channels is the set of all bound and Siegert pseudos
calculated for every ionic potential curve. The presence
Siegert pseudostates simulates the possibility for the sys
to escape from this ionic subspace, which makes the sca
ing matrix nonunitary. In fact, the physically-relevant co
umns of theSmatrix are subunitary in the sense that the s
of squares of the elements of each such column islessthan
unity. Moreover, the associated difference from unitar
measures the probability of dissociative recombination. T
following section describes the quantitative implementat
of this procedure.

A. Siegert pseudostates in the hyperradius

In our treatment, every hyperspherical potential cu
Ui

1(R) possesses its own distinct set of vibrational Sieg
pseudostates, which are determined separately for each c
using the linearization procedure described by Tolstik
et al. @54,55#. These states satisfy the adiabatic hypersph
cal Schro¨dinger equation~27!, with outgoing-wave boundary
conditions at some large but finite hyperradiusRf :

S d

dR
2 ik i ,vDc i ,v~R!uR5Rf

50. ~28!

We normalize the Siegert pseudostates so that they obe
following orthonormality condition:

E
0

Rf
c i ,v~R!c i ,v8~R!dR1 i

c i ,v~Rf !c i ,v8~Rf !

ki ,v1ki ,v8

5dvv8 . ~29!

In our treatment, for searching the Siegert pseudostates
implement the linearization procedure proposed by T
stikhin et al. @54,55#. We adopt basis splines as our repres
tation basis. Nonorthogonality of the basis splines requ
some simple modification of the linear eigensystem, as
been discussed elsewhere@29#. The wave numberski ,v

2 and
energiesEi ,v are linked byEi ,v5ki ,v

2 /(2m)1Di , whereDi

is evaluated at the outer boundary of the hyperradius,Di

5Ui
1(Rf).

For energiesEi ,v5ki ,v
2 /(2m)1Di below the correspond

ing dissociation limit Di , the Siegert pseudostates a
equivalent to the ordinary bound vibrational states. The sp
trum of the linearization procedure of Refs.@54,55# is ob-
tained from the complex momentum spaceki ,v , while the
complex ki ,v always occur in the spectrum in pairs:
Re(ki,v).0 and ifki ,v is in the spectrum,2ki ,v* is also in the
spectrum. In the energy domain, it implies that bound sta
are present twice in the spectrum. Namely, if the real par
ki ,v is zero~a bound state!, bothki ,v and2ki ,v present in the
spectrum giving the same energyEi ,v5ki ,v

2 /(2m)1Di . The
wave functions of the pair of conjugated states are differe
In our treatment we need one state from the pair. From
pair of conjugated statesEi ,v , and Ei ,v* we keep only the
state with a negative imaginary part, which corresponds
decaying state. This choice implies that the real part of
wave numberki ,v is positive~outgoing wave!.
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B. Details of numerical calculation

In the present calculations of the DR rate, for every se
quantum numbers$I ,G,N1,N%, describing the total symme
try of the H3

11E2 system, typically we used 50–100 hy
perspherical potential curves and 8–12 Siegert vibratio
states. The grid in hyper-radius is taken from 1 a.u. to
a.u. with 64 mesh points. The accuracy of the present ca
lation is influenced only by the number of hyperspheric
states and Siegert states taken into account. Trial calculat
carried out with larger numbers of hyperspherical~150! and
vibrational~20! states for certain values of$I ,G,N1,N% sug-
gest that the convergence error of the final rate varies w
the electron energy but does not exceed 20%. Due to
smooth character, the thermally averaged DR rate is m
less sensitive to the total number of included states, es
cially at higher temperatures. The total number of differe
sets$I ,G,N1,N% taken into account in the present treatme
is 17. The most time-consuming part of the calculation is
repeated solution of the usual channel-elimination formula
MQDT @see Eq.~44! below#, which involves solution of an
inhomogeneous linear system of equations of dimension
to 200032000, at'100 000 energy mesh points, for eve
set of quantum numbers. This requires'10 000 CPU hours,
but far less real time because the calculation is carried ou
parallel.

C. Vibrational-frame transformation using the adiabatic
hyperspherical method with Siegert pseudostates

Once the Siegert pseudostates are calculated, the sc
ing matrix describing the collision of the electron with th
vibrating H3

1 ion can be constructed. The theory of the v
brational frame transformation@11# can be used to calculat
the transition amplitudeSi ,i 8 from one vibrational state to
another. In the present treatment, the composite channe
dexesi andi 8 specify both the ionic vibrational state and th
electron orbital momentum projectionL. The vibrational in-
dex is the triad of quantum numbers,v1 ,v2

l 2. Since we have
employed the hyperspherical adiabatic approximation, ev
pair v2

l 2 determines a hyperspherical curveUi
1(R), and the

index v1 labels the different Siegert pseudostates that
within that curve. Therefore, the amplitudeSi ,i 8 for the pro-
cess

e2~L8!1H3
1~v18 ,v2

8 l 28!→e2~L!1H3
1~v1 ,v2

l 2! ~30!

is calculated in two steps, which parallels the two-step c
culation of vibrational energies:

Sv2 ,l 2 ,L;v28 ,l
28 ,L8~R!5^^Fv2 ,l 2

uSL;L8~Q!uFv28 ,l
28
&& (R). ~31!

Here, the double brackets imply an integration over the
perangles at a fixed valueR of the hyper-radius. The scatte
3-12
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ing matrix S(Q) as a function of nuclear geometryQ was
introduced in Eq.~20!. Similarly, the second step of th
frame transformation reads

Sv1 ,v2 ,l 2 ,L;v18 ,v28 ,l
28 ,L8

5^cv1 ,v2 ,l 2
~R!uSv2 ,l 2 ,L;v28 ,l

28 ,L8~R!ucv18 ,v28 ,l
28
~R!&S .

~32!

In this notation, the bracketŝ&S are meant to imply a vol-
ume integration in the sense of Siegert pseudostates,
with the usual additional surface term@29#:

^cv1 ,v2 ,l 2
~R!uSv2 ,l 2 ,L;v28 ,l

28 ,L8~R!ucv18 ,v28 ,l
28
~R!&S

5E
0

Rf
cv1 ,v2 ,l 2

~R!Sv2 ,l 2 ,L;v28 ,l
28 ,L8~R!cv18 ,v28 ,l

28
~R!dR

1 i
cv1 ,v2 ,l 2

~Rf !Sv2 ,l 2 ,L;v28 ,l
28 ,L8~Rf !cv18 ,v28 ,l

28
~Rf !

kv1 ,v2 ,l 2
1kv18 ,v28 ,l

28
.

~33!

