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Spin-based all-optical quantum computation with quantum dots:
Understanding and suppressing decoherence
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We present an all-optical implementation of quantum computation using semiconductor quantum dots.
Quantum memory is represented by the spin of an excess electron stored in each dot. Two-qubit gates are
realized by switching on trion-trion interactions between different dots. State selectivity is achieved via con-
ditional laser excitation exploiting Pauli exclusion principle. Read out is performed via a quantum-jump
technique. We analyze the effect on our scheme’s performance of the main imperfections present in real
guantum dots: exciton decay, hole mixing, and phonon decoherence. We introduce an adiabatic gate procedure
that allows one to circumvent these effects and evaluate quantitatively its fidelity.
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[. INTRODUCTION the electrostatic dipole-dipole interaction.
Decoherence is important mainly during gate operation
The promise of quantum computation is to enable algoWhen excitonic states are created that interact with the pho-

rithms which render feasible problems requiring exorbitant?0n bath. Recent calculations for the strong-field i

resources for their solution on a classical computer. This ha§dicate that the leading dephasing mechanism is the cou-
ling to acoustic phonons. In this paper, we focus on this

stimulated a large number of proposals for the physicaP . : i
) . ) : "~ coupling mechanism and we describe a procedure that allows
implementation of the elementary logical operations buildin

. Yone to circumvent, to a large extent, the limitations imposed
up a general-purpose quantum complfr A central issue ., his decoherence channel on the fidetyof the gate

is the trade-off between efficient coupling to the system, ingperation. We will evaluate the dependenceFan various
order to control the quantized degrees of freedom, and googarameters, including temperature, and take into account
isolation from the environment, in order to preserve the coother sources of imperfection such as heaflight-) hole
herence of the quantum evolution. Strategies have been desixing.

veloped to fight decoherence taking place during the compu- We choose to neglect all kinds of nonidealities arising
tation, ranging from “active”(error-correctinyto “passive”  from limitations, e.g., in the QD fabrication and manipula-
(error-avoiding schemes. Thereby, unwanted physical pro-tion techniques. We are well aware that these might yield the
cessegi.e., computational errorof a generalkind can be most significant problems for the implementation of our pro-

compensated for, either by detecting and correcting their eposal in the immediate future. However, we prefer to focus

. . . . on fundamental quantum-mechanical limitations of our
fect_wa redundant qu't encodirg] or by decoupling the . physical system rather than on technical problems. Once the
qubits from the environment dynamics through algebrai

> = e echnological advances have overcome the latter, the relevant
techniques exploiting symmetries in the evolutf@h Aless  part will be to find ways to circumvent the former. The main
general, more implementation-dependent approach is tpurpose of this paper is to develop strategies aimed at this.
study the specific decoherence channels of a certain physical The paper is organized as follows: in Sec. Il, we describe
scheme and to design gating processes that are stable agaitist general idea of a two-qubit quantum gate based on selec-
the relevant types of errorgor an example with ion traps, tive switching of controlled interactions. In Sec. I, we recall
see Ref[4]). the dynamics of charge carriers in a quantum dot, including
In this paper, we adopt the latter point of view and applyexternal static and oscillating eIectromagn(_etic fields. In Sec.
it to a recent proposal for all-optical quantum information IV, we derive few-level model corresponding to the above
processing based on charged semiconductor quantum ddi§neral scheme and discuss some of its limitations. In Sec. V,
[5]. In this scheme, quantum information is stored in the spirfVe discuss our two-qubit gate and develop its adiabatic ver-
of an excess electron in a quantum d@D), and gating SIo™ sglf[able for operation even in realistic scenarios with
between two QDs is performed via optical excitation of horI1e m|X|fng. In ?ec. \él we prqposelagole-\n;;lxmg tolerlant
electron-hole pairgexcitons, which in an external electric Sﬁ erf:?e orf srl]ng. e-qubit ope(at:|ort:s. n >ec. he. wef analyze
field acquire a dipole moment allowing them to interact witht e efiect of the interaction with phonons on the periormance

h other. In this wav. th Atum memor heren timof our adiabatic gates, showing that the gates indeed are
each other. S way, th€ guantu emory conerence 8uite robust also against this kind of imperfection. In Sec.
is in the microsecond range, typical for spin degrees of free

q : icond h hile th VI, we describe how the quantum-jump technique can be
om in semiconductor heterostructuf, while the two-  oh16ved for measuring the spin state of a confined electron,

qubit gating time is in the picosecond range, as dictated by¥mphasizing that this can be done even for the case of non-
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zero hole mixing. Our conclusions are summarized in QDa QDb
Sec. IX. _ _
D
Il. QUANTUM GATE MODEL ‘|3>‘ - ‘B -
a b
To execute an arbitrary quantum computation, i.e., to con- — _
trol the coherent evolution of a system composed of an arbi- 1] Q ()
trary number of qubits, one does not need to realize physi- - _I(l))_ ‘R)') -
cally arbitrary multiqubit operations. On the contrary, just i b
two kinds of elementary operations are sufficient, out of — —_
which all others can be constructed. These two elementary 1) af)
gates are the set of rotations of a single qubit, and a specific 0y, 1),
entangling operation on two qubits. Among the possible AE,,
choices for the latter, one which is well suited for an imple- v) Q_(O)_ """"" a _tol_
mentation with atomiclike systems such as quantum dots is —_
the phase gate—a transformation which rotates by a certain 1), [1)s

phase just one component of logical states: o . . .
FIG. 1. Gate operation via an auxiliary state: in the ideal sce-

|0)|0)—|0)|0), nario when only one of the logical states can be coupled to the
interacting state, the interaction leading to the logical phase

|0)[1)—]0)|1), is “switched on” only when both qubits are in the same state
(here,|1)).

[1)[0)—[1)0), @)

ratio between coherence time and gate operation time leads
|1)|1)—e'?1)[1). to conflicting requirements. Reasonable trade-offs can be
achieved in each case—however, sticking to the same degree
When we haved= 1, this is equivalent, up to the single- of freedom for both the memory and the two-qubit interac-
qubit rotations, to a controlledoT gate. Ideally, this would tion may be not necessarily the only option. For instance, the
be accomplished by means of a state-dependent interactimame effect of the interaction, E(R), can be obtained by
of the form introducing an auxiliary state). Let us consider two qubits,
labeled bya and b and with logical statega),p («
Higea= AEan(t)|1)a(1[® | 1)n(1]. (2 €{0,1). Each qubit is selectively coupled to a further state
|x)—namely, only|1) can be excited t{x). This situation is

This describes a situation in which the two-qubit system UN4yescribed by the following Hamiltonian:

dergoes an energy shitE;, if and only if both qubits are in

state|1). Imposing the additional condition, O(t
S (1)
Hond)= 2 Eula),( @ T 2 (X (1]+H.c.
tot 7 , , u;(;lbx v=a,b Y
ft AEqp(t")dt =14, () e
0 +AEqp(1) %) (X[ ®[X)p(x|. (4)

on the time dependence of the energy shift, E9.is recov-

ered As in Ref.[5], the logical state$0) and|1) (the quantum

memory can be encoded into long-coherence spin states,
while the auxiliary state$x), needed for the gate to be per-
formed, can be chosen to be electrostatically interacting
An interaction of the form Eq(2) is not straightforwardly — states. State selectivity, required for conditional logical op-
found in nature. Implementing it entails, of course, a certairerations, is accomplished via the state-dependent coupling
degree of engineering “natural” interactions, i.e., those di-€}(t). The simplest strategy for performing a quantum gate
rectly available in a specific physical system. This, togetheexploiting the coupling scheme, E¢), would be, e.g., to
with other requirements on the stability of the availableselectively excite the interacting stae) via a Rabi flop,
quantum memory, affects the choice of the particular qubitvait for the desired gate phase to be accumulated, and then
implementation. When it comes to systems of confined elecdeexcite. The interaction energy shift would then be effective
trons in solid-state systems, such as quantum dots, two dibnly if both QDs started off statel ), as described in Fig. 1.
ferent choices are natural for the logical degree of freedomThis procedure works in the ideal case when the coupling is
either charge excitatiof8] or spin polarization[9]. The perfectly state selective as in E@l). Compared to similar
former provides for a strong interaction, leading to comparaschemes for neutral atongsee, e.g., Ref.10]), it has also
tively shorter gate times but to faster decoherence rates dbe advantage that quantum dots, unlike trapped atoms, are
well; conversely, the latter suffers less from the coupling tonot subject to back action on motional dynamics. However,
the environment, yielding better stability against memory de4in a real situation state selectivity may not be perfectly sat-
coherence, but bears also a weaker coupling between qubiisfied, in which case the simple procedure described above
requiring longer times for gate operation. Aiming at a highwould not work. We will handle this imperfection below and

A. Phase gate model: Auxiliary interacting states
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develop a strategy for overcoming it. But first we need a y)—however, we will stick to the minimum fidelity which

model of the quantum-dot dynamics that can account for Eqgives a lower bound to the average fidelity.

