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The dissociative recombination of anyHion after it is struck by a low-energy electron is important for
understanding observations of Hin diffuse interstellar clouds. At the same time, it is the simplest triatomic
ion and for this reason its theoretical description can serve as a prototype for other polyatomic ions. Mean-
while, experimental determinations of the recombination rate have varied widely, which has resulted in some
controversy and confusion. Until recently, it seemed unlikely that this problem could be resolved by theoretical
studies because the mechanism gf Hlissociative recombination remained unclear. A recent study, however
[Kokooulineet al., Nature(London 412, 891(2001)], provided evidence that the inclusion of the Jahn-Teller
coupling can produce a dissociative recombination rate that overlaps the range of experimental observations.
Here, we propose a theoretical description of the coupling between nuclear and electronic degrees of freedom
in a polyatomic molecule, which describes the competition between autoionization and predissociation of the
Rydberg states formed after an incident electron is captured. The method treats the vibrational and rotational
excitations of the ion, accounts for all symmetry restrictions imposed by the geometry of the molecule,
including vibrational, rotational, and electronic and nuclear-spin symmetries. The framework combines the
multichannel quantum-defect theory, the adiabatic hyperspherical approach, and the techniques of outgoing-
wave Siegert pseudostates. The proposed method can be applied to studies of dissociative recombination of
other triatomic ions, including all the degrees of freedom quantum mechanically. Our calculations of the cross
section and the recombination rate confirm that the Jahn-Teller effect is responsible for the large gdte in H
Theoretical results for dissociative recombination qf Hare in agreement with storage-ring experiments.
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[. INTRODUCTION we will provide evidence that the approximations introduced

are physically sensible and mathematically tractable. The

Over the past two decades, the process of dissociativeresent study is meant to be fully self-contained, which has

recombination(DR) required a much lengthier presentation than the preliminary
account discussed in RgfL6].

The problems that have hindered a full description of DR

. N .
of the triatomic hydrogen ion i has attracted extensive in H3™ to date can be gummanzed as.follo.ws.
attention from both experiment and theory. This process is of (1) In contrast to diatomics, the vibrational degrees of
practical importance in astrophysics because the ion acts ad&€dom have three dimensions. This alone has proved to be
proton donor in chemical reactions that occur in interstella@ Significant barrier, since essentially all previous theories
clouds. It is also important because it is the simplest tri-nave been forced to treat the vibrational degrees of freedom
atomic ion, and it consequently serves as a key meeting poiftith models of reduced dimensionality.
for theoretical and experimental efforts to understand poly- (2) Partly as a corollary of problenil), symmetry-
atomic DR processes. We refer the reader to a number direaking Jahn-Teller effects have not been treated, even
recent review paper$l—6] that summarize the ongoing though evidence existed fromgHphotoabsorption studies
problems which have arisen from seemingly contradictory{17,18 that the Jahn-Teller mechanism provided the conduit
studies of dissociative recombination in this species. for the strongest coupling between electronic and vibrational
The goal of the present study is to describe a theoreticalegrees of freedom.
method that can describe DR in triatomic molecules, includ- (3) The lone dissociative electronic surfaces @f which
ing the full, three-dimensional motion of the rotating, vibrat- are energetically accessible at low-energy fail to cross the
ing, and dissociating nuclei. The recognition that the Jahnground-state ionic potential surface, which was believed in
Teller coupling controls the interaction between the incidenthe past to result in very low DR rates. This makes it even
electron and the vibratingﬁ nuclei has stimulated our ef- more important to develop a theoretical method that can cor-
fects in developing this method. We have attempted to makeectly describe indirect recombination via intermediate Ryd-
the theoretical description as robust and reliable as théerg state pathways. The importance of the intermediate Ry-
present-day description of dissociative recombination in di-dberg states for 5§ DR was suggested in recent theoretical
atomic molecule$7-15). A reader well versed in DR theory studies on predissociation of;Htateg4,19-21.
may find our approach unconventional, because we combine (4) For the techniques most successful in treating the
disparate theoretical elements that have not been used in théemplicated Rydberg state interactions, namely, those of
particular combination before. Accordingly, along the way multichannel quantum-defect theatylQDT), it is still chal-

Hy"+e —Hy+H or H+H+H (1)
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lenging to incorporate dissociative channels. This is the case
even though there has been a significant progress along these
lines, mostly through the work of Jungé¢f,11,13-1% and
Suzor-Weinef7-9].

(5) Rotational degrees of freedom, almost always ne-
glected in DR calculations, even for diatomics, could play a
significant role in H* . Rotation could be important because

\

DR is thought to hinge on the time reverse of o N
autoionization—the capture of an incident electron into a % 1‘:1 :

. . . . s .-.\\::\\ =
Rydberg state—and because rotational autoionization pro- & \;;\~
vides the broadest autoionization widths observed to date in \\\\Q\\\
H; Rydberg states. NN

Our approach to deal with these five problems combines -

theoretical elements that have not previously been unified. To
be specific, hyperspherical coordinate techniques have been
applied with increasing frequency and success in recent years i
[22—-27] to describe vibrational excitations and two-body or : I : I :

three-body dissociation of triatomics. Yet the application of ds . , - :
hyperspherical methods to describe the coupling between an Hyperradius (a.u.)

incident electron and the vibrational or dissociative degrees F|G. 1. The problem of DR of k" in the hyperspherical adia-

of freedom has apparently not been considered previouslyatic approximation. The lowest hyperspherical adiabatic potential
We show that it can be carried out, and that it permits athick full line) of the H;* and number of hyperspherical adiabatic
natural inclusion of the Jahn-Teller coupling. Our detailedpotentials of the neutral molecuthin lines. Lower family of lines
calculations confirm that the dissociative recombination of(darker lines dissociate to the k#H channel; the upper family
|_|34r is controlled by the Jahn-Teller mechanism, in agree(Iighter lineg dissociate to the HH+H channel. To calculate hy-
ment with a recent suggestion and estinf2@. Finally, we perspherical adiabatic curves we used _the three-dimensiogial H
adapt a recently proposed methfB] that utilizes vibra- pgtentlal from Ref.[48] and the I—g potential _fror_n Refs[35-37.
tional channel functions obeying Siegert pseudostate bound®nc€ the density of hyperspherical states is high, only every tenth
ary conditions to describe the nonperturbative coupling bet's Potential curve is shown in the figure. The dashed line shows the
tween ionization and dissociation channels. position of the ground vibrational level of the ion, which is the only

. e . lated in th I t i ts.
The theoretical description of the DR process ig Hs one populated in the relevant expenments

complicated by several factors. The only possible dissociatese techniques inapplicable to td," collision. This is
tive channels in the energy range of interest are associatesbcause a crucial factor of these techniques is the existence
with the ground electronic state of the neutral triatomic mol-of only one adiabatic coordinate, namely, the internuclear
ecule. The potential surface of this state does not cross thdistance.
ionic potential surface. The resulting small overlap of the In this situation the hyperspherical adiabatic approach
neutral and ionic nuclear wave functions would suggest §32], applied extensively to triatomic systems during the last
relatively slow DR rate, inconsistent with the fast dissocia-decadd 23,33,34, seems well suited to fit DR ofH into
tion observed in storage-ring experiments. Another complithe familiar framework of dissociative recombination of di-
cation results from the necessity to treat three-dimensionatomic ions. In our treatment the only adiabatic vibrational
vibrational dynamics of the ion and the neutral molecule.coordinate is the hyperradius. To demonstrate the simplicity
Moreover, one should include many coupled potential surand the similarity of the problem to the diatomic case, Fig. 1
faces corresponding to the;H+e~ system with various presents the lowest hyperspherical adiabatic potential of
Rydberg states of the neutral molecule. Finally, the rotatioH; ", and a number of adiabatic hyperspherical potential
of the ion should be included in order to try to understand thecurves of the neutral molecul€The neutral curves are cal-
disagreements among different experiments, where rotatioeulated using theab initio three-dimensional k potential
may or may not play a key role. from Refs.[35—37.) The dashed line shows the position of
A number of techniques have been developed to treat dighe ground vibrational level of the ion, which is the only
sociative recombination of a diatomic molecule. Whereas divibrational level populated in the relevant experiments. The
rect processes can be described using a treatment developagltral states are seen to cross the ionic potential, giving rise
by O’'Malley [30], methods that include indirect pathways to a nonzero vibrational overlap. After viewing this picture,
are primarily based on MQDT.11,13,3] MQDT applica- and after realizing that the neutral hyperspherical potential
tions have successfully described the coupling of manycurves that lie energetically above the ionic ground-state po-
coupled Rydberg, ionization, and dissociative channels, intential curve will have a nonzero imaginary part reflecting
cluding rotational excitations. MQDT has also been used tdhe possibility of autoionization occurring at that valueRyf
treat the competition between autoionization and predissosne sees that the usual O’Malley-type diatomic DR methods
ciation of Rydberg states. At first glance, however, the presean now describe DR for {1, except that the internuclear
ence of three internuclear distances instead of one rendedss-
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tance is replaced by the hyperradius. This is the crudest levéton. For this goal we use frame-transformation techniques
of approximation, adopted to estimate the “direct” DR rate [11,13,31,4Q0 In Sec. VII, we present calculations of the DR
in Ref. [28]. Even though the more accurate MQDT-basedcross section and rate. We discuss different schemes of en-
approach developed in this paper does not use tha&rgy averaging over different degrees of freedom relevant to
O’Malley-type methodology, it is still useful for qualitatively different conditions in experiments. Section VIII discusses
Visua”zing the way recombinative Capture of the e|ectronthe results. Section IX is devoted to a DR calculation for
takes p|ace_ For more Comp|ex SystemS, however, where tH%3+ . We brleﬂy discuss the similarities and the differences
level of resonance-by-resonance detail pursued in the presep@tween the 5™ and D, ions and we compare our results
study is unnecessary or unfeasible, this approximate techvith existing experimental observations. Finally, Sec. X pre-

nique may be a useful way to proceed. sents our conclusion.
The use of the hyperspherical adiabatic method signifi-
cantly simplifies the treatment but it fails to account for the Il. SYMMETRY OF THE H ;¥ ION

reason that why previous theoretical efforts were unable to ) ,
explain the large DR rate observed in storage-ring experi- Although the symmetry of the 41 ion has been discussed

ments. A resolution of this discrepancy requires understand'@1y times(see% fo; examt?l?, thehworkbc.)ffl?junke.r and
ing the role of the Jahn-Teller effect in the electrogffH Jenserj41] or Re_.[4 ]), we believe that a brie gscrlptlon
coupling[28]. The full ab initio inclusion of this Jahn-Teller .Of the symmetry issues related to the' problem will be useful

. ' . . in order to make the following theoretical development more
coupling, through an extension of the work of Staib and

; self-contained.
Domcke [.38’39] and of Stephens and Greeft7,1§ is a The total Hamiltonian of B commutes with all opera-
second vital element of our treatment.

Our previous papdr28] estimated lower and upper limits E!on.s [4:].tltransflattr|]on_of th(; 'OP along a ?page'f'@d d|re.c-
for dissociative recombination of the rotationless ion. Thet'i?n’ r?] "’t‘r:on Ot eflon a OlfJ tha §pa.ce- Ixe i ‘?X'S pfassmg
lower limit assumes that only direct paths to dissociation rougnh the center of mass of the ion, permu ation ot space
contribute to the DR rate, because all Rydberg states ar%nd spin coo_rdlnates_ of the electrons,_. permutation of the
assumed to autoionize back to the electron-ion complex. Th pace and spin coordlnate_s of the nuc_|e|, and inversion of the
upper limit refers to a calculation carried out under the aS_coordmates of all the particles of.thel|on through the center
sumption that electron capture into a Rydberg state resonangé mass. As a dfesu't' thg ful I—]Icamlltonlan groGu dqan be h
ultimately leads to predissociation, without any loss due '[oertten as a direct product _0 groups corresponding to the
autoionization. In the present paper, we consider the Comqbove symmetry operations:
petitive character of predissociation and autoionization once
a Rydberg state is populated. Such a competitive character
was successfully incorporated into a description of diatomic
molecules in studies by Giusf7] and by Jungen and co- WhereGr is the symmetry group of pure translations of the
workers[10,13—15, but it has never been able to describeion, K is the rotational group$'® is the group of electron
dissociative channles for triatomics. In principle, the adia-Permutation, andz“""' is the group including permutation
batic hyperspherical approximation reduces the problem o®f nuclei and total inversion. The effect and the meaning of
H3Jr DR to a modeL for Wh|Ch one of the two mentioned the translation group iS triViaI in our case. Since we Consider
approaches—that of Jungen or Giusti—can be applied. Howenly the singlet electronic ground stats®lof the ion, the
ever, because of a large number of hyperspherical channef@perations of electron permutation are also trivial. Thus, we
such an approach is difficult to implement in the preseng€onsider here only the symmetry operations associated with
problem. Having initially attempted to use Giusti's approach,the product of the following two groups:
we have finally chosen to employ a different approach for the
description of the competition between ionization and disso- Gi=K®GCNP!, 3
ciation[29].