Note that one omits the usual complex conjugation of the
wave functioncv1 ,v2 ,l 2

(R). This is in parallel with the Sieg-
ert state normalization relation of Eq.~29!. Owing to the
presence of Siegert states with complex eigenenergies,
electron-ion scattering matrix is not unitary~implying that
the corresponding reaction matrix is not Hermitian!. The
nonunitarity accounts for the fact that the electron can
come stuck in the ion, resulting in dissociation of the syst
into neutral products.

VI. ROTATIONAL- AND VIBRATIONAL-FRAME
TRANSFORMATIONS FOR AN ELECTRON

COLLIDING WITH H 3
¿

The electron-ion scattering matrix constructed in the p
ceding section does not yet incorporate the possibility
different ionic rotational excitations. If the H3

1 ion is ini-

tially in one rotational state (N18,K18), the collision with
the electron can change its rotational state to (N1,K1). The
elementsSi ,i 8 of the total scattering matrixS thus should
describe the transition amplitude to change from one rovib

tional state i 85$v18 ,v2
8 l 28%(N18,K18) to another i

5$v1 ,v2
l 2%(N1,K1). As a notational convention, we do no

include in the indexesi and i 8 the quantum numbers that a
conserved during the collision.

The change in the rotational excitation (N18,K18)
→(N1,K1) can be treated accurately using the rotation
frame-transformation approximation@11#: these transitions
occur primarily when the electron Rydberg period is com
rable to the ionic rotational period. The qualitative id
implemented here is the same as was introduced by F
@40#. The initial rotational channel function is projected on
short-range rotational states specified by two quantum n
bers: the projectionL of the electron orbital momentumlW
01270
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onto the symmetric-top axis and the projectionK of the total
angular momentumNW 5NW 11 lW onto the same axis.N and l
are conserved quantum numbers in both the long- and sh
range rotational representations. Below, we give a deta
description of the rovibrational frame transformation for t
e21H3

1 system, specifying all quantum numbers in bo
regions of interaction.

A. Construction of wave functions for the eÀ¿H3
¿ system

At large distances between the electron and ion, the s
tem is described by the electron orbital angular momentul
and its projectionl on the laboratoryz-axis, by the total
ionic angular momentumN1, its projectionm1 on the labo-
ratory z-axis and its projectionK1 on the body-fixed axisZ.
Z is chosen to coincide with theC3 molecular axis. Corre-
spondingly, we represent the wave function of thee2

1H3
1 system by the product of the ionicF t

n.sym and elec-
tronic Yll(u,w) wave functions,

R~N1,m1,K1;abg!Yll~u,w!V~v1 ,v2
l 2!F I . ~34!

The anglesu,w are spherical angles of the electron in t
laboratory system~LS!.

At short distances, the most appropriate molecular sta
are the states that approximately diagonalize the Ham
tonian. These states are specified by the projectionL of the
electron momentum on the molecularZ axis, three internu-
clear coordinatesQ, total angular momentuml of the system
N, including the electron momentum; by the projectionK of
the total momentumN on Z; and by the projection ofN on
the laboratoryz axis, m. Thus, the total wave function a
short distances can be represented as

R~N,m,K;abg!YlL~u8,w8!uQ&F I . ~35!

Anglesu8 andw8 determine the position of the electron wit
respect to the molecular system~MS!. Having identified the
short- and long-distance states, we need to find the trans
mation between them. Using the transformation

Yll~u,w!5(
L

YlL~u8,w8!DL,l
1 ~2g,2b,2a!

5(
L

YlL~u8,w8!@Dl,L
1 ~abg!#* ~36!

between short- and long-range electronic wave functions
the expansion of the product of two Wigner functions:

Dm1,K1
N1

~abg!Dl,L
1 ~abg!

5(
N

Dm,K
N ~abg!CN1,K1; l ,L

N,K CN1,m1; l ,l
N,m , ~37!

the wave function of Eq.~34! is written as
3-13
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R~N1,m1,K1;abg!Yll~u,w!V~v1 ,v2
l 2!

5F2N111

8p2 G 1/2

(
L

@Dm1,K1
N1

~abg!#* @Dl,L
1 ~abg!#*

3YlL~u8,w8!V~v1 ,v2
l 2 ;Q!

5F2N111

8p2 G 1/2

(
L

(
N

@Dm,K
N ~abg!#* CN1,K1; l ,L

N,K

3CN1,m1; l ,l
N,m YlL~u8,w8!V~v1 ,v2

l 2 ;Q!

5(
L

(
N

F2N111

2N11 G1/2

CN1,K1; l ,L
N,K CN1,m1; l ,l

N,m

3R~N,m,K;abg!YlL~u8,w8!V~v1 ,v2
l 2 ;Q!

5(
L

(
N

Cl ,2L;N,K
N1,K1

~21!12LCN1,m1; l ,l
N,m

3R~N,m,K;abg!YlL~u8,w8!V~v1 ,v2
l 2 ;Q!. ~38!

We omitted the factorF I which remains unchanged at eve
step of the transformation.

Short-range states have a definite total angular momen
N. We want to construct the long-range states having a d
nite total angular momentumN, too. In order to achieve this
goal, we form the following linear combinations of the stat
of Eq. ~38!:

uN1,K1;N,m;v1 ,v2
l 2&

5(
l

CN1,m1; l ,l
N,m R~N1,m1,K1;abg!

3Yll~u,w!V~v1 ,v2
l 2!F I . ~39!

We also redefine the short-range states introducing an a
tional factor (21)12L:

uN,K,m,L;v1 ,v2
l 2&5~21!12LR~N,m,K;abg!

3YlL~u8,w8!uQ&F I . ~40!

After these new definitions of the short- and long-ran
states, the transformation between them becomes
simple:
ra
a
a

a

01270
m
fi-

s

di-

e
ry

uN1,K1;N,m;v1 ,v2
l 2&5(

L
Cl ,2L;N,K

N1,K1
uN,K,m,L;v1 ,v2

l 2&,

~41!

which can be considered as if two angular momentaNW and lW
with projectionsK and 2L are added to give the angula
momentumNW 1 with the projectionK15K2L. Quantum
numbersN,l ,m;v1 ,v2

l 2 are not changed by the transform
tion of Eq. ~41!. They are good quantum numbers in bo
representations.

Note that in Eq.~41! all the projectionsL,K,K1,m of
angular momenta can be negative or positive. It is differe
for example, from Ref.@56# where all rotational functions are
symmetrized with respect to different signs of projections.
this stage of the treatment, we keep both negative and p
tive projections explicitly in order to symmetrize products
rotational, vibrational, and nuclear-spin components simu
neously with respect to all three sets of quantum numb
This greatly simplifies all the formulas, because it avoids,
example, the somewhat complicated symmetrization pro
dures of the type given by Spirkoet al. in Ref. @52# @see Eqs.
~59!–~77! of Ref. @52##.

