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Static and dynamic dipole polarizability of the helium atom using wave functions involving
logarithmic terms
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We present a calculation of the static and dynamic dipole polarizability of the helium atom using a varia-
tionally stable treatment that incorporates the coupled-channel hyperspherical representation of the wave func-
tions. Inclusion of logarithmic terms in intermediate functions as well as the effect of an optimization proce-
dure for the variational parameter are analyzed. When available, our coupled-channel results are compared
with other values in the literature.
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I. INTRODUCTION

It was demonstrated long ago that the wave function
the helium atom at the triple-collision point should forma
be described as a power series inR and lnR, whereR is the
hyperspherical radius@1,2#. However, this description ha
only been applied in calculations of energy levels@3–7#. The
main effect of this expansion is to speed up the converge
of the calculated energy, reducing the large number of b
functions needed in usual variational calculations. More
cent works@8–14# have demonstrated that alternative kin
of expansions, not involving logarithmic terms, can achie
benchmark energy levels with reasonable basis sizes. T
methods involve double@9,11# and triple@12# basis sets, non
integer@8# or complex@13,14# powers of the expansion var
ables, or special kinds of configuration interaction exp
sions @10#. In a recent work, Popov and Ancarani@15#
showed, in a rigorous mathematical study of the bound st
of the helium atom, how the logarithmic terms, as sugges
by Bartlett@1#, are linked to the electron-electron interactio
in the region of small radii. Nevertheless, they discus
only briefly possible numerical methods for getting appro
mate energy levels.

The dipole polarizability of helium is another fundame
tal property of this prototypical two-electron system who
accurate calculation has generated much interest~see, e.g.,
Refs. @16–27#!. A comprehensive review on electric dipo
polarizabilities for atoms has been given by Bonin a
Kadar-Kallen@28#. As pointed out in that review, polarizabi
ities are important in a number of areas in physics and ch
istry, such as interactions between matter and electrom
netic fields, collision phenomena, and others. Many phys
properties are related to the polarizability, as for instance
dielectric constant and refractive index. Owing to such
broad interest in determining polarizabilities, many theore
cal methods have been employed. However, many fe
highly accurate methods exist for polarizabilities than
energies. An interesting fact, recently shown by Pachu
and Sapirstein@27#, is that the mass polarization, relativisti
and QED corrections to the nonrelativistic static polarizab
ity cancel almost completely, giving a contribution to the H
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static polarizability of under 2 ppm. This accidental canc
lation highlights the importance of highly accurate calcu
tions of the polarizability in the nonrelativistic limit in orde
to test the effect of these higher-order corrections. Althou
many different methods and techniques exist, only a few
them are able to give the requisite precision. Significan
none of the many prior calculations include logarithm
terms in their formulation.

We present, in addition to energy levels, a calculation
the static and dynamic dipole polarizability of the heliu
atom using a variationally stable, coupled-channel hyp
spherical approach@20,29–32#, in which the initial- and
intermediate-state wave functions are represented by F
expansions@1,2,33–36#. Our results include logarithmic
terms in the wave-function expansions in order to calcul
an observable other than the energy. In the calculation
energy levels, those terms have served only to speed up
convergence of the result~see, e.g., Refs.@4,5#!. On the con-
trary, in our calculation of the dipole polarizability, the log
rithmic terms play a crucial role in obtaining accurate valu
when using nonoptimized parameters in the intermedia
state functions. When an optimization procedure is includ
the logarithmic terms become less important, at the expe
of more CPU time. Comparing the results we obtain bo
with and without the logarithmic terms for the static polari
ability, we are able to demonstrate their important role
the hyperspherical basis we employ. The present approac
which we treat up to 12 coupled1Se channels and up to 15
coupled 1Po channels, is able to furnish five digits of acc
racy for polarizabilities. While this level of accuracy is un
able to provide benchmark results for the He static pola
ability ~since the best results of others give seven or m
digits of accuracy!, our method is nevertheless more th
sufficient to provide competitive results for the dynamic
polarizabilities as well as for our next main goal, the calc
lation of multiphoton cross sections with an accuracy e
ceeding that of current experimental capabilities.

This paper is structured as follows. In Sec. II we summ
rize the theoretical aspects of the present approach, gi
the fundamental equations. Section III gives some det
regarding the numerical and calculational features of our
©2003 The American Physical Society08-1
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proach. In Sec. IV we present the results for the static
frequency-dependent dipole polarizabilities as well as for
energies; we provide also an analysis of the convergenc
our results. In addition, comparisons with other results
literature are given. Finally, Sec. V presents our conclusi
and some perspectives.

