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Spin-based all-optical quantum computation with quantum dots:
Understanding and suppressing decoherence
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We present an all-optical implementation of quantum computation using semiconductor quantum dots.
Quantum memory is represented by the spin of an excess electron stored in each dot. Two-qubit gates are
realized by switching on trion-trion interactions between different dots. State selectivity is achieved via con-
ditional laser excitation exploiting Pauli exclusion principle. Read out is performed via a quantum-jump
technique. We analyze the effect on our scheme’s performance of the main imperfections present in real
quantum dots: exciton decay, hole mixing, and phonon decoherence. We introduce an adiabatic gate procedure
that allows one to circumvent these effects and evaluate quantitatively its fidelity.
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I. INTRODUCTION

The promise of quantum computation is to enable al
rithms which render feasible problems requiring exorbit
resources for their solution on a classical computer. This
stimulated a large number of proposals for the phys
implementation of the elementary logical operations build
up a general-purpose quantum computer@1#. A central issue
is the trade-off between efficient coupling to the system
order to control the quantized degrees of freedom, and g
isolation from the environment, in order to preserve the
herence of the quantum evolution. Strategies have been
veloped to fight decoherence taking place during the com
tation, ranging from ‘‘active’’~error-correcting! to ‘‘passive’’
~error-avoiding! schemes. Thereby, unwanted physical p
cesses~i.e., computational errors! of a generalkind can be
compensated for, either by detecting and correcting their
fect via redundant qubit encoding@2# or by decoupling the
qubits from the environment dynamics through algebr
techniques exploiting symmetries in the evolution@3#. A less
general, more implementation-dependent approach is
study the specific decoherence channels of a certain phy
scheme and to design gating processes that are stable a
the relevant types of errors~for an example with ion traps
see Ref.@4#!.

In this paper, we adopt the latter point of view and app
it to a recent proposal for all-optical quantum informati
processing based on charged semiconductor quantum
@5#. In this scheme, quantum information is stored in the s
of an excess electron in a quantum dot~QD!, and gating
between two QDs is performed via optical excitation
electron-hole pairs~excitons!, which in an external electric
field acquire a dipole moment allowing them to interact w
each other. In this way, the quantum memory coherence
is in the microsecond range, typical for spin degrees of fr
dom in semiconductor heterostructures@6#, while the two-
qubit gating time is in the picosecond range, as dictated
1050-2947/2003/68~1!/012310~21!/$20.00 68 0123
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the electrostatic dipole-dipole interaction.
Decoherence is important mainly during gate operat

when excitonic states are created that interact with the p
non bath. Recent calculations for the strong-field limit@7#
indicate that the leading dephasing mechanism is the c
pling to acoustic phonons. In this paper, we focus on t
coupling mechanism and we describe a procedure that all
one to circumvent, to a large extent, the limitations impos
by this decoherence channel on the fidelityF of the gate
operation. We will evaluate the dependence ofF on various
parameters, including temperature, and take into acco
other sources of imperfection such as heavy-~light-! hole
mixing.

We choose to neglect all kinds of nonidealities arisi
from limitations, e.g., in the QD fabrication and manipul
tion techniques. We are well aware that these might yield
most significant problems for the implementation of our p
posal in the immediate future. However, we prefer to foc
on fundamental quantum-mechanical limitations of o
physical system rather than on technical problems. Once
technological advances have overcome the latter, the rele
part will be to find ways to circumvent the former. The ma
purpose of this paper is to develop strategies aimed at th

The paper is organized as follows: in Sec. II, we descr
the general idea of a two-qubit quantum gate based on se
tive switching of controlled interactions. In Sec. III, we reca
the dynamics of charge carriers in a quantum dot, includ
external static and oscillating electromagnetic fields. In S
IV, we derive few-level model corresponding to the abo
general scheme and discuss some of its limitations. In Se
we discuss our two-qubit gate and develop its adiabatic v
sion, suitable for operation even in realistic scenarios w
hole mixing. In Sec. VI, we propose a hole-mixing tolera
scheme for single-qubit operations. In Sec. VII, we analy
the effect of the interaction with phonons on the performan
of our adiabatic gates, showing that the gates indeed
quite robust also against this kind of imperfection. In S
VIII, we describe how the quantum-jump technique can
employed for measuring the spin state of a confined elect
emphasizing that this can be done even for the case of n
©2003 The American Physical Society10-1
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zero hole mixing. Our conclusions are summarized
Sec. IX.

II. QUANTUM GATE MODEL

To execute an arbitrary quantum computation, i.e., to c
trol the coherent evolution of a system composed of an a
trary number of qubits, one does not need to realize ph
cally arbitrary multiqubit operations. On the contrary, ju
two kinds of elementary operations are sufficient, out
which all others can be constructed. These two elemen
gates are the set of rotations of a single qubit, and a spe
entangling operation on two qubits. Among the possi
choices for the latter, one which is well suited for an imp
mentation with atomiclike systems such as quantum dot
the phase gate—a transformation which rotates by a ce
phase just one component of logical states:

u0&u0&→u0&u0&,

u0&u1&→u0&u1&,

u1&u0&→u1&u0&, ~1!

u1&u1&→eiqu1&u1&.

When we haveq5p, this is equivalent, up to the single
qubit rotations, to a controlled-NOT gate. Ideally, this would
be accomplished by means of a state-dependent intera
of the form

H ideal5DEab~ t !u1&a^1u ^ u1&b^1u. ~2!

This describes a situation in which the two-qubit system
dergoes an energy shiftDEab if and only if both qubits are in
stateu1&. Imposing the additional condition,

E
t0

t01t

DEab~ t8!dt85q, ~3!

on the time dependence of the energy shift, Eq.~1! is recov-
ered.

A. Phase gate model: Auxiliary interacting states

An interaction of the form Eq.~2! is not straightforwardly
found in nature. Implementing it entails, of course, a cert
degree of engineering ‘‘natural’’ interactions, i.e., those
rectly available in a specific physical system. This, toget
with other requirements on the stability of the availab
quantum memory, affects the choice of the particular qu
implementation. When it comes to systems of confined e
trons in solid-state systems, such as quantum dots, two
ferent choices are natural for the logical degree of freed
either charge excitation@8# or spin polarization@9#. The
former provides for a strong interaction, leading to compa
tively shorter gate times but to faster decoherence rate
well; conversely, the latter suffers less from the coupling
the environment, yielding better stability against memory
coherence, but bears also a weaker coupling between qu
requiring longer times for gate operation. Aiming at a hi
01231
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ratio between coherence time and gate operation time le
to conflicting requirements. Reasonable trade-offs can
achieved in each case—however, sticking to the same de
of freedom for both the memory and the two-qubit intera
tion may be not necessarily the only option. For instance,
same effect of the interaction, Eq.~2!, can be obtained by
introducing an auxiliary stateux&. Let us consider two qubits
labeled by a and b and with logical statesua&a,b (a
P$0,1%). Each qubit is selectively coupled to a further sta
ux&—namely, onlyu1& can be excited toux&. This situation is
described by the following Hamiltonian:

Hphys~ t !5 (
a50,1,x
n5a,b

Eaua&nK aU1 V~ t !