B. Construction of the eÀ¿H3
¿ scattering matrix

Now the total laboratory-frame scattering matrix can
constructed using the techniques of the frame transformat
when the electron is far from the ion, the long-range wa
function diagonalizes the interaction Hamiltonian; at sh
distances, short-range wave functions almost diagonalize
Hamiltonian. The short-range Hamiltonian is not exactly
agonal in the basis of states of Eq.~35!. It has off-diagonal
elements with respect toL owing to the Jahn-Teller cou
pling. The following selection rules can be formulated:~i!
the Hamiltonian only couples vibrational states of the sa
vibrational symmetry and the same value ofL or ~ii ! it can
couple the rovibrational channels according to the ruleL
51,l 2521)↔(L8521,l 2851). These selection rules en
sure that the parity of the system and the quantum numbeG
related to the total rovibrational angular momentum are c
served during the collision.

The scattering matrixSL,L8(Q) including the Jahn-Teller
coupling is given by Eqs.~18! and~20! in the basis of short-
range channel functions. In the basis of rovibrational m
lecular states of Eq.~41!, the scattering matrixS is
S
N1,K1,v1 ,v

2

l 2 ;N18,K18,v18 ,v
2
8 l 28

(N,K,m,l ,G)
5 (

L,L8
Cl ,2L8;N,K

N18,K18 F E
s
V~v18 ,v2

8 l 28 ;Q!SL,L8~Q!V~v1 ,v2
l 2 ;Q!dQGCl ,2L;N,K

N1,K1
. ~42!
ina-
The integral*s in the above equation is the usual integ
over vibrational coordinates if one of both the vibration
functions are bound. If both are unbound, the integral has
additional term describing the possibility for the vibration
l
l
n

l

flux to escape from the interaction zone@29#. See the discus-
sion above. The scattering matrix of Eq.~42! is diagonal in
the quantum numbersN, K, l , G, and m. Therefore, the
cross section can be calculated separately for all comb
3-14
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TABLE VI. Probabilities of rotational excitation of the ion, induced by a colllision with a low electron.

Symmetry,I A28 ,3/2 A28 ,3/2 A29 ,1/2 A29 ,1/2 A29 ,1/2 A29 ,1/2
N 2 4 1 2 2 2

(N18,K18)→(N1,K1) (1,0)→(3,0) (3,0)→(5,0) (1,1)→(2,1) (1,1)→(2,1) (1,1)→(3,1) (2,1)→(3,1)

Probability 0.74 0.76 0.79 0.15 0.5 0.27
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tions of these numbers. The total scattering matrix of
~42! is calculated using nonsymmetrized states of the typ
Eqs. ~4! and ~39!. Only at this stage do we carry out th
symmetrization procedure described by Eq.~13!. The sym-
metrization procedure is performed directly on the scatter
matrix.

Let the total dimension of the
S N1,K1,v1 ,v

2

l 2 ;N18,K18,v18 ,v
2
8 l 28 matrix be Ntot3Ntot . What is

not specified explicitly is the total molecular symmetryG
5A28 or A29 of the considering state and the total spinI
51/2 or 3/2. These quantum numbers are also conse
during a collision. For the full specification of the scatteri
process, ionization energies of rovibrational statesi
5$v1 ,v2

l 2%(N1,K1); i 51,2, . . . ,Ntot should be specified
We use very accurate energies available in the literature@57–
60#. For some excited rovibrational levels, where no d
exists, the energies were calculated using adiabatic hy
spherical and rigid-rotor approximations.

Equation~42! gives theNtot3Ntot scattering matrix de-
scribing collisions of an electron with a vibrating and rota
ing ion. The matrix also contains information about the pro
ability of dissociation of the neutral molecule formed duri
the collision process. Accordingly, this matrix is used f
analyzing the dissociative recombination. This matrix can
also used to interpret photoabsorption experiments with
H3 molecule@47,61#. This application will be discussed in
separate paper.

C. Probability of rotational excitation of the ion
by electron impact

We will show below how the initial rotational excitatio
of a molecular ion can sometimes play a key role in dis
ciative recombination. Moreover, not every electron-ion c
lision leads to dissociation; in a storage ring or other en
ronments, nondissociative collisions can sometimes cha
the ionic quantum state. Therefore, it is important to und
stand whether or not hot electrons can heat the H3

1 rota-
tional and vibrational degrees of freedom. Vibrational ene
splittings are much larger than rotational splittings, with t
first excited vibrational level$011% being 0.3 eV above the
ground vibrational level$000%. For this reason, we only dis
cuss here the probability that an electron collision initia
ionic rotational excitation.

We assume that the initial vibrational state of the ion
$000% and that the incident electron energy is less th
0.3 eV. The probability of the rotational excitation
given by the absolute square of the eleme
S N1,K1,v1 ,v

l 2 ;N18,K18,v18 ,v8 l 28 , where both $v1 ,v2
l 2% and
2 2
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$v18 ,v2
8 l 28% vibrational states are$000%, and only the rotational

states are different. The calculated probability of rotatio
excitation oscillates versus the electron energy due to
presence of many Rydberg states. The simplest quantit
use is the probability averaged over energy, which is alm
energy independent in the region between the$000% and
$011% vibrational levels. Here we present an alternative, s
plified method to estimate this average probability analy
cally, which has been tested and found to give results v
close to a full calculation.

Our simplified approach relies on an assumption tha
the electron energies considered, the influence of excited
brational levels on the averaged probability of rotational e
citation is small. This assumption is validated by direct co
sideration of the corresponding matrix elements in Eq.~42!
or else it can be derived by inspecting the photoionizat
spectra of H3 @47,61#. Neglecting the influence of excite
vibrational levels, the frame transformation of Eq.~42! can
be evaluated analytically. At the first step, we evaluate
vibrational integral in Eq.~42!. The result of this integration
can be viewed as an effective scattering matrixS̄L,L , which
is not very different from theSL,L(Q) matrix evaluated at
the minimum of the H3

1 potential. We can write

S
N1,K1;N18,K18
(N,K,m,l ,G)

5(
L

Cl ,2L;N,K
N18,K18

S̄L,LCl ,2L;N,K
N1,K1

5(
L

Cl ,2L;N,K
N18,K18

e2p i m̄LCl ,2L;N,K
N1,K1

, ~43!

wherem̄L are quantum defects corresponding to the ma
S̄. The nondiagonal elements of the scattering matrixSL,L8
averaged over the$000% vibrational states are identicall
zero. In the calculation we have usedm̄050.05 andm̄61
50.39. The calculated rotationally inelastic collision pro
abilities for different symmetries and nuclear-spins of the
are given in Table VI.