The paper is organized as follows. In the following sec- The complete nuclear permutation-inversigg€NPI)
tion, we review the relevant symmetry properties of the H group of H;* is D3,(M) and it includes 12 elemenfi41,42.
ion. We consider transformations of rotational, vibrational,For the lower excited rovibrational states ofH the rota-
and nuclear-spin wave functions of the ion under operationgional and vibrational motions remain uncoupled. The inter-
from the symmetry group of i . Section Ill is devoted to a action of the nuclear spin with spatial motion is known to be
discussion of the Jahn-Teller coupling iy H Section IV very weak. Therefore, every operati6hfrom D, (M) can
describes the way vibrational motion of,His incorporated be cast as a product of three operations: nuclear-spin permu-
into the present approach. We use the adiabatic hypersphetation P, a rotationR, and a permutation of spatial dis-
cal approach to handle vibrational dynamics of the three nuplacements of nuclei from the symmetric configuratiBeg,:
clei. Section V describes the treatment of dissociative chand=O(1)O(R)O(Q). Table | summarizes the relations be-
nels. The treatment employs outgoing Siegert states in theveen O and O(1)O(R)O(Q) for all the elements of the
dissociative channels. In Sec. VI, we construct the total wav® (M) group[41,42.
function of the H"+e~ complex and calculate the total ~ The total wave functiond{**Y™ of the ion can thus be

scattering matrix for collisions between the ion and the elecrepresented as a product of three parts,

Giu=GroK2S® e GENP! 2)
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TABLE 1. This table demonstrates the effect of operations fromof the ion are specified by the triad of quantum numbers
the CNPI group of H*, Dg,(M) group. EveryD4,(M) operation vl,vlzz. The quantum number; describes the symmetric
is recast as a product of three operations acting as elemeft3 of o0y mode, which of course preserves the equilateral con-
the molecular point grou@®sy,, (2) the molecular rotation group figuration (C ’) of the ion. The value ob - indicates the
(equivalent rotations and (3) nuclear-spin permutation group;. b f 3v tri d.' | vibrati | 2 ta. Einallv. th
For the elements of equivalent rotation, we adopt the notation oftUMmDbEr of asymmetric radial vibrational quanta. Finaily, the
quantum numbel, measures the angular momentum about

Bunker and Jensed1], whereRS means a rotation through angle h . is of th | | d by vib
« about the axisa. Elementsp; of the nuclear-spin permutation '€ Main symmetry axis of the molecule, generated by vibra-

group$S, act just as ordinary permutations of the nuclear-spin pro-ion [44]. I can have values vy, —v,+2, ... vo—2p,.
jections (n=+1/2) on the molecule-fixed axs We choose mo- The significance of negative is that for states with,
lecular coordinate axes as shown in Fig. 3. Only six elements of thez 3k (here and belowk is an arbitrary integer numberthe
D3n(M) group are shown in the table. The remaining six operationgyajr of functions |vl,v;|2), |vl,v|22> correspond to two

are obtained from those already specified. states with opposite senses of vibrational rotation. Both

*I . -~ . .
Dan(M): E (123 (12 E* (123F (12 lvg,v, 2) with I2f3k have the same V|prat|onal energy and
- transform according to the two-dimensioatepresentation
Point groupDa, EO (233/3 Cy oy Cgtfg o, of the vibrational subgroup dD, [41]. The states witH,
Equivalent rotation RO R™ RO R R Ry =0 are always ofA; symmetry. The states with =3k, but

Nuclear-spin permutationpy  p1s P12 Po  Pi2s P12 I,#+0, can be ofA; or A, symmetry. In order to avoid intro-
duction of one more index distinguishing the or A, states
with 1,=3k, 1,#0, we give a positivél, number toA,
states, and a negative oneAg states. With this convention
aboutl, labels, the effect of the symmetry operations of the
Here a,B,y are the three Euler angles defining the orienta-ibrational function are specified in Table I1l. We would like
tion of the molecule-fixed axis with respect to the space+to note that actual values of, andl, are not used in our
fixed coordinate systemQ is the triad of coordinates de- treatment. We need to know only properties of a given vibra-
scribing internuclear distances. Our goal is to construct théional function with respect to permutation operations, i.e.,
elements of the product on the right-hand side of @gand  we need to know only what is the symmetry of the function.
to determine how these products transform under the symvioreover, the indices, andl, are becoming very approxi-
metry operations oD 3,(M). mate for higher vibrational excitations. In contrast, the sym-
The rotational partbg(«,,y) of the total wave function metry of the vibrational function can always be identified.
for the H; ™ is taken to be a symmetric top wave function, in  In the present treatment, the mutual phase of degenerate
our level of approximation(This should be adequate at com- stateivl,u'f) with I, 3K is handled with slight differences

paratively small internuclear distances where we anticipat, 1 the convention of Ref$44,45. This is done to obtain
the capture process occurs, and where the pathway is chosgf ational wave functions that transform exactly as

between preionization and predissociatjon. IN*,K*,m") under operations fronDs,(M). Transforma-
tions oflvl,v'zz) with the present choice of phases is given
by Table Ill. Using the present convention, the Hougen quan-

(I)tn‘sym:q)l’R’(a’!Bv 'Y)q)v( Q) (4)

R(a,B,y)=IN",K*",m")

+ 12 tum number{44,45 is g=k+1,.
2NT+1 Nt . . S
=l——| [Dp:g+(a;B]*. (5 The third part of the total ionic wave function is the
87 ' nuclear-spin wave function. It is constructed in the following

way. Every proton in the ion can be in one of the two
Table Il gives the transformations of the rotational functionnuclear-spin states
under elements of the rotational subgroupof,(M). The
phase of the Wigner function is chosen as by Varshalovich a=|i=3,m=3)
et al. in Ref.[43].

Vibrational wave functions or

— I .
O (Q)=|vi,v7) (6) B=li=im=-1) )
TABLE II. Transformations of the rotational symmetric-top wave functinii ,K*,m*) under elements
of theD5,(M) group. Since the quantum numb&$ andm™* are not affected by the operations, they are not
specified in the result. All transformations, here and throughout this paper, are passive. In this table and

below, w=€"3,
Equivalent rotationDg: R° R2™3 RT R” R, ™ R?
O(R)INT,KT,m™) K™Y 2K Ky (~1)N[=KT) (1)K [KT) 0 X [KF) (~)N K| —K™)
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TABLE lll. Transformations of the vibrational wave functidnl,v'22> under elements of thB sy, point
group. Since vibrations of 4 always occur within the plane, the vibrational functi¢0§,v'22) transform as
elements of th€,, subgroup of thé® 3, point group,D3,= 0,® C3, . Therefore, the operation, leaves the
vibrational states unchanged. In the table, the insleis 1 for all states exceph, states, for which it is
—1. The index ;=1, for all states withl,=0 (mod 3), and;=—1, for |,=1,2 (mod 3).

Point groupDgy, : E C, C, oh Csop o,
| | | ’ | | '
O(Qlv1,v7) o) 0Mlvid) syl ored) @®Horvd)  gluy o)
wherei is the spin of proton andy; is its projection on the plqulE :cp'E ,
a a

molecular symmetry axiszj. The primitive nuclear-spin

wave function is constructed as a product of the individual L |
spin states for each proton. Each spin wave function of the pqu)Eb_ _(I)Eb'
three nuclei must be a linear combination of the following:

1 V3
|aaa), P123(D:5a:_§q3:56—7q):5b,
laap).|apa).|Baa), B 1
P123PE = 7(I)Ea_ §¢Eb- (10

|BBa),|BaB).|aBB),
BBB). ®) tior|1:s(,):r the product of Eq(4) we need the following func-

The ordering of substates within each ket is important in Egs.
(8). Our convention is that the first position in each product
corresponds to the state of proton number 1 in Fig. 3, the
second position is that of proton 2, and the third position is Do(M=1/2) = Dp(M=1/2),

that of proton 3. From these combinations we want to con-

struct nuclear-spin wave functions that transform in the same ~ ®%(M=1/2)= q):Ea(M =1/2)*i ‘DIEb(M =1/2). (11
way as the vibrational and rotational wave functions deter-

mined above. Since permutations of the three protons constjt can be shown that statgg:)(M =3/2) and q;{)(M =1/2)
tute a reducible representation of tBg permutation group, are states with the total nuclear-spin 3/2 (ortho statesand
we proceed in the standard way. Specifically, we constructatesd', , (M= 1/2) have nuclear-spih=1/2 (para states
the A andE spin irreducible representations, which transformyye will be referring uniformly to the states of E¢L1) as

as follows under permutations: @, , whereg;=0 or =1. Thus, these states are character-

(M =3/2)=|aaa) ized by two quantum numbetsandM, . The third quantum

A ' numberg, is determined by.
1 Using Egs.(9), (11), and (10) we determine transforma-
I _ _ tions of stateg11) under the nuclear permutations. The re-
= =— + +
PaM=12) \/§(|aaﬂ> |aBe)+]paa)), sults are summarized in Table IV.

Having established the transformation properties of each

Dy(M=3/2)=D)\(M=3/2),

1 individual part of the product wave function in E(f), we
@'E (M=1/2)= —(2|aaB)—|aBa)—|Baa)), next consider transformations of the whole product. Consider
é V6 again operation$l2) and(123),
1 (123)q)tr1.sym: w2(K++I2+g|)q){1.sym,
P (M=1/2)= E(Iaﬁa%lﬁaa»- 9
(12D MK, 12,0)=(~ DNV 8, @0V (—K™ 15, ~g).

In the same way, functiond and E are constructed foM (12
=—3/2 andM =—1/2. The functionsb}, are totally sym- _ _
metric under all permutationsA( representation By direct TABLE IV. Transformations of the nuclear-spin states under

application of the transformation matrices of tBg opera- ~ uclear permutations.
tions, one can verify that these combinations transform under | _ i
nuclear permutations according to tAeand E irreducible  \uclear-spin permutatiod(1) Po P123 P12
representations. For instance, the operatid® and (123 OL oy 00y DL
act ond¢ functions as the following:
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In the second equation, the quantum numbéts |,, and

g, are explicitly specified because they are changedlBy.
Since the total ionic eigenfunction should be antisymmetric
under(12) we determined,,

1
q)t:_z[cbtnlsyntK*—!lngl)

%

—(— DN @MY K" 15, —g)]. (13

The condition of antisymmetry undéi2) is explicitly en-
forced. The wave function must be totally antisymmetric un-
der all such binary permutations, which is possible onf¥ jf
transforms according to either tig or A7 representation of

the Dg,(M) group. This requires thatw?® +l2ta)=1

which can be interpreted a&=23k, where G=K'+I,
+g, . The parity of the total state, which is determined as the

tra.lnsforma'ﬂonal property under tHe* opfr_atlon, is deter-  ;ordinateQ, (upper schemedescribes the symmetric stretch of
mined byK™: the parity is even or odd 46" is even orodd, the molecule. The lower pai®, and Q, represents the doubly
respectively. degenerate asymmetric stretch mode: oscillations a@pgndQ,

We next consider in detail the ortho nuclear-spin statespave the same frequencies. An alternative doubly degeneratg, pair
For ortho ( =3/2) statesg,=0 and the nuclear-spin factors ¢ can be represented by simultaneous rotation of all six vectors
are identical for both components of the sum in Ef3).  shown in the two lower schemes, withbeing the angle of rotation
Consequently, a simplified expression results, namely, (phase andp being the length of the vectotamplitude of oscilla-
tions). The motion along the anglé with fixed p produces an
effective angular momentum generated by vibration.