II. THE VARIATIONALLY STABLE, COUPLED-CHANNEL
HYPERSPHERICAL APPROACH

For two-electron systems, such as helium and its isoe
tronic series, the hyperspherical coordinate representatio
very suitable for describing the wave functions~see Ref.@37#
for a review on this subject!. The set of coordinates em
ployed is $R,a,u1 ,f1 ,u2 ,f2%, where R5(r 1

21r 2
2)1/2, a

5tan21(r 1 /r 2), and u i , f i are the usual angular coord
nates.

The matrix element for a two-photon transition betwe
an initial stateu i & and a final stateu f & is written as

Ti→ f
(2) ~v!5K fUD 1

Ei1v2Ĥ
DU i L , ~1!

whereD5e•(r11r2) is the length form of the electric di
pole operator,Ei is the energy of the initial state,e is the
light polarization vector, andv is the photon energy. The
variationally stable form of Eq.~1!, according to Refs.
@20,29–31#, is

Ti→ f
(2) ~v!5^ f uDul&1^l8uDu i &2^l8uEi1v2Ĥul&, ~2!

where ul& and ^l8u represent unknown functions related
u i & and ^ f u, respectively, by a one-photon transition. T
two-photon transition rate in Eq.~2! is variationally stable in
the sense that it depends only quadratically on errors in
determination oful& and ^l8u @30#. In Eq. ~2!, the Hamil-
tonian in hyperspherical coordinates is given by~atomic
units are used throughout this paper!

Ĥ52
1

2 S ]2

]R2
1

Û~R,V!11/4

R2 D , ~3!

and the operatorÛ(R,V) is the angular part of the Hamil
tonian, with a parametric dependence onR,

Û~R,V!5
]2

]a2
2

L̂1
2

sin2a
2

L̂2
2

cos2a
1

2ZR

sina
1

2ZR

cosa

2
2R

A12sin~2a!cosu12

, ~4!

whereL̂1
2 and L̂2

2 are the usual angular-momentum operat
of the individual electrons andu12 is the angle between the
position vectors: cosu125 r̂1• r̂2. An eigenvalue equation fo
the operatorÛ(R,V), i.e.,

Û~R,V!Fm~R;V!5Um~R!Fm~R;V!, ~5!
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furnishes a set of channel functionsFm(R;V) and a set of
corresponding potential curvesUm(R), where the indexm is
a collective label for all relevant quantum numbers. AtR
50, Eq. ~5! is exactly solvable and the solutions can
written in terms of Jacobi polynomials with the correspon
ing eigenvalues given by

Um~0!52~ l 11 l 212ñ12!2, ~6!

wherel 1 and l 2 are the individual angular-momentum qua
tum numbers of the electrons andñ is the degree of the
Jacobi polynomial of a particular solution. It represents
number of nodes ina ~at R50) of a given channel.

The initial- and final-state wave functions as well as t
functionsl andl8 are expanded in adiabatic hyperspheric
channel functions@20,38,31#; they all have similar forms:

C~R,V!5~R5/2sina cosa!21(
m

Fm~R!Fm~R;V!, ~7!

l~R,V!5~R5/2sina cosa!21(
n

ln~R!Fn~R;V!, ~8!

l8~R,V!5~R5/2sina cosa!21(
m

lm8 ~R!Fm~R;V!,

~9!

where the expansion coefficientsFm(R) satisfy the coupled
radial equations

S d2

dR2
1

Um~R!11/4

R2
12ED Fm~R!1(

n
F2Pmn~R!

d

dR

1Qmn~R!GFn~R!50, ~10!

andln(R) andlm8 (R) are determined by the variational pro
cedure described below. The coupling terms in Eq.~10! are
known as nonadiabatic couplings and are defined by

Pmn~R!5 K FmU d

dRUFnL ~11!

and

Qmn~R!5K FmU d2

dR2UFnL , ~12!

where the brackets mean integration over the angular v
ablesV. In order to evaluate the radial integrals of Eq.~2!,
we expand the unknown radial functions as

ln~R!5 (
i 51

Bmax

(
j 51

Mi

ai j
n f i j

n ~R! ~13!

and
8-2
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lm8 ~R!5 (
i 851

Bmax

(
j 851

Mi 8

bi 8 j 8
m u i 8 j 8

m
~R!, ~14!

wheref i j
n (R) andu i 8 j 8

m (R) are chosen to be modified Slat
orbitals that include powers of lnR, i.e.,

f i j
n ~R!5Ni , j 12(i 21)

n RSi j
n
~ ln R! i 21e2b i

nR ~15!

and

u i 8 j 8
m

~R!5Ni 8, j 812(i 821)
m RS

i 8 j 8
m

~ ln R! i 821e2b
i 8
m

R, ~16!

whereNi , j
m is a normalization constant for thei , j basis func-

tion of each channelm and the exponents ofR are given by
Si j

m5A2Um(0)11/21 j 12(i 21) ~cf. Ref. @35#!. The con-
stantsb i

m are free parameters whose determination is
scribed in Sec. III.