Now let us consider the results from H3 photoionization
experiments of Ref.@61#. The spectrum presented in th
work ~see Fig. 5 of Ref.@61#! showed the rotational autoion
ization of Rydberg states just below the excited,N153,
rotational state of the ortho H3

1 ion. The lifetimes of these
states are controlled by the same scattering matrix elem
S

N1,K1;N18,K18
(N,K,m,l ,G)

that controls rotational excitation, althoug
this is a scattering matrix in a closed channel, in the sens
multichannel quantum-defect theory. The same scatte
matrix relevant at energies just above the rotational exc
tion threshold also controls the rotational autoionization j
3-15



ob
as
es
O

u
es
ig

-
r a
tri
,
re

he
e
e

nj

ri
a-

rix

m

on-

of

tion
l-

u-
ion

el
ing
d
be

s

tum

-

ll

he
nal

V. KOKOOULINE AND C. H. GREENE PHYSICAL REVIEW A68, 012703 ~2003!
below the excited rotational threshold. Moreover, the pr
ability of excitationuSu2 can be estimated approximately
the ratio of the widths of the rotationally autoionizing stat
to the separations between successive Rydberg levels.
can see from Fig. 5 of Ref.@61# that this ratio of widths to
separations is of the order of unity for the rotationally a
toionizing states. There are a few narrow perturbing lin
but those are vibrationally autoionizing states that are
nored for this analysis. Reference@61# can be viewed as an
experimental confirmation of our theoretical logic.

VII. THE CROSS SECTION AND THE RATE
OF DISSOCIATIVE RECOMBINATION

The scattering matrixS of Eq. ~42! describes the electron
ion scattering when the electron energy is high enough fo
collision channels to be open. The scattering ma
S phys(E) for energies, when some channels are closed
obtained by the ‘‘closed-channel-elimination’’ procedu
@31#:

S phys~E!5S oo2S oc@S cc2e22ib(E)#21S co. ~44!

„see Eq.~2.50! of Ref. @31#…. The matrixS phys(E) hasNo
3No dimensions,No being the number of open channels.

In Eq. ~44!, the collision energyE divides all channels as
either energetically open or closed,No and Nc5Ntot2No .
The matricesS oo, S oc, S cc, and S co are corresponding
parts of the original matrixS @11#, written as

S5S S oo S oc

S co S ccD , ~45!

b(E) is a diagonalNc3Nc matrix:

b i j ~E!5
p

A2~Ei2E!
d i j , ~46!

where Ei refers to a particular ionization thresholdi
5$v1 ,v2

l 2%(N1,K1). For outgoing-wave Siegert states, t
energy Ei is complex. Evaluating the square root in th
above equation, we take the branch with the positive r
part. It is consistent with the case whenEi has no imaginary
part, i.e., corresponds to a bound state.

To calculate the cross section, we also need the co
gated scattering matrix. Because of the unusual orthonorm
ity properties of the Siegert states, the conjugated scatte
matrix S † is not simply the Hermitian conjugate of the m
trix S. More precisely, in addition toS phys(E), we need a
matrix S †phys(E) which is calculated in a way similar to
S phys(E) but with the complex-conjugated scattering mat
in Eq. ~32!:

Sv1 ,v2 ,l 2 ,L;v18 ,v28 ,l
28 ,L8

†
5^cv1 ,v2 ,l 2

~R!uSv2 ,l 2 ,L;v28 ,l
28 ,L8

T* ~R!u

3cv18 ,v28 ,l
28
~R!&S . ~47!

In the above equation, the superscript T* implies the usual
Hermitian conjugation, with both a transposition and a co
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plex conjugation. However, the wave functions are not c
jugated. The channel elimination Eq.~44! should also ac-
count for the complex conjugation by changing the sign
b(E)

S †phys~E!5S †oo2S †oc@S †cc2e2ib(E)#21S †co. ~48!

~It is importantnot to complex conjugateb in this expres-
sion.!

Once the scattering matricesS phys(E) andS †phys(E) are
calculated, the raw dissociative recombination cross sec
is extracted from the ‘‘unitarity defect’’ of the relevant co
umn of the scattering matrix:

s~Eel!5
p

2E S 12 (
i 51,No

S i ,i8
phys~E!S i8,i

†phys~E! D ,

Eel5E2Ei 8 . ~49!

In calculation, the term(S i ,i8
phys(E)S i8,i

†phys(E) is always real,
positive, and it is found not to exceed unity, to a good n
merical accuracy. In this energy range all open ionizat
channelsi have a real energyEi 8.

In the above equation,i 8 is the electron entrance chann
andEel is the asymptotic electron energy. In the storage-r
experiments@1,3,62–66#, the entrance channel is the groun
vibrational ionic state, the rotational quantum number can
different: i 85$0,00%(N1,K1). Since the scattering matrice
S phys(E) and S †phys(E) and the cross section of Eq.~49!
are calculated for a good total molecular angular momen
N, the total symmetryG5A28 or G5A29 , and the total
nuclear-spinI 51/2 or I 53/2, we will assign these three la
bels to the symbol of the cross sectionsG,I ,N(Eel). To obtain
the experimentally measured cross sectionsG,I(Eel), we
should average over different initial states (m1) and sum up
over the final states (N andm) of the system:

sG,I~Eel!5
1

2N111
(
N

~2N11!sG,I ,N~Eel!. ~50!

The symmetry labelG and the total nuclear-spin are sti
definitive quantum numbers for the cross sectionsG,I(Eel).
In the above sum,N varies from 0 orN121 to N111.

The corresponding ratea(Eel) is obtained by multiplying
the cross section by velocity:

a~Eel!5A2Eels~Eel!. ~51!

When rotationally excited states of H3
1 are present, the

rate should be averaged over the initial distribution of t
rotational states. Assuming the thermally averaged rotatio
excitation of the gas with the temperatureTrot , the rotation-
ally averaged rate is
3-16
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aG,I ,Trot
~Eel!5

(
N1

~2N111!expF2
E~N1!

kTrot
GaG,I ~Eel!

(
N1

~2N111!expF2
E~N1!

kTrot
G ,

~52!

whereE(N1) is the energy of the rotational level (N1,K1).
Typically, excited rotational levels should be taken into a
count if the rotational temperature is higher than 150 K.