FIG. 2. Normal vibrational coordinates of the;Hion. The

1
<I>{”=—2[|N*,K*,m*>|v1,v';>

%

~ (DN SN, —KF Moy 0 D] (14)

A. Vibrational symmetry coordinates

Apart from translations and rotations there are three vi-
brational degrees of freedom®. In this section, we use
conventional vibrational symmetry coordinatesQ

Only states withG=3k are allowed.G is reduced now to = (Q1:Qx,Qy) [47],

G=K™'+1, that coincides the Hougen quantum numiger 1
[44] for 1=3/2. Note that for the ground vibrational state Q,=f—=(Ar;+Ar,+Ary),
(v1,v2,1,)=0, the rotational leveN™ , K™ =0 does not ex- 3
ist since®;"=0. The total symmetry of the stateAs, or A
depending on whethdf " is even or odd. 1
For para states, the nuclear-spin part of the wave function Q=f—=(2Ar3—Ar,—Ary),
cannot be factored out. The lowest ortho levels are 3
A{00°}(10) andA,{00}(33), whereas the lowest para lev-
els areA;{00°}(22) andA}{00°}(11). Qy="f(Ary—Ary), (15)

where f=2.639 255 bohr! is a constant. The coordinates
Ari=r;—r s describe displacements of the nuclei from the

The Jahn-Teller coupling is a generic non-Born-e€quilibrium geometry that occurs whem=rp=rz=rp;
Oppenheimer effect in polyatomic molecules havihg, or = 1.6504 bohr,r_i representing the distance betV\_/een nuglei
higher total symmetry46]. Basically, there are two degen- @ndk (no two indicesi, j, andk are equal We introduce
erate electronic states at the equilateral geometry of nuclé@nother set of vibrational coordinate®{, p, and ¢),
(Cs, nuclear symmetiy For any distortion away from this €hanging the pairQ,, Q,) into the pair p, ¢):
symmetry, the electronic degeneracy is split and the elec-
tronic states acquire different energies. This is the Jahn- Qx=pcosg, Qy=psing. (16)
Teller effect. When theD4;, molecule vibrates, the Jahn-

Teller effect couples the nuclear and electronic degrees ofhe coordinateQ, describes the symmetric stretch of the
freedom of the molecule. This section discusses the rolenolecule, whereas the pai@(, Q,) or alternatively the pair
played by the Jahn-Teller effect in dynamical processes in¢p, ¢) describe bends and the asymmetric stretch. Figure 2
volving the H; molecule. indicates these three vibrational coordinates.

Ill. THE JAHN-TELLER EFFECT FOR H ;
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FIG. 3. The figure demonstrates the symmetry of the electronic
2p functions in the body frame of J. We plot the probability
density of two componentp, and p, in polar coordinates as a
function of anglep’. The third componenp, would be along th&
axis, which is perpendicular to the plane of the molecule. By plus 3
and minus signs we specify the phasepgfand p, components.
From the figure it is clear that thg, andp, components are trans-
formed according tcE representation under operations from the
Dy, group. Thep, componenialong theX axis) can be associated
with an E, function, and thep, (along theY axis) component is
associated with ak, function. For comparison, see the vibrational
functions of theE symmetry in Fig. 7. Thep, component(not
shown transforms according to th&; irreducible representation.
For the complete picture, one has to specify the parity of three
components with respect to reflection through ¥ plane. All p
electronic wave functions are antisymmetric with respect to thi
operation, so the complete notation for the functiong'isand A7 .
We mention also that the componeng and p, are related to
spherical harmomic¥,; andY; _; in a similar way as the vibra-
tional functionsE, and E,, are related tdvlzz) and|v2_'2> states of
Egs.(25).

FIG. 4. The figure demonstrates how the Jahn-Teller effect pro-
Juces a high rate of dissociative recombination. Ope potential
surface and two g potential surfacep47] of the neutral molecule
are shown. The conical intersection is produced by Jahn-Teller cou-
pling. When an electron arrives, it scatters first into a low-lying
vibrationally excited Rydberg statgd1'}. Then, after the nuclei
vibrate, the system finds its way with high probability into p2
state having high vibrational excitation, near the point of conical
intersection. The contour plot at the bottom of the figure represents

As was mentioned above, the ion can exist in eitheAan  the lowest D, surface. All three potential surfaces are shown in
or AZ state, while the total nuclear-spin can either be the reduced 2D space of dimensionless normal coordinates. The
=3/2 (ortho) or I =1/2 (para. We limit our treatment of §f"  coordinates used here are the normal asymmeXic Q, coordi-
DR to thep-wave component of the incident-electron wave hate, withp and ¢ their polar componentl7,18. The third vibra-
function. In the moleculafbody) frame, the electron can tional coordma_lte—the symmetric stretch coordin@e—is kept
exist in one of the thre@p substates. In our treatment we constant for this graph.

choose the body-framez axis to coincide with the p_ symmetry is lifted and the two states are coupled. Di-

symmetric-top axis. Thexpo and np7 electronic states agonalization of the 22 Longuet-Higgins Hamiltonian

transform according to tha] andE” irreducible representa- vyields two different electronic potential surfaces of that

tions of theD3,(M) permutation group. This is schemati- are functions of the three vibrational coordina@@s, p, and

cally depicted in Fig. 3. Orbita is symmetric under thél2) . These two surfaces are energetically degenerate only at

permutation, and can be represented only throbgleigen-  p=0. Figure 4 shows thef@r and 2o potential surfaces of

states ofD3;,, whereas orbitab is antisymmetric and is rep- H; as functions of the paiQ,, Q, (p,¢) coordinates for

resented througky] eigenstates. The orbitplr is not shown fixed a symmetric stretch coordinaf® =0. These potential

in the figure. It is symmetric with respect to all permutationssurfaces are calculated using quantum-defect parameters

in the xy plane, and antisymmetric under reflection throughfrom Ref.[47]. At the bottom of the figure are the potential-

this plane, which is ther, operation. energy contours for the lowest stat@2, which has three

local potential minima when the symmetric stretch coordi-

nateQ, is clamped. The two highest statep® and 2o,

have only one minimum. The splitting between the twon2
According to group theory for thB 5, symmetry, for any  states derives from the Jahn-Teller coupling. For comparison,

principal quantum numbar, two np electronic substates ex- Fig. 5 displays the potential surfaces fop 3tates atQ,

ist in theH; molecule that transform according B sym-  =0. Here, the three minima of thep3r, state are situated

metry. They have the same energy at any equilateral geonmuch closer to the poini=0. These and all higher Rydberg

etry of the three nuclei. Once this geometry is distorted, thestates of the molecule represent closed dissociation channels

B. Jahn-Teller coupling for the npar states of H;
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FIG. 5. Potential surfaces ofp3r and 3o of H3 molecule. The

dimensionless normal coordinates are the same as in Fig. 4. The
and higher Rydbergp states play an important role in the process

of dissociative recombination. Once the systegi He ™ is recom-
bined, the dissociation occurs via intermediate, mambyr, Ryd-
berg states, ending on the@2 repulsive potential. Then the three-
atomic molecule drives to the disintegration op+H or H+H
+H fragments.

in the low-energy region that is our present focus. Howeverf
these play a vital indirect role as an intermediate pathwa¥
that ultimately leads to dissociative recombination. During a
collision, the electron is captured into an excited Rydber
state, which is attached, most likely, to a doubly degenerat?
E vibrational state. Once the capture occurs, the systerﬁ
nonadiabatically transfers into lower Rydberg states. The de-
scent transfers energy into the vibrational motion of the nu

clei. Upon reaching the lowest Rydberg stat@s72 the sys-
tem dissociates.

The mechanism of such a descent was proposed and dis-

cussed previously by Schneidetral.[4,19]. Although these

PHYSICAL REVIEW A68, 012703 (2003

e (I=1A)+H (Q—e (I=1A)+H " (Q) (17)

with the nuclei clamped. In fact, the electron scatters from
one irreducible representatioh to anotherA’, while the
nuclei do not have time to move. Therefore, Efj7) de-
scribes the short-range ;H+e~ collision in the Born-
Oppenheimer approximation, where nuclear degrees of free-
dom are not yet coupled to the electronic degrees of freedom.
The scattering matrix includes the Jahn-Teller coupling. In-
stead ofSwe use the reaction matrKi’A,(Q) in the form
proposed by Staib and Domck&9]. For np states it has the
form [17,18,39

K A /(Q)
KO,O K0,1 KO,fl
= K1,0 Kl,l Kl,fl
Kogo Kogn Kogog
tarf muy—o( Q)] 0 0
= 0 S5p? Npexpio) |,
0 Ap exp(—ig) 8p?
(18)

where u, -, 6, and\ are quantum-defect parameters ob-
t&ined from the difference between thk initio potentials of
H,* [48,49 and H; [47].

We would like to point out that the paramet&tand\ as
calculated in Ref[47], should be multiplied by factor 7 in
order to be used in the present treatment. The reason is that
there are two different conventions for normalizations of the
K matrix (see, for example p. 2554 of R¢&0]), differing by
the factor of—7r. This difference in the conventions is re-
lected by the values of the parametgrs_,, J, N. Unfor-
unately, in Refs[18,47), § and\ were extracted fronab
initio calculations implying one convention, but they were
sed in theK matrix as if they were in the other convention.
h our previous work, Ref(28] we have used and\ from
ef.[47] without realizing this incompatibility. Thus, the DR
cross section estimated in RE28] should be multiplied ap-

proximately byz2 in order to account for the incompatibil-
ity.

The parametew , - varies slowly withQ. Thep-waveK
matrix written in Eq.(18) does not include the zeroth-order

; 0 0 0 0
authors did not include the Jahn-Teller coupling note that thi@hase shiftmu, =mu,(Q=0) (where u=;=pu; and uo
would hardly be possible in their approach of reduced di-=0). It can be included using the eigenvalues tgnj
mensionality becausE vibrational states cannot be properly =U'K%(Q)U of matrix (18) through the equation
represented. The importance of the intermediajéRlydberg
states for H* DR was also suggested in theoretical studies
by Tashiro and Kat$20,21. 0 .

At this step of the treatment we describe the collision of /e Usé theivlalueﬂtl=0.395, 6=—3424 cm*, and\=
an incidentp-wave electron with the ion, using the collision — 38830 cm * from Ref.[47].

K(Q)=U tar m(pm+u3)]UT. (19)

matrix Sy »/(Q), whereA is the body-frame projection of
the electron angular momentuh*=1. We neglect angular
momenta other than that pfwave for both the incident and
the scattered partial waves. TheB, ,-(Q) represents an
amplitude for the reaction

The electron-ion scattering matrix for a fixed nuclear con-
figurationQ can be written in terms of the diagonal matrix of

eigenphase shifteu using

S(Q)=Ue?m(kHDyT, (20)
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where the matrix indices specify different possible projec-
tions A of the electron angular momentuin onto the
symmetric-top axis £ axis) of the ion.
Since the parameters of th€ matrix of Eq. (18) have
been fitted toab initio potential surfaces of Hand H,*,
information about potentials ofip states of H has been R, < R, < R,
incorporated into our quantum-defect description, and they
can be represented within the Born-Oppenheimer approxi- JONE hatdi o NN
mation by T 9/
o —n ooy e o, o-o/”z.
A 4 1 MRSV § AAAAAA W
Un(Q):U (Q)— 2 - (21) AAA&‘%”A \
2vp A R RS W SV.0e €L o Dol i
en v 2 2 AN, b N SUPN
Here, the index\ distinguishes betweenpu state or one of . d”j@ﬁ&iﬁ'% o e
the twopsr states. The effective quantum number is given by TN
vno=N—pur—o. The effective quantum numbeuim12 of e "’J JERN * ~
the nprr states are calculated by diagonalizing the matrix of TN
Eq. (18). This gives - ! .