2 (
n5a,b

UxL
n

^1u1H.c.

1DEab~ t !ux&a^xu ^ ux&b^xu. ~4!

As in Ref. @5#, the logical statesu0& and u1& ~the quantum
memory! can be encoded into long-coherence spin sta
while the auxiliary statesux&, needed for the gate to be pe
formed, can be chosen to be electrostatically interact
states. State selectivity, required for conditional logical o
erations, is accomplished via the state-dependent coup
V(t). The simplest strategy for performing a quantum g
exploiting the coupling scheme, Eq.~4!, would be, e.g., to
selectively excite the interacting stateux& via a Rabi flop,
wait for the desired gate phase to be accumulated, and
deexcite. The interaction energy shift would then be effect
only if both QDs started off stateu1&, as described in Fig. 1
This procedure works in the ideal case when the couplin
perfectly state selective as in Eq.~4!. Compared to similar
schemes for neutral atoms~see, e.g., Ref.@10#!, it has also
the advantage that quantum dots, unlike trapped atoms
not subject to back action on motional dynamics. Howev
in a real situation state selectivity may not be perfectly s
isfied, in which case the simple procedure described ab
would not work. We will handle this imperfection below an

FIG. 1. Gate operation via an auxiliary state: in the ideal s
nario when only one of the logical states can be coupled to
interacting state, the interaction leading to the logical ph
is ‘‘switched on’’ only when both qubits are in the same sta
~here,u1&).
0-2
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develop a strategy for overcoming it. But first we need
model of the quantum-dot dynamics that can account for
~4!. This is the subject of Sec. III.

B. Gate fidelity

To evaluate the performance of a quantum gate, one n
to compare its desired operation, Eq.~1! in our case, with the
actual performance of the physical system which impleme
it. The fidelity F represents a quantitative basis for this.
define it, let us start from the logical input state

ux&[c00u00&1c01u01&1c10u10&1c11u11&5 (
n50

3

cnun&,

~5!

which is an arbitrary superposition of all two-qubit comp
tational basis states. The goal of gate operation is to ob
the ideal output

ux̃&[ (
n50

3

eifncnun&. ~6!

This is equivalent to the desired two-qubit transformat
Eq. ~1!: one can be recovered from the other by redefin
the logical states via single-qubit operations. The gate ph
q turns out to be related to the logical phasesfab as follows
@4#:

q5f002f012f101f11. ~7!

Thus, the conditionq5p simply translates into a conditio
on fab’s.

The actual physical situation may involve other exter
~i.e., nonlogical! degrees of freedom, which are not perfec
under control. In this case, the initial states will rather be a
mixture:

s[ux&^xu ^ rext~ t0!, ~8!

whererext denotes the density matrix for external degrees
freedom. The operationU realized in the lab will, in general
involve both internal and external degrees of freedom i
nontrivial way: therefore, the actual output,

s85UsU † ~9!

will no longer be written in a simple factorized form like Eq
~8!. In order to compare this state with the ideal one wh
would be obtained in the case of perfect operation, we de
the fidelity

F5min
x

trext̂ x̃us8ux̃&. ~10!

The intuitive meaning of this definition is that of a wors
case estimate~hence, the minimum over the possible inpu
ux&) of the gate performance, averaged over the availa
nonlogical states not being under control~hence, the trace
over the external degrees of freedom!. Another option would
be to define the fidelity as an average over the logical inp
01231
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ux&—however, we will stick to the minimum fidelity which
gives a lower bound to the average fidelity.

Taking the most general possible form for the exter
state,

rext5(
E

pEuE&^Eu, ~11!

and assuming that the evolution does not mix different lo
cal states,

Uux&uE&' (
n50

3

cnun& ^ VnuE&, ~12!

the fidelity takes the form

F5min
$cn%

(
m,n50

3

ucmu2ucnu2ei (fn2fm)trext~VmVn
†!, ~13!

which will be relevant for our calculations below.

III. QUANTUM-DOT DYNAMICS

Quantum dots, due to their discrete density of states,
very promising candidate for the implementation of quant
information processing@8,11#. The brilliant idea first pro-
posed by DiVincenzo and Loss@9# to employ the spin of an
electron confined in a QD as the qubit degree of freedom
been developed by the authors over the years@12# and is now
pursued by many researchers@13–15#. Combining the QD
technology with ultrafast laser pulses now seems to be on
the most promising channels for such an implementat
scheme@5,16#. Recently, the necessary coherence requi
for such a task, i.e., Rabi oscillations, has been experim
tally observed@17#. There have been also impressive expe
mental achievements in exciting and probing excitons
QDs @18#.

The complex many-body dynamics of charge carriers i
semiconductor can be considerably simplified when con
ering semiconductor heterostructures such as quantum w
and dots. The purpose of the present section is to write do
explicitly the carrier Hamiltonian for a quantum dot und
these approximations. In the following section, this descr
tion will be linked to the particular model described by E
~4!. Two main approximations@19,20# are understood
throughout the following. The first is the effective-mass a
proximation, which arises from approximating the band d
persion relation around a band extremum up to second o
in the carrier wave vectork. This is valid for small values of
k, and allows for simplifying Hamiltonians in terms of effec
tive electron and hole masses that take into account the
derlying many-body dynamics. The other is the envelo
function approximation@21#, which is based on the following
assumptions:~i! the different materials constituting the he
erostructure are perfectly lattice matched;~ii ! the periodic
parts of the Bloch functionsul ,0(r ) are the same in the dif
ferent layers;~iii ! the confining potential is smoothly varyin
on the scale of the lattice structure, apart possibly fr
abrupt interfaces. The wave function can then be expan
0-3
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as a sum of products of the rapidly varying functionsul ,0(r )
by slowly varying envelope functions which obey an effe
tive Schrödinger equation involving the effective masses. W
consider QDs in the ‘‘strong-confinement’’ regime, in whic
the typical length scale in the growth directionL is of the
order of 10 nm to 20 nm. Considering QDs in the stron
confinement regime means that all relevant energy sca
e.g., charge carrier interactions in the QD or electron-pho
interactions, will be small compared to the level spacing
the QD, typically of the order of 25 meV for electrons.

A. Single-particle states under external fields

Under the above approximations, the carrier Hamilton
for a quantum dot can be written as@20,22#

Hc5H'
c 1H i

c5H'
e 1H'

h 1H i
e1H i

h . ~14!