There are four distinguishable species allowed for H3
1 :

the total molecular symmetryG can beA28 or A29 and the total
spin can beI 51/2 or 3/2. The change of the species is ge
erally possible only via chemical reactions when one pro
is cut off and then is attached again to the two other proto
This interconversion process is believed not to occur in
diffuse interstellar clouds and in the storage-ring experime
but it certainly can occur in dense interstellar clouds wh
H2 molecule is abundant@57,58,67#. This interconversion
can also occur in storage-ring experiments. Besides chem
reactions, theA28 andA29 states of the same nuclear-spin a
connected by the so-called ‘‘forbidden’’ rotational trans
tions. In the present calculations, we included two rotatio
states for every species. Therefore, for the ground vibratio
level, we included the following states with energie
(1,1)@ I 51/2#0 cm21; (2,1)@ I 51/2# 173.23 cm21;
(1,0)@ I 53/2# 22.84 cm21; (3,0)@ I 53/2# 452.75 cm21;
(2,2)@ I 51/2# 105.17 cm21; (3,2)@ I 51/2# 363.89 cm21;
(3,3)@ I 53/2# 251.22 cm21; (4,3)@ I 53/2# 594.57 cm21

@57–60#. This set of rotational levels allows us to accou
properly for the rotational temperatures of the ion up
600 K.

For astrophysical purposes, one determines the rate c
ficient a(kT) averaged over the Maxwellian distribution o
electrons at the temperatureT @1,68#:

a th~kT!5
8p

~2pkT!3/2E0

`

a~Eel!e
2E/kTA1

2
EeldEel . ~53!

In the interstellar medium, the rotational ionic temperature
the same as the electron temperature. If we assume that
cies having different total nuclear-spin are in thermal eq
librium as well—i.e., since chemical interconversion
possible—the corresponding generalization of formula~53!
is given by

a th~kT!5
1

NS

8p

~2pkT!3/2E0

`

(
N1,s

aG,I ,N1~E!w~N1,s,T!

3e2Eel /kTA1

2
EeldEel , ~54!

where the thermal weightsw(N1,s,T) account for the rela-
tive contribution of a particular rotational level at a give
temperatureT. The indexs numerates the four mentione
speciesA28@3/2#, A29@3/2#, A28@1/2#, and A29@1/2#, allowed
for the ground vibrational level. The weights and corr
sponding normalization factorNS are
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w~N1,s,T!5~2I 11!~2N111!e2ER(I ,G,N1)/kT,

NS5 (
N1,s

w~N1,s,T!. ~55!

Rotational energiesER(I ,G,N1) of eight levels included in
the thermal averaging are given above.

Equation~54! gives the dissociative recombination rate
a function of temperature when electron energy is in therm
equilibrium with rotational and nuclear-spin distributions
H3

1 ions. In the storage-ring experiments@1,62,63#, certain
degrees of freedom are not in thermal equilibrium. The el
tron energy is not distributed uniformly with directions
space. One space component, namely, the parallel energyEi ,
is very well controlled. The distribution along this comp
nent is essentially ad function. However, there is a non
negligible energy spreadĒ' for the electron motion in the
two other perpendicular directions. This energy spread ha
be accounted for when experimental and theoretical res
are compared. Following Ref.@1#, we assume a Maxwellian
energy distribution along these two directions. There is o
more characteristic energy distribution in the storage-ring
periment, namely, the rotational temperatureTrot of the ions.
In general,Trot is independent ofĒ' and has to be accounte
for separately. These considerations are accounted for by
following averaging procedure:

asr~Ei!5
1

N1
E

0

`

dE'w1~E'!
1

N2
(

I ,G,N1
w2~ I ,G,N1,T!

3a$G,I ,N1%~E'1Ei!, ~56!

where the weightsw1(E') and w2(G,I ,N1,T) are deter-
mined by the corresponding mean valuesĒ' and kTrot for
electron energy and rotational energy distributions,

w1~E'!5expS 2
E'

Ē'

D ,

w2~G,I ,N1,T!5~2I 11!~2N111!expS 2
ER~ I ,G,N1!

kTrot
D .

~57!

The two normalization factorsN1 andN2 are determined by

N15E
0

`

dE'w1~E'!5Ē' ,

N25 (
I ,G,N1

w~ I ,G,N1,T!. ~58!

The total total energyE in Eq. ~56!, at which the rate
a$G,I ,N1% enters into the formula, is now expressed asE
5E'1Ei .
3-17
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VIII. DISCUSSION OF CALCULATED RESULTS

Figure 8 shows our calculated rates for two different co
ditions ~dashed and solid lines! as functions of the relative
electron energyEi , compared with data from two storage
ring experiments, circles@62# and triangles@66#. The calcu-
lated rate coefficient is averaged over the experimental
ergy spreadĒ' and over the rotational energykTrot of the
H3

1 ions, using the formulas discussed above. However
the calculation, which should be compared with the exp
mental results by McCallet al., we use a larger energ
spread Ē'56 meV than the experimental valueĒ'

52 meV. The quoted experimental resolutionĒ'52 meV
would give many more resonances, which are not obser
experimentally. Thus, the solid curve is calculated usingĒ'

56 meV and should be compared with the experimen
data@66# represented with triangles. We have also compa
our theoretical results with another storage-ring experim
by Jensenet al. @62# ~circles in Fig. 8!. In this experiment,
Ē'525 meV. Thus, we have calculated a second theore
curve with the quoted value ofĒ' . The experimental reso
lution in Ei is estimated in Ref.@66# to be DEi'0.1 meV.
This is sufficiently smaller thanDE' that we have not car
ried out in the corresponding convolution overEi . The result
is represented by a dashed curve in Fig. 8.

In some region between 0.04 eV and 0.1 eV, the theo

FIG. 8. Comparison of theoretical and experimental rates
dissociative recombination. The theoretical rate~solid and dashed
lines! is shown as a function of the parallel electron energyEi . In
the theoretical curves~present work!, the rate has been average
over the lowest states, for two different values of the transve

energy spread,Ē'56 meV ~dashed curve! and 25 meV~solid
curve!. Also shown are the data from two different storage-ri

experiments. The experimental data from Ref.@66# (Ē'52 meV) is
shown as triangles, and, another recent measurement from Ref@62#

(Ē'525 meV) is shown as circles. Both theoretical curves are
eraged over a Boltzmann distribution for the rotational levels of
ion, including both the ortho and para symmetries. The calcula
curves reproduce most of the major features of the experime
rate.
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ical rate is significantly lower than the measured rate,
though the theoretical curves exhibit similarities to the ge
eral behavior of the experimental rate in these regions.
cannot point out the cause of this disagreement with
certainty, but one possibility is that some higher rotation
levels may still be present in the storage-ring experime
either when the beam emerges from the source or else
haps through an excitation process after the ions are in
ring and have passed through the electron interaction re
one or more times. Our calculations for excited rotation
states of the ion show that this gap tends to be filled up if
next rotational states are included in our calculation. T
rotational temperature of H3

1 in the storage-ring experimen
by Jensenet al. @62# may be as high as 2700 K@69#. Our
calculation atTrot5600 K ~the highestTrot we can treat us-
ing only eight rotational levels of the ground vibration
state! shows a better agreement with the experiment of R
@62#, shown in Fig. 8. In the experiment of Ref.@66#, the
initial rotational temperature of ions is measured to be mu
lower ~20–60 K!. The data from this experiment display th
dip around 0.1 eV, but it is not as wide and pronounced a
the theoretical curve.