-1 2— _ 0
V”"lez( Q)=n—m arctandop = Ap) ~ pe, (22 FIG. 6. Hyperspherical coordinates for three particles. All pos-

sible configurations of the three particles can be described by a
where the integen is the principal quantum number. Equa- hyper-radiusRe[0,) and two hyperangle®e[0,7/2] and ¢
tions (21) and (22) can be used to calculate the Born- €[0,2m). The upper panel shows three configurations for three
Oppenheimer potential surfaces given in Figs. 5 and 4. Thigifferent values of the hyper-radius; both hyperangles are fixed. The

calculation adopts thab initio H;* ionic potential surface hyper-radius describes the size of the system, but it says nothing
given in Refs[48,49. about the shape of the three-particle triangle. The shape of the sys-

tem is described by the two hyperangles. The lower panel gives all

possible configurations of the three-particle triangle for all values of
IV. TREATMENT OF H ;* VIBRATIONAL DYNAMICS the hyperangles. The angleis cyclic, 8 is not. All particle permu-
USING AN ADIABATIC HYPERSPHERICAL APPROACH tations are represented by a change in the awgleThree two-

I Lo . . article permutations$l12), (23), and(13) correspond to reflections
To treat the vibrational dynamics in three dimensions, W%)mh resgect to axeaf: )_ 7(7/2) b= ;/6) and¢:p5w/6 The effect

employ the adiabatic hyper;pherlcal appro_ach. Although th'%f operationg123) and (132 corresponds to a change of the angle
method has been described several tinesg., Refs. , on 44273, Thus, the hyperspherical angles are well adapted to
[23,33,34), a number of alternative definitions exist for the gymmetry properties for a description of thg Hvibrational mo-
hyperspherical coordinates. For the sake of brevity, we limitjgn.

the present discussion to the actual formulas utilized.

In these formulas the hyperangteranges from 0 tom/2,

while the hyperangle ranges from 0 to Z, and the hyper-
Keeping aside overall rotations and translations of theadiusR extends from O tee.

system, only three internuclear distance coordinags The two hyperangles and the hyperradius are equivalent

={r,,r,,r3 are needed to describe the nuclear positions. 110 the set of three internuclear distances,(,,rz). The

this notation, for instance, is the distance between nuclei 2 hyper-radius can be viewed qualitatively as the “size coor-

and 3. We expres§ in terms of three coordinates, a hyper- dinate” of the system. At fixed values of the two hyper-

radius R and two hyperangles and ¢, which are defined angles, an increase of the hyperradius expands the size of the
here by ' system without changing its shape, as is shown in the upper

panel of Fig. 6. In contrast, changing the hyperangles at a
fixed value of the hyperradius sweeps the system through all
2w possible shapes without changing its overall size. The pos-
e+ 3 sible shapes of the triangle formed by the nuclei are shown in

the lower panel of Fig. 6, which resembles a Dalitz plot, Ref.

A. Hyperspherical coordinates

r1=3*1’4R\/1+sinasin

[51].
o A solution of the vibrational Schringer equation with an
r,=3 "R \/1+ sing sin( — _) , appropriate interaction potential in the three-dimensional hy-
3 perspherical space is equivalent to the solution in the space

of (rq,r»,rz). Instead of this, we fix the hyperraditsand
solve the Schidinger equation in the space of two hyper-

rs=3"YR\1+sindsine. (23)  anglesd and ¢,
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Hg®i(0,4;R)=U;"(R)D;(6,¢;R),

Ay v00 Apv20
A? 15
Hg=——+——+V(R,0,0). (24
2uR?  8uR?
In this equationA? is the squared “grand angular momen- | A, v33 Avd
tum” operator[24] and u=m//3 is the three-body reduced é% OQO
mass of the systemm being the atomic hydrogen mass. GO0 @\Q\
V(R,6,¢) is the molecular potential; in this case it is the
ionic potential surface of i [48,49.
We call the resulting eigenfunctiord®; (6, ¢;R) adiabatic E, vi! E, vi!
hyperspherical states and the eigenvaluggR) the adia-
batic hyperspherical potential curves. They depend para 8 @

metrically on the hyperradius. After the calculation is per-
formed at many different values of the hyperradius, we

obtain a set of hyperspherical potential curi#§(R). The E, v22 E, v22 E, v42 E, v42
lowest ionic hyperspherical curve is shown in Fig. 1. The /@ ) @\

first 200J=0 H,* hyperspherical curves are displayed in U@ Q% 05X\ (
Ref. [28]. —

B. Classification of vibrational wave functions FIG. 7. The figure gives several adiabatic vibrational wave func-

In the reduced two-dimensional space of hyperanglesjons of H,*, calculated for a fixed hyperradi®=2.2. The wave
{6,¢}, eachCg, symmetry group element is represented byfunctions are represented with contour plots as functions of the two
a corresponding transformation of hyperangles. The hypelhyperangles. The connection between the contour plots and actual
radius does not influence ai@s, operation. The vibrational configurations of the three nuclei is given in the lower panel in Fig.
channel function®;( 8, $)—hyperspherical states—can thus 6. Every contour plot is labeled with a corresponding symmetry and
be classified according to irreducible representations of thwith a triad of vibrational quantum numbés, ,v2}. The quantum
group Cg,, namely,A;, A,, or E. The representatiok is numberv, is not specified. It is linked to the number of symmetric
two dimensional, whereby it has two degenerate sthtgs stretc_:h quanta. In the a_ldiabatic_approx@mation_, the number of sym-
andE,, which can be transformed into linear combinationsmemc stretch quanta is associated with motion along the hyper-
of each other through group symmetry operations. To distinfadius.
guish between the twh states consistently, we chodsg to
be symmetric under th@ 2) operation and,, to be antisym- The vibrational states of fHare labeled by the familiar

metric. This choice oft, and E, wave functions follows  {rjaq {Ul,vlzz}, wherev, describes the symmetric stretch vi-
from Ref.[52]. When the actual vibrational Hamiltonian is

numerically diagonalized in the two-dimensional space Oibratlonal gua”t“m number and théz pair describes tW9
the hyperangle® and ¢, the resulting two degenerate wave aSymmetric modes v the quantum of the asymmetric
functions ofE symmetry typically turn out to be mixed, giv- Stretch mode and,, the vibrational angular momentymin

ing in essence combinatiof, ,= E, cosa+E, sina. In or- the adlabgtlc hyperspher_lcal app+rOX|mat|on, WhICh neglects
der to recast them as the well-defined fjr,E,, we con- the coupling between different);" (R) states having the
struct the matrixP*? of the permutation operatiofi2) inthe =~ Same symmetry, the quantum of excitation in the hyper-
basis of the two states; , and diagonalize it. The eigenstate adius is they; quantum number, while the quanta in the two
having the eigenvalue- 1 is theE, state and the eigenstate hyperangles are described by;. The indexi labeling

with the eigenvalue-1 is theE, state. ®,(6,¢) can therefore be recast a§. Figure 7 gives the
~ Figure 7 shows the first severd (6, ¢) eigenstates hav-  quantum numbers of these hyperspherical eigenfunctions.
ing different symmetries for a fixed hyper-radius & In order for all vibrational states to transform uniformly

=2.2 bohr. The wave functions are shown as contour plotgccording to Table 11l some additional transformations of the
in a polar representation of the two hyperangles. The “azi-gptained real vibrational wave functions should be per-
muthal angle” in this representation i, while the “polar  formed. TheE, and E, states, constructed in the way de-
radius” in this hyperangle space is taken to€The corre-  scribed above, transform accordingly under (a@) opera-
Sponding Configurations of the nuclei are identified on Flg 6{ion, but the mutual phase of these states has not yet been

All eigenstatesD;( ¢, ¢) and corresponding adiabatic po- specified. This phase is important for the construction of
tential curvesU;" (R) are thus classified according to one of properly symmetrized rovibrational ionic eigenstates. An ap-
the irreducible representatiods , A,, E,, or E,. Potential  propriate, consistent choice of phase is adopted through the
curvesU;" (R) associated with different irreducible represen-following procedure. We have found that our treatment is the
tations can cross, whereas potential curves of the same symimplest if we define an alternative linear combination of the
metry do not cross. two degenerat€ states,
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TABLE V. Accuracy test of the adiabatic hyperspherical ap-
proach: a comparison between several vibrational energies calcu-

PHYSICAL REVIEW A 68, 012703 (2003

V. SIEGERT PSEUDOSTATE DESCRIPTION
OF ESCAPING DISSOCIATIVE FLUX

lated in the present approach and those from a full three-

dimensional diagonalizatiof#9].

In this section, we discuss the issues involved in our de-
scription of the dissociation of the neutral moleculg tFor

Adiabatic brevity, we omit rotational quantum numbers since the rota-
| approximation  Jaquetet al. [49] tional degrees of freedom play no role in this aspect of the
Symmetry  vy,v7 (cm™1) (cm™1) theory.
A, o 0 0 The initial ionic state of H* in dissociative recombina-
A, 10° 3188 3178.15 tion experiments is the grqun@OO} vibrational state; it is
E o1t 2516 2521.20 bounc_i. On_ce the_ electron is captured by the ion, the §ystem
E 114 5554 5553.94 can dissociate, since the relevanf pbtentials are repulsive.
E 02 5001 4997.73 The fact that the system is characterized by attractive
E 122 7896 7869.82 ground-state ionic potential curves but repulsiven2 H;
E 03t 6978 7005.81 curves is evident from Fig. 1. However, the dissociation pro-
A, 03 7482 7491.89 ceeds through a number of excited Rydberg states, which are
A, 13t 10243 10 209.55 bound with respect to dissociation. While the system is in
one of the excited Rydberg states, autoionization is a com-
peting mechanism, especially in the region of configuration
space where the three atoms are close to each other. Usually,
|v|2>: i(E +HiEp) multichannel quantum-defect theory treats such a system as a
202 é ’ set of coupled vibrational states: each potential ciiosic
and neutrglgenerates a certain number of vibrational levels.
These ionic and neutral vibrational states have to be taken
0] '2 —i(E _iE,) (25 into account. The interaction between them are determined in
v, %)= 2 a~1Ep) an appropriate way7]. In order to describe the process of

where we assume thbt>0. The operatiori123) transforms
the [u;'2) wave functions as (128), '2)=e2723|y>12),
wheres=1 or —1. If we keep theE, state fixed £y, should
be multiplied by 1 or—1 to obtain the following transfor-
mations:

(123)|v;, ')y =e(=2m12R)|, 12 |,>0, (26)

dissociation, the vibrational continuum of all or certain po-
tential curves should be somehow introduced into the model.
It can be done, for example, through discretization of the
continuum [11,53 for all necessary potential curves. Al-
though this procedure can be applied in our case it requires a
lot amount of calculations, since the MQDT calculation must
be carried out for many different values of the hyper-radius.
Recently, an alternative to this discretization method was
presented29], which utilizes the recently developed Siegert
pseudostate’s formulatiofb4,55. The Siegert pseudostates
at low energies, which correspond to the ordinary discrete

in agreement with Table Ill. Finally, we multiply all vibra- spectrum of each hyperspherical potential curve, coincide to
tional functionsA, by i in order to obtain a real reaction machine precision with the ordinary bound-state vibrational
matrix K when outgoing-wave hyper-radial channel func-wave functions. In contrast, the vibrational continuum is de-
tions are real(In fact, owing to our use of outgoing-wave scribed by Siegert pseudostates that obey outgoing-wave
hyper-radial Siegert states, our reaction matrix turns out to bboundary conditions at the outermost surface. The number of

complex but symmetrig.