(4). This is the subject of Sec. lII. Taking the most general possible form for the external
state,

B. Gate fidelity

To evaluate the performance of a quantum gate, one needs pexi= > PelEXE (11
to compare its desired operation, Ety. in our case, with the E

actual performance of the physical system which implement:
it. The fidelity F represents a quantitative basis for this. To

define it, let us start from the logical input state

And assuming that the evolution does not mix different logi-
cal states,

3

3 UNIE~ 3 clmeViE), 12

|X)=C00l00) + C1|01) + 19| 10) + €14/ 11) = ngo CnlN),

®)  the fidelity takes the form

which is an arbitrary superposition of all two-qubit compu- 3
tatlo_nal basis states. The goal of gate operation is to obtain F=min 2 |CmIZICn|Zei(‘bnf‘ﬁm)trext(VmV;), (13)
the ideal output {c,y MN=0
~ 3 i which will be relevant for our calculations below.
=2, e%coln). (6)
n=

I1l. QUANTUM-DOT DYNAMICS
This is equivalent to the desired two-qubit transformation oo .
Eq. (1): one can be recovered from the other by redefining Quantum dots, due to their discrete density of states, are
the logical states via single-qubit operations. The gate phasé!Y Promising candidate for the implementation of quantum

9 turns out to be related to the logical phasge; as follows information processing8,11]. The brilliant idea first pro-
[4]: posed by DiVincenzo and Lo$9] to employ the spin of an

electron confined in a QD as the qubit degree of freedom has

9= oo— Po1— P10+ P11 (7)  been developed by the authors over the ygb2$and is now

pursued by many researchds3—15. Combining the QD
Thus, the conditiony= 7 simply translates into a condition technology with ultrafast laser pulses now seems to be one of
ON ¢,4'S. the most promising channels for such an implementation
The actual physical situation may involve other externalscheme[5,16]. Recently, the necessary coherence required
(i.e., nonlogical degrees of freedom, which are not perfectly for such a task, i.e., Rabi oscillations, has been experimen-

under control. In this case, the initial statewill rather be a  tally observed17]. There have been also impressive experi-

mixture: mental achievements in exciting and probing excitons in
QDs[18].
o= x){X|® pex(to), (8 The complex many-body dynamics of charge carriers in a

. . semiconductor can be considerably simplified when consid-
wherepey denotes the density matrix for external degrees okying semiconductor heterostructures such as quantum wells
freedom. The operatiolf realized in the lab will, in general, - 5n4'dots. The purpose of the present section is to write down
involve both internal and external degrees of freedom in &ypjicitly the carrier Hamiltonian for a quantum dot under
nontrivial way: therefore, the actual output, these approximations. In the following section, this descrip-

o' =Uold 9) tion will be Iin!<ed to the.part_icular model described by Eqg.

(4). Two main approximations[19,20 are understood
will no longer be written in a simple factorized form like Eq. throughout the following. The first is the effective-mass ap-
(8). In order to compare this state with the ideal one whichProximation, which arises from approximating the band dis-

would be obtained in the case of perfect operation, we definBersion relation around a band extremum up to second order
the fidelity in the carrier wave vectdt. This is valid for small values of

k, and allows for simplifying Hamiltonians in terms of effec-
F:mintrext(}|a’|}>. (10) tive e_Iectron and hole masses that take intq account the un-

derlying many-body dynamics. The other is the envelope
function approximatiohn21], which is based on the following
The intuitive meaning of this definition is that of a worst- assumptions(i) the different materials constituting the het-
case estimatéhence, the minimum over the possible inputserostructure are perfectly lattice matchei) the periodic
|x)) of the gate performance, averaged over the availablparts of the Bloch functions, o(r) are the same in the dif-
nonlogical states not being under conttbence, the trace ferent layersfiii) the confining potential is smoothly varying
over the external degrees of freedomnother option would on the scale of the lattice structure, apart possibly from
be to define the fidelity as an average over the logical inputabrupt interfaces. The wave function can then be expanded

X
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as a sum of products of the rapidly varying functiang(r) momentum states can be defined. They exhibit many atomic-
by slowly varying envelope functions which obey an effec-like symmetries which have been experimentally identified
tive Schralinger equation involving the effective masses. We[23]. In contrast to atoms, when considering the quantum
consider QDs in the “strong-confinement” regime, in which humbers defining the angular momentum of an electron or a
the typical length scale in the growth directidnis of the  hole confined in a QDs, one has to take into account the
order of 10 nm to 20 nm. Considering QDs in the strong-underlying band structurg24].

confinement regime means that all relevant energy scales, Taking spin into account leads to splitting into hole sub-
e.g., charge carrier interactions in the QD or electron-phonoRands. The valence band, built from atorpitype orbitals,
interactions, will be small compared to the level spacing ofcontains states carrying an interrtaand angular momen-
the QD, typically of the order of 25 meV for electrons. tum m equal to unity. Thus, the total angular momentum is

A. Single-particle states under external fields j=otm+l, (20

Under the above approximations, the carrier Hamiltoniarwwhere o is the spin and is the orbital angular momentum.

for a quantum dot can be written 520,22 Good quantum numbers are the modulug ahd its compo-
nent along the QD symmetry axis The single-particle
— — h h
HE=H{ + Hﬁ_ HE+H + H\TJF Hy- (14 states of the valence band witk O are classified according

to the value of [o+m|,o,+m,), as follows:
(3/2 3/2)—heavy-hole sub-band; (3f21/2)—light-hole
sub-band; (1/2+ 1/2)—spin-orbit split-off sub-band.

The electron in-plane Hamiltoniah‘iﬁe describes the confine-
ment in the direction perpendicular to the QD symmetry axis

z, which can be modeled with a parabolic potential: For the dynamics considered in this paper, only heavy and
52 Mow? light holes will matter, the split-off sub-band being energeti-
Hf=— V24— Cr24eF.r, (15  cally far apart. So let us define electron and hole operators
2me "2 for the QD labeled by (ve{a,b}), with composite index

. . ) =[n, d sping:
where the in-plane coordinate vector riss(x,y) and the 1=[n.a] and spino

e_IgctricaI fieldF is taken to be parallel to they plane. De- V. Jvao=li,o),, (22)
fining
hy, ;.o vag=li,o'), . (22
= la, 16 . . . -
fe=r™ mewe =(Fe.Ge). (16) We can now write the noninteracting part of the carrier

Hamiltonian for the QDv:
the eigenstatej,q)® of H|'|3 in coordinate representation are

32
rlol i Telater@0? 2 Hi= X €fClioCuiot 2 €oh Do
(reln,g)®= clal| =2 17 R botnd
g1+ a(n+ oDt ™ 13 29
wheren=0,1,... is theprincipal q— —n,—n+2,. B. Carrier-carrier interaction

—2,n is the azimuthal, andh,=(n—|q|)/2 is the radlal
guantum numberz:‘q (2) are Laguerre polynomials;

1 .
h H(I:/C:__E _(<|le|k|>eecz,i,(rcj;j g-’cv,k,(r’cv,l,(r
lo= , (18) 1Tkt 2 ”
2Mewe a0’

and the eigenenergies are +(ij[V[KIypph?; b ,,J oMokoNuio)

The electrostatic interaction Hamiltonian is written as

€ng=N(N+1)we. (19 —(ij|VIkerch o ‘;J oMok’ Colios (24)

In the growth direction, the perpendicular Hamiltoniglf ~ where the matrix elements of the Coulomb potential
is, in general, a very narrow potential given by the quantum
well structure and is therefore typically approximated by a , e
_ ; . : Vir-r')y=— (29

steplike potential. In the strong-confinement regime, a good drrelr—r'|
approximation is to assume that the system remains in its
ground state. Thus, the problem effectively reduces to th@re calculated on electron and/or hole wave functions, ac-
in-plane dynamics. The hole Hamiltoniaff' | is, of course,  cording to subscripts. Here, carrier number conservation is
the same as-IjH but with hole parametens), andwy,, and  assumed, since processes violating {leig., Auger recom-
opposite charge. bination and impact ionizatigrare relevant for energies and

Due to the strong confinement and spatially symmetricdensities higher than we are consider{@g]. It should be
shapes of the confining potentials in QDs, electronic angulamoted that, in contrast to higher-dimensional quantum struc-
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tures, in QDs carrier-carrier interactions only induce an "] |-1/2) |1/2) [ |-1/2) |1/2)
energy—_level renormalization without causing scattering or ~ — & o
dephasing. > ( ———
N W
C. Interaction with a laser field 13/2)  |-3/2) |3/*2) |-3/2)

Let us consider a laser of amplitu@g€t) and central fre-
guency w, impinging on our QD. Under the dipole and  FIG. 2. Pauli-blocking mechanism: a pulse of, -polarized
rotating-wave approximations[25], the corresponding light can promote an electron from the valence-band to the
Hamiltonian is conduction-band- 1/2-spin state of a quantum dot only if the latter

is not occupied, i.e., if the excess electron in the dot is in the
i ' ; opposite spin statéright). Otherwise, no excitation takes place
Hit=— 3 [ufoE*(te '], h! . +H.cl, cppostie spin statenghy ’ P

(26)

- ’
L),o,0

electron from the valence band to a higher-excited
where,,Li‘JT"' is the dipole matrix element between the waveconduction-band state. Under these assumptions, the interac-
functions of an electron with spio- in statei and a hole tion Hamiltonian, Eq(26), simplifies to
having angular momentum with components’ in statej.
The resulting selection rule is that the change in the number HiVm:ﬁQ(t)e—ithc;O]_1/2h1;'0’+3/2+ H.c. (30)

of electron-hole pairs can only heN=*1.

If the temperature is sufficiently low with respect to the elec-
tronic intraband excitation energhgT<% w., then we can

Let us consider the QD identified by the indexwith an neglect also the excited states of the excess electron.
excess electron in the conduction-band ground state. We la- !N the subspace defined by statg$0),,|1),./x,

IV. THREE-LEVEL MODEL

bel its spin states with +3/2),}, the effect of the carrier-carrier interaction teHtf)°
will be to change the energy of the trion states. In particular,
|0>,,ECI’0’, 12vao, (27)  an external static electric fiellapplied in thex-y plane will
mutually displace the wave functions of the electron and of
|1>VECI’O’1,2|vac>. (29 the hole which constitute an exciton, since they have oppo-
site charge. In this way, the trion states acquire an electric
These are eigenstates of the bare Hamiltortign with ei-  dipole moment. The electrostatic interaction will then shift

genvalueSegy, 12 and egyl,z, respectively, and are not af- the energy of a trion state where a trion is also present in a
fected by the carrier-carrier interactidh®®. On the other nheighboring dot. This energy difference, the so-called trion-
hand, in the so-called “trion"—i.e., the state obtained from trion shift AE,p,, will be very important for obtaining the
Egs. (27) and (28) by creating an exciton, having “bare” State-dependent phase _needed fqr t_he logical gate to be per-
energy €S, ,+€S_,,+€), —more than one carrier is formed. The ke_y ingredient for this is a state—'s.elecpve cou-
.’ ’ e . pling of the logical statef0) and|1) to the auxiliary inter-
present in the QD. Therefore, in this case the interadti¢n . N . : .