The theoretical curves also differ from the experimen
results in their much greater number and depth of re
nances. The experimental curve with high rotational te
perature shows virtually no resonances. The correspon
theoretical curve calculated for the higher rotational tempe
ture exhibits some resonances, although they are lar
washed out. The new experimental curve at a low rotatio
temperature shows some resonances, but far fewer than
we predict should be observable at the experimental res
tion. This systematic discrepancy between theoretical and
perimental results, i.e., in the number and prominence
these resonances, is simply not yet understood. Howe
analogous discrepancies are familiar in many other comp
sons between the DR theory and the experiment, includ
even simple diatomic targets such as H2

1 @8,12#.
There remains some uncertainty about the distribution

population among various rovibrational levels of H3
1 , be-

cause rotational excitations could occur when the ions p
through the electron beam. Figure 9 provides a breakdow
the DR rates for the lowest four levels relevant. Interesting
the curve that resembles the newest DR experiment@66# is
the one in which H3

1 is initially in the para~22! state. The
agreement with the experiment is noticeably better, aro
Ei50.1–2.5 meV, 10–100 meV, and 0.2–0.4 eV as we
The better agreement with the~22! theoretical DR rate may
be fortuitous. On the other hand, it may point to the desire
measuring the rovibrational H3

1 distribution while the ions
are actually inside the storage-ring.

Figure 10 demonstrates the thermally averaged DR
~solid black curve! for the thermal distribution of collision
energies as a function of temperature. This curve is the m
relevant in astrophysical observations of H3

1 , because the
rotational temperatureTrot of the ions is chosen equal to th
electron temperatureTel . The theoretical~solid! curve dis-
plays a plateaulike behavior, which differs from the expe
mental~dot-dashed! curve@66# at low temperatures. This dif
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UNIFIED THEORETICAL TREATMENT OF . . . PHYSICAL REVIEW A 68, 012703 ~2003!
ference is caused partly by the fact that the limiting lo
energy behavior of the DR rate is not achieved un
surprisingly low incident energies, well below the measu
range. The double-dot-dashed curve is our calculation u
parameters that correspond to the conditions of the new
experiment@66#, where only the two lowest states are pop

FIG. 9. This figure gives DR rates calculated separately for e
symmetry specified by quantum numbersI and G ~rotational and
vibrational quantum numbers are also specified!. These rates would
correspond to a situation in which the H3

1 ion is prepared in the
single rovibrational state specified. The theoretical curves are

volved with Ē'56 meV. For comparison, we also plot the expe
mental curve~triangles! from Ref.@66#. The inset shows the exper
mental DR rate and the rate for the initial state$000%(22) state
alone. This rate displays a better agreement with experiment
the DR rate averaged over all four symmetries~see Fig. 8!.

FIG. 10. The theoretical thermally averaged recombination
~solid line! is shown as a function of temperature. This curve is
one most relevant to compare with astrophysical observation
H3

1 , because the rotational temperatureTrot of the ions is equal to
the electron temperatureTel . At 300 K the theoretical thermal rat
is a th57.261.131028 cm3/s. The thick dashed-dotted curve re
resents the experimentally extracted thermal rate@66#, which can be
compared with our double-dotted-dashed curve calculated for t
stated ion source conditions.
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lated with constant relative contributions corresponding
the constant rotational temperatureTrot520–60 K. The the-
oretical ~double-dot-dashed! curve is calculated atTrot
540 K. The two dashed curves represent the rate avera
thermally over the ionic rotational and the electron ene
distributions, calculated separately for the ortho and p
spin states.

The reason why stationary afterglow experiments@70#
measure such a low DR rate remains a problem. In view
the presence of perturbing species in the vicinity of the
combining ions and the vital role of easily affected Rydbe
state pathways, it seems plausible that these controlling c
tributions might be modified in an afterglow experiment.
detailed model of pressure or field effects on these pathw
remains a desirable goal for future investigations. On
other hand, a flowing afterglow experiment@71# gives a rate
coefficient a th(300 K)57.862.331028 cm3/s which is in
good general agreement with our ratea th57.2
31028 cm3/s calculated at 300 K. One may also compa
with the experimental results of Ref.@72#, although the final
measured rate was left somewhat ambiguous in that stu

IX. CALCULATION FOR D 3
¿

A. Differences between our treatment of DR in D3
¿ and H3

¿

Using the method developed to calculate the DR rate
H3

1 , we have also calculated the rate for the D3
1 ion. In

this calculation, we use the same ionic potential surface
the same Jahn-Teller parameters as in the case of H3

1 . This
is a good approximation, since the ionic potential surface
the Jahn-Teller parameters were calculated assuming infi
nuclear mass. Differences between these two ions first a
in our method when the adiabatic hyperspherical poten
curves are calculated, since they depend on the mass o
nuclei and are therefore different for D3

1 .
Moreover, the deuterium nucleus is a boson in contras

the fermionic nucleus of hydrogen. Therefore, the to
nuclear-molecular symmetry of D3

1 can only beA18 or A19 :
any permutation of these identical nuclei should leave
total wave function unchanged. Again, as in the case of H3

1 ,
we construct symmetry-adapted combinations of nucle
spin functions. Since the spini of the deuteron is 1, there ar
more possible symmetries of the total nuclear-spinIW5 iW1

1 iW21 iW3 than in the case of H3
1 .

Each nucleus can be in one (ua&) of the three states de
pending on the projection of its spin on a fixed axis. We w
refer the three states asu21&, u0&, and u1&. A symmetry-
adapted nuclear-spin function of D3

1 is constructed from
products of the typeuabg&5ua&ub&ug&, where the first fac-
tor ua& relates to the nucleus 1, the second factor to
nucleus 2, and the third term relates to the nucleus 3.
example, operation~12! applied to functionuabg& gives
ubag&. The total number of nuclear-spin states is 33527.