C. Accuracy of the adiabatic hyperspherical approximation
for Hy*

After the adiabatic hyperspherical potential cures(R)
are determined, we calculate vibrational enerdgigs by
solving the adiabatic hyperradial equation

2

Siegert pseudostates taken into account in our treatment is
limited by the energy of the highest vibrational level that can
contribute to the final DR cross section. For a limited box
size, the vibrational spectrum is discrete. Thus, the total
number of vibrational states in our treatment is finite, al-
though we include vibrational states belonging to the disso-
ciative continuum. These Siegert vibrational pseudostates are
introduced in order to permit the dissociative flux to escape
when it reaches the boundary. In familiar techniques using a
box discretized continuum obeying Dirichlet boundary con-

US(R) |4 (R=E 4 (R). (27)

ditions, this flux is reflected by the boundary artificially. Ev-
ery bound and Siegert pseudostate of every ionic potential
curve generates a Rydberg series of neutral states. The
Here{i,v}={v,,v 2} Table V compares the resulting vibra- outgoing-wave boundary conditions enforced for the ionic
tional energies determined by a full three-dimensional diagoSiegert pseudostates simulate the absorption of the dissocia-
nalization[49] with those obtained in the adiabatic hyper- tive flux of the neutral molecule. The next step of the treat-
spherical approximation. ment is the construction of the scattering matrix describing

21 9R?
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the collision of an electron with the ion. The set of ionic B. Details of numerical calculation
channels is the set of all bound and Siegert pseudostates
cglculated for every ionic potential curve. .'_rhe presence Oh‘uantum number§l ,I',N*,N}, describing the total symme-
Siegert pseudostates simulates the possibility for the syste of the H.* +E— svstem. tvpically we used 50—100 hv-

to escape from this ionic subspace, which makes the scatte Y i H Sy » typically ) -0y
ing matrix nonunitary. In fact, the physically-relevant col- perspherical p_otgnnal curves an_d 8-12 Siegert vibrational
umns of theS matrix are subunitary in the sense that the sunStaes: The grid in hyper-radius is taken from 1 a.u. to 4.5
of squares of the elements of each such columiessthan ~ &U- with 64 mesh points. The accuracy of the present calcu-
unity. Moreover, the associated difference from unitaritylation is influenced only by the number of hyperspherical
measures the probability of dissociative recombination. Thétates and Siegert states taken into account. Trial calculations
following section describes the quantitative implementatiorcarried out with larger numbers of hyperspherice80) and

In the present calculations of the DR rate, for every set of

of this procedure. vibrational (20) states for certain values ¢F,I',N*,N} sug-
gest that the convergence error of the final rate varies with
A. Siegert pseudostates in the hyperradius the electron energy but does not exceed 20%. Due to its

, ) smooth character, the thermally averaged DR rate is much
In our treatment, every hyperspherical potential cuVegss sensitive to the total number of included states, espe-

Ui"(R) possesses its own distinct set of vibrational Siegertially at higher temperatures. The total number of different
pseudostates, which are determined separately for each curggts{l .T,N*,N} taken into account in the present treatment

using the linearization procedure described by Tolstikhin o - P
et al. [54,55. These states satisfy the adiabatic hyperspheri'—s 17. The most time-consuming part of the calculation is the

cal Schiglinger equatior27), with outgoing-wave boundar repeated solution of the usual channel-elimination formula of
e gereq » With outgoing y MQDT [see Eq.44) below], which involves solution of an
conditions at some large but finite hyperradis

inhomogeneous linear system of equations of dimension up
d to 2000x 2000, at~100000 energy mesh points, for every

(ﬁ_lki,v) $i0(R)|r=g,=0. (28)  set of quantum numbers. This required0 000 CPU hours,

but far less real time because the calculation is carried out in

We normalize the Siegert pseudostates so that they obey tigrallel.
following orthonormality condition:
C. Vibrational-frame transformation using the adiabatic
i o (RO (RY) hyperspherical method with Siegert pseudostates

Ry
fo Yi.0(R)i o (RYAR ko, Our - (29) Once the Siegert pseudostates are calculated, the scatter-
b e ing matrix describing the collision of the electron with the

In our treatment, for searching the Siegert pseudostates wébrating H;" ion can be constructed. The theory of the vi-
implement the linearization procedure proposed by Tolbrational frame transformatioiil] can be used to calculate
stikhin et al.[54,55. We adopt basis splines as our representhe transition amplitudes; ;; from one vibrational state to
tation basis. Nonorthogonality of the basis splines requiresnother. In the present treatment, the composite channel in-
some simple modification of the linear eigensystem, as hadexes andi’ specify both the ionic vibrational state and the
been discussed elsewhd29]. The wave numberkﬁv and electron orbital momentum projectioh. The vibrational in-
energiest; , are linked byE; ,=k? /(2u)+D;, whereD;  dex is the triad of quantum numbevsl,,vlzz. Since we have
is e\+/aluated at the outer boundary of the hyperraditis, employed the hyperspherical adiabatic approximation, every
=Ui" (Ry). ) ) pair v'22 determines a hyperspherical curg (R), and the

For energies; , =k; ,/(2) +D; below the correspond- index v, labels the different Siegert pseudostates that lie

ing dissociation limit D;, the Siegert pseudostates are, ihin that curve. Therefore the amplitu@e., for the pro-
equivalent to the ordinary bound vibrational states. The spec ' ' plitud; P

trum of the linearization procedure of Ref&4,55 is ob- cess
tained from the complex momentum spagg,, while the
complex k; , always occur in the spectrum in pairs: if
Rek;,)>0 and ifk; , is in the spectrum;-ki, is also in the
spectrum. In the energy domain, it implies that bound states ] )
are present twice in the spectrum. Namely, if the real part ofS calculated in two steps, which parallels the two-step cal-
ki , is zero(a bound state bothk; , and—k; , present in the ~ culation of vibrational energies:

spectrum giving the same ener&yvzkﬁvl(ZMH D;. The

wave functions of the pair of conjugated states are different. R

In our treatment we need one state from the pair. From the sz,lz,A;vé,lg,A'(R):<<q’v2,lz|SA;A'(Q)|‘Dvg,lg>> - (3D
pair of conjugated statef; ,, and Ef, we keep only the

state with a negative imaginary part, which corresponds to a

decaying state. This choice implies that the real part of thédere, the double brackets imply an integration over the hy-
wave numbek; , is positive(outgoing wave perangles at a fixed valuR of the hyper-radius. The scatter-

e (A)+H; (0,00 —e (A)+Hy* (01,02) (30)
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ing matrix S(Q) as a function of nuclear geomet® was  onto the symmetric-ﬁtopaaxisaand the projectkomof the total
introduced in Eq.(20). Similarly, the second step of the angular momentunN=N*+1 onto the same axifN and|

frame transformation reads are conserved quantum numbers in both the long- and short-
range rotational representations. Below, we give a detailed
Svl,uz,lz,A;vi,vg,lg,A’ description of the rovibrational frame transformation for the
e +H," system, specifying all quantum numbers in both
_<l/ivlrvzr'z(R)|SU21'21A;U§'|§J\'(R)|‘/’vi,vé,lé(R»S- regions of interaction.
(32)

. . . A. Construction of wave functions for the e‘+H3+ system
In this notation, the bracke{s)s are meant to imply a vol-

ume integration in the sense of Siegert pseudostates, i.e., At large distances between the electron and ion, the sys-

with the usual additional surface terfi29]: tem is described by the electron orbital angular momeritum
and its projection\ on the laboratoryz-axis, by the total
<'z”vl,uz,IZ(R)|Su2,I2,A;v;,I;,A'(R)|‘/’vi,ug,lg(R»s ionic angular momenturhl ™, its projectionm™ on the labo-

ratory z-axis and its projectiolk ™ on the body-fixed axiZ.

Ry Z is chosen to coincide with th€; molecular axis. Corre-
- fo ‘!’vlyvzi'z(R)sz"zlAivél'élA’(R)"[lvi'véy'é(R)dR spondingly, we represent the wave function of the
+H;" system by the product of the ionie{-*Y™ and elec-
Por,050,(ROSu, 1, 450015 A1 (R Py 07 12 (Rp) tronic Y, (6, ¢) wave functions,
+i .
Koy opl, Ko wr 1 RN, m* K3 afy)Yin(0,0) Vv v2)®,. (39
(33

The anglest, ¢ are spherical angles of the electron in the
Note that one omits the usual complex conjugation of the brdaboratory systeniLS).
wave functiony, . 1,(R). This is in parallel with the Sieg- At short distances, the most appropriate molecular states
ert state normalization relation of E¢29). Owing to the are the states that approximately diagonalize the Hamil-
presence of Siegert states with complex eigenenergies, thignian. These states are specified by the projectioof the
electron-ion scattering matrix is not unitatimplying that electron momentum on the molecul@raxis, three internu-
the corresponding reaction matrix is not Hermijiafhe clear coordinate®), total angular momenturnof the system
nonunitarity accounts for the fact that the electron can beN, including the electron momentum; by the projectiormof

come stuck in the ion, resulting in dissociation of the systenthe total momentunN on Z; and by the projection oN on
into neutral products. the laboratoryz axis, m. Thus, the total wave function at

short distances can be represented as

VI. ROTATIONAL- AND VIBRATIONAL-FRAME
TRANSFORMATIONS FOR AN ELECTRON R(N,m,K;aBy)YiA(0",¢")| Q). (35)
COLLIDING WITHH ,*
Anglesd’ and¢’ determine the position of the electron with
fespect to the molecular systdiMS). Having identified the
short- and long-distance states, we need to find the transfor-
mation between them. Using the transformation

The electron-ion scattering matrix constructed in the pre
ceding section does not yet incorporate the possibility o
different ionic rotational excitations. If the H ion is ini-
tially in one rotational stateN*',K*"), the collision with
the electron can change its rotational stateNd (K*). The
elementss; ;, of the total scattering matri§ thus should Y (0,0)=2, Yia(6',¢")D} A (— 7, — B, — )
describe the transition amplitude to change from one rovibra- A

tional state i’'={vj,v,2}(N"',K*') to another i
={vl,v|22}(N+,K+). As a notational convention, we do not
include in the indexesandi’ the quantum numbers that are

conserved during the collision. between short- and long-range electronic wave functions and

The change in the rotational excitatiofN{ K™ )  the expansion of the product of two Wigner functions:
—(N*,K") can be treated accurately using the rotational-
frame-transformation approximatioril]: these transitions

=§ YA(6',¢")[D; \(aBy)]* (36)

- X o NT 1
occur primarily when the electron Rydberg period is compa- Dt k+(aBy)Dy A(aBy)
rable to the ionic rotational period. The qualitative idea
implemented here is the same as was introduced by Fano :% Dﬁ‘q,K(aﬂv)CE‘lfKal,ACH’f?maLx' (37)

[40]. The initial rotational channel function is projected onto
short-range rotational states specified by two quantum num-

bers: the projection\ of the electron orbital momenturh  the wave function of Eq(34) is written as
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+ ot Kt I2
R(N ,m ,K ,aﬂy)Yl)\(aqu)V(Ulavz) |N+ K+ N mUl U2> 2 C|NiAK+N K|N,K,m,A;Ul,U|22>,
[oN*++1]" + 41
- S D (@B} y(aB)T* “y

872

which can be considered as if two angular momehtand

’ ’ |2.
XYial07, ¢ )Mv1,055 Q) with projectionsK and — A are added to give the angular

[oN* + 122 momentumN ™ with the projectionK *=K—A. Quantum
Ry EA: EN: [DNk(aBy)]*C N+ K+l A numbersN,I,m,vl,v'2 are not changed by the transforma-
T tion of Eq. (41). They are good quantum numbers in both
N,m ro 2. representations.
X Ctmrna Va6 @1 Wve, 0575 Q) Note that in Eq.(41) all the projectionsA,K,K*,m of
2NT+1)72 Nm angular momenta can be negative or positive. It is different,
:; % oNT1 | ONTeACNE Mt for example, from Ref.56] where all rotational functions are
symmetrized with respect to different signs of projections. At
XR(N,m,K;algy)ylA(gf,qpf)y(vl,v';;Q) this stage qf the treatment, we keep both ne_-gative and posi-
tive projections explicitly in order to symmetrize products of
2 2 1-A rotational, vibrational, and nuclear-spin components simulta-
- CI *A N, K( D CN+ m¥iLn neously with respect to all three sets of quantum numbers.
This greatly simplifies all the formulas, because it avoids, for
XR(N,m,K;aﬂy)Y,A(0',<p')v(vl,v'22;Q)_ (38) example, the somewhat complicated symmetrization proce-

dures of the type given by Spirlet al.in Ref.[52] [see Egs.
We omitted the factofb, which remains unchanged at every (59)—(77) of Ref.[52]].
step of the transformation.
Short-range states have a definite total angular momentum
N. We want to construct the long-range states having a defi-
nite total angular momentui, too. In order to achieve this Now the total laboratory-frame scattering matrix can be
goal, we form the following linear combinations of the statesconstructed using the techniques of the frame transformation:

B. Construction of the e™+H," scattering matrix

of Eq. (38): when the electron is far from the ion, the long-range wave
function diagonalizes the interaction Hamiltonian; at short
|N+,K+;N,m;v1,v'22> distances, short-range wave functions almost diagonalize the
Hamiltonian. The short-range Hamiltonian is not exactly di-
_2 CN+ . CRINT,m* K*:afBy) agonal in the basis of states of H§5). It has off-diagonal

elements with respect t& owing to the Jahn-Teller cou-
| pling. The following selection rules can be formulated:
XY\ (0,0)V(v1,07) D, . (39  the Hamiltonian only couples vibrational states of the same
vibrational symmetry and the same value/ofor (ii) it can

We also redefine the short-range states introducing an addé'ouple the rovibrational channels according to the rute (

; 1-A.
tional factor (1) ™ =1l,=-1)~(A'=-1]5,=1). These selection rules en-
) I\ _(_4\1-A ) sure that the parity of the system and the quantum nui@ber
IN.K,m,Ajvg,07)=(= 1) R(N.mK;ay) related to the total rovibrational angular momentum are con-
XYA(0,9")| QYD . (40)  served during the collision.