The electron in-plane HamiltonianH i
e describes the confine

ment in the direction perpendicular to the QD symmetry a
ẑ, which can be modeled with a parabolic potential:

H i
e52

\2

2me
¹ r

21
meve

2

2
r 21eF•r , ~15!

where the in-plane coordinate vector isr[(x,y) and the
electrical fieldF is taken to be parallel to thexy plane. De-
fining

re5r1
eF

meve
2

5~r e ,ue!, ~16!

the eigenstatesun,q&e of H i
e in coordinate representation a

^r eun,q&e5
r e

uquAnr !e
ique2r e

2/(2l 0)2

l 0
uqu11Ap~nr1uqu!!

Lnr

uquS r e
2

l 0
2 D , ~17!

where n50,1, . . . is theprincipal, q52n,2n12, . . . ,n
22, n is the azimuthal, andnr5(n2uqu)/2 is the radial
quantum number;Lnr

uqu(z) are Laguerre polynomials;

l 05A \

2meve
, ~18!

and the eigenenergies are

enq
e 5\~n11!ve. ~19!

In the growth direction, the perpendicular HamiltonianH'
e

is, in general, a very narrow potential given by the quant
well structure and is therefore typically approximated by
steplike potential. In the strong-confinement regime, a g
approximation is to assume that the system remains in
ground state. Thus, the problem effectively reduces to
in-plane dynamics. The hole HamiltonianH',i

h is, of course,
the same asH',i

e but with hole parametersmh andvh , and
opposite charge.

Due to the strong confinement and spatially symme
shapes of the confining potentials in QDs, electronic angu
01231
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momentum states can be defined. They exhibit many atom
like symmetries which have been experimentally identifi
@23#. In contrast to atoms, when considering the quant
numbers defining the angular momentum of an electron o
hole confined in a QDs, one has to take into account
underlying band structure@24#.

Taking spin into account leads to splitting into hole su
bands. The valence band, built from atomicp-type orbitals,
contains states carrying an internal~band! angular momen-
tum m equal to unity. Thus, the total angular momentum

j5s1m1 l, ~20!

wheres is the spin andl is the orbital angular momentum
Good quantum numbers are the modulus ofj and its compo-
nent along the QD symmetry axisẑ. The single-particle
states of the valence band withl50 are classified according
to the value of (us1mu,sz1mz), as follows:
(3/2,63/2)—heavy-hole sub-band; (3/2,61/2)—light-hole
sub-band; (1/2,61/2)—spin-orbit split-off sub-band.

For the dynamics considered in this paper, only heavy
light holes will matter, the split-off sub-band being energe
cally far apart. So let us define electron and hole opera
for the QD labeled byn (nP$a,b%), with composite index
i 5@n,q# and spins:

cn,i ,s
† uvac&5u i ,s&n , ~21!

hn, j ,s8
† uvac&5u j ,s8&n . ~22!

We can now write the noninteracting part of the carr
Hamiltonian for the QDn:

Hn
c5 (

i ,s561/2
e i ,s

e cn,i ,s
† cn,i ,s1 (

j ;s8523/2

3/2

e j ,s
h hn, j ,s8

† hn, j ,s8 .

~23!

B. Carrier-carrier interaction

The electrostatic interaction Hamiltonian is written as

Hn
cc5 (

i , j ,k,l
s,s8

1

2
~^ i j uVukl&eecn,i ,s

† cn, j ,s8
† cn,k,s8cn,l ,s

1^ i j uVukl&hhhn,i ,s
† hn, j ,s8

† hn,k,s8hn,l ,s!

2^ i j uVukl&ehcn,i ,s
† hn, j ,s8

† hn,k,s8cn,l ,s , ~24!

where the matrix elements of the Coulomb potential

V~r2r 8!5
e2

4peur2r 8u
~25!

are calculated on electron and/or hole wave functions,
cording to subscripts. Here, carrier number conservation
assumed, since processes violating this~e.g., Auger recom-
bination and impact ionization! are relevant for energies an
densities higher than we are considering@22#. It should be
noted that, in contrast to higher-dimensional quantum str
0-4



a
o

d

ve

b

f-

m
’’

rv
D

ca
e
c
th
-
m
u
n
f

he

ed
rac-

c-

lar,

of
po-
tric
ift
in a
n-

per-
ou-

s
al

sm

u-
he

hus
-
li

ion
r
me

the
er
the
e

SPIN-BASED ALL-OPTICAL QUANTUM COMPUTATION . . . PHYSICAL REVIEW A68, 012310 ~2003!
tures, in QDs carrier-carrier interactions only induce
energy-level renormalization without causing scattering
dephasing.

C. Interaction with a laser field

Let us consider a laser of amplitudeE(t) and central fre-
quency vL impinging on our QD. Under the dipole an
rotating-wave approximations@25#, the corresponding
Hamiltonian is

Hn
int52 (

i , j ,s,s8
@m i j

ss8E* ~ t !e2 ivLtcn,i ,s
† hn, j ,s8

†
1H.c.#,

~26!

wherem i j
ss8 is the dipole matrix element between the wa

functions of an electron with spins in state i and a hole
having angular momentum withz components8 in statej.
The resulting selection rule is that the change in the num
of electron-hole pairs can only beDN561.

IV. THREE-LEVEL MODEL

Let us consider the QD identified by the indexn, with an
excess electron in the conduction-band ground state. We
bel its spin states with

u0&n[cn,0,21/2
† uvac&, ~27!

u1&n[cn,0,1/2
† uvac&. ~28!

These are eigenstates of the bare HamiltonianHn
c , with ei-

genvaluese0,21/2
e and e0,1/2

e , respectively, and are not a
fected by the carrier-carrier interactionHn

cc . On the other
hand, in the so-called ‘‘trion’’—i.e., the state obtained fro
Eqs. ~27! and ~28! by creating an exciton, having ‘‘bare
energy e0,1/2

e 1e0,21/2
e 1e0,sh

h —more than one carrier is

present in the QD. Therefore, in this case the interactionHn
cc

changes the bare statecn,0,11/2
† cn,0,21/2

† hn,0,sh

† uvac& into the

physical interacting stateux,sh&n , which we will take as our
auxiliary state for gate operation. Such states were obse
and studied experimentally in single self-assembled Q
@26#.

According with the above selection rule, a laser pulse
excite at most one exciton. If the laser is tuned on the low
interband excitation energy, then a ground-state exciton
be obtained. Due to angular-momentum conservation,
hole angular momentumsh will depend upon the laser po
larization. For instance, in the case of a semiconductor
terial where heavy holes have the lowest energy, and ass
ing s1 circularly polarized light, the only hole state that ca
be excited hassh53/2. If, moreover, the absolute value o
the Rabi frequency defined as

V~ t ![
2m00

21/2,13/2E~ t !

\
~29!

is much smaller than the intraband excitation energy,uVu
!ve,h , then we can neglect the probability of promoting t
01231
n
r

er

la-

ed
s

n
st
an
e

a-
m-

electron from the valence band to a higher-excit
conduction-band state. Under these assumptions, the inte
tion Hamiltonian, Eq.~26!, simplifies to

Hn
int5\V~ t !e2 ivLtcn,0,21/2

† hn,0,13/2
† 1H.c. ~30!