We consider the case where all projections are the sa
i.e., all three nuclei are in the same state. The total state
be written asuaaa&, which is totally symmetric under al
permutations, and therefore belongs to theA1 symmetry.
There are three such products.
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V. KOKOOULINE AND C. H. GREENE PHYSICAL REVIEW A68, 012703 ~2003!
When two nuclei have the same spin projections and
third nucleus has a different projection, the total state be
of the typeuaab&, we construct linear combinations in th
similar way as done for H3

1 @see Eqs.~8! and ~9!#. Thus,
these products with fixed values ofa and b transform ac-
cording to either theA1 or theE representation. There are s
different combinations ofa and b. Thus, the whole set o
functions of the typeuaab& is decomposed into irreducibl
representations according to 6A1% 6E.

We have only one possible set of spin projections t
produce functions of the typeuabg& where all three factors
are different. Permutations of the factors give six differe
products. Symmetry-adapted combinations of the functi
can be made using the projector operators. We give only
final linear combinations

A1 :
1

A6
~ uabg&1ubag&1ubga&1ugba&1ugab&

1uagb&),

A2 :
1

A6
~ uabg&2ubag&1ubga&2ugba&1ugab&

2uagb&),

EA~1!:
1

A12
~2uabg&12ubag&2ubga&2ugba&2ugab&

2uagb&),

EB~1!:
1

A4
~ ubga&2ugba&1ugab&2uagb&),

EA~2!:
1

A4
~ ubga&1ugba&2ugab&2uagb&),

EB~2!:
1

A12
~2uabg&22ubag&2ubga&1ugba&2ugab&

1uagb&). ~59!

Thus, the functions of the typeuabg& form the representa
tion A1% A2% 2E.

The final result is that the group of permutation of thr
particles with spin 1 generates the representation 10A1% A2
% 8E. Let us now consider the statistical weights of the
states. Since theE representation is two dimensional, 10A1
% A2% 8E gives 27 states in agreement with the total num
of nuclear states. Calculating the scattering matrix for
total nuclear-molecular wave function havingE nuclear sym-
metry ~in this case, the rovibrational symmetry is alsoE) of
D3

1 , we treat bothE components simultaneously. Thus,
the final averaging over nuclear-spin states, the nuclear
tistical weights are given just by multiplicity factors in th
representation 10A1% A2% 8E, i.e., 10:1:8.
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Since the total nuclear-molecular function can be ofA18 or
A19 symmetry, and the nuclear wave function can be
A1 ,A2, or E symmetry, all sixD3h representations of rovi-
brational functions are allowed in the case of D3

1 . It means
that all possible combinations of vibrational and rotation
wave functions are allowed: there is always a nuclear-s
state which can produce the right total symmetry. For
ample, for D3

1 , the state$000%(00) is allowed. There is one
more difference in construction of the total rovibrationa
nuclear functions of D3

1 compared to H3
1 . Equation~13!

should be modified to impose the overall totalA18 or A19
symmetry. Instead of the minus sign in Eq.~13!, there should
be a plus sign.

For calculating the H3
1 DR rate, we used the rovibra

tional energies determined in experiments and the accu
ab initio calculation@57,59,60#. In the present calculation o
the D3

1 DR rate, we use approximative rovibrational ene
gies. Vibrational energies of levels$v1v2

l 2% are determined
from the two-step procedure to diagonalize the vibratio
Hamiltonian of D3

1 . This procedure was described in Se
IV C. Then the rovibrational energies of$v1v2

l 2%(N1,K1)
are determined by adding a rotational correcti
E@$v1v2

l 2%(N1,K1)#. We have used a very rough approx

mation for this term, namely, E@$v1v2
l 2%(N1,K1)#

5BvN1(N111). We could use a more elaborate appro
mation, for example, as in Ref.@44#, but the corresponding
correction is much smaller than the error in vibrational en
gies due to the two-step adiabatic treatment. In our calc
tion we use the rotational constantBv520 cm21 indepen-
dent of the vibrational and rotational quantum numbers.

B. Results for D3
¿

Results of the calculation for D3
1 are shown in Fig. 11 as

solid and dashed lines. The solid line shows the rate ca
lated for the experimental conditions of Larssonet al. @73#
~triangles in the figure!. In the experiment, the perpendicula
energy resolutionE' is 10 meV; the rotational temperature
high, around 1000 K or more. The theoretical curve is c
culated forE'510 meV andTrot5600 K. The figure also
shows the comparison of the theoretical results~dashed line!
with another experiment@64# ~circles!. In Ref. @64#, the ex-
perimental energy dependence of the rate is given in rela
units. To obtain the absolute value of the experimental
pendence, we calibrated the rate from Ref.@64# to the abso-
lute experimental DR rate for D3

1 measured by Larsson
et al. @73#. The calibration was made for a value of the rate
quite high energy, 10 eV, where both experiments give p
sumably the same reliable results. Therefore, the circle
Fig. 11 represent the calibrated curve. No rotational and e
tron resolutions are specified for this experiment as well.
assume that the rotational temperature is comparably as
as in the experiment by Larssonet al. @73#. The electronic
resolutionE' can be roughly estimated from the behavior
the curve at lowEi energies. We estimated this resolution
be around 40 meV. Thus, the corresponding theoretical cu
is calculated with the parametersE'540 andTrot5600 K.
3-20



a
s
0.
th
d
e
b

o
y
e

r

en

th
n

ly

e
t

in
ci
O

ge-
-
ous
eri-
heo-
ces

the-
he
oes
ex-

age-
at

the-
rea-
fact
be
s to

l.
ith

re

gy,
rmed

us
of

ree-
on
to

ou-
n-
are

e
our
es-
any
the

od
e-
od
al
e-
r-
of
ex-
n-

al
ovi-
e

for
s.

ate

-
c

by
t-
di-

sh

UNIFIED THEORETICAL TREATMENT OF . . . PHYSICAL REVIEW A 68, 012703 ~2003!
Summarizing the results for D3
1 , we conclude that the

agreement between theory and experiment for the D3
1 ion is

comparable or better to that found for H3
1 . A good general

agreement is found between the storage-ring experiment
the theory. The main discrepancy in the theoretical curve
the presence of two deep minima around 0.09 and and
eV, which are absent in the experimental results from
storage-rings @64,73#. On the other hand, the merge
electron-ion-beam experiment@77# does show at least on
deep minimum around the right energy, although it could
fortuitous because at higher energies.0.2 eV this experi-
ment manifests an unreasonably high rate. Note that in c
trast to H3

1 , the D3
1 theoretical rate curves do not displa

very deep minima. This is simply due to the fact that we us
a larger value ofE' for the D3

1 theoretical curves than fo
the H3

1 ion. Finally, as was found for the H3
1 ion, the

calculated and experimental curves differ significantly at
ergies above 0.4 eV.