The scattering matris, ,.(Q) including the Jahn-Teller
After these new definitions of the short- and long-rangecoupling is given by Eqg918) and(20) in the basis of short-
states, the transformation between them becomes vemange channel functions. In the basis of rovibrational mo-
simple: lecular states of Eq41), the scattering matri§ is

(N,K,m,1,G) N KE
S = 2 C — AN K

|
N*,K*,vl,vzz;NJr’,K*’v v 2

JV(vi,v;'é;Q)SA,A,(Q)V(vl,u';;Q)dg ch k- (42)

The integralf in the above equation is the usual integral flux to escape from the interaction zof9]. See the discus-
over vibrational coordinates if one of both the vibrational sion above. The scattering matrix of E42) is diagonal in
functions are bound. If both are unbound, the integral has athe quantum numberll, K, I, G, andm. Therefore, the
additional term describing the possibility for the vibrational cross section can be calculated separately for all combina-
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TABLE VI. Probabilities of rotational excitation of the ion, induced by a colllision with a low electron.

Symmetry,| A},312 A},3/2 Ay, 1/2 Ay, 1/2 Ay, 1/2 Ay, 1/2

N 2 4 1 2 2 2

(N K" )= (N* K*) (1,0)—(3,0) (3,0)~(5,0) (11)=(2,1) (1,1»(2,1) (1,1»(3,1) (21»(3.1)
Probability 0.74 0.76 0.79 0.15 0.5 0.27

tions of these numbers. The total scattering matrix of Eqy

12} vibrati ly the rotational
(42) is calculated using nonsymmetrized states of the type o V1.0, wbratlonal states ar00'}, and on y the rolarona
Egs. (4) and (39). Only at this stage do we carry out the states are different. The calculated probability of rotational

symmetrization procedure described by Et@). The sym- excitation ofscnlatesRvggsus tr:etelec_g]on gne:gytdue t?t thte
metrization procedure is performed directly on the scatterin resence or many Rydberg states. 1he simplest quantity to
se is the probability averaged over energy, which is almost

matrix. . ) ;
Let the total dimension of the e€nergy independent in the region between {oe”} and
Snt ket aogtr s o1 matrix be Ny X Nyor. What is {01'} vibrational levels. Here we present an alternative, sim-
R LN tot> ot - plified method to estimate this average probability analyti-

not specified explicitly is the total molecular symmefry  cally, which has been tested and found to give results very
=A, or Aj of the considering state and the total spin close to a full calculation.
=1/2 or 3/2. These quantum numbers are also conserved Our simplified approach relies on an assumption that at
during a collision. For the full specification of the scatteringthe electron energies considered, the influence of excited vi-
process, ionization energies of rovibrational states brational levels on the averaged probability of rotational ex-
={vl,v|22}(N+,K+); i=1,2,... N should be specified. citation is small. This assumption is validated by direct con-
We use very accurate energies available in the literdfiite  Sideration of the corresponding matrix elements in &@)
60]. For some excited rovibrational levels, where no dateOr €lse it can be derived by inspecting the photoionization
exists, the energies were calculated using adiabatic hypespectra of H [47,61]. Neglecting the influence of excited
spherical and rigid-rotor approximations. vibrational levels, the frame transformation of E42) can
Equation(42) gives theN,, X N, scattering matrix de- be evaluated analytically. At the first step, we evaluate the
scribing collisions of an electron with a vibrating and rotat- Vibrational integral in Eq(42). The result of this integration
ing ion. The matrix also contains information about the prob-can be viewed as an effective scattering mafjx, , which
ability of dissociation of the neutral molecule formed duringis not very different from theS, ,(Q) matrix evaluated at
the collision process. Accordingly, this matrix is used forthe minimum of the H* potential. We can write
analyzing the dissociative recombination. This matrix can be

also used to interpret photoabsorption experiments with the S(N,K,m,I,G), ’:E CNV‘KWg CNTK?
H; molecule[47,61]. This application will be discussed in a NFKENT KT 4 ML= AN KA AT - AN K
separate paper.
+ et L + o+
:; Cl_ i€ ks (43

C. Probability of rotational excitation of the ion

by electron impact

. . ) o Where;A are quantum defects corresponding to the matrix
We will show below how the initial rotational excitation —

of a molecular ion can sometimes play a key role in disso—s' The nondiagonal elements of the scattering maffix,

ciative recombination. Moreover, not every electron-ion Col_averaged over th¢00f} vibrational states are |den_t|cally
lision leads to dissociation; in a storage ring or other enviZ€ro. In the calculation we have use¢=0.05 andu .,
ronments, nondissociative collisions can sometimes change 0.39. The calculated rotationally inelastic collision prob-
the ionic quantum state. Therefore, it is important to underabilities for different symmetries and nuclear-spins of the ion
stand whether or not hot electrons can heat thé kbta-  are given in Table VI. S
tional and vibrational degrees of freedom. Vibrational energy NOW let us consider the results from hbhotoionization
splittings are much larger than rotational splittings, with theexperiments of Ref[61]. The spectrum presented in that
first excited vibrational leve{01'} being 0.3 eV above the WOrk (see Fig. 5 of Ref,61]) showed the rotational autoion-
ground vibrational leve[00°}. For this reason, we only dis- iZation of Rydberg states just below the excited, =3,
cuss here the probability that an electron collision initiategotational state of the ortho H ion. The lifetimes of these
ionic rotational excitation. states are controlled by the same scattering matrix element

We assume that the initial vibrational state of the ion isS(NN;KkTiLﬁ), «+ that controls rotational excitation, although
{00} and that the incident electron energy is less thanhis is a scattering matrix in a closed channel, in the sense of
0.3 eV. The probability of the rotational excitation is multichannel quantum-defect theory. The same scattering
given by the absolute square of the elementsmatrix relevant at energies just above the rotational excita-

’ | . . .. . K
SN+ K+ vy 0 2N K ol »''z, where both {v,,v7} and tion threshold also controls the rotational autoionization just
T ' 172
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below the excited rotational threshold. Moreover, the probplex conjugation. However, the wave functions are not con-
ability of excitation|S|? can be estimated approximately as jugated. The channel elimination E¢4) should also ac-
the ratio of the widths of the rotationally autoionizing statescount for the complex conjugation by changing the sign of
to the separations between successive Rydberg levels. O£E)
can see from Fig. 5 of Ref61] that this ratio of widths to
separations is of the order of unity for the rotationally au-
toionizing states. There are a few narrow perturbing lines,

but those are vibrationally autoionizing states that are ig-
nored for this analysis. Referenf@l] can be viewed as an (It is importantnot to complex conjugates in this expres-

S’rphyS( E) :SToo_STocl:S’rcc_ eZiB(E)]—lsTco_ (48)

experimental confirmation of our theoretical logic. sion)
Once the scattering matricé®"YYE) andSP"YE) are
VII. THE CROSS SECTION AND THE RATE calculated, the raw dissociative recombination cross section
OF DISSOCIATIVE RECOMBINATION is extracted from the “unitarity defect” of the relevant col-

. . , umn of the scattering matrix:
The scattering matri§ of Eq. (42) describes the electron-

ion scattering when the electron energy is high enough for all
collision channels to be open. The scattering matrix
SPWYE) for energies, when some channels are closed, is
obtained by the *“closed-channel-elimination” procedure

[31]:

aa
o(Be)=5g| 1= 2 SEVABSIME) ],

Ee|:E_Ei/ . (49)
SphyS(E):SOO_SOC[SCC_ e—ZiB(E)]—lsco. (44)

(see Eq.(2.50 of Ref.[31]). The matrixSP"YYE) hasN, In calculation, the terxSPYYE)S{PVYE) is always real,
X N, dimensionsN, being the number of open channels. Positive, and it is found not to exceed unity, to a good nu-
In Eq. (44), the collision energiE divides all channels as Merical accuracy. In this energy range all open ionization

either energetically open or close, and N;=N,,,—N,.  channels have a real energg; .
The matricesS°°, §°°, S°, and S° are corresponding In tht_a above equatlt_)rn,’ is the electron entrance chann_el
parts of the original matrixs [11], written as and E¢| is the asymptotic electron energy. In th_e storage-ring
experimentg§1,3,62—68, the entrance channel is the ground
§°° §e¢ vibrational ionic state, the rotational quantum number can be
=| geo SCC)’ (45  different:i’={0,0’}(N",K™). Since the scattering matrices

SPWYYE) and STPYYE) and the cross section of E¢9)
B(E) is a diagonaN X N, matrix: are calculated for a good total molecular angular momentum
N, the total symmetry['=A, or T'=A7, and the total
a nuclear-spin =1/2 or | =3/2, we will assign these three la-
Bij(E)= ﬁ@j : (46)  bels to the symbol of the cross sectiop | n(Ee). To obtain
! the experimentally measured cross section,(E.), we
should average over different initial statea{) and sum up

where E; refers to a particular ionization threshold )
over the final statesN andm) of the system:

={v1,v'22}(N+,K*). For outgoing-wave Siegert states, the
energy E; is complex. Evaluating the square root in the
above equation, we take the branch with the positive real
part. It is consistent with the case whEphas no imaginary or,1(Ee)=
part, i.e., corresponds to a bound state.

To calculate the cross section, we also need the conju-
gated scattering matrix. Because of the unusual orthonormaFhe symmetry label’ and the total nuclear-spin are still
ity properties of the Siegert states, the conjugated scatteringefinitive quantum numbers for the cross sectiqn (Ee)).
matrix ST is not simply the Hermitian conjugate of the ma- In the above sumi\ varies from 0 oN*—1 toN* +1.
trix S. More precisely, in addition t&P"YE), we need a The corresponding rate(Eg,) is obtained by multiplying
matrix STPMYYE) which is calculated in a way similar to the cross section by velocity:
SPMYYE) but with the complex-conjugated scattering matrix
in Eq. (32):

o i1 > (NFTDor n(Ee). (50

a(Ee)) = V2E0(Eg)). (52)
T Tx
Svl,vz,lz,A;vi,vé,lé,A’:<"Z/U1:021|2(R)|SUZ,I2,A;vé,lé,A’(R)| ) .
When rotationally excited states of,H are present, the
Xthyr w0 15(R))s. (47)  rate should be averaged over the initial distribution of the
rotational states. Assuming the thermally averaged rotational

In the above equation, the superscript Tmplies the usual excitation of the gas with the temperaturg,, the rotation-
Hermitian conjugation, with both a transposition and a com-ally averaged rate is
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> <2N++1>ex‘{‘ o 2y (Ea W(N',8,T)=(21+1)(2N* +1)e BTN,
Nt rot
ar 1, (Ee)= T , X
> (2N++1)exp[—Ek('T\l ) NE:NZ W(N",s,T). (55
+ rot s
" (52

Rotational energie&g(I,I',N*) of eight levels included in
whereE(N™) is the energy of the rotational leveN(" ,K*). the thermal averaging are given above.