T T _ acting statgx'y=|x,+3/2). In the simplest, ideal case, this
changes the bare Statéuoﬁr1/2CV,OV—1/2hV,0ﬂhlvaC> into the state selectivity can be obtained if only one of the logical
physical interacting statex, o,),, which we will take as our  states is coupled tfx'). The possibility of realizing physi-
auxiliary state for gate operation. Such states were observesghlly such an effect in QDs is offered by the mechanism
and studied experimentally in single self-assembled QDslescribed in the following section.

[26].

According with the above selection rule, a laser pulse can
excite at most one exciton. If the laser is tuned on the lowest
interband excitation energy, then a ground-state exciton can In fact, the Pauli exclusion principle forbids double occu-
be obtained. Due to angular-momentum conservation, thpancy of any of the electronic states. In particular, if the
hole angular momenturr, will depend upon the laser po- excess electron occupies stfd¢, no further electron can be
larization. For instance, in the case of a semiconductor mgsromoted from the valence band into that state, and thus
terial where heavy holes have the lowest energy, and assuroreation of an exciton by a™-polarized laser pulse is inhib-
ing o circularly polarized light, the only hole state that canited (left part of Fig. 2. This effect, referred to as Pauli
be excited hasr,=3/2. If, moreover, the absolute value of blocking, has been experimentally verifigg¥]. On the other

A. Exciton Pauli blocking

the Rabi frequency defined as hand, if the excess electron wag i), nothing could prevent
s a second electron from being excited to th®, thereby
2 T TE(Y creating the trion statix') (right part of Fig. 2. Taking now

Q= 3 (29 into account all of the above approximations and selection

rules, we can write the following effective Hamiltonian for
is much smaller than the intraband excitation enet@, the dynamics of the relevant degrees of freedom in a frame
<we ), then we can neglect the probability of promoting therotating at the laser frequenay, :
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>

Her=f 2 3|1),(1]—A(t)[x") (x| 3
v=a,b s

-~

Q(t) k=

|5 X)Ll e+ Ay X a(XT| @ X (X,

=

(31

where for generality we have considered a chirped laser, i.e.,
one having a time-dependent detuningt) from the |1)
—|xT) transition. We have added a glokak., independent

of the QD labe) splitting & between the two logical states,
which can be realized, e.g., via an external static magnetic
field. In the adiabatic scheme, which we are going to de-
velop, this will have the effect of suppressing unwanted tran-
sitions betweerj0) and |1). This few state model will be . o S
valid for Q, A, AE,,/%, and the Fourier width of the pulse FIG. 3. Two-_qublt gate via c_il_rect Rabl_excnatlon_: pulse se-
71 to be much smaller than the QD level spacing, so thafluence fc_)r ex_cmng and _deexcmng the trion s_tate m_each dot
transitions to excited states are negligible. Bgt) =0, Hq (above; trion-trion population and accumulated interaction phase
has the same form as E¢4), and is thus suitable for the (below.

guantum gate operation. A nonzeidt) will turn out to be ) ) ) ) )
relevant for correcting the so-called hole-mixing problem,cuss the ideal scenario of perfect Pauli blocking as described
which is outlined in the following section. in Eq. (31), and then introduce imperfections. We will first
lay out a strategy to overcome hole mixing, based on adia-
batically chirped laser pulses. Then, in the following section,

) we will show that the same strategy allows for suppressing
Indeed, Eq(31) does not account for an important feature the effect of phonon decoherence.

of a real QD system, namely, the interaction between the
hole sub-bands, described by the Luttinger Hamiltoh8j.

In this more accurate description, the actual hole eigenstates A. Ideal gate: =0

are no longer the ones described above. In particular, the |n the absence of hole mixing, the laser excitation of the
eigenstate of théheavy hole involved in the dynamics rel- trion is perfectly state selective. In this ideal case, gate op-
evant to our study has to include a correction from the light-eration is particularly straightforward.

hole stated] ; . 1J/vag. Now, a pulse o * -polarized light

can promote an electron from the valence-band state corre- 1. Direct Rabi excitation

sponding to such light hole into staf&). This means that
the same laser we have included in the Hamiltonian(E#).
has a certain probability amplitude to excite an exciton in th
QD even if the initial excess electron state W@}, that is,
the laser-coupling selection rules discussed above will b
weakly violated in a real QD. This effect can be included in
our simplified three-level model as an additional coupling
between statef0) and|x'), induced by the laser with Rabi
frequency()(t) and weighted by the effective parameter
whose typical value is at most 10%. This leads to the mode,

population

B. Hole mixing

The simplest quantum gate scheme exploiting the interac-
tion, Eqg. (31, is based on the following procedurg) se-
qectively excite a trion via a resonant Rabi rotation;(2)
wait a sufficient timer~ wA/AE,, for the gate phaser to
Pe accumulated3) deexcite with a second pulse to return
to the logical subspace.

This is depicted in Fig. 3. Since the trion-trion splitting
can give an interaction time scale of the order of picosecond,
uch a gate would be pretty fast—however, unfortunately the
cheme works only in the idealized model of perfect Pauli

Hamiltonian blocking. Therefore, we want to develop an alternative exci-
tation scheme, to be reliable also in the presence of hole
Hu=% > 811 ,(1]—A(t)|x) (x| mixing. This can be achieved by employing an adiabatic

v=a,b

technique.

Q(t)

+ T(|XT>D<1| +e[x!),(0])+H.c. 2. Adiabatic passage via dressed states

| | | T We want to design a process which allows to “switch on”
+AEqp X )a(X![@|x)p(x], (32 the excitonic state for a certain time, and then to return to the
initial ground state with the highest possible probability, by
avoiding at the same time spontaneous emission of phonons.
We can achieve this by using an adiabatically chirped laser
pulse, i.e., one with a slowly changing detuning from the
In this section, we show how the transformation EL.  excitonic transition. Let us start by considering our driven
can be realized in practice using quantum dots. We will distwo-level system

which will be the basis for our simulations.

V. TWO-QUBIT GATE IMPLEMENTATION
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FIG. 4. Dressed states in a driven two-level system. FIG. 5. Dressed states in a driven three-level system. A typical

hole mixing parameter value @f=0.1 is assumed.

Ho=—AX){x|+ %|1)<x|+ H.c. (33)  starting from statél). The main constraint is that we want
to change the Hamiltonian slowly enough such as to remain
in the lower dressed state of the driven system with a high
probability. We will show below that it is even possible to
perform the operation in such a way that no phonon mode is

in the strong-coupling regime. Its two eigenstatdse so-
called dressed states

0 6 excited during the gate, thus, greatly reducing its sensitivity
|+>=sm§|1>+co%|x), (349 to temperature.
0 0 B. Hole-mixing-tolerant gate
|_>:CO%|1>_S"‘§|X>' (39 In the presence of hole mixing, Pauli blocking does not

work perfectly. Therefore, a2 pulse for the transitionl)
where —|x") will leave behind some excitonic population, causing
B decoherence. In this case, only an adiabatic gate operation
tang=—-Q/A  (0<b<m) (36) procedure can ensure that no excitonic population survive
after gate operation. Let us therefore analyze it in more detalil

have the energies .
in the case wher # 0.

A1l
E.=—==*=JA’+ Q2 (37 1. Hole-mixing-tolerant laser excitation

The Hamiltonian in this case is
which are drawn in Fig. 4. Phonon spontaneous emission can
occur only if the system has a nonvanishing probability am-
plitude of finding itself in its excited state. On the other hand,
for small values ofA/(), the dressed ground state contains a
significant component of the interacting stitg. Hence, the  The level scheme foH; is drawn in Fig. 5. It shows an
following phonon-emission avoiding excitation procedure@voided crossing of the order 61 between statefl) and
can be devised(1) the system is prepared in the electronic |x) like in the two-level case, as well as a much smaller one
ground state(2) the laser excitation starts at a large negativebetween|0) and |x). However, the latter is found at more
value of A/Q), where the lower dressed state tendlto (3) positive values of the detuning. Therefore, the same proce-
the laser parameters are slowly changed towards smaller valure as outlined above will work also in this case, while the

ues of A/Q, achieving the transformation adiabatic excitation Eq.38) will be still approximately sat-
isfied.

0
Hi=Hot ol 1)(1]+—[0)(x| +He. (39

6 0
a|0)+ B|1)— «|0)+ B| cos;|1) —sing |x) |; (39 2. Two-qubit gate via chirped pulse
V) 2

Let us now have a closer look to what happens when two
and (4) the system is adiabatically driven back to its initial neighboring dots undergo the above-mentioned pulse se-
state. quence. The two-dot Hamiltonian, including trion-trion inter-

If such a chirped laser pulse is applied to two neighboringaction, is
dots, they will still acquire a state-dependent trion-trion
phase, due to the admixture from sté that is reached Ha=H3+H7+ AEp]%)a(X|@ [X)p(X]. (40)

012310-7



CALARCO et al.

PHYSICAL REVIEW A 68, 012310 (2003

|20} , |0z) E/Q 3 'laser intensity
ey ek TR G R R
|#1), |1z) biexcitonic
shift
2
',”detlming‘\
1 ’ N
[ | | | Te--q
|00) A/Q T I ~ I T
100} I\ ,=—-——|m
lo1) |10;3 ? ) \\‘%ﬂﬂl),lw) ! \(/
R [11) N
e
|11)\ R 1§
-7
3 to \
. .y \
|zz) ?OPulatloj{s/ 7 A
N . : . ;
3 P 00 10
la1) , 1) time (s)

FIG. 6. Level scheme of a system of two coupled quantum dots

including hole mixing.