The frequency-dependent polarizability is calculated
ing the second-order transition matrix element as follows

a~v!52@Ti→ i
(2) ~1v!1Ti→ i

(2) ~2v!#, ~17!

where the final stateu f & is replaced by the initial stateu i & in
Eq. ~2!. In the static limit, i.e., the photon frequencyv
→0, the expression for the polarizability reduces to a s
pler form: a(0)522Ti→ i

(2) (0).

III. CALCULATIONAL ASPECTS

In this section, we discuss the numerical aspects of
calculations. It should be stressed here that these are num
cally intensive calculations, particularly because our co
useREAL*16 ~quadruple! precision in order to minimize nu
merical error propagation and to deal accurately with a m
of both small and large numbers.

In Eqs.~7!–~12!, the channel indicesm andn run from 1
to a maximum numberNc of coupled channels that are co
sidered in the adiabatic expansions. The positive const
b i

m , introduced through the Slater basis functions in E
~15! and ~16!, can be heuristically chosen: the starting tr

FIG. 1. Set of potential curves2Um(R) for 1Se states of the
helium atom.
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values for theb i
m are chosen to be close to the valu

A22E0, where2E050.903 724 a.u. is the electron bindin
energy for the helium atom. Then, a spread of values aro
the initial trial values are investigated and their converge
properties and stability are examined with the aim of mi
mizing error propagation. In this work, we have also dev
oped an optimization procedure for searching for the best
of b i

m parameters. This procedure is based on the minim
tion of the transition matrix element@Eq. ~2!# with respect to
b i

m . Note that for photon frequencies above the ionizat
threshold,b i

m should be chosen to be complex in order
correctly describe the oscillatory character of t
intermediate-state continuum wave functions.

The hyperspherical method focuses on the determina
of potential curves and the corresponding channel functi
@see Eq.~5!#. Due to the nature of the angular operator@Eq.
~4!#, the solution of Eq.~5! is the most difficult step of the

method. Nevertheless, the angular operatorÛ(R,V) is not
dependent on the system’s energies, which means that th
of potential curves and nonadiabatic couplings are calcula
a single time for the system under consideration. Due to
symmetry breaking caused by the electron-electron re
sion, the angular operator is not separable and Eq.~5! be-
comes an angular coupled channel equation@38#. In solving
this eigenvalue equation, we have used an expansion in
individual angular momenta of the electrons@35#. The
coupled-channel expansions have been truncated at the m
mum valuel 1

max5l2
max59 for the 1Se and 1Po channels with

the exception of the lowest potential curves of each symm
try. These potential curves are the most important ones s
they support the bound states. For the first1Se potential
curve, 40 components of angular momentum have been
cluded, i.e.,l 1

max5l2
max539 and for the first1Po potential

curve, 60 components have been used, i.e.,l 1
max5l2

max530.
Bound and scattered states are obtained using proper bo
ary conditions in solving the radial equations. In the calc
lation of static and dynamic polarizabilities~taking the initial
state as the ground state!, potential curves for both1Se and
1Po states are required.

FIG. 2. Same as Fig. 1 for1Po states.
8-3
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TABLE I. Ground-state energy convergence as a function of the numberNc of coupled radial equations
The error is relative to the variational value of Frankowski and Pekeris@4#. The first row, withNc51,
corresponds to the calculation in which all couplings are neglected, giving a lower-energy bound; the
row, also withNc51, corresponds to the one in which only the diagonal coupling matrix element is t
into account, giving an upper-energy bound. Horizontal lines delimit groups of channels~see text!.

Nc ( l 1 ,l 2 ,ñ;n) Ei ~a.u.! (Evar2Ei)/Evar ~ppm!

1 (0,0,0;1) 22.930 032 616 29 060.171
1 (0,0,0;1) 22.895 554 014 2 813.753
2 (1,1,0;2) 22.898 646 614 1 748.707

3 (0,0,2;2) 22.903 611 486 38.878
4 (2,2,0;3) 22.903 632 473 31.650
5 (1,1,2;3) 22.903 636 415 30.293
6 (3,3,0;3) 22.903 658 492 22.690

7 (0,0,4;4) 22.903 717 088 2.510
8 (2,2,2;4) 22.903 717 136 2.494
9 (4,4,0;4) 22.903 717 238 2.459

10 (1,1,4;4) 22.903 717 274 2.446
11 (3,3,2;5) 22.903 717 376 2.411
12 (5,5,0;5) 22.903 717 997 2.197

13 (0,0,6;5) 22.903 722 980 0.481
14 (2,2,4;5) 22.903 723 027 0.465

Variational value@4# 22.903 724 377
n
d
t
or

the
the
y for
ons,
ex-
IV. RESULTS

The potential curves used in our calculations are show
Figs. 1 and 2, where theR50 degeneracy is evident an
exact, according to Eq.~6!. The degenerate curves sugges
natural grouping of channels, which will prove relevant f
01250
in

a

analyzing the convergence of our results as a function of
number of channels included in our calculations. Note
apparent crossings between contiguous curves, especiall
the higher ones. In fact, those are avoided-crossing regi
where the corresponding channel functions suddenly
of
TABLE II. Same as Table I, for the 1s2p 1Po state, where the error is relative to the variational value
Schiff et al. @43#. Horizontal lines delimit groups of channels~see text!.