X. SUMMARY AND CONCLUSIONS

In conclusion, we summarize a number of key issues
have emerged from the present study. These are give
follows.

~1! For many years theory failed to explain the relative
high rate of dissociative recombination of H3

1 with elec-
trons. Theory predicted the rate to be lower by several ord
of magnitude that the experiments regarded generally as
most reliable. We have shown that the Jahn-Teller coupl
previously neglected in theoretical studies, plays a cru
role in the process and generates a relatively high rate.

FIG. 11. Comparison of calculated~solid and dashed lines! and
experimental~circles and triangles! rates of dissociative recombina
tion for D3

1 . All rates are shown as functions of the parallel ele
tron energyEi . The experimental data from the experiment
Larssonet al. @73# ~triangles! should be compared with the theore
ical rate ~solid line! calculated for the stated experimental con
tions. The second experimental data by Tanabeet al. @64# ~circles!
should be compared with theoretical rate represented by the da
line.
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theoretical DR rate is in good agreement with the stora
ring experiments@62,63,66#. There are still regions of dis
agreement, although they are far smaller than in previ
theoretical studies. The main disagreement with the exp
ment is the presence of pronounced resonances in the t
retical rate. The experimental rate exhibits some resonan
too, but they are less numerous and shallower than the
oretical resonances. Hopefully, future studies will clarify t
origin of this discrepancy. The thermally averaged rate d
not manifest any resonances, in either the theory or the
periment. The agreement between theory and the stor
ring experiments for the thermally averaged rate is good
temperatures larger than 30 K. Below this temperature,
oretical and experimental results diverge. One possible
son for the low-temperature disagreement might be the
that the experimental rate for low temperatures should
considered as extrapolated. Our treatment has allowed u
calculate the rate of D3

1 dissociative recombination as wel
For D3

1 , we have obtained even better agreement w
storage-ring experiments@64,73#. Although theory predicts
the presence of resonances for D3

1 too, these resonances a
not as deep as for H3

1 . The experiments with D3
1 exhibit

no resonance at all below 2 eV incident electron ener
perhaps because these experiments have been perfo
with presumably hot rotational ions.

~2! Besides neglecting the Jahn-Teller effect, the previo
theoretical studies did not consider the full treatment
three-dimensional vibrational dynamics of H3

1 . In the
present treatment, we have considered the complete th
dimensional vibrational dynamics. It turns out that inclusi
of all three vibrational degrees of freedom is essential
account properly for the nonadiabatic electron-nuclear c
pling. In H3, this coupling is described in terms of Jah
Teller parameters: electronic and nuclear motions
strongly coupled through theE vibrational and electronic
states. TheE vibrational states involve motion at least in th
two-dimensional space: the space of two hyperangles in
case. A third coordinate, namely, the hyperradius, is nec
sary to represent dissociation. Therefore, we surmise that
reduced-dimension approach will struggle to describe
H3

1 DR process.
~3! To the best of our knowledge, this is the first meth

able to treat DR in triatomic molecules including all the d
grees of freedom of the electron-ion complex. The meth
treats the electron-ion interaction, including all vibration
and rotational motions of the ion. It accounts for all symm
try restrictions, including rotational, vibrational, and nuclea
spin symmetries. We should point out that the inclusion
nuclear-spin symmetries gives improved agreement with
periment, but it is not as crucial as the inclusion of Jah
Teller physics. The results shown in Fig. 8 for individu
symmetries suggest that it is proper to test the actual r
brational H3

1 distribution inside the storage ring, while th
electron beam is on.

~4! The method described in this work was developed
H3

1 DR, but it can be used for some other similar system
For other molecules ofD3h symmetry, such as the NH3

1

molecule, the method can be applied with appropri

-

ed
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changes. The main modifications should be in the ionic
brational potential and in the quantum-defect paramet
The method can be modified to treat DR in linear molecu
as well. We also stress that processes besides dissoc
recombination can be treated. We have applied it to inter
photoabsorption and photoionization experiments with
H3 molecule@47,61#, but those results will be discussed in
subsequent paper.

Although this study presents the progress in the con
versial problem of DR in H3

1 , there are still some interes
ing issues. At present, the main problem is a disagreem
between the H3

1 DR rates in storage-ring experiments and
recent experiments by Glosı´k et al. @70,74–76# a stationary
afterglow plasma. The results of Glosı´k and co-workers sug
gest that the rate is at least 20 times smaller than in
storage-ring experiments. They have also found a strong
pendence of the DR rate on the concentration of H2 mol-
i-

ns

. A

t

ev

01270
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ecules. At high H2 densities, the afterglow plasma expe
ments give DR rate in good agreement with the storage-
experiments and with the present calculations for H3

1 and
D3

1 . At low H2 densities, the DR rate in the afterglo
plasma experiments is diminishing to very low values. T
dependence has not yet been explained in the framewor
the present theoretical approach.
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Österdahl, and M. Larsson, Nature~London! 422, 500 ~2003!.

@67# T.R. Geballe, Philos. Trans. R. Soc. London, Ser. A358, 2503
~2000!.

@68# L.H. Andersen and J. Bolko, Phys. Rev. A42, 1184~1990!.
@69# H. Kreckel, S. Krohn, L. Lammich, M. Lange, J. Levin, M

Scheffel, D. Schwalm, J. Tennyson, Z. Vager, R. Wester,
Wolf, and D. Zajfman, Phys. Rev. A66, 052509~2002!.

@70# J. Glosı´k, R. Plasıˇ l, V. Poterya, P. Kurdna, and M. Tichy´,
Chem. Phys. Lett.331, 209 ~2000!.

@71# S. Laube´, A. Le Padellec, O. Sidko, C. Rebrion-Rowe, J.B.
Mitchell, and B.R. Rowe, J. Phys. B31, 2111~1998!.

@72# T. Gougousi, R. Johnsen, and M.F. Golde, Int. J. Mass. Sp
trom. 150, 131 ~1995!.

@73# M. Larsson, H. Danared, A. Larson, A. Le Padellec, J.R. Pe
son, S. Rosen, J. Semaniak, and C. Stro¨mholm, Phys. Rev.
Lett. 79, 395 ~1997!.

@74# J. Glosı´k, R. Plasıˇ l, V. Poterya, P. Kurdna, M. Tichy´, and A.
Pysanenko, J. Phys. B34, L485 ~2001!.

@75# R. Plasıˇl, J. Glosı´k, V. Poterya, P. Kurdna, J. Rusz, M. Tichy´,
and A. Pysanenko, Int. J. Mass. Spectrom.218, 105 ~2002!.

@76# V. Poterya, J. Glosı´k, R. Plasıˇl, M. Tichý, P. Kudrna, and A.
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