The level scheme is depicted in Fig. 6. Although it is, of
course, significantly more complicated than the single-do

FIG. 7. Hole-mixing-tolerant two-qubit gate operation via a
chirped laser pulse: pulse shap@bove; interaction phase and
trion-trion populationgbelow). The dashed line depicts the popu-
lation in the|xx) state obtained starting frof1); the flat solid line
Ehe ones obtained starting frof@0), |01), or |10).

scheme of Fig. 5, the basic feature remains unchanged: under

the same procedure as in the preceding section, with théeld, mixing the spin states, and addressing the Zeeman split
same laser pulse on both dots, different computational basRfates in a frequency selective way, which, however, severely
states will acquire different trion-trion amplitudes. This statelimits the Rabi frequencies and thus the gating tihé]. An
selectivity allows one to obtain a nontrivial gate phase everglternative is to make a Raman process via the lowest light-
in the presence of hole mixing, still avoiding phonon spon-hole statesM'}==1/2 which however, being excited hole
taneous emission as discussed in Sec. V A 2. We carried onsdates, suffer from significant decoherence.

simulation using the following pulse shapes:

Q) =0pe V)? (42)

A=A, [1—e U],

Results of the simulation withAE,,=2 meV, #A,
=3 meV, 7q=10 ps, 7,=8.72 ps, §=0.5 meV, andh ),
=3 meV, are reported in Fig. 7. The gate phake 7 is

(42

Employing II-VI semiconductors grown QDs avoids the
above-mentioned decoherence problems, since in these QDs
the strain can shift the energy of the light holes to become
the energetically lowest-hole stat¢30]. Exploiting such
QDs, the single-qubit gate can be performed by the follow-
ing pulse sequence:

(i) a linearly polarized laser pulse couples the light-hole
sub-band and the bottom of the conduction bések Fig. 3.

This linearly polarized pulse, which can be described as an

obtained in a longer time than in the simple Rabi-flopping€dual-weighted superposition of, ando . polarized light,

schemgSec. V A 1), since the procedure now has to be adia-2{tempts to create a trion-trion state in which both ground-
batic to avoid excitations to decaying states. Indeed, thétate electronic spin states are occupied but due to Pauli prin-

population left in the unwanted excitonic states remains be€iPle, a7 pulse of such light will promote an electron only

low 10°6.

VI. SINGLE-QUBIT OPERATIONS

into the unoccupied qubit state—proces&Bsin Fig. 8.

(i) A further 7 pulse of ™ light now recombines the
hole state with the original excess electron Fig. 8. In order to
perform this recombination, i.e., changing the total angular

Contrary to atomic quantum computing implementationmomentumj by one unit and keeping its component along
schemes, implementing the single-qubit gate employing théne QD symmetry axig fixed, the laser pulse is shined in

spin state of an electron in a QD is of greater difficulty than
implementing the two-qubit gatg29]. A natural candidate

for an optical implementation of the spin rotation would be
employing a two-photon Raman process involving an inter-
mediate hole state. However, such a scheme is not possible
since the lowest-lyinglong-lived hole states havév=

+3/2 symmetry, and there is, however, no strong dipole al-
lowed two-photon coupling connecting the qubit states. This
problem can be overcome by applying a transverse magnetic
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in-plane direction. This is achieved by employing a wave-=1). Normally © is very high(hundreds of Kelvin

guide based schem@1l]. The Hamiltonian describing the The minimal model describing the interaction of a

above process is given by charged quantum dot with the phonon field is given by the
following Hamiltonian:

— Q4(t) ! T T 1
Hig=t —5— (1% "0l +2[x )0l + x|+l )1 . T
Hon=Hop—MoE(c'h +hc)+% (9D bjg+ Vgt
+H.c.)+h922(t) (I%30] 4%, (1| + H.c) — A(t) (44)
The quantum dot is assumed to be in a time-dependent laser
X (P O+ gD, field E. M is the dipole moment, and the Hamiltonian of an

) isolated QD is given by
where|x,"y=|x,,+1/2),|x,"Y=|x,,— 1/2) the| index nota-
tion is used to indicate that the excitonic states are defined in Hop=e°cfc+e™h'h, (45)
terms of light holes, rather than of heavy holes as before. The
electron-electron interaction appearing in the intermediatevherec and h are the operators annihilating a ground-state
state has been absorbed by redefining the detuning. Oradectron and hole, respectively. Their spin dependence is not
should note that the heavy-light hole mixing has an effectrelevant here and will not be considered in what follows. As

. . . 2 T h H H
only for the laser pulse directed in the growth directipthe ~ @bove, the quantities® ande” are the energies of the single-
in-plane directed laser pulse does not induce transitions fdparticle electron and hole states, respectively. The phonon
the heavy-hole part of the mixed wave function due to sym-<oupling Hamiltonian is
metry considerations. By properly adjusting the duration and

the phase of the laser pulses, i.e., adiabatically eliminating V. tZE [(gecTc—ghhTh)b +c.c] (46)
the excitonic states, the following effective Hamiltonian is A 1 i ’
obtained

Wheregjhq and gfq are the coupling constants. The dynamics
Qeyi(t) only couples statelg)=|vac and|e)=c'h'|vac). The ma-

5 11{0[+H.c., 43 4rix elements in this basis aKe|c'cle)=(elh"h|e)=1 and
(e|lc'h'|g)=(g|chle)=1. These states are basically the
where Qq¢=\/(Q1Q,+Q7)/A is the effective Rabi fre- logical and auxiliary states of the three-level model dis-
quency for the coherent rotation between the two logicakussed in Sec. IV without the excess electron, namély,
states. Thus, utilizing strain inverted heavy-light hole 11-VI =c{ _1,lg), |1)=c{ 1,9), and|x,a)=c] |e).
semiconductors grown material, on which the adiabatic two- Rewriting the laser field in the fornkE=E(t)cos(t),
qubit gate procedure can be adopted, single-qubit optical gatvhere w, is the laser frequency ari(t) is the slow enve-
ing can be induced on a picosecond time scale. lope, in the rotating-wave approximation we obtain

ff
HElf=1

Q
. SOURCE OF DECOHERENCE
Vil PHONONS AS A Hpn=| =4+ 35 Ajg(bjq+by)|le)(el+ 7 (le)(al +la)(e)

A. Interaction of quantum dots with phonons

The fidelity of the proposed qubit turns out to be quite +j§(; wj(q)b;‘quq, (47)

good and is determined by several mechanisms. Since the
expected result is quite small, we can consider different
sources of infidelity separately. whereA is the laser frequency detunin@,=|MyE(t)| is the

Due to the potentials confining electrons in all spatial di-Rabi frequency, and the phonon coupling strength is given by
mensions which lead to a discrete density of states QDs anejq:gfq—g?q_ This is identical, apart from the cavity terms,
often referred to as “artificial atoms.” The major difference to the Imamo@—Wilson-Rae Hamiltonia33] (also used
with respect to atoms is the coupling of the electrons to unin Ref.[7]).
derlying lattice degrees of freedom, which lead to relatively ~ As we shall see, for slow processes considered below, the
faster decoherence times, of the order of tens of picosecondglsteraction of a quantum dot with optical phonons is practi-
[32]. In what follows, we are developing a simple model of acally irrelevant. Indeed, optical phonons have a gap:
QD interacting with a thermal bath of phonons. wopi(0) — wop# 0 atg—0, which is large and hence optical

In a large system of volum¥, the displacement field is phonons can always be adiabatically eliminated from the
linear in creation and annihilation operators of phoncbﬁ, low- frequency dynamics of the quantum dot. If taken into
andb;,, respectively. Every phonon mode is characterizedaccount, optical phonons contribution only renormalizes
by its polarizationj, momentumg, and frequencyw;(q). some quantities in Hamiltonia@7). This is, of course, not
The number of phonon degrees of freedom is limited by theeally important for us, since we consider all the constants in
total number of atoms forming the lattice. The maximumthe Hamiltonian as being phenomenologio@ssentially
frequency is usually defined via the Debye temperatdire taken from experimental dgtaOn the contrary, longitudinal
so thatw;(q)=® (hereafter, we use units such that kg acoustic phonongLA phonons have no gapw(qg)=uq at
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g—0 (u is the velocity of soundand can effectively interact sin@
with low-frequency degrees of freedom of Hamiltoni@). H'=-—— 2 N0 +bg) (|4 )= [+ =)+,
Hereafter, we will only consider LA phonons and omit the a (51)
index | everywhere.

Hamiltonian(47) formally coincides with the Hamiltonian ) _
of the dissipative spin-boson model. The latter describes th@here tang) =—Q/A so thatg is a time-dependent quan-
interaction of a two-level systeifspin) with the bath of har- tity. The roles of the two Hamiltoniandy andH" are very
monic oscillators(bosons. As described in Ref[34], the different and will be considered separately below.
important properties of the interaction of the quantum dot The interaction with the phonons can be understood in

with the phonons are contained in the integrated quantity tWo ways. One of the remarkable nonperturbative simplifica-
tions can be used due to the fact that we are only dealing

with the superohmic coupling case. For a slow prodéss
Jw)=2> Ndlo—w(9)]. (48)  Hamiltonian parameters change on a time sceaig>1)
9 there is a way to adiabatically eliminate most of the “fast”
. , _phonon degrees of freedom with, < w(q) <, without re-
One _of the most important properties of the spectrsal functio ving on the pertubation expansion in phonon couplings
J is its frequency dependence at small J(w)~w”. The  The regylting effective Hamiltonian has the same form as
different values O_f the exponesstdistinguish between the  gqq (50) and(51), but with the summation restricted only to
caiels of ohlr_mcs{— 1), subohmic ¢<1), and superohmic he nhonon modes with(q)=<w, , and renormalized values
© Th()e i)?\%?\lc?r?s&are coupled to the charge distribution in é)f the Rabi ;reqfu?lncfl and thﬁ detuQinﬁ’i (see the Appen-
: ; : .dix B). In what follows, we will use both representations on
guantum dot by means of either deformation or piezoelectri he s;me footing and make no distinctionpbetween the bare

coupling potentials. The calculation of the spectral funclon nd the renormalized quantities whenever it is not relevant
requires a specific microscopic model. In the simplest case dt q '

a quantum dot characterized by a harmonic confinement po-

tential the calculation is pretty easy, even if the QD is placed C. Diagonal and off-diagonal channels: Landau-Zener theory
in external electric fieldsee Appendix A The results of the
calculation can be summarized as follows: both in the case ogt
deformation and piezoelectric coupling the spectral functiorlJ
is superohmic, witts=3 ands=5, respectively. In both the
cases, the spectral function can be approximately written a

Our qubit proposal relies on the fact that the quantum dot
ays in the same adiabatic “dressed” sté84) and (35)

nder slow variations of external parametefd or A).
Therefore, transition between the adiabatic sté8&% are a
ource of infidelity. Realistically, every gate operation is per-
formed with a finite speed and thus, undesired transitions
between the dressed states are always possible. In the ab-
sence of phonons, the transition probability is given by the
with a cutoff atw;~u/l, wherel is the size of the quantum | andau-Zener theory. In its simplest version, i.e., for a case
dot. This frequency is nothing else but the inverse phonony jinear detuning sweep = At around the resonance value

flight time through the quantum dot. The electric fighf A —( the measure of infidelity is given by the probability
reasonable intensitydoes not change the exponenof the [35]

spectral function.