If the temperature is sufficiently low with respect to the ele
tronic intraband excitation energy,kBT!\ve , then we can
neglect also the excited states of the excess electron.

In the subspace defined by states$u0&n ,u1&n ,ux,
13/2&n%, the effect of the carrier-carrier interaction termHn

cc

will be to change the energy of the trion states. In particu
an external static electric fieldF applied in thex-y plane will
mutually displace the wave functions of the electron and
the hole which constitute an exciton, since they have op
site charge. In this way, the trion states acquire an elec
dipole moment. The electrostatic interaction will then sh
the energy of a trion state where a trion is also present
neighboring dot. This energy difference, the so-called trio
trion shift DEab , will be very important for obtaining the
state-dependent phase needed for the logical gate to be
formed. The key ingredient for this is a state-selective c
pling of the logical statesu0& and u1& to the auxiliary inter-
acting stateux↑&[ux,13/2&. In the simplest, ideal case, thi
state selectivity can be obtained if only one of the logic
states is coupled toux↑&. The possibility of realizing physi-
cally such an effect in QDs is offered by the mechani
described in the following section.

A. Exciton Pauli blocking

In fact, the Pauli exclusion principle forbids double occ
pancy of any of the electronic states. In particular, if t
excess electron occupies stateu0&, no further electron can be
promoted from the valence band into that state, and t
creation of an exciton by as1-polarized laser pulse is inhib
ited ~left part of Fig. 2!. This effect, referred to as Pau
blocking, has been experimentally verified@27#. On the other
hand, if the excess electron was inu1&, nothing could prevent
a second electron from being excited to theu0&, thereby
creating the trion stateux↑& ~right part of Fig. 2!. Taking now
into account all of the above approximations and select
rules, we can write the following effective Hamiltonian fo
the dynamics of the relevant degrees of freedom in a fra
rotating at the laser frequencyvL :

FIG. 2. Pauli-blocking mechanism: a pulse ofs1-polarized
light can promote an electron from the valence-band to
conduction-band21/2-spin state of a quantum dot only if the latt
is not occupied, i.e., if the excess electron in the dot is in
opposite spin state~right!. Otherwise, no excitation takes plac
~left!.
0-5
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Heff5\ (
n5a,b

du1&n^1u2D~ t !ux↑&n^x
↑u

1FV~ t !

2
ux↑&n^1u1H.c.G1DEabux↑&a^x

↑u ^ ux↑&b^x
↑u,

~31!

where for generality we have considered a chirped laser,
one having a time-dependent detuningD(t) from the u1&
→ux↑& transition. We have added a global~i.e., independent
of the QD label! splitting d between the two logical states
which can be realized, e.g., via an external static magn
field. In the adiabatic scheme, which we are going to
velop, this will have the effect of suppressing unwanted tr
sitions betweenu0& and u1&. This few state model will be
valid for V, D, DEab /\, and the Fourier width of the puls
t21 to be much smaller than the QD level spacing, so t
transitions to excited states are negligible. ForD(t)50, Heff
has the same form as Eq.~4!, and is thus suitable for the
quantum gate operation. A nonzeroD(t) will turn out to be
relevant for correcting the so-called hole-mixing proble
which is outlined in the following section.

B. Hole mixing

Indeed, Eq.~31! does not account for an important featu
of a real QD system, namely, the interaction between
hole sub-bands, described by the Luttinger Hamiltonian@28#.
In this more accurate description, the actual hole eigenst
are no longer the ones described above. In particular,
eigenstate of the~heavy! hole involved in the dynamics rel
evant to our study has to include a correction from the lig
hole statedn,0,11/2

† uvac&. Now, a pulse ofs1-polarized light
can promote an electron from the valence-band state co
sponding to such light hole into stateu1&. This means that
the same laser we have included in the Hamiltonian Eq.~31!
has a certain probability amplitude to excite an exciton in
QD even if the initial excess electron state wasu0&, that is,
the laser-coupling selection rules discussed above will
weakly violated in a real QD. This effect can be included
our simplified three-level model as an additional coupli
between statesu0& and ux↑&, induced by the laser with Rab
frequencyV(t) and weighted by the effective parameter«
whose typical value is at most 10%. This leads to the mo
Hamiltonian

Hmix5\ (
n5a,b

du1&n^1u2D~ t !ux↑&n^x
↑u

1FV~ t !

2
(ux↑&n^1u1«ux↑&n^0u)1H.c.G

1DEabux↑&a^x
↑u ^ ux↑&b^x

↑u, ~32!

which will be the basis for our simulations.

V. TWO-QUBIT GATE IMPLEMENTATION

In this section, we show how the transformation Eq.~1!
can be realized in practice using quantum dots. We will d
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cuss the ideal scenario of perfect Pauli blocking as descr
in Eq. ~31!, and then introduce imperfections. We will firs
lay out a strategy to overcome hole mixing, based on ad
batically chirped laser pulses. Then, in the following sectio
we will show that the same strategy allows for suppress
the effect of phonon decoherence.

A. Ideal gate: «Ä0

In the absence of hole mixing, the laser excitation of t
trion is perfectly state selective. In this ideal case, gate
eration is particularly straightforward.

1. Direct Rabi excitation

The simplest quantum gate scheme exploiting the inte
tion, Eq. ~31!, is based on the following procedure:~1! se-
lectively excite a trion via a resonantp Rabi rotation;~2!
wait a sufficient timet'p\/DEab for the gate phasep to
be accumulated;~3! deexcite with a secondp pulse to return
to the logical subspace.

This is depicted in Fig. 3. Since the trion-trion splittin
can give an interaction time scale of the order of picoseco
such a gate would be pretty fast—however, unfortunately
scheme works only in the idealized model of perfect Pa
blocking. Therefore, we want to develop an alternative ex
tation scheme, to be reliable also in the presence of h
mixing. This can be achieved by employing an adiaba
technique.

2. Adiabatic passage via dressed states

We want to design a process which allows to ‘‘switch o
the excitonic state for a certain time, and then to return to
initial ground state with the highest possible probability,
avoiding at the same time spontaneous emission of phon
We can achieve this by using an adiabatically chirped la
pulse, i.e., one with a slowly changing detuning from t
excitonic transition. Let us start by considering our driv
two-level system

FIG. 3. Two-qubit gate via direct Rabi excitation: pulse s
quence for exciting and deexciting the trion state in each
~above!; trion-trion population and accumulated interaction pha
~below!.
0-6
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H052Dux&^xu1
V

2
u1&^xu1H.c. ~33!

in the strong-coupling regime. Its two eigenstates~the so-
called dressed states!

u1&5sin
u

2
u1&1cos

u

2
ux&, ~34!

u2&5cos
u

2
u1&2sin

u

2
ux&, ~35!

where

tanu52V/D ~0<u<p! ~36!

have the energies

E652
D

2
6

1

2
AD21V2, ~37!

which are drawn in Fig. 4. Phonon spontaneous emission
occur only if the system has a nonvanishing probability a
plitude of finding itself in its excited state. On the other han
for small values ofD/V, the dressed ground state contain
significant component of the interacting stateux&. Hence, the
following phonon-emission avoiding excitation procedu
can be devised:~1! the system is prepared in the electron
ground state;~2! the laser excitation starts at a large negat
value ofD/V, where the lower dressed state tends tou1&; ~3!
the laser parameters are slowly changed towards smaller
ues ofD/V, achieving the transformation

au0&1bu1&→au0&1bS cos
u

2
u1&2sin

u

2
ux& D ; ~38!

and ~4! the system is adiabatically driven back to its initi
state.