Nc ( l 1 ,l 2 ,ñ;n) Ei ~a.u.! (Evar2Ei)/Evar ~ppm!

1 (0,1,0;1) 22.145 599 305 210 243.798
1 (0,1,0;1) 22.121 696 638 1 010.643

2 (0,1,1;2) 22.123 010 231 392.145
3 (1,2,0;2) 22.123 219 358 293.679

4 (0,1,2;2) 22.123 611 967 108.821
5 (1,2,1;3) 22.123 621 908 104.141
6 (2,3,0;3) 22.123 645 237 93.156

7 (0,1,3;3) 22.123 734 421 51.165
8 (1,2,2;3) 22.123 738 246 49.363
9 (2,3,1;3) 22.123 750 987 43.365

10 (3,4,0;4) 22.123 755 209 41.377

11 (0,1,4;4) 22.123 790 757 24.639
12 (1,2,3;4) 22.123 792 018 24.045
13 (2,3,2;4) 22.123 794 936 22.671
14 (3,4,1;4) 22.123 797 519 21.455
15 (4,5,0;4) 22.123 798 539 20.975

16 (0,1,5;4) 22.123 811 116 15.053
Variational value@43# 22.123 843 086
8-4
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TABLE III. Static polarizability of the helium atom using five-b Slater basis functions without and with logarithmic terms~for Nc

5Nc8), whereNc is the number of coupled channels. The difference between the two rows withNc51 is explained in the caption of Tabl
I. The results fora(0) in columns 4 and 5 do not involve optimized values of theb i

m parameters; those in columns 6 and 7 do.

a(0)

S state P state Neglecting Including Optimized Optimized
Nc ( l 1 ,l 2 ,ñ;n) ( l 1 ,l 2 ,ñ;n) log termsa log termsa without log termsb with log termsc

1 (0,0,0;1) (0,1,0;1) 1.386 392 1.386 392
1 (0,0,0;1) (0,1,0;1) 1.394 070 1.394 070 1.394 068 70 1.394 068 70
2 (1,1,0;2) (0,1,1;2) 1.381 100 1.395 580 1.395 576 02 1.395 576 03
3 (0,0,2;2) (1,2,0;2) 1.356 458 1.380 733 1.380 730 90 1.380 731 32
4 (2,2,0;3) (0,1,2;2) 1.387 758 1.383 117 1.383 116 07 1.383 116 44
5 (1,1,2;3) (1,2,1;3) 1.387 457 1.382 986 1.382 973 07 1.382 973 12
6 (3,3,0;3) (2,3,0;3) 1.387 635 1.383 227 1.383 225 32 1.383 225 55
7 (0,0,4;4) (0,1,3;3) 1.392 171 1.383 045 1.383 066 40 1.383 067 30
8 (2,2,2;4) (1,2,2;3) 1.393 330 1.383 086 1.383 068 82 1.383 069 73
9 (4,4,0;4) (2,3,1;3) 1.392 195 1.383 067 1.383 069 74 1.383 070 43

10 (1,1,4;4) (3,4,0;4) 1.392 073 1.383 094 1.383 074 42 1.383 074 30
11 (3,3,2;5) (0,1,4;4) 1.397 085 1.383 163 1.383 152 43 1.383 152 73
12 (5,5,0;5) (1,2,3;4) 1.391 545 1.383 193 1.383 162 64 1.383 162 94

aFive nonoptimizedb i
m parameters.

bOneb i
m parameter. Results from Table IV.

cTwo b i
m parameters.
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change their behaviors, resulting in sharp peaks in the no
diabatic couplings due to the first and second derivati
present in their definitions, as seen in Eqs.~11! and ~12!.