J(w)~ wexp — wz/w|2), (49

P, =exp— mQ2/4A). (52)
B. Adiabatic Hamiltonian: Dressed states

Instead of considering the “bare” statés) and|g), it is By requesting this quantity to be small, we establish our
convenient to switch to the “adiabatic basis”: let us diago- adiabatic condition
nalize first the quantum dot part of Hamiltoni#47). The
eigenstatesin terms of the bare statés) and|x), which in 02
the present discussion are replaced|gy and |e), respec- n=—>1. (53
tively) and energies are given in Sec. V A 2.

The full interacting Hamiltoniar{47) can be rewritten in

the new basis and split into two partdp,=Hq+H', where 1o ohdition has a simple physical meaning: the resonance

is observed approximately when we hawe~(, so

|+ )(+] 7~Q/A is nothing else but the characteristic time of the
detuning sweep. Then, the adiabatic condition naturally im-
plies that we havé) >1.

=)=, The effects of the interaction with phonons on this deco-
herence channel do not change this result much. As dis-

(50)  cussed in the Appendix B, both in the case of perturbation

theory and in the adiabatic approximation the phonon inter-

and action only renormalizes the Rabi frequerisge Eq.(B4)].

Hd:

0
E.+ % @(q)bgbq+cos 5\ q(bg+bg)

8
+ E,+% w(q)b;bq—smzzxq(bgmq)
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Therefore, the same expressi@®), but with the renormal- hence, the off-diagonal terms in the Hamiltonian considered

ized value ofQ) instead ofQ), holds even if the phonon here can be neglected in our further fidelity calculations.
coupling is strong.

Now let us consider the interaction with the phonons in
some more detail. The phonon-assisted transitions between
the dressed statds-) are possible and are described by ) o o
Hamiltonian(51). Since most of the transitions occurs close ~ The major source of infidelity is the excitation of acous-
to the resonancé =0, when the characteristic energy dif- tical phonons without change of the quantum-dot state, i.e.,
ference between the adiabatic levels-i§), and the inter- Pure dephasing. To develop a formal approach to the fidelity
level transition probability can be estimated using the Hamil-c@lculation, we consider the evolution of a quantum dot

D. General expression for the fidelity in the presence
of phonons

tonianH’ and the Fermi golden rule coupled to a heat bath of phonons. Assume that=at <,
the system starts from the state which is a direct product of
°° ) the pure quantum dot state and a thermal state of phonon
P.~ B T+ (@)[V(0=Q)do, 549 field at a temperatur&. As discussed in the preceding sec-

tion, the dynamics of the quantum dot can be well described
where (up to a few exponentially small amplituddsy the diagonal
Hamiltonian (50). Using this simplification, we can rewrite
T ()= %f dtexp(i wt)sin 6(1)] (55) the density matrix of the quantum-dot subsystem=at as
| , | - Pap=(UiTTUg)a)(Bl, (58)
is the Fourier component of the “coupling potential” in Eq.
(51). The latter can be easily estimated in the adiabatic limit

by using the linear approximation for the detuning close to?/Nerela) is the quantum-dot state; - - is the average over

the resonance poirtas abovg the initial phonon stateT is the time ordering sign, and the
(diagonal in the dressed state basgolution operators are
exp— o/ wy,) given by
T~ = m)l,zm , (56)
. = _ = _ . T
where we havew,=7 1=A/Q, and o>w,. The fre- TU“_TeXp[ 'f dt[f“(t)ik: )‘k(bk+bk)+E“”’
guency w,, is the high-frequency cutoff imposed by the (59)

speed of the frequency detuning sweep. Substituting the
above expression into E@54) and integrating ovemw, we . B o .
find the following estimation for the interstate transition W'th fﬁ—cosz[e(t)/Z]_andf,— Sin6(t)/2]. The time or- .
probability: dering is not convenient and can be removed by transforming
the evolution operator into
J(wm)

P~ —q exi— aQ?A), (57)

fUazexp[ —if dt[fa(t)z N (b + bI)+Ea}+i¢a],
wherea~1 is a numerical factor. This quantity characterizes o k (60)
the probability of unwanted processes and hence is a mea-

sure of infidelity. The result is exponentially small if we have
on<<Q, which is nothing else but our adiabaticity condition where
(53.

At finite temperatures there is an additional mechanism . .
for decoherence: a quantum dot can interact with the phonon ¢a:f dtf dt’ f (1) (1) >, AZsinw(t—t') (61)
field and absorb a thermal phonon. Accordingly, the quantum - Jo 3
dot acquires energy and is transformed into the excited

dressed state. Neyertheless, thg process can be easily S#the phase originating from the noncommutativity lnf
pressed by operating in the regime of small temperatiires operators at different times. Combining these results to-
<(). In this case, the transition probability is characterized

by an additional small factor exp@T)<1 and can be dis- gethfer, We_obt?lpathe .foIIowmg expression for the fidelity
regarded. matrix T,z=(U,TTUp):
Both probabilities(52) and (57) have similar structures
and are exponentially small for adiabatic proceg$Ss. In %
later sections, we will find that the “diagonal” terntd in Top= < exp{ —if dta,s(t) X N(by+ bb"’“ﬁaﬁ] >
the quantum-dot Hamiltonian, though not changing the adia- o . 62)
batic states of the quantum dot, lead, nevertheless, to excita-
tions of acoustical phonons and thus to a certain infidelity.
The results do not contain exponentially small factors andvherea,z=f,—f; and
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oo

A E4(t)— E,(1)] where we havey,,=A/Q < (see the discussion abowend

K1(x) is the Bessel function of the second kind. The main
contribution to the integral originates from the range of fre-
guenciesw= w, (assuming, of coursey,,<w,). Therefore,

at small temperature$<w,,, we can neglect the thermal
occupation of the phonon states and find that

bap=Pp— dat j

+J J dtdt’fa(t)fﬁ(t’)zk A2sinwy(t—t').

(63)
The fidelity matrixT can be used to rewrite E¢8) in a I~ I(wm) _ (69)
more convenient form. Consider an arbitrary pure state of a Om
quantum dot¥ =% c,|a), which evolves into the density
matrix In the opposite limit, i.e., whel> w,, the phonon num-
bers can be approximated H$w)~T/w and the integration
Pap=CrCaTap(Ny). (64  vyields
Without the interaction with phonons the evolution is char- Jwy) T
acterized by th& matrix with all A, set to zero. Therefore, T o ol (70)
m m

one can characterize the phonon interaction by the degree of

infidelity, defined as ] . i i
If the coupling with the phonons is weak, i.€.<1, then

the infidelity coincides witH™ and is only a power law small
f=1-F= max X [chcaTus(M)—Tap(0)]]. [compare Eqgs(69) and (70) with the exponentially small
{Cah Zalcal2=1 results(52) and (57) of our off-diagonal Hamiltonians dis-
(65 cussior. At zero temperature, the conditiohs<1 and the
. . L perturbation-theory expansion paramegi®b) are the same.
This is a standard problem of linear optimization, whose so- Equations(69) and (70) are obtained assuming that,
lution can be do'ne in the general form: the infidelity is given<wI . In this case, the results are not confined to the
by the largest eigenvalue of the matfixi) —T(0). perturbation-theory limitsee Appendix B for more details

_Inwhat follows, we will estimate the value of the infidel- 55t the adiabatic elimination of high-frequency phonons
ity f for single-qubit operations and for the quantum gate|, the other limiting case, the infidelity is given by the same

realization proposed above. Egs. (69) and (70) but after the substitutiono,— w,. Of
course, the conditiom,,= w, breaks the adiabatic separation
E. Fidelity of Rabi rotation of the slow and fast phonon degrees of freedom. Therefore,

We consider first the simplest case and calculate the fidefh€ results for the fidelity in this regime can only be valid if
ity of single-qubit operations, such as a reversible internafn€ infidelity I" is small. -~ - _ o
rotation. To be specific, we calculate the fidelity of an adia- EQuation(68) is derived in such a way that its validity is
batic sweep of the detuning around its resonant valug MOt confined solely to the analysis of acoustical phonons. In
—0, while keeping the Rabi frequendy constant. Using fact, it also allows one to understand how the contribution of
our fidelity definition from Eq.(65), we find that we have the higher-frequency degrees of freedgsuch as optical
f=1—exp(T), with phonong can be ruled out. Indeed, optical phonons are char-

acterized by the minimum frequenay, (the optical gap so

1 5 thatJ(w) =0 for all w<wq. Substituting this definition into
I'= Ef dwd(w)|a(w)|1+2N(w)], (66)  Eq.(68) and integrating in the adiabatic limit,,<wg, we
find
where N(w)=[exp@/T)—1]"! is the phonon occupation
J
number and F~—Oexp< _ﬂ), D
wo Wm

a(w)=fldtexq—iwt)cos{ 0). (67)

whereJy=J(wg). This is once again an exponentially small
result[compare with Eqs(69) and(70)] with a clear physi-
In order to analyze the QD dynamics and compare the resulisal meaning: a slow process occurring on a time saglé

with the discussion of the off-diagonal processes, we use theannot excite high-frequency lattice vibrationsui§> oy,
same sort of linear approximation for the time-dependent

detuningA = At close to the resonance. A simple calculation F. Rabi oscillations
ives
g Another revealing example of phonon interaction effects
is the damping of Rabi oscillations. Consider the case of
[1+2N(w)]dw, (68)  exact resonanceA(=0) and a quantum dot starting &t 0
in state|g). In the dressed state picture this corresponds to

1f QZ_J(w)

k2 i
A? ! W
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1 iq —ig-
1) = —(|+)+]-)). (72) HE=| —A+ 2 Ng(bge'dr+bie4) [[e) (e
V2 4
£33 (el o) + S wl@blp
As time progresses, the state changes and the probability to 25 v v q a~a
find the quantum dot in statgy) can be found using the
density matrix from Eq(64), +AE ple)a(el®|e)pn(el, (77
1 where the indexv=a,b labels the quantum dotsf,=
_ +d/2 is the position of the dots, and the last term represents
Py 4[T+++T“+2R6T+‘]' (73 the trion-trion shiftAE,,, .