If such a chirped laser pulse is applied to two neighbor
dots, they will still acquire a state-dependent trion-tri
phase, due to the admixture from stateux& that is reached

FIG. 4. Dressed states in a driven two-level system.
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starting from stateu1&. The main constraint is that we wan
to change the Hamiltonian slowly enough such as to rem
in the lower dressed state of the driven system with a h
probability. We will show below that it is even possible
perform the operation in such a way that no phonon mod
excited during the gate, thus, greatly reducing its sensitiv
to temperature.

B. Hole-mixing-tolerant gate

In the presence of hole mixing, Pauli blocking does n
work perfectly. Therefore, a 2p pulse for the transitionu1&
→ux↑& will leave behind some excitonic population, causi
decoherence. In this case, only an adiabatic gate opera
procedure can ensure that no excitonic population surv
after gate operation. Let us therefore analyze it in more de
in the case when«Þ0.

1. Hole-mixing-tolerant laser excitation

The Hamiltonian in this case is

H15H01du1&^1u1
«V

2
u0&^xu1H.c. ~39!

The level scheme forH1 is drawn in Fig. 5. It shows an
avoided crossing of the order ofV between statesu1& and
ux& like in the two-level case, as well as a much smaller o
betweenu0& and ux&. However, the latter is found at mor
positive values of the detuning. Therefore, the same pro
dure as outlined above will work also in this case, while t
adiabatic excitation Eq.~38! will be still approximately sat-
isfied.

2. Two-qubit gate via chirped pulse

Let us now have a closer look to what happens when
neighboring dots undergo the above-mentioned pulse
quence. The two-dot Hamiltonian, including trion-trion inte
action, is

H25H1
a1H1

b1DEabux&a^xu ^ ux&b^xu. ~40!

FIG. 5. Dressed states in a driven three-level system. A typ
hole mixing parameter value of«50.1 is assumed.
0-7
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The level scheme is depicted in Fig. 6. Although it is,
course, significantly more complicated than the single-
scheme of Fig. 5, the basic feature remains unchanged: u
the same procedure as in the preceding section, with
same laser pulse on both dots, different computational b
states will acquire different trion-trion amplitudes. This sta
selectivity allows one to obtain a nontrivial gate phase e
in the presence of hole mixing, still avoiding phonon spo
taneous emission as discussed in Sec. V A 2. We carried
simulation using the following pulse shapes:

V~ t !5V0e2(t/tV)2
, ~41!

D~ t !5D`@12e2(t/tD)2
#. ~42!

Results of the simulation withDEab52 meV, \D`

53 meV, tV510 ps, tD58.72 ps,d50.5 meV, and\V0
53 meV, are reported in Fig. 7. The gate phaseq5p is
obtained in a longer time than in the simple Rabi-floppi
scheme~Sec. V A 1!, since the procedure now has to be ad
batic to avoid excitations to decaying states. Indeed,
population left in the unwanted excitonic states remains
low 1026.

VI. SINGLE-QUBIT OPERATIONS

Contrary to atomic quantum computing implementati
schemes, implementing the single-qubit gate employing
spin state of an electron in a QD is of greater difficulty th
implementing the two-qubit gate@29#. A natural candidate
for an optical implementation of the spin rotation would
employing a two-photon Raman process involving an int
mediate hole state. However, such a scheme is not pos
since the lowest-lying~long-lived! hole states haveMJ

h5
63/2 symmetry, and there is, however, no strong dipole
lowed two-photon coupling connecting the qubit states. T
problem can be overcome by applying a transverse magn

FIG. 6. Level scheme of a system of two coupled quantum d
including hole mixing.
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field, mixing the spin states, and addressing the Zeeman
states in a frequency selective way, which, however, seve
limits the Rabi frequencies and thus the gating time@14#. An
alternative is to make a Raman process via the lowest lig
hole statesMJ

h561/2 which however, being excited hol
states, suffer from significant decoherence.

Employing II-VI semiconductors grown QDs avoids th
above-mentioned decoherence problems, since in these
the strain can shift the energy of the light holes to beco
the energetically lowest-hole states@30#. Exploiting such
QDs, the single-qubit gate can be performed by the follo
ing pulse sequence:

~i! a linearly polarized laser pulse couples the light-ho
sub-band and the bottom of the conduction band~see Fig. 8!.
This linearly polarized pulse, which can be described as
equal-weighted superposition ofs1 ands2 polarized light,
attempts to create a trion-trion state in which both grou
state electronic spin states are occupied but due to Pauli p
ciple, ap pulse of such light will promote an electron on
into the unoccupied qubit state—processes~1! in Fig. 8.

~ii ! A further p pulse of s1 light now recombines the
hole state with the original excess electron Fig. 8. In orde
perform this recombination, i.e., changing the total angu
momentumj by one unit and keeping its component alo
the QD symmetry axisẑ fixed, the laser pulse is shined i

ts FIG. 7. Hole-mixing-tolerant two-qubit gate operation via
chirped laser pulse: pulse shapes~above!; interaction phase and
trion-trion populations~below!. The dashed line depicts the popu
lation in theuxx& state obtained starting fromu11&; the flat solid line
the ones obtained starting fromu00&, u01&, or u10&.

FIG. 8. Single-qubit operation.
0-8
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in-plane direction. This is achieved by employing a wav
guide based scheme@31#. The Hamiltonian describing the
above process is given by

H1q5\
V1~ t !

2
~ uxl

↓&^0u1«uxl
↑&^0u1uxl

↑&^1u1«uxl
↓&^1u

1H.c.!1\
V2~ t !

2
~ uxl

↑&^0u1uxl
↓&^1u1H.c.!2D~ t !

3~ uxl
↓&^xl

↓u1uxl
↑&^xl

↑u!,

where uxl
↑&[uxl ,11/2&,uxl

↓&[uxl ,21/2& the l index nota-
tion is used to indicate that the excitonic states are define
terms of light holes, rather than of heavy holes as before.
electron-electron interaction appearing in the intermed
state has been absorbed by redefining the detuning.
should note that the heavy-light hole mixing has an eff
only for the laser pulse directed in the growth directionẑ, the
in-plane directed laser pulse does not induce transitions
the heavy-hole part of the mixed wave function due to sy
metry considerations. By properly adjusting the duration a
the phase of the laser pulses, i.e., adiabatically elimina
the excitonic states, the following effective Hamiltonian
obtained

H1q
e f f5\

Ve f f~ t !

2
u1&^0u1H.c., ~43!

where Ve f f5A(V1V21«V1
2)/D is the effective Rabi fre-

quency for the coherent rotation between the two logi
states. Thus, utilizing strain inverted heavy-light hole II-
semiconductors grown material, on which the adiabatic tw
qubit gate procedure can be adopted, single-qubit optical
ing can be induced on a picosecond time scale.

VII. PHONONS AS A SOURCE OF DECOHERENCE

A. Interaction of quantum dots with phonons

The fidelity of the proposed qubit turns out to be qu
good and is determined by several mechanisms. Since
expected result is quite small, we can consider differ
sources of infidelity separately.

Due to the potentials confining electrons in all spatial
mensions which lead to a discrete density of states QDs
often referred to as ‘‘artificial atoms.’’ The major differenc
with respect to atoms is the coupling of the electrons to
derlying lattice degrees of freedom, which lead to relativ
faster decoherence times, of the order of tens of picoseco
@32#. In what follows, we are developing a simple model o
QD interacting with a thermal bath of phonons.

In a large system of volumeV, the displacement field is
linear in creation and annihilation operators of phonons,bj q

†

and bj q , respectively. Every phonon mode is characteriz
by its polarizationj, momentumq, and frequencyv j (q).
The number of phonon degrees of freedom is limited by
total number of atoms forming the lattice. The maximu
frequency is usually defined via the Debye temperatureQ,
so thatv j (q)&Q ~hereafter, we use units such that\5kB
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51). NormallyQ is very high~hundreds of Kelvin!.
The minimal model describing the interaction of

charged quantum dot with the phonon field is given by
following Hamiltonian:

Hph5HQD2M0E~c†h†1hc!1(
j ,q

v j~q!bj q
† bj q1Vint .

~44!

The quantum dot is assumed to be in a time-dependent l
field E. M0 is the dipole moment, and the Hamiltonian of a
isolated QD is given by

HQD5eec†c1ehh†h, ~45!

wherec and h are the operators annihilating a ground-sta
electron and hole, respectively. Their spin dependence is
relevant here and will not be considered in what follows.
above, the quantitiesee andeh are the energies of the single
particle electron and hole states, respectively. The pho
coupling Hamiltonian is

Vint5(
j ,q

@~gj q
e c†c2gj q

h h†h!bj q1c.c.#, ~46!

wheregj q
h andgj q

e are the coupling constants. The dynami
only couples statesug&5uvac& and ue&5c†h†uvac&. The ma-
trix elements in this basis arêeuc†cue&5^euh†hue&51 and
^euc†h†ug&5^guchue&51. These states are basically th
logical and auxiliary states of the three-level model d
cussed in Sec. IV without the excess electron, namely,u0&
5c0,21/2

† ug&, u1&5c0,1/2
† ug&, andux,s&5c0,s

† ue&.
Rewriting the laser field in the formE5E(t)cos(v0t),

wherev0 is the laser frequency andE(t) is the slow enve-
lope, in the rotating-wave approximation we obtain

Hph5F2D1(
j q

l j q~bj q1bj q
† !G ue&^eu1

V

2
(ue&^gu1ug&^eu)

1(
j ,q

v j~q!bj q
† bj q , ~47!

whereD is the laser frequency detuning,V5uM0E(t)u is the
Rabi frequency, and the phonon coupling strength is given
l j q5gj q

e 2gj q
h . This is identical, apart from the cavity term

to the Imamog˘lu–Wilson-Rae Hamiltonian@33# ~also used
in Ref. @7#!.

As we shall see, for slow processes considered below,
interaction of a quantum dot with optical phonons is prac
cally irrelevant. Indeed, optical phonons have a g
vopt(q)→voptÞ0 atq→0, which is large and hence optica
phonons can always be adiabatically eliminated from
low- frequency dynamics of the quantum dot. If taken in
account, optical phonons contribution only renormaliz
some quantities in Hamiltonian~47!. This is, of course, not
really important for us, since we consider all the constants
the Hamiltonian as being phenomenological~essentially
taken from experimental data!. On the contrary, longitudina
acoustic phonons~LA phonons! have no gap:v(q)5uq at
0-9
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q→0 (u is the velocity of sound! and can effectively interac
with low-frequency degrees of freedom of Hamiltonian~47!.
Hereafter, we will only consider LA phonons and omit th
index j everywhere.

Hamiltonian~47! formally coincides with the Hamiltonian
of the dissipative spin-boson model. The latter describes
interaction of a two-level system~spin! with the bath of har-
monic oscillators~bosons!. As described in Ref.@34#, the
important properties of the interaction of the quantum
with the phonons are contained in the integrated quantity

J~v!5(
q

lq
2d@v2v~q!#. ~48!

One of the most important properties of the spectral funct
J is its frequency dependence at smallv: J(v);vs. The
different values of the exponents distinguish between the
cases of ohmic (s51), subohmic (s,1), and superohmic
(s.1) couplings.

The phonons are coupled to the charge distribution i
quantum dot by means of either deformation or piezoelec
coupling potentials. The calculation of the spectral functioJ
requires a specific microscopic model. In the simplest cas
a quantum dot characterized by a harmonic confinement
tential the calculation is pretty easy, even if the QD is plac
in external electric field~see Appendix A!. The results of the
calculation can be summarized as follows: both in the cas
deformation and piezoelectric coupling the spectral funct
is superohmic, withs53 ands55, respectively. In both the
cases, the spectral function can be approximately written

J~v!;vsexp~2v2/v l
2!, ~49!

with a cutoff atv l;u/ l , wherel is the size of the quantum
dot. This frequency is nothing else but the inverse phon
flight time through the quantum dot. The electric field~of
reasonable intensity! does not change the exponents of the
spectral function.

B. Adiabatic Hamiltonian: Dressed states

Instead of considering the ‘‘bare’’ statesue& and ug&, it is
convenient to switch to the ‘‘adiabatic basis’’: let us diag
nalize first the quantum dot part of Hamiltonian~47!. The
eigenstates~in terms of the bare statesu1& andux&, which in
the present discussion are replaced byug& and ue&, respec-
tively! and energies are given in Sec. V A 2.

The full interacting Hamiltonian~47! can be rewritten in
the new basis and split into two parts:Hph5Hd1H8, where

Hd5FE11(
q

v~q!bq
†bq1cos2

u

2
lq~bq

†1bq!G u1&^1u

1FE21(
q

v~q!bq
†bq2sin2

u

2
lq~bq

†1bq!G u2&^2u,

~50!

and
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H852
sinu

2 (
q

lq~bq
†1bq!~ u1&^2u1u2&^1u!,

~51!

where tan(u)52V/D so thatu is a time-dependent quan
tity. The roles of the two HamiltoniansHd andH8 are very
different and will be considered separately below.

The interaction with the phonons can be understood
two ways. One of the remarkable nonperturbative simplifi
tions can be used due to the fact that we are only dea
with the superohmic coupling case. For a slow process~the
Hamiltonian parameters change on a time scaletv l@1)
there is a way to adiabatically eliminate most of the ‘‘fas
phonon degrees of freedom withv* &v(q)!v l without re-
lying on the pertubation expansion in phonon couplingslk .
The resulting effective Hamiltonian has the same form
Eqs.~50! and~51!, but with the summation restricted only t
the phonon modes withv(q)&v* , and renormalized value
of the Rabi frequencyṼ and the detuningD̃ ~see the Appen-
dix B!. In what follows, we will use both representations o
the same footing and make no distinction between the b
and the renormalized quantities whenever it is not releva

C. Diagonal and off-diagonal channels: Landau-Zener theory

Our qubit proposal relies on the fact that the quantum
stays in the same adiabatic ‘‘dressed’’ state~34! and ~35!
under slow variations of external parameters (V or D).
Therefore, transition between the adiabatic states~37! are a
source of infidelity. Realistically, every gate operation is p
formed with a finite speed and thus, undesired transiti
between the dressed states are always possible. In the
sence of phonons, the transition probability is given by
Landau-Zener theory. In its simplest version, i.e., for a c
of linear detuning sweepD5Ḋt around the resonance valu
D50, the measure of infidelity is given by the probabili
@35#

P65exp~2pV2/4Ḋ!. ~52!

By requesting this quantity to be small, we establish o
adiabatic condition

h5
V2

Ḋ
@1. ~53!

The condition has a simple physical meaning: the resona
is observed approximately when we haveD;V, so

t;V/Ḋ is nothing else but the characteristic time of t
detuning sweep. Then, the adiabatic condition naturally
plies that we haveVt@1.

The effects of the interaction with phonons on this dec
herence channel do not change this result much. As
cussed in the Appendix B, both in the case of perturbat
theory and in the adiabatic approximation the phonon in
action only renormalizes the Rabi frequency@see Eq.~B4!#.
0-10
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Therefore, the same expression~52!, but with the renormal-
ized value ofṼ instead ofV, holds even if the phonon
coupling is strong.

Now let us consider the interaction with the phonons
some more detail. The phonon-assisted transitions betw
the dressed statesu6& are possible and are described
Hamiltonian~51!. Since most of the transitions occurs clo
to the resonanceD50, when the characteristic energy di
ference between the adiabatic levels is;V, and the inter-
level transition probability can be estimated using the Ham
tonianH8 and the Fermi golden rule

P6;E
;V

`

uT6~v!u2J~v2V!dv, ~54!

where

T6~v!5
1

2E dtexp~ ivt !sin@u~ t !# ~55!

is the Fourier component of the ‘‘coupling potential’’ in Eq
~51!. The latter can be easily estimated in the adiabatic li
by using the linear approximation for the detuning close
the resonance point~as above!:

T6~v!;
exp~2v/vm!

~vvm!1/2
, ~56!

where we havevm5t215Ḋ/V, and v@vm . The fre-
quency vm is the high-frequency cutoff imposed by th
speed of the frequency detuning sweep. Substituting
above expression into Eq.~54! and integrating overv, we
find the following estimation for the interstate transitio
probability:

P6;
J~vm!

V
exp~2aV2/Ḋ!, ~57!

wherea;1 is a numerical factor. This quantity characteriz
the probability of unwanted processes and hence is a m
sure of infidelity. The result is exponentially small if we ha
vm!V, which is nothing else but our adiabaticity conditio
~53!.

At finite temperatures there is an additional mechan
for decoherence: a quantum dot can interact with the pho
field and absorb a thermal phonon. Accordingly, the quan
dot acquires energy and is transformed into the exc
dressed state. Nevertheless, the process can be easily
pressed by operating in the regime of small temperatureT
!V. In this case, the transition probability is characteriz
by an additional small factor exp(2V/T)!1 and can be dis-
regarded.

Both probabilities~52! and ~57! have similar structures
and are exponentially small for adiabatic processes~53!. In
later sections, we will find that the ‘‘diagonal’’ termsHd in
the quantum-dot Hamiltonian, though not changing the ad
batic states of the quantum dot, lead, nevertheless, to ex
tions of acoustical phonons and thus to a certain infide
The results do not contain exponentially small factors a
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hence, the off-diagonal terms in the Hamiltonian conside
here can be neglected in our further fidelity calculations.

D. General expression for the fidelity in the presence
of phonons

The major source of infidelity is the excitation of acou
tical phonons without change of the quantum-dot state,
pure dephasing. To develop a formal approach to the fide
calculation, we consider the evolution of a quantum d
coupled to a heat bath of phonons. Assume that att52`,
the system starts from the state which is a direct produc
the pure quantum dot state and a thermal state of pho
field at a temperatureT. As discussed in the preceding se
tion, the dynamics of the quantum dot can be well describ
~up to a few exponentially small amplitudes! by the diagonal
Hamiltonian ~50!. Using this simplification, we can rewrite
the density matrix of the quantum-dot subsystem att5` as

rab5^Ua
†TQ TW Ub&ua&^bu, ~58!

whereua& is the quantum-dot state,^•••& is the average ove
the initial phonon state,TW is the time ordering sign, and th
~diagonal in the dressed state basis! evolution operators are
given by

TW Ua5TW expH 2 i E dtF f a~ t !(
k

lk~bk1bk
†!1EaG J ,

~59!

with f 15cos2@u(t)/2# and f 252sin2@u(t)/2#. The time or-
dering is not convenient and can be removed by transform
the evolution operator into

TW Ua5expH 2 i E
2`

`

dtF f a~ t !(
k

lk~bk1bk
†!1EaG1 ifaJ ,

~60!

where

fa5E
2`

`

dt È t

dt8 f a~ t ! f a~ t8!(
k

lk
2sinvk~ t2t8! ~61!

is the phase originating from the noncommutativity ofbk
operators at different times. Combining these results
gether, we obtain the following expression for the fidel
matrix Tab5^Ua

†TQ TW Ub&:

Tab5K expH 2 i E
2`

`

dtaab~ t !(
k

lk~bk1bk
†!1 ifabJ L ,

~62!

whereaab5 f a2 f b and
0-11
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fab5fb2fa1E
2`

`

dt@Eb~ t !2Ea~ t !#

1E E dtdt8 f a~ t ! f b~ t8!(
k

lk
2sinvk~ t2t8!.

~63!

The fidelity matrixT can be used to rewrite Eq.~58! in a
more convenient form. Consider an arbitrary pure state o
quantum dotC5(acaua&, which evolves into the density
matrix

rab5ca* cbTab~lk!. ~64!

Without the interaction with phonons the evolution is ch
acterized by theT matrix with all lk set to zero. Therefore
one can characterize the phonon interaction by the degre
infidelity, defined as

f [12F5 max
$ca%,(aucau251

(
ab

uca* cb@Tab~lk!2Tab~0!#u.

~65!

This is a standard problem of linear optimization, whose
lution can be done in the general form: the infidelity is giv
by the largest eigenvalue of the matrixT(l)2T(0).

In what follows, we will estimate the value of the infide
ity f for single-qubit operations and for the quantum g
realization proposed above.

E. Fidelity of Rabi rotation

We consider first the simplest case and calculate the fi
ity of single-qubit operations, such as a reversible inter
rotation. To be specific, we calculate the fidelity of an ad
batic sweep of the detuningD around its resonant valueD
50, while keeping the Rabi frequencyV constant. Using
our fidelity definition from Eq.~65!, we find that we have
f 512exp(2G), with

G5
1

2E dvJ~v!ua~v!u2@112N~v!#, ~66!

where N(v)5@exp(v/T)21#21 is the phonon occupation
number and

a~v!5E
2`

`

dt exp~2 ivt !cos~u!. ~67!

In order to analyze the QD dynamics and compare the res
with the discussion of the off-diagonal processes, we use
same sort of linear approximation for the time-depend

detuningD5Ḋt close to the resonance. A simple calculati
gives

G'
1

2E V2J~v!

Ḋ2
K1

2S v

vm
D @112N~v!#dv, ~68!
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where we havevm5Ḋ/V!V ~see the discussion above! and
K1(x) is the Bessel function of the second kind. The ma
contribution to the integral originates from the range of fr
quenciesv&vm ~assuming, of course,vm!v l). Therefore,
at small temperaturesT!vm , we can neglect the therma
occupation of the phonon states and find that

G;
J~vm!

vm
. ~69!

In the opposite limit, i.e., whenT@vm , the phonon num-
bers can be approximated asN(v)'T/v and the integration
yields

G;
J~vm!

vm

T

vm
. ~70!

If the coupling with the phonons is weak, i.e.,G!1, then
the infidelity coincides withG and is only a power law smal
@compare Eqs.~69! and ~70! with the exponentially small
results~52! and ~57! of our off-diagonal Hamiltonians dis
cussion#. At zero temperature, the conditionsG!1 and the
perturbation-theory expansion parameter~B5! are the same.

Equations~69! and ~70! are obtained assuming thatvm
!v l . In this case, the results are not confined to
perturbation-theory limit~see Appendix B for more detail
about the adiabatic elimination of high-frequency phonon!.
In the other limiting case, the infidelity is given by the sam
Eqs. ~69! and ~70! but after the substitutionvm→v l . Of
course, the conditionvm*v l breaks the adiabatic separatio
of the slow and fast phonon degrees of freedom. Theref
the results for the fidelity in this regime can only be valid
the infidelity G is small.

Equation~68! is derived in such a way that its validity i
not confined solely to the analysis of acoustical phonons
fact, it also allows one to understand how the contribution
the higher-frequency degrees of freedom~such as optical
phonons! can be ruled out. Indeed, optical phonons are ch
acterized by the minimum frequencyv0 ~the optical gap!, so
that J(v)50 for all v,v0. Substituting this definition into
Eq. ~68! and integrating in the adiabatic limitvm!v0, we
find

G;
J0

v0
expS 2

v0

vm
D , ~71!

whereJ05J(v0). This is once again an exponentially sma
result @compare with Eqs.~69! and ~70!# with a clear physi-
cal meaning: a slow process occurring on a time scalevm

21

cannot excite high-frequency lattice vibrations ifv0@vm .

F. Rabi oscillations

Another revealing example of phonon interaction effe
is the damping of Rabi oscillations. Consider the case
exact resonance (D50) and a quantum dot starting att50
in stateug&. In the dressed state picture this corresponds
0-12
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ug&5
1

A2
~ u1&1u2&). ~72!

As time progresses, the state changes and the probabili
find the quantum dot in stateug& can be found using the
density matrix from Eq.~64!,

Pg5
1

4
@T111T2212ReT12#. ~73!

In our diagonal approximation, att→`, this is equivalent to

Pg5
1

2
@11cos~Vt1f̃12!#, ~74!

with f̃ given by the first two terms in Eq.~63!. This means
that the diagonal Hamiltonian~50! describes undamped Ra
oscillations at the frequencyV. Within the adiabatic ap-
proximation V!v l , one can integrate out the high
frequency phonons~see Appendix B! and observe that in the
first approximation, the effects of phonon interaction sh
up in the renormalization of the Rabi oscillation frequen
V→Ṽ, as given by Eqs.~B4! and ~B6!.

The gradual damping of the Rabi oscillations origina
from the off-diagonal HamiltonianH8 ~51!. In contrast to our
previous discussion of the internal qubit rotation, in this ca
there is a finite probability to find the quantum dot in
excited stateu1&. This means that now the processes lead
to emission of phonons become possible. The transition
G can be calculated using the Fermi golden rule

G;J~V!, ~75!

so that

Pg'
1

2
@11cos~Vt1f̃12!exp~2Gt !#. ~76!

Since realistically it isV!v l , we have the ratioJ(V)/V
!1 and thus, the quantum-dot oscillations are only wea
damped.

Altogether this lets us conclude that in the presence
phonons a quantum dot in an external laser field underg
weakly damped Rabi oscillations, characterized by the re
malized frequency and the damping rate determined by
spectral functionJ(V).

G. Quantum gate fidelity

The ultimate goal of our calculations is the fidelity of
quantum gate. The Hamiltonian of a couple of interact
QDs can be represented as follows:
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Hph
(2)5F2D1(

q,n
lq~bqe

iq•xn1bq
†e2 iq•xn!G ue&n^eu

1
V

2 (
n

~ ue&n^gu1ug&n^eu!1(
q

v~q!bq
†bq

1DEabue&a^eu ^ ue&b^eu, ~77!

where the indexn5a,b labels the quantum dots,xn5
6d/2 is the position of the dots, and the last term represe
the trion-trion shiftDEab .

The trion-trion shift is a crucial element of our quantu
gate proposal. Its presence introduces the conditional dyn
ics. The timing of the adiabatic process should be desig
in such a way that the trion-trion shift induces the requir
phase shift of stateue&aue&b .

The whole analysis of a single quantum dot operation
be easily generalized to the quantum gate case. As discu
above, we first transform into the dressed state basis and
select only ‘‘diagonal’’ terms from the interaction with th
phonons. Then, one can calculate the fidelity matrixT ~now
434) and find the fidelity from Eq.~65!. This program can
be completed numerically.

Let us consider first the two simple limiting cases. In t
simplest case of a small trion-trion shiftDEab!V, the two
quantum dots can be considered separately and the t
trion shift can be accounted for as a perturbation. Then,
lowing the steps of our single quantum dot calculation,
find that the infidelity isf 512exp(2G), with

G5E J~v!dv cos2~vd/u!@112N~v!#ua~v!u2, ~78!