Typically, excited rotational levels should be taken into ac- Equation(54) gives the dissociative recombination rate as
count if the rotational temperature is higher than 150 K.  a function of temperature when electron energy is in thermal
There are four distinguishable species allowed fgi H  equilibrium with rotational and nuclear-spin distributions of

the total molecular symmetdy can beA, or A} and the total  H; " ions. In the storage-ring experimerits 62,63, certain
spin can bd =1/2 or 3/2. The change of the species is gen-degrees of freedom are not in thermal equilibrium. The elec-
erally possible only via chemical reactions when one protoriron energy is not distributed uniformly with directions in

is cut off and then is attached again to the two other protonsspace. One space component, namely, the parallel eggrgy
This interconversion process is believed not to occur in thés very well controlled. The distribution along this compo-
diffuse interstellar clouds and in the storage-ring experimentent is essentially & function. However, there is a non-
but it certainly can occur in dense interstellar clouds Whereheg“g|b|e energy sprea, for the electron motion in the

H, molecule is abundant57,58,67. This interconversion two other perpendicular directions. This energy spread has to
can also occur in storage-ring experiments. Besides chemicge accounted for when experimental and theoretical results
reactions, thé, and A states of the same nuclear-spin areare compared. Following Reffl], we assume a Maxwellian
connected by the so-called “forbidden” rotational transi- energy distribution along these two directions. There is one
tions. In the present calculations, we included two rotationamore characteristic energy distribution in the storage-ring ex-
states for every species. Therefore, for the ground Vlbl’atlonqjenment namely, the rotational | temperatlirg; of the ions.

level, we mcludetlj the following states with energ|es In generalT,,, is independent OEL and has to be accounted
(L1YI=1/2]0 cm™ = (2,1)1=1/2] 173.23 cm for separately. These considerations are accounted for by the
(1,0)1=3/2] 22.84 cm %; (3,0)1=3/2] 452.75 cm? following averaging procedure:
(2,2)1=1/2] 105.17 cm';  (3,2)[1=1/2] 363.89 crﬁl;
(3,3)[1=3/2] 251.22 cm?';  (4,3)1=3/2] 594.57 cm* 1 (= 1
[57-60. This set of rotational levels allows us to account o (E))= /\_/f dEJ_Wl(EJ_)A_/‘ > wy(l,T,N*,T)
properly for the rotational temperatures of the ion up to 1Jo 21r,N*
600 K.

For astrophysical purposes, one determines the rate coef-
ficient «(kT) averaged over the Maxwellian distribution of
electrons at the temperatufe 1,68]:

Xayr N+ (EL+HE), (56)

where the weightswv,(E,) and w,(I',I,N*,T) are deter-
mined by the corresponding mean values and kT, for

8 o et 1 electron energy and rotational energy distributions,
an(kT)= T aEare TGRS (63

1
In the interstellar medium, the rotational ionic temperature is Wl(Ei)_eXp< B ET) ’
the same as the electron temperature. If we assume that spe-
cies having different total nuclear-spin are in thermal equi-

+
librium as well—i.e., since chemical interconversion is + + Er(ILI'N ))
' IILNT,T)=2I+1)(2N"+1)exg ———=——
possible—the corresponding generalization of form(@a) Wa )=( A ) XF{ KT;ot
is given by (57)
(KT) 1 f E E)w(N*.s.T) The two normalization factord/; and N, are determined by
o = o +(E)w S

1 lef dE, wy(E,)=E,
X @~ Eel /KT > EeidEe, (54) 0

where the thermal weights(N*,s,T) account for the rela- No= Z w(l,T,N*,T). (58)
tive contribution of a particular rotational level at a given I,T,NF

temperatureT. The indexs numerates the four mentioned

speciesA;[3/2], Aj[3/2], Aj[1/2], and AJ[1/2], allowed The total total energyE in Eq. (56), at which the rate
for the ground vibrational level. The weights and corre-ar, y+; enters into the formula, is now expressed s
sponding normalization facto¥s are =E, +E|.
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R I e e E aa ical rate is significantly lower than the measured rate, al-
) — LR ] though the theoretical curves exhibit similarities to the gen-

[ . E=6meV, T, 40K ] eral behavior of the experimental rate in these regions. We
e e L W T o cannot point out the cause of this disagreement with any
. certainty, but one possibility is that some higher rotational

levels may still be present in the storage-ring experiments,

either when the beam emerges from the source or else per-

haps through an excitation process after the ions are in the

ring and have passed through the electron interaction region
one or more times. Our calculations for excited rotational

states of the ion show that this gap tends to be filled up if the

3.1
a(cm’s )
=
(=

107 next rotational states are included in our calculation. The
rotational temperature of 1 in the storage-ring experiment
by Jenseret al. [62] may be as high as 2700 [69]. Our

10" '1'0_4 — 103 . 102 el ""100 calculation afT,,;=600 K (the highesfT,,; we can treat us-

ing only eight rotational levels of the ground vibrational
state shows a better agreement with the experiment of Ref.
FIG. 8. Comparison of theoretical and experimental rates of62], shown in Fig. 8. In the experiment of R466], the
dissociative recombination. The theoretical r&elid and dashed initial rotational temperature of ions is measured to be much
lines) is shown as a function of the parallel electron enefgy In lower (20—60 K. The data from this experiment display the
the theoretical curvegpresent work the rate has been averaged dip around 0.1 eV, but it is not as wide and pronounced as in
over the lowest states, for two different values of the transvers¢he theoretical curve.
energy spreadF, =6 meV (dashed curveand 25 meV (solid The theoretical curves also differ from the experimental
curve. Also shown are the data from two different storage-ringresults in their much greater number and depth of reso-
experiments. The experimental data from R66] (E, =2 meV) is  hances. The experimental curve with high rotational tem-
shown as triangles, and, another recent measurement frorieRpf.  perature shows virtually no resonances. The corresponding
(EL:25 meV) is shown as circles. Both theoretical curves are av.theoretical curve calculated for the hlgher rotational tempera-
eraged over a Boltzmann distribution for the rotational levels of theture exhibits some resonances, although they are largely
ion, including both the ortho and para symmetries. The calculatesvashed out. The new experimental curve at a low rotational
curves reproduce most of the major features of the experimentdemperature shows some resonances, but far fewer than what
rate. we predict should be observable at the experimental resolu-
VIIL. DISCUSSION OF CALCULATED RESULTS tion. This systematic dlsc_repancy between theorethal and ex-
perimental results, i.e., in the number and prominence of
Figure 8 shows our calculated rates for two different conthese resonances, is simply not yet understood. However,
ditions (dashed and solid lingsas functions of the relative analogous discrepancies are familiar in many other compari-
electron energyE|, compared with data from two storage- sons between the DR theory and the experiment, including
ring experiments, circlegs2] and triangleg66]. The calcu-  even simple diatomic targets such ag'H8,12].
lated rate coefficient is averaged over the experimental en- There remains some uncertainty about the distribution of

ergy spreacfi and over the rotational enerdyT,,, of the population among various rovibrational levels of H be-
H," ions, using the formulas discussed above. However, i¥ause rotational excitations could occur when the ions pass
the calculation, which should be compared with the experithrough the electron beam. Figure 9 provides a breakdown of

mental results by McCalet al, we use a larger energy the DR rates for the lowest four levels relevant. Interes_tingly,
= the curve that resembles the newest DR experiri@fit is

spread E, =6 meV than the expenmen'@ valug, the one in which I§l+ is initially in the para(22) state. The

=2 me\_/. The quoted experimental res_olutﬁmzz meV greement with the experiment is noticeably better, around

would give many more resonances, which are not ogserve =0.1-2.5 meV, 10-100 meV, and 0.2-0.4 eV as well,

experimentally. Thus, the solid curve is calculated using  The better agreement with tr{@2) theoretical DR rate may

=6 meV and should be compared with the experimentahe fortuitous. On the other hand, it may point to the desire of

data[66] represented with triangles. We have also comparegheasuring the rovibrational £ distribution while the ions

o Sevsae L 63 s 5 e e sl e e sorege g

by Jenseret a circles 9 S experiment, Figure 10 demonstrates the thermally averaged DR rate

E, =25 meV. Thus, we have calculated a second theoreticgkolid black curve for the thermal distribution of collision

curve with the quoted value @&, . The experimental reso- energies as a function of temperature. This curve is the most

lution in Ej is estimated in Refl66] to be AEj~0.1 meV. relevant in astrophysical observations of 'H because the

This is sufficiently smaller thaE, that we have not car- rotational temperatur&,,; of the ions is chosen equal to the

ried out in the corresponding convolution o¥gr. The result ~ electron temperatur@,. The theoreticalsolid) curve dis-

is represented by a dashed curve in Fig. 8. plays a plateaulike behavior, which differs from the experi-
In some region between 0.04 eV and 0.1 eV, the theoretmental(dot-dasheflcurve[66] at low temperatures. This dif-

10
Electron energy, E,(eV)
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. P lated with constant relative contributions corresponding to
10, I=3/21A;;(00°3<10> the constant rotational temperaturg,;=20-60 K. The the-

T - ETZYA{:(S?‘;)(Z? oretical (double-dot-dashedcurve is calculated afT,,

T e  mmanuhan| =40 K. The two dashed curves represent the rate averaged

3 thermally over the ionic rotational and the electron energy
distributions, calculated separately for the ortho and para
spin states.

The reason why stationary afterglow experimefi§)]
measure such a low DR rate remains a problem. In view of
the presence of perturbing species in the vicinity of the re-
combining ions and the vital role of easily affected Rydberg
state pathways, it seems plausible that these controlling con-
R Y IR tributions might be modified in an afterglow experiment. A
10° 10" 10° 10° 10" 10° detailed model of pressure or field effects on these pathways

Electron energy, By (eV) remains a desirable goal for future investigations. On the

FIG. 9. This figure gives DR rates calculated separately for eacf?ther_ hand, a flowing afterglow expgrslme[ml] gives a rgte

symmetry specified by quantum numberand I (rotational and  CO€fficient a;,(300 K)=7.8+2.3x10 cm’/s which is in

vibrational quantum numbers are also specjfidthese rates would 900d78 general agreement with our ratey,=7.2
correspond to a situation in which the;Hion is prepared in the <10 cm®/s calculated at 300 K. One may also compare

single rovibrational state specified. The theoretical curves are corWith the experimental results of R¢f2], although the final
volved withE, =6 meV. For comparison, we also plot the experi- Measured rate was left somewhat ambiguous in that study.

mental curvetriangles from Ref.[66]. The inset shows the experi-
mental DR rate and the rate for the initial std@0°}(22) state IX. CALCULATION FOR D ,*

alone. This rate displays a better agreement with experiment than i b ; inDF and K.t
the DR rate averaged over all four symmetrisse Fig. 8 A. Differences between our treatment of DR in ™ and H,

10*

1075
107

107 10"
il

10

Using the method developed to calculate the DR rate for
ference is caused partly by the fact that the limiting low-H; ", we have also calculated the rate for thg'Dion. In
energy behavior of the DR rate is not achieved untilthis calculation, we use the same ionic potential surface and
surprisingly low incident energies, well below the measuredhe same Jahn-Teller parameters as in the case bf Mihis
range. The double-dot-dashed curve is our calculation using a good approximation, since the ionic potential surface and
parameters that correspond to the conditions of the newetlte Jahn-Teller parameters were calculated assuming infinite
experimen{66], where only the two lowest states are popu-nuclear mass. Differences between these two ions first arise
in our method when the adiabatic hyperspherical potential
curves are calculated, since they depend on the mass of the
nuclei and are therefore different for,D.

Moreover, the deuterium nucleus is a boson in contrast to
.\/New experiment ] the fermionic nucleus of hydrogen. Thereforfa, the” total
. ] nuclear-molecular symmetry of D can only beA; or A]:

L AR | LIRS = EELRG | L R R | LI R-2R | T
Sl Teo40K Analytical dependence derived
10°F "~.\/ “... .~ from older experiment —

':'\. ] any permutation of these identical nuclei should leave the
total wave function unchanged. Again, as in the case0f H
we construct symmetry-adapted combinations of nuclear-
spin functions. Since the spirof the deuteron is 1, there are
I ) & more possible symmetries of the total nuclez;\r-sf)i:lflfl
| Para e 1 “N\.|  +i,+i;than in the case of i .
R N Each nucleus can be in ongaf)) of the three states de-
T,=T,_,, nuclear spins are separated . ] pending on the projection of its spin on a fixed axis. We will
| (othratesaredivided by 10) N ] refer the three states s 1), |0), and|1). A symmetry-
1 1 100 1000 adapted nuclear-spin function of;D is constructed from
products of the typéaBy)=|a)|B)|y), where the first fac-
Jor |a) relates to the nucleus 1, the second factor to the

(solid line) is shown as a function of temperature. This curve is themJCIeus 2, and t_he third term relates t°_ the nucleqs 3. For
one most relevant to compare with astrophysical observations diX@mple, operatior{12) applied to function|ay) gives

H,", because the rotational temperatilirg, of the ions is equal to Bay). Thel total number of nUClear'Sp.'n states =27.

the electron temperatufg, . At 300 K the theoretical thermal rate We consider the case where all projections are the same,
is a,=7.2+1.1x10 8 cmP/s. The thick dashed-dotted curve rep- i-€., all three nuclei are in the same state. The total state can
resents the experimentally extracted thermal 863, which can be  be written as|aaa), which is totally symmetric under all
compared with our double-dotted-dashed curve calculated for theipermutations, and therefore belongs to the symmetry.
stated ion source conditions. There are three such products.

0
T, ®)

FIG. 10. The theoretical thermally averaged recombination rat
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When two nuclei have the same spin projections and the Since the total nuclear-molecular function can béfor
third nucleus has a different projection, the total state being\] symmetry, and the nuclear wave function can be of
of the type|aaB), we construct linear combinations in the A;,A,, or E symmetry, all sixDs, representations of rovi-
similar way as done for §f [see Eqs(8) and (9)]. Thus,  prational functions are allowed in the case of'D It means
these products with fixed values ef and 8 transform ac-  that all possible combinations of vibrational and rotational
cording to either thé\, or theE representation. There are six wave functions are allowed: there is always a nuclear-spin
different combinations ofx and 8. Thus, the whole set of state which can produce the right total symmetry. For ex-
functions of the typdaap) is decomposed into irreducible ample, for O, the statg00°}(00) is allowed. There is one
representations according té\go 6E. more difference in construction of the total rovibrational-

We have only one possible set of spin projections thahyclear functions of B" compared to ' . Equation(13)
produce functions of the typler3y) where all three factors gnould be modified to impose the overall tota] or A’

are different. Permutations of the factors give six diﬁere”tsymmetry. Instead of the minus sign in Eg3), there should
products. Symmetry-adapted combinations of the functiongy, 4 plus sign. '

can be made using the projector operators. We give only the . calculating the ' DR rate, we used the rovibra-

final linear combinations tional energies determined in experiments and the accurate
ab initio calculation[57,59,6Q. In the present calculation of

Al:i(|aﬁy>+|Ba7)+|,87a>+|7,8a>+|yaﬁ> the D, DR rate, we use approximative rovibrational ener-
V6 gies. Vibrational energies of Ieve{s)lv'zz} are determined
+|ayp)), from the two-step procedure to diagonalize the vibrational

Hamiltonian of D, . This procedure was described in Sec.
1 IV C. Then the rovibrational energies Qf;lvlzz}(N*,Kﬂ

A:—(laBy)—|Bay)+|Bya)—|yBa)+]|yaB) are determined by adding a rotational correction
G E[{vlvlzz}(N+,K+)]. We have used a very rough approxi-
—|ayp)), mation for this term, namely, E[{vlv';}(N+,K*)]

=B,N*(N"+1). We could use a more elaborate approxi-
1 mation, for example, as in Reff44], but the corresponding

Ea(1): \/—(2|a,37>+2|,3017>_ |Bya)—|yBa)—|yaB) correction is much smaller than the error in vibrational ener-

12 gies due to the two-step adiabatic treatment. In our calcula-
—layB)), tion we use the rotational constaBf,=20 cni ! indepen-
dent of the vibrational and rotational quantum numbers.

1
Eg(1): ﬁ(lﬁva%Ivﬁa>+|7aﬁ>—|a73>), B. Results for D,

Results of the calculation for 3 are shown in Fig. 11 as
1 solid and dashed lines. The solid line shows the rate calcu-
Ea(2): ﬁ(|,37a>+|7,3a>_|7aﬂ>—|a7’ﬁ>), lated for the experimental conditions of Larssenal. [73]
(triangles in the figure In the experiment, the perpendicular
L energy resolutioi, is 10 meV;, the rotational temperature is
i high, around 1000 K or more. The theoretical curve is cal-
Eg(2): \/T2(2|a'87>_ 2|Bay)=|Bya)+lyBa)=lyvaB)  iated forE, =10 meV andT,,,=600 K. The figure also
shows the comparison of the theoretical res(deshed ling
+|ayp)). (59 with another experimerii64] (circles. In Ref.[64], the ex-
perimental energy dependence of the rate is given in relative
Thus, the functions of the typlex3y) form the representa- units. To obtain the absolute value of the experimental de-
tion A;®A,® 2E. pendence, we calibrated the rate from R6é#] to the abso-
The final result is that the group of permutation of threelute experimental DR rate for p measured by Larsson
particles with spin 1 generates the representatioh; 8, et al.[73]. The calibration was made for a value of the rate at
®8E. Let us now consider the statistical weights of thesequite high energy, 10 eV, where both experiments give pre-
states. Since th& representation is two dimensional, A0  sumably the same reliable results. Therefore, the circles in
®A,® 8E gives 27 states in agreement with the total numbeiFig. 11 represent the calibrated curve. No rotational and elec-
of nuclear states. Calculating the scattering matrix for theron resolutions are specified for this experiment as well. We
total nuclear-molecular wave function havikquclear sym-  assume that the rotational temperature is comparably as high
metry (in this case, the rovibrational symmetry is aSpof  as in the experiment by Larssat al. [73]. The electronic
D;", we treat bothE components simultaneously. Thus, in resolutionE, can be roughly estimated from the behavior of
the final averaging over nuclear-spin states, the nuclear stéhe curve at lowE; energies. We estimated this resolution to
tistical weights are given just by multiplicity factors in the be around 40 meV. Thus, the corresponding theoretical curve
representation 1, A,®8E, i.e., 101:8. is calculated with the parameteles =40 andT,,=600 K.
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10— — ——— g theoretical DR rate is in good agreement with the storage-
3 ring experimentg62,63,68. There are still regions of dis-
agreement, although they are far smaller than in previous
theoretical studies. The main disagreement with the experi-
ment is the presence of pronounced resonances in the theo-
retical rate. The experimental rate exhibits some resonances

T too, but they are less numerous and shallower than the the-
“g oretical resonances. Hopefully, future studies will clarify the
® .. . .
= = P origin of this discrepancy. The thermally averaged rate does
107 N not manifest any resonances, in either the theory or the ex-
44 Larsson et al,, B =10meV " periment. The agreement between theory and the storage-

oo Tanabe eral.,E o 40meV
— E J_=10meV, T m=600K
s B J_=40meV, T m=600K

ring experiments for the thermally averaged rate is good at
temperatures larger than 30 K. Below this temperature, the-
= oretical and experimental results diverge. One possible rea-
i i p o g gyl i e son for the low-temperature disagreement might be the fact
10 10° 10" 10 that the experimental rate for low temperatures should be
Electron energy, E,(eV) considered as extrapolated. Our treatment has allowed us to
calculate the rate of ' dissociative recombination as well.

experimentalcircles and triangleésrates of dissociative recombina- For D3+ A we hav_e obtained even better agreemen_t with
tion for D;* . All rates are shown as functions of the parallel elec- storage-ring exper|ment[§4,73.+Although theory predicts
tron energyE. The experimental data from the experiment by the presence of resonances foy oo, these resonances are
Larssonet al.[73] (triangle$ should be compared with the theoret- Not as deep as for H . The experiments with ' exhibit
ical rate (solid line) calculated for the stated experimental condi- N0 resonance at all below 2 eV incident electron energy,
tions. The second experimental data by Tanebal. [64] (circles perhaps because these experiments have been performed
should be compared with theoretical rate represented by the dash&dth presumably hot rotational ions.
line. (2) Besides neglecting the Jahn-Teller effect, the previous
theoretical studies did not consider the full treatment of
Summarizing the results for 5, we conclude that the three-dimensional vibrational dynamics of;H In the
agreement between theory and experiment for tge dnis ~ present treatment, we have considered the complete three-
comparable or better to that found fog H. A good general dimensional v_|brat_|onal dynamics. It turns out_that |nclu_3|on
agreement is found between the storage-ring experiment ar®i all three vibrational degreesf of freedom is essential to
the theory. The main discrepancy in the theoretical curves i@ccount properly for the nonadiabatic electron-nuclear cou-
the presence of two deep minima around 0.09 and and 0.1ing. In Hs, this coupling is described in terms of Jahn-
eV, which are absent in the experimental results from thg€ller parameters: electronic and nuclear motions are
storage-rings[64,73. On the other hand, the merged strongly coup_led _through thE_ V|brat|onal. and electrgmc
electron-ion-beam experimefit7] does show at least one States. TheE vibrational states involve motion at least |n.the
deep minimum around the right energy, although it could béwo-dimensional space: the space of two hyperangles in our
fortuitous because at higher energie®.2 eV this experi- Case. A third coordinate, namely, the hyperradius, is neces-
ment manifests an unreasonably high rate. Note that in corf@'y to represent dissociation. Therefore, we surmise that any
trast to H*, the D," theoretical rate curves do not display red+uced-d|men5|on approach will struggle to describe the
very deep minima. This is simply due to the fact that we usedls DR process.

a larger value of, for the D," theoretical curves than for (3 To the best of our knowledge, this is the first method
the H,* ion. Finally, as was found for the £ ion, the able to treat DR in triatomic molecules including all the de-

calculated and experimental curves differ significantly at en9"©3 of freedom of the electron-ion complex. The method
ergies above 0.4 eV. treats thg electror_1-|on interaction, including all vibrational
and rotational motions of the ion. It accounts for all symme-
try restrictions, including rotational, vibrational, and nuclear-
spin symmetries. We should point out that the inclusion of
In conclusion, we summarize a number of key issues thaiuclear-spin symmetries gives improved agreement with ex-
have emerged from the present Study_ These are given @griment, but it is not as crucial as the inclusion of Jahn-
follows. Teller physics. The results shown in Fig. 8 for individual
(1) For many years theory failed to explain the relatively Symmetries suggest that it is proper to test the actual rovi-
high rate of dissociative recombination of,Hwith elec- ~ brational H" distribution inside the storage ring, while the
trons. Theory predicted the rate to be lower by several orderglectron beam is on.
of magnitude that the experiments regarded generally as the (4) The method described in this work was developed for
most reliable. We have shown that the Jahn-Teller couplingt; " DR, but it can be used for some other similar systems.
previously neglected in theoretical studies, plays a cruciaFor other molecules oD, symmetry, such as the NH
role in the process and generates a relatively high rate. Ounolecule, the method can be applied with appropriate

FIG. 11. Comparison of calculatddolid and dashed lingsgnd

X. SUMMARY AND CONCLUSIONS

012703-21



V. KOKOOULINE AND C. H. GREENE

PHYSICAL REVIEW A68, 012703 (2003

changes. The main modifications should be in the ionic viecules. At high H densities, the afterglow plasma experi-
brational potential and in the quantum-defect parametersnents give DR rate in good agreement with the storage-ring
The method can be modified to treat DR in linear m°|eCU|e%xperiments and with the present calculations fai* Hind

as well. We also stress that processes besides dissociati
recombination can be treated. We have applied it to interpr
photoabsorption and photoionization experiments with th
H; molecule[47,61], but those results will be discussed in a
subsequent paper.

Although this study presents the progress in the contro-
versial problem of DR in |, there are still some interest-

B*. At low H, densities, the DR rate in the afterglow

lasma experiments is diminishing to very low values. This
ependence has not yet been explained in the framework of

the present theoretical approach.
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