The trion-trion shift is a crucial element of our quantum
gate proposal. Its presence introduces the conditional dynam-
ics. The timing of the adiabatic process should be designed
in such a way that the trion-trion shift induces the required

1 - phase shift of statée),|e)y, .

Pg=5[1+codQt+¢. )], (74) The whole analysis of a single quantum dot operation can
be easily generalized to the quantum gate case. As discussed
above, we first transform into the dressed state basis and then

with ?,'s given by the first two terms in Ed63). This means select only “diagonal” terms from the interaction with the
that the diagonal Hamiltoniafb0) describes undamped Rabi phonons. Then, one can calculate the fidelity mafrignow
oscillations at the frequenc§). Within the adiabatic ap- 4>4) and find the fidelity from Eq(65). This program can
proximation Q<w,, one can integrate out the high- be completed numerically.

frequency phononéee Appendix Band observe that in the Let us consider first the two simple limiting cases. In the
first approximation, the effects of phonon interaction showsimplest case of a small trion-trion shiftE,,<(2, the two

up in the renormalization of the Rabi oscillation frequencyquantum dots can be considered separately and the trion-
Q—Q, as given by Eqs(B4) and (B6). trion shift can be accounted for as a perturbation. Then, fol-

The gradual damping of the Rabi oscillations originates®Wing the steps of our single quantum dot calculation, we
from the off-diagonal Hamiltoniaf’ (51). In contrast to our  (INd that the infidelity isf=1—exp(-I’), with
previous discussion of the internal qubit rotation, in this case,
ther.e is a finite prqbability to find the quantum dot in iFs F:f J(w)dw cof(wd/u)[1+2N(w)]|alw)|?, (78)
excited staté+ ). This means that now the processes leading

to emission of phonons become possible. The transition rate ) o ) )
I' can be calculated using the Fermi golden rule wherea(w) is again given by Eq(67). As expected, in this
limit the result is practically the same as we had for a single-

qubit operation—see Eq66).

I'~J(Q), (795 The dependence of the gate fidel{8) on the quantum
dots separatiod is very weak(the effective value of the cos
function under the integral sign is anything between 1/2 and
1 for large and small values af respectively. This means
that the obtained result is practically insensitive to the as-

1 ~ sumptions regarding the degree of coherence between the
Pg~5[1+cogQt+ ¢, Jexp(—I')]. (76)  phonon modes around each of the dots. Indeed, (E8).
implies that both of the quantum dots interact with the same
phonon bath. This corresponds to a case of having the dots
Since realistically it isQQ<w;, we have the ratidl(Q)/Q interacting with the same set of bulk modes. Another possi-
<1 and thus, the quantum-dot oscillations are only weaklbility is that the interquantum dot separation is smaller than
damped. the phonon mean free path. In the case of separate phonon
Altogether this lets us conclude that in the presence obaths(which means the quantum dots electronic degrees of
phonons a quantum dot in an external laser field undergoeiseedom interact with independent phonon modes or the
weakly damped Rabi oscillations, characterized by the renorseparation between the dots exceeds the mean free path of
malized frequency and the damping rate determined by thphonong, the quantum dots become completely separate and
spectral function](Q1). the infidelity is given by its single-qubit expressi¢f6).
Both expressions are indistinguishable within a factor of
~1. The weak dependence of the fidelity on the interdot
separation at not too high can be seen in Fig. 9, obtained
The ultimate goal of our calculations is the fidelity of a by our exact numerical calculation.
guantum gate. The Hamiltonian of a couple of interacting The calculation in the other limiting cas®E, > is
QDs can be represented as follows: very similar. In this case, the quantum gate has two avoided

In our diagonal approximation, &t-oe, this is equivalent to

so that

G. Quantum gate fidelity
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100 TABLE II. The infidelity f at a temperaturé=4 K for different
L e e — — values of the Rabi frequend and of the trion-trion shifAE,,.
L le—— The dot size is 10 nm.
w 3 "__-_------—--—--—0
0 e Q f (AEgp=05 f (AEg=1 f (AE,,=2
(meV) meV) meV) meV)
20 40 d(“ ) 80 100 05 1.0<10°2 2.5x10°3 5.6x10°3
nm 1 1.6<10°2 1.9x10°3 4.2x1073
FIG. 9. The fidelity of the quantum gate as a function of the 2 3.2x10°° 2.8x10°° 3.0x10°°
interquantum dot separatiah for different values of the tempera- 4 4.3x10°3 4.1x10°3 3.6x10°3
tureT: 0 K (solid line), 5 K (long-dashed ling 15 K (dashed ling
crossings instead of one and their contributions add indepen- I~ I(we) (79)
dently. Since the width of the resonance is in both cd¥es e '

the contributions of independent resonances add separately .
and are again of the same order of magnitude as &§. Where o =min(w,0y) and o,~ A/Q is the inverse
and(70). The dependence of the fidelity on the interdot sepacharacteristic time of the gate operation. In the higher tem-
ration is very weak again. perature limit > w,), the infidelity scales linearly with the
To quantify the discussion above, we performed the exadciemperature
numerical calculation of the fidelity matri¢62) using a cer- o) T
tain shape of the detuning sweeéqt). The fidelity as a r~ @e —
function of the interdot separation and of the temperature for We ¢
a specific value of the trion-trion shift is plotted in Fig. 9.

(80)

. . - These expressions are the central results of the section. They
The figure nicely shows both temperature regirt@ and can be applied to estimate the fidelities of both single-qubit

(70), as well as the weak dependence of the result on th'8perations and of the quantum gatesthe latter case there
separation between the dots..We also .perform.ed a few calcys also a weak dependence on the separation between the
!atlons for quantum dots of different sizésffectively vary- guantum dots The accuracy of the simple estimations along
ing the cutoff par_amete@,). The results.of the calculathns the lines of Eqs(79) and(80) was checked by exact numeri-
ar%sumr‘iﬁlrlze? n ;—abkf.t;) andill )- The interdot separation cal calculations of the fidelity in a wide parameter range. The
IS 5 nm, the puise duration 1S 1 ps. contributions of the piezoelectric coupling are numerically

_ _ smaller by two to three orders of magnitude in all our calcu-
H. Discussion lations.

In this section, we performed a systematic study of vari-
ous decoherence mechanism associated with the interaction  VIIl. STATE READ OUT BY QUANTUM JUMPS
of the quantum ldots with phonons. The results of our study A necessary requirement for a quantum information pro-
can be summarized as follows. ) cessing implementation scheme is the ability to perform an
The qﬁta'ls of the interaction with phonons can be “com-5.cyrate measurement of a single qubit. Implementation of a
pressed” into the spectral functial(w). It is characterized  highly efficient solid-state measurement scheme designed to
by the strength of the coupling, the frequency dependence &heasure the spin or charge of single electron is a highly
small w, and the value of the high-frequencies cutaff  yifficult task [36].
~ul/l, whereu is the velocity of sound anldis the size of the Monitoring the fluorescence from a single QD has been
quantum dot. , suggested as a mean to measure single scattering events
The infidelity f turns out to be quite good for all the real- \yithin QDs[37], as well as a means for final read out of the
istic situations we considered. This means that the perturb%-pin state for the purpose of quantum computafioi. Re-
tion theory is well applicable and, in the limit of small tem- cantly, it has been verified experimentally that the spin state
peratures, the infidelity=1—exp{—T} is given by of an electron residing in a QD can be read using circular
pumped polarized light38]. In this section, we describe how
it is possible to devise an optical read out scheme based on
the idea of the Pauli blocking in QDs even in the presence of
heavy{light-) hole mixing. We describe two situations: an
ideal case with no heaujight-) hole mixing and the realis-

TABLE I. The infidelity f at a temperatur& =4 K for different
values of the Rabi frequend) and of the trion-trion shifAE,,.
The dot size is 20 nm.

Q f (AE,,=0.5 f (AE;=1 f (AE;=2 . L 0 . .
(AEap (AEap (AEap tic case which includes mixing. In the ideal case, the time of
(meV) meV) meV) meV) . . . . .
measurement, i.e., the time in which one can still extract the
0.5 1.0x10°3 2.1x10°3 3.8x10°3 information regarding the spin state of the confined electron,
1 1.4x10°3 1.5x10°°3 2.6x10°3 is limited only by the spin decoherence time, whereas in the
2 2.0x10°3 1.8x10°3 2.0x10°3 case of mixing the measurement time is also limited by the
4 1.1x10°3 1.2x10°3 1.2x10°3 typical time for a spin flip induced by the excitation process.