For reasons of consistency, the ground-state energyEi
used in Eq.~1! is the calculated hyperspherical value for t
number of channels included in our calculations, as show
Table I. In this table, as the number of coupled chann
increases, the corresponding calculated energy approa
the variational value of Ref.@4#. The first row withNc51
corresponds to the calculation in which all couplings are
glected, giving a lower bound for the energy@39,40#. The
second row withNc51 corresponds to the calculation
which only the diagonal coupling is taken into account. T
value, and all subsequent ones, are upper-energy bo
@39,40#. The second column lists theR50 angular quantum
numbers@see Eq.~6!# as well as the asymptotic hydrogen
thresholdn; this set of numbers labels each potential cu
~and the corresponding angular channel!. For second-order
processes such as the dipole polarizability of the gro
state, the intermediate states possess symmetry1Po. For this
reason, Table II is included in order to analyze the conv
gence of the 1s2p energy. One sees in Table I that as ad
tional adiabatic hyperspherical channels are included in
calculations, the deviations from the variational value of R
@4# decrease monotonically. Large decreases occur when
hyperspherical channels that converge ton52 (Nc52, 3!,
n53 (Nc54, 5, 6!, and the first channel converging ton
54 (Nc57) are included. The largest decreases occur w
the last channel included has an angular function contain
s waves~i.e., electron orbital angular momental 15 l 250) at
R50; this occurs forNc53, 7, and 13. A similar pattern ca
be found in Table II for the 1s2p state. In both Tables I and
01250
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II, horizontal lines delimit groups of channels. Inside ea
group the convergence is steady but slow. One could also
grouping of channels using the asymptotic thresholdn as a
parameter. We believe that grouping of channels using t
R50 characters is the most appropriate method since
corresponding potential wells@see Eq.~3!# are in the small-
and mid-R regions and, consequently, in this region the ch
nel functions are better characterized by theirR50 behav-
iors than by theirR→` behaviors. As noted from Tables
and II, a new group of channels starts when an angular ch
nel with an l 150 component is included. Note how eve
time a new channel havingl 150 is included, the error drops
dramatically. This behavior~and its associated chann
grouping! will prove useful for analyzing the convergence
the static polarizability, for which both1Se and 1Po symme-
tries are involved.

A. Static polarizability

In our calculation of the static polarizability without th
optimization of the exponential parametersb i

m , our expan-
sions of the radial functions in Eqs.~15! and ~16! include

factors such asRSi0
m

1 j (ln R)i21, where 1< i<Bmax and
1< j <Mi so thatBmax21 is the highest power of lnR and
Mi1Si0

m is the highest power ofR for a given power (i
21) of lnR. We have used in the expansions of Eqs.~13!
and ~14!, Bmax55 with b1

m50.3, b2
m50.5, b3

m50.8, b4
m

51.2, andb5
m51.7. For each value ofb i

m , Mi5M512,
althoughM58 or evenM56 suffices to obtain reasonab
precision. Although for H2 we have found thatBmax51 suf-
fices@32#, which implies the absence of logarithmic terms
8-5
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m parameter. Horizontal and vertical lines delimit groups of channels~see text!.
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TABLE V. Comparison of the present variationally stable results for the ground-state static dipole polarizability of the He ato
theoretical results of other authors and available experimental values. The result in the first line was calculated usingNc5Nc8512, whereas
the two subsequent lines show results usingNc512 andNc8515.

Reference a(0)

Theoretical results
This work ~coupled-channel result including log termsa! 1.383 193
This work ~optimized coupled-channel result without log termsb! 1.383 173 59
This work ~optimized coupled-channel result including log termsc! 1.383 173 94
K. Pachucki and J. Sapirstein~2000! ~Ref. @27#! 1.383 192 174
Z.-C. Yanet al. ~1996! ~Ref. @25#! 1.383 192 5
M. J. Jamieson, G. W. F. Drake, and A. Dalgarno~1995! ~Ref. @24#! 1.383 192
A. K. Bhatia and R. J. Drachman~1994! ~Ref. @23#! 1.383 192 179
D. M. Bishop and J. Pipin~1993! ~Ref. @22#! 1.383 192
D. M. Bishop and B. Lam~1988! ~Ref. @19#! 1.383 192
R. M. Glover and F. Weinhold’slower bound~1976! ~Ref. @17#! 1.382 59
R. M. Glover and F. Weinhold’supperbound~1976! ~Ref. @17#! 1.384 11
S. J. A. van Gisbergenet al. ~1998! ~Ref. @26#! 1.382 4
H. P. Saha and C. D. Caldwell~1991! ~Ref. @21#! 1.374
B. Gaoet al. ~1990! ~Ref. @20#! 1.355 9
E.-A. Reinsch~1985! MC-SCF result~Ref. @18#! 1.383
K. T. Chung~1968! ~Ref. @16#! 1.384 1

Experimental results
C. R. Mansfield and E. R. Peck~1969! ~Ref. @44#! 1.386 1
P. W. Langhoff and M. Karplus~1969! ~Ref. @45#! 1.383 8
D. Gugan and G. W. Michel~1980! ~Ref. @46#! 1.383 77~7!

D. Gugan~1991! ~Ref. @47#! 1.383 79~4!

K. Grohmann and H. Luther~1992! ~Ref. @48#! 1.383 746~7!

aFive nonoptimizedb i
m parameters,Nc5Nc8512 channels~cf. Table III!.

bOne optimizedb i
m parameter,Nc512, Nc8515 channels~cf. Table IV!.

cTwo optimizedb i
m parameters,Nc512, Nc8515 channels.
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the intermediate-state functions, for the helium atom we d
covered that not only shouldBmax be greater than unity bu
also that it needs to be at least greater than or equal to t
in order to obtain convergence to the correct value of
static polarizability. In the adiabatic approximation, whe
Nc51, the three matrix elements in Eq.~2! are equal to each
other ~to ten digits of accuracy!. For the nonadiabatic
coupled-channel calculation, i.e.,Nc>2, they are typically
converged to within five or six digits of accuracy. We rega
the accuracies of these equalities as indicators of the lev
accuracy of our results. Note also that for these calculati
we have not altered the parameters as the number of cha
is increased; doing so may be necessary for larger num
of channels, as these correspond to higher-energy leve
He1.

Table III lists the calculated values of the static polar
ability according to Eq.~17!, with v50, as the number o
coupled channels increases. The quantum numbers that
the potential curves, listed in Tables I and II, are also
cluded to help identify the groups of channels. This ta
lists the values obtained by neglecting the logarithmic ter
in Eqs. ~15! and ~16! alongside the results obtained by i
cluding the logarithmic terms. Other than the inclusion
exclusion of the logarithmic terms, both calculations we
otherwise the same. That is, they used the same param
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~such as the number ofb i
m constants! and the same numbe

of basis functions. Comparison of the two variational calc
lations clearly indicates the importance of the use of
logarithmic expansion. They are important not only for a
celerating the convergence but also for obtaining the cor
value. Note that in calculating the polarizability there are tw
sets of coupled channels: the1Se channels, which couple to
the ground state, and the1Po channels which constitute th
intermediate states. One sees from Table III that the con
gence is not a monotonically decreasing function of the nu
ber Nc of coupled channels. An interesting question
whether the convergence would become smoother if differ
numbers of channels were coupled in ground and interm
ate states. For example, one might include all hypersphe
channels that converge to a particular leveln of the He1 ion
in both ground and intermediate states. Alternatively, o
might group the various adiabatic hyperspherical channel
some other way, such as according to their character aR
50. We have carried out this study coupling all availab
channels in ground and intermediate states. In Table IV,
study the convergence of the static polarizability as a fu
tion of Nc andNc8 , which are the numbers of coupled cha
nels in both ground and intermediate states, respectiv
where we have used for this purpose a singleb i

m , which
8-7
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TABLE VI. Selected values of our best calculated (Nc5Nc856) dynamic polarizability of helium compared with results from oth
authors and with experimental values.

v This work Ref.@16# Ref. @17# Ref. @18# Ref. @19# Expt.a

0.050 1.387 094 1.386 8 1.387 22 1.387 066
0.100 1.398 857 1.399 0 1.398 98 1.398 1.398 820 1.399
0.150 1.418 998 1.419 2 1.419 12 1.418 957
0.200 1.448 388 1.448 3 1.448 51 1.448 1.448 341 1.449
0.250 1.488 389 1.488 7 1.488 53 1.488 335
0.300 1.541 045 1.540 7 1.541 19 1.540 1.540 981 1.542
0.350 1.609 399 1.609 5 1.609 56 1.609 325
0.400 1.698 070 1.698 0 1.698 3 1.696 1.697 985 1.700
0.450 1.814 308 1.814 7 1.814 5 1.814 214
0.500 1.970 129 1.970 6 1.970 5 1.966 1.970 037 1.973
0.550 2.187 047 2.187 2 2.187 5 2.182 2.186 990
0.600 2.508 200 2.509 1 2.509 1 2.501 2.508 292 2.502
0.650 3.036 655 3.038 0 3.039 1 3.022 3.037 345
0.700 4.107 153 4.110 3 4.118 4 4.079 4.111 021 3.884
0.750 7.967 789 7.968 4 8.164 0 7.967 8.014 127
0.770 17.070 652 16.866 8
0.780 1 765.866 727 56.096 9 21 073.68
0.782 290.326 704 116.456 0
0.784 242.857 302 2968.839 5
0.785 233.466 465 231.46
0.790 214.990 171 230.746 1 214.56
0.795 28.852 173 28.71
0.800 25.722 310 210.329 0 25.66
0.805 23.768 979 23.75
0.810 22.380 470 22.38
0.815 21.286 429 21.30
0.820 20.336 927 20.37
0.825 0.578 338 0.52
0.830 1.581 768 1.47
0.835 2.894 517 2.65
0.840 5.173 656 4.52
0.845 12.633 684 9.75

aReference@18#.
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means that the basis functions do not include logarith
terms. The horizontal and vertical lines correspond to
horizontal lines of Tables I and II, i.e., they show the beg
ning of each group of channels, where each group be
with a channel havingl 150 at R50 @see Eq.~6!#. In our
calculations fora(0), we have introduced an optimizatio
procedure for the parametersb i

m . The optimal set ofb i
m

parameters is found by minimizing the transition matrix e
ment @Eq. ~2!# with respect to eachb i

m . Table III lists the
results using optimizedb i

m in the intermediate functions. A
side-by-side comparison shows that only a single optimi
value for theb i

m parameter is sufficient to achieve resu
very close to the ones obtained with five nonoptimizedb i

m

parameters and logarithmic terms. On the other hand, a
tional CPU time is required for the optimization procedu
Anticipating that readers will wish to know what would ha
pen if one combines the inclusion of logarithmic terms
gether with the optimization of theb i

m , a sample for the first
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few coupled channels have been computed and displaye
the last column of Table III. One sees that the improvem
is beyond the sixth or seventh decimal digit, with a high c
in terms of computer resources.

Some information about the convergence of the calcula
a(0) value with the number of channels can be extrac
from Table IV. For each column, the same convergence
tern of 1Po states, shown in Table II, is found asNc8 in-
creases. Within each group of channels the polarizability
creases slowly and monotonically whereas larger increm
occur when a new group is included. A different pattern
noted when looking at the rows, which show the conv
gence as the numberNc of channels included in the ground
state wave function is increased. Within each group the c
vergence oscillates with increasingNc . However, the
important feature is that considering only the values obtai
with a complete groupof Nc channels included, the result
are monotonically decreasing. These results are represe
8-8
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STATIC AND DYNAMIC DIPOLE POLARIZABILITY O F . . . PHYSICAL REVIEW A 68, 012508 ~2003!
by the values to the immediate left of the vertical lines. T
numbers inside the boxes are the results after comp
groups of channels in both ground and intermediate states
included. Thus, this analysis relates the convergence pa
of the polarizability with the behavior of the1Se and 1Po

energy convergence, shown in Tables I and II. The conv
gence withNc should be examined for entire groups of cha
nels and the convergence withNc8 is monotonic and conse
quently one does not need to group channels, although
should expect jumps at the beginning of a new group.
further investigate the convergence and reliability of our
sults, an extrapolation procedure can be used. If one ta
into account solely the results inside boxes from Table
each row and column can be fitted to a function of the ty

a~x!5a1
b

xc
, ~18!

whence one can extrapolate to an infinite number of gro
in both directions. This extrapolation procedure may be d
in two ways: starting by rows or by columns. Within s
digits of accuracy, the resulting values areaext51.383 18
and aext51.383 10, respectively. Comparing these two e

FIG. 3. Convergence of the dynamic polarizability of helium f
photon frequencies below the first ionization threshold.~a! Below
the first excitation frequency.~b! Resonance region.
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trapolated values with our result ofa51.383 174 (Nc512
and Nc8515), we can assure a convergence of at least
digits. It is remarkable how our method is capable of prov
ing results for polarizabilities that possess almost the sa
level of accuracy as for the ground-state energy~cf. Table I,
Nc512), which is usually not true.

In Table V, a comparison of our coupled channel valu
with the results of calculations of other authors and w
experimental values is given. Our result using one optimiz
b i

m without logarithmic terms (Nc512 andNc8515) and five
nonoptimized b i

m including logarithmic terms (Nc5Nc8
512) are presented. We also show the result of two o
mized b i

m plus inclusion of logarithmic terms (Nc512 and
Nc8515). As noted before, the improvement in the latter
beyond the sixth decimal digit. Not all of the results of othe
lie between the rigorous bounds from Glover and Weinh
@17#. Our results fall between these limits. Indeed, our p
cise results are comparable to the most accurate ones
the literature, such as that of Ref.@27#. Among the various
theoretical calculations, the works by Bishop and co-work
@19,22#, Bhatia and Drachman@23#, Jamiesonet al. @24#, and
Pachucki and Sapirstein@27# appear to be the most accura

FIG. 4. Comparison of our best result for the dynamic polar
ability of helium with other theoretical calculations and with expe
mental values.~a! Below the first excitation frequency.~b! Reso-
nance region.
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M. MASILI AND A. F. STARACE PHYSICAL REVIEW A 68, 012508 ~2003!
ones. Those are all based upon techniques that use v
tional wave functions for both the ground state and the in
mediate states that involve large basis sets, ranging from
basis functions@22# to 900@27#. Their wave functions do no
include the logarithmic contributions, which can explain t
large number of basis functions needed to achieve good
vergence. Three of them@22,23,27# used extended~or qua-
druple! numerical precision to avoid round-off error prop
gation. Nevertheless, our calculation using basis functi
that include logarithmic terms needs fewer basis functio
namely, 60 terms in the expansions given by Eqs.~13! and
~14!, whereas in the calculation using only one optimizedb i

m

parameter, 16 terms (Mi516) have been used in these e
pansions. We reiterate that we have not pushed our varia
ally stable approach using a coupled adiabatic hypersphe
basis to obtain the seven or more digits of accuracy ne
sary to achieve benchmark predictions for the static pola
abilities. To do that we would have to couple more than
12–15 channels of each symmetry that we currently incl
and, in particular, we would have to include one or more
the next complete groups of channels of each symme
What we have shown is that for a given number of chann
the inclusion of logarithmic terms allows one to obtain co
parable accuracy to calculations that optimize theb param-
eters but do not use logarithmic terms. A key additional po
is that the five digits of accuracy we have achieved at
level of approximation permitted by our computational co
straints is sufficient to obtain competitive predictions for t
dynamical polarizabilties, which we discuss next.

B. Dynamic polarizability

Our results for the static polarizability have determin
the set of optimized parameters which provide results co
parable to the use of logarithm terms in the initial- a
intermediate-state expansions. We use this information to
lect the parameters for our calculations of the frequen
dependent~or dynamic! polarizability of He. For the dy-
namic case, the determined optimal values ofb i

m for each
coupled channel in the static limit have been used. We h
used an equal number of coupled channels for both gro
and intermediate states, that is,Nc5Nc856 since this number
of coupled channels constitutes a closed group of chan
for both ground and intermediate states, according
Table IV. In Table VI, our results for the dynamic polari
ability of helium are compared with previous calculations

TABLE VII. Comparison of the one-photon transition res
nances extrapolated from Fig. 4~b! with results in the literature.

This worka Variationalb Hypersphericalc

0.780 100 0.779 881 0.779 920
0.848 527 0.848 578 0.848 618
0.872 964 0.872 655 0.872 677
0.883 820 0.883 818 0.883 830

aNc5Nc856.
bReference@41#.
cReference@42#.
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the literature@16–19# and also with experimental values~as
listed in Ref.@18#!. Most calculations are unable to achiev
results over the photon energy range 0.75,v,0.9 ~in a.u.!
owing to the approach of the resonance region. Our calc
tion for the dynamic polarizability is presented in Figs. 3 a
4. In Fig. 3 one sees the rate of convergence as the numb
coupled channels~with Nc5Nc8) increases. Figure 4 shows
comparison of our best result (Nc5Nc856) with the theoret-
ical results of Chung@16#, Glover and Weinhold@17#, and
Bishop and Lam@19# as well as with experimental value
from Ref. @18#. For photon frequenciesv,0.7 a.u. @Fig.
4~a!# our results compare very well with the results of oth
authors. However, in the resonance region@Fig. 4~b!# our
calculation compares best with the results from Glover a
Weinhold @17#.

The resonances~sharp antisymmetric peaks! in the dy-
namic polarizability correspond to one-photon transitions
intermediate1Po excited states of He. Whenv approaches
this region (v*0.7 a.u.), conventional methods start to fa
due to the approximation of the poles present in Eq.~1!,
making the calculation increasingly difficult. As our forma
ism transforms Eq.~1! into Eq. ~2!, in which the poles have
been removed, there is no difficulty in the calculation in t
regionv.0.7 a.u. From the calculation of the dynamic p
larizability in the resonance region, one can extract the
quencies for the one-photon transitions by simply inspect
the calculated data and, in the vicinity of an abrupt change
sign, extrapolate the values of the resonant frequencies.
first few one-photon transition energies obtained are liste
Table VII. In this table, a comparison with results of a var
tional calculation@41# is given. Also listed are the hyper
spherical results from Ref.@42#. Unlike the usual methods
for obtaining polarizabilities, one notes that the pres
variationally stable approach provides very accurate val
for the one-photon transition energies.

V. CONCLUSIONS

In summary, we have presented a calculation for the st
dipole polarizability of the helium ground state that includ
logarithmic terms in both ground and intermediate sta
within a variationally stable, coupled-channel adiabatic h
perspherical approach. Within this basis set, the inclusion
logarithmic terms appears to be necessary to obtain con
gence to the correct value of the static polarizability wh
nonoptimized parameters in the intermediate basis funct
are used. We have shown that for any fixed number
coupled channels this approach is capable of obtainin
value for the static polarizability that is comparable to t
results obtained with optimized parameters. The two me
ods appear comparable in their use of computer resour
Use of logarithmic terms requires more basis functions,
one does the calculation only once; use of optimiz
parameters—without logarithmic terms—implies fewer ba
functions, but the calculations must be repeated as ofte
necessary to obtain the optimum values of the paramete

Results for the dynamic polarizability have also be
presented whose accuracy is comparable to that of the
results of other authors, especially in the photon freque
8-10
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range corresponding to the one-photon transitions. In f
one of the advantages of the present approach is the abili
furnish reliable and converged results even in the resona
region due to the nonexistence of poles in the transition
trix element. These accurate predictions for the dynam
polarizability imply that our approach is capable of predi
ing highly accurate values for multiphoton cross sections
helium ~as well as other two-electron systems!. Calculations
for the helium two-photon ionization cross section are
progress.
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