The system we have in mind is described by Fig. 10. It is
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|.':E> 0.2 0.4 0.6 0.8 1 1.2 1.4
- 0.999
2
EK K 0.998
(0)
'PO 0.997
) 0 0.996
—_— —_— 0.995
0 it t(ns)
0.2 0.4 0.6 0.8 1 1.2 1.4
FIG. 10. Thex configuration one has to consider to include hole 0.9
mixing.
0.8
the single-QD counterpart of Eq32), taking into account R(O) 0.7
also the decay rates from the excited level, which we|gall
here for simplicity. We ignore the detuningsandA, which 0.6
are not relevant here, as well as the decay kaidrom state
|0) to |1), since the typical time scale for [89] is much 0.3

larger than the typical time scale in which the spin direc- N ) i
FIG. 11. Probability that at timé the first photon has not yet

tional information is lost due to the laser mediated spin flip ) : .
been emitted, starting from stat&) (above or |1) (below) at time

which is now the bottleneck process limiting the measure- i
ment time. t=0. Parameters are quoted in the text.

_ o usual atomich configuration[40], here one cannot distin-
A. Ideal case, i.e., no mixing guish between0)(x| and|1)(x| transitions. These two tran-
Let us first consider the case wher-0. Shining ac* sitions are mediated through the same photon. The dissipa-
pulse on the QD, we obtain due to the Pauli-blocking effective evolution of the density matrix(t) is given by[41]
in QDs the usual two-level situation: no fluorescence from
initial state|0), full fluorescence from statgl). The final-
state measurement, i.e., measuring the spin state of the ex-
cess electron in the QD is obtained by the quantum-jump
techniquele.g., Ref[14]): when the original state of the spin I
in a QD is|1) a fluorescence pattern is obtained, whereas p11=1 E(le—Plx),
state|0) is completely decoupled from the laser field since
exciton creation is blocked by the Pauli principle. . Q. L 5
The typical time scale which limits the process is the spin = p,,=Ii i[plx—pxl-i- e(pox— Pxo) 1= (1+ &%) Kpyx,
coherence time in the QD which is of the order of microsec-
onds, i.e., in a time of that order of a microsecond the spin of
the electron in the QD will flip from th¢l) fluorescing state
to the |0) dark state and the fluorescence pattern will be
terminated. The average number of photons emitted before
the spin typically flips its state is given by the ratio of the
spin coherence time to the typical rate for spontaneous emis-
sion, which is of the order of a few nanoseconds. Therefore,
typically one should obtain of the order of *lphotons be- - Q. . - 5 K
fore the original spin information is destroyed. P11 5 (P pu—epr) —(1+eT)zp. (8D

S O
Poozlfé‘(Pxo_Pw),

o 0 - -
P01:|§(8Px1_P0x),

K~

- . L -
Pox=1 E[S(Pxx_ Poo)_Poﬂ_(1+82)2P0x,

B. Case with mixing The probability that at time& no photon has been emitted,

A realistic QD will exhibit mixing of the heavy- and light- Starting from stater at timety, is

hole states. This invalidates the assumption of perfect Pauli ) o~
blocking witho* light and can be viewed as a rotation by an Po (t=to)=trp(a, )],
angle —e in the {|0),|1)} space. The mixing parameter o - .
will typically be of the order of the lattice constaatto a  Where at the initial time,, we takep(a,to)=|a){al. Figure
typical length scale defining the QD in our cas ~0.1, 11 shows an example of their evaluation with=3 meV,
whereL is the size of the dot in the growth direction. xk=1ns* ande=0.1.

Introducing mixing requires one to treat the full three-  Note that, in contrast to the “commonk configuration
level X configuration shown in Fig. 10. As opposed to the[40], in Eq. (81) both of the recycling termskp,, and

(82
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v L
0 0.05 0

.1 0.15 O.J ‘0“25 0.3
o

e. The error affecting this operation would scale linearly
with the imprecision ine, which is not straightforward to
predict theoretically, yet it can be measured in a real situation
to a good accuracy.

C. Case of perfect detection

t (ms)
where is the parameter describing the detection efficiency.
On introducing hole mixing the detector would still be able
0 0.05 0.1 0.157-0.2 0.25 0.3 to discriminate between the two logical states but mixing
will be the cause for two types of measurement errors which
can occur. Starting with the system in stdle there is a

possibility for no photon to be emitted from the QD during
the whole measurement time. The probability for this type of
i error is given byP(lo)(t). In the other case, starting with the

’ t (ns) 1oe system initially in|0) at least one photon might be emitted
during the measurement time. The probability for this sort of
FIG. 12. Simulation of photon counts for a system starting fromerror is given by - PBO)(t). The measurement time has to
state|0) (top) and from statél) (middle). An expanded view of the  be chosen in such a way as to minimize the sum of these two
first few photon counts is displayed in the bottom graph. Parametergrrors. For the same parameters employed in Fig. 11, we
are the same as in Fig. 11. obtain an estimate for the optimal measurement time of the
order of a few tens of nanosecond. What typically happens in
e2Kpyy, are missing, since it is the same photon that inducegractice is that, as shown in Fig. 12, by appropriate time
both these transitions, i.e., we cannot distinguish between thgindowing the first bunch of photons coming from stft¢
two transitions via photon detection. This implies that whencan be safely discriminated from tlilater) photons coming
the first photon is emitted, say at tintg, the system col- from state|0).
lapses either into stat¢0)—with probability po=s2/(1
+&2)—or into state]1)—with probability p;=1/(1+ &?)— D. Finite detection efficiency
whence the evolution starts over again. Therefore, the prob-
ability that, at the timé>t; (i=1), the (+ 1)th photon has
not been emitted is

’ We start by considering the error for the cage-1,

We now consider the case in which<<l. The lowest
detector efficiency in which we can still hope to discriminate
between the two logical states is given by 1/{N), where
[42] (N)=1/e? is the average number of photons to be emit-
, (83  ted before a system starting off in stale flips to state{0).
1+ g2 In our case, this is not a tight constraint, since semiconductor
photodetectors have a very high quantum efficief4g]

which is independent of the initial stater). A typical pho- 5 ~0.98. If we require the ability to discriminate between
toemission pattern will look like Fig. 12: a sequence ofsingle-photon events, that figure is modified to about 80%
pulses, each one made out of a bunch of the order &t 1/ (for avalanche photodiodgsThe typical wavelength emitted
photons, separated by no-emission windows. This is the typiby the recombination process in QDs lies well within the
cal quantum-jump pattern, one obtains in the presence of agpectral window which is due to the cutoff by band-gap en-
emission probability having the form of a sum of different ergy of such detectors. The main source for low detection
exponentials like Eq(83). efficiency is due to the probability for the emitted photon to

The only feature which allows for discriminating the two reach the detector, i.e., the difficulty arising due to finite
patterns is the first bunch of photons, which are emitted alangle coverage of the detector. The situation, however, can
most immediately in the case of stdte), and after a sen-  be significantly improved by coupling the QD with a micro-
sible delay in the case of sta@), due to the fact that, prior cavity as described in Reff14].
to the first photoemission, it was stilP{")(t) = P{%)(t). It is important to note that we can use an avalanche pho-
Therefore, a detector with 100% efficiency would be stillton counting mode so that each photon arriving creates one
capable of discriminating between the two logical states ever-h pair which then amplifies in the device to produce a
in the presence of hole mixing. current spike. The need to wait a few nanoseconds before

Another option would be available in 11-VI semiconductor detecting the next photon is not a limitation in our case since
systems, showing energetic inversion between light- anthe measurement process we are considering is essentially a
heavy-hole states as described in Sec. VI. To be specific, leine shot measurement process, as long as the dark count is
us refer to the left part of Fig. 8. In that case, the transition tdow enough.
be excited for probing the QD state is the one marke®as Working with a detector with a finite efficiency means
Hole mixing results in an unwanted coupling to the transitionthat we have to choose the measurement time so as to ensure
(1). This can be compensated for by simply adding a smalthe fluorescent state emits a few photons thus increasing the
component ofr, light, proportional to the mixing parameter probability one of them will be detected. This increases the

2p0) ¢ — (0)(t —
_ e?PO(t—t,)+PP(t—t,)
PO(t—t)= ——
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probability for an error due to a photon being emitted by the APPENDIX A: COUPLING CONSTANTS,
initial state|0) sinceP{")(t) decays exponentially with time. MICROSCOPIC CALCULATION

Moreover, a further possibility for error is introduced into The phonons are coupled to the charge distribution in a

our measurement scheme. Starting initially in sfate the QD by means of either deformation or piezoelectric coupling

D can emit a photon or photons which will go undetected : . : :
Snd the spin carr)1 flip into 2ta¢9> o the infogrmation o potentials. The corresponding coupling constants are either

garding the spin state is lost without being detected. The qD(q)
probability P, for such an error is given by No=—""—~" (A1)

e T 2pe(@V
1—77> _&f(1-p) _(1—71

N+1

N
Pe=822

n=0

14e2 11 e2 ' in the case of deformation coupling, or

(84

82+ n
p(Q)

— M ,
o . | ooty
which is simply the sum ovem incidents in which the emit-
ted photons were not detected and no spin-flip occurred anith the case of piezoelectric coupling. In both cagess the
on then+1 incident such a spin-flip occurrdgvithout the  mass density of the sample and
photon being detectedThis type of error turns out not to be

A= (A2)

particularly sensitive to the time of measurement. Given that 24mee, Ox0y Oz
the number of photon emitted in the first bunch in Fig. 12 is M(Q)= ———0xay9,=M —— (A3)
of the order ofs 2~ 1(? in our case as discussed above, and €q q

taking an efficiencyy=0.8, we obtain an error due to finite

detection efficiency of the order of 0.2 is the coupling potential. Herg, is the dielectric constant of
. 0.

the sample ané;, is the material constant. The form factors

IX. CONCLUSIONS p(q):f dr[| g, (1) 2= ge(r)|2lexp(—ig-r)  (A4)

To claim that a certain implementation scheme for quan-
tum information processing is viable, one has to carefully@nd[44]
understand the fundamental sources of decoherence acting in
that specific physical system, and to show that they can ac- D(q):J dr[D,|,(r)|2=D¢|e(r)|?]exp —iq-r)
tually be controlled. To this aim, in this paper, we analyzed
in detail the different decoherence mechanisms affecting a (A5)

recently proposed all-optical scheme for guantum computaére related to the exciton charge density. The wave functions

tion based on electron spin in quantum dots. In particular, we _andy, describe the hole and the electron states making up

took into account the effect of hole mixing and of coupling . ; : ;

to phonons at a finite temperature, estimating their impact oﬁhe excnon.Dc,.DU are the defo_rmatlon couplmg_potenuals..
each of the building blocks of a quantum computer: single- The qalculat|on of the qoupllng co_nstants.relles on a mr-
qubit and two-qubit gates, and state read out. We develope%{oscomc model. We consider a QD in a static external elec-

a strategy to circumvent such unwanted effects via an adia{[-”C fmld.FO dlrecte(_j along thex axis. W't.h'n the smples';
odel with harmonic confinement potential the Hamiltonian

batic laser excitation scheme, simulated its performance ur)- the sinal licle electror d the holesit=h
der realistic conditions and evaluated the corresponding fi-ort € sing e—psr icle electroni £¢) an e holesit=h)
delity. Our scheme turns out to be able to suppress the effecfates Is given by

of both of these decoherence sources on the proposed gate, 2 2 2.2
. ; . P2 moi(r+re)? moir
and therefore constitutes a viable proposal for all-optical H= — T 07 _ % 0', (AB)
quantum information processing in semiconductor quantum 2m 2 2
dots.

where rOizeiFO/miwiz is a measure of the electric-field
strength in “oscillator units of length,&; is the frequency of
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wherel;=(m;w;) "2 is the ground-state localization length. > 27 Mo (F+1o)?
Then, in the case of deformation coupling, a simple calcula- W= \ﬁsin— —exp| — —2' . (A12)
tion gives the following expression faf function (for sim- L. L, 2l;

plicity, we putl.=1): ] o
¢ wherel;=\ym,w;. The Fourier component is given by

3 C02|2
J(w)= exp — ——
@) 47%pu® p[ 2u2] f d’ryPexp{—iq-r}=F,(q)F(q), (A1)
in(2
X| D2+ Dﬁ—zDeDh%r;’u/u) (A8)  whereq=(qy,q,) is the vector in thec-y plane, and
0
2|12
The obtained result shows the two important features. First F(q)=exp{ - —|+iq~ fo], (A14)
of all, since D # Dy, the J function is superohmic in the 4

external field of any strength. Essentially this means that And

static electric field does not qualitatively change the interac-

tion with the phonons. Second, the functidfw) has a large Amlilexn(ia.L)—1

frequency cutoff atw;=u/l, which is nothing else but the F,(q,) = il 3p( qzz) ]_ (A15)
inverse flight time of a phonon through the QD. (q.L)°—4mq,L

The piezoelectric coupling behaves somewhat different. . . .
Recalculating theJ function using the coupling constant 'We Note that, in spite of its ugly appearance, the form factor

(A2), we find F, is no where singular on the real axis and quickly decays
whenq,L>1. The normalization ensures thaj(0)=1.
MZ2w w2|§ w2|5 For simplicity consider the limit of very strong confine-
IP(w)= m exp — 2_uz t+exp — 2_l12 ment: L,<I.,. Then, neglecting the piezoelectric coupling

and using the zero-argument value for functieyn, we ob-

) w2|§ wzlg f(Zw ) tain
—2expg — — |exp — —— || 2—rq] |,
4u? 4u? u® w’ p| w2|2]
expy —

J(w)=

(A9) ( 472pu®
wheref(0)=1 andf(x)—0 atx—«. Since the piezoelec-
tric potential M is the same for the electrons and for the X
holes, in the limit of small electric-field strength, we have

D2+ D2-2D.D,f (29r ” (A16)
c v cYuvll u [\REE

where we have
2 5712 2\2
MZw>(15—17)

P _(0—0)=—
ool ) 6720m2pu’

(A10) 1

fi(x)= EJ d@#sinfd¢p cogxsinh cosp). (Al7)

The coupling is still superohmic, but it contains a larger

power of w than the deformation coupling. Moreover, the At small value of its argument this function gives 1 and

value of the coupling potentia¥l is also numerically small vanishes wherx—«. The presented function is always

for common materials and thus the interaction of a QD withsuperohmic and is not qualitatively different from that con-

the phonons is dominated by the deformation coupling.  sidered above for an idealistic spherically symmetric QD. It

The large electric-field limit of Eq(A9) is somewhat in-  shares all the important features of the simpler model above.
teresting. One can see that we have In particular, the large-frequency cutoff is defined by the
same inverse phonon flight time through the Qip>u/l.

(A11) In short, we presented a number of examples of the
spectral-function calculations. Both in the case of piezoelec-
tric and of deformation coupling, thé function is super-

which is, at first glance, an indication of ohmic type of cou- ghmic, with the exponents=3 ands=5, respectively. The

pling. Nevertheless, one should keep in mind that theyuantityw,~u/l plays the role of the high-frequency cutoff.

JP-function decreases quickly whea=w, and hence the

argument of thé-function never exceedsr/l. Thismeans  AppENDIX B: ADIABATIC EEEECTIVE HAMILTONIAN:

that _the fungtionf~ 1 practically everywhere in the course of  APPLICABILITY OF PERTURBATION EXPANSIONS
the integration in Eq(48) and hence the coupling remains

superohmic in the whole relevant parameters range. The phonon interaction terms in Hamiltonid47) may
The analysis above paves the way to a more realistic calwell be large and hence the perturbation-theory expansion in

culation. Consider Hamiltonian(A6) acting in two- powers ofA, may not always be well justified. A remarkable

dimensional x andy directions, whereas the motion inthe  opportunity to extract nonperturbative results originates from

direction is confined within a box of length,. The wave our adiabatic assumption.

function (of the ground stajeis Indeed our quantum gate proposal relies on adiabatic ma-

® 0) M2
=00 wﬁ = —1
Fo 280m2pu
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nipulations of the external parameters of Hamilton{di). B “do J()
Assume that bott§)(t) andA(t) change on a time scate 0=0e ;{—J’ > 3 [1+2N(w)] ¢, (B6)
Extreme adiabatic condition implies 0 @

whereN(x) =[exp&/T)—1] ! is the Bose occupation num-
ber. This is nothing else but the generalization of Ey)

i.e., the considered QD dynamics can be considered slow fdtoW taking into account finite occupation of the phonon
almost all of the phonon modes. According to Ré#], this ~ Modes. In addition to that the QD can change its state by
condition can be formally used to adiabatically eliminate all€ither absorbing or emitting a phonon. This process is called
the phonon modes with frequencies exceeding a certain cuf?coherent tunneling and has no effective Hamiltonian form
off w,: 7 '<w,<w, and obtain the effective adiabatic (generally speaking there is no obvious separation between

Hamiltonian for the slow phonon modes with frequenciesth® fast and slow variablgs
w=<w, . At zero temperaturd =0, the effective Hamlito- In the quantum gate proposal, we suggest to operate our
nian takes the form qubit starting from the ground state and adiabatically chang-

ing parameters. This means that the QD cannot emit a pho-

non of a high energw= 71! (since it is in the ground state

The absorption of a phonon from the thermal bath requires

finite occupancy of a state with energy~ ), which can be

made exponentially small, providek< ().

+lgieh+ X w(q)b(’;bq_ (B2) The results of this section also make sense if compared
g o(Q) <y with perturbation theory. Consider the case of the phonon

coupling. There is no corrections to eigenenerdigg to

first order in powers oh,. The second-order perturbation

w1, (B1)

~ + )
Hpn= _qu%@ Nq(bg+bj){[e)(el+ 5 (le)(g

Hamiltonian(B2) has the same form as the original Hamil-
tonian(47). The effect of the high-frequency mode is limited

to the renormalization of the frequency detuning theory gives
Zoa 1] . I w) ©3) LS Ng [ [1% cog 0)]2+ Sin?( 6)
= Y w ’ =+ = - )
2 ® g 4 wq VA2 02+ o,

and Rabi frequencitunneling term in the spin-boson moglel (B7)

In the adiabatic limi{B1), we can expand in powers af w,

~ * dw J(w) and(}/ w, to obtain the expression
Q=0exp — f — . (B4)
o 2 w?
1 J(w)
In the superohmic case, the integral in the exponent of Eq. 6E.=5(1%cosd) | do———
(B4) converges atw=w, and hence, does not depend on
w, . Thus, in the adiabatic approximation, we can conve- Sirke ()
niently setw, =0. This means that at zero temperature, even - T\/A2+ sz d“’_z' (B8)
w

a strong phonon coupling leads only to the renormalization
of the Hamiltonian parameterg@he Rabi frequengy The ) . o
measure of the Ral:?i frequency renormalizition%ields thd Ne same expression could be obtained by substituting the
perturbation-theory expansion parameter: rgnormallzed vaIue$!33) and (B4) into the adl|ab§1t|c ener-
gies(37) and expanding the obtained expression in powers of
the small parametefB5). This once again shows that the
1 (B5) results of the adiabatic renormalization coincide with pertur-
2 2 o, ' bation theory whenever both approaches are equally valid.
We conclude that the effective HamiltonigB2) with
The effective Hamiltoniar{B2) does not rely on this condi- renormalized value of the Rabi transition amplity&®) can
tion, whereas a perturbation theory for arbitrary fast pro-be used as a good nonperturbative tool to study the QD dy-
cesses would do. namics in the presence of phonons. Its validity is ensured by
The situation is somewhat different at finite temperaturesthe fact that thel function for the deformation coupling is
The QD can still change its state “coherently,” i.e., in the superohmic and relies on the time scale separation condtion
course of Rabi oscillations which are characterized by théB1). In the case whew,7= 1, the adiabatic approximation
new temperature-dependent renormalized value, callethils and one has to resort to perturbation theory, whose ex-
Huang-Rhys factor in Ref34]: pansion parameter is given by E®5).

Q

0-0 fd_wa(w) J(w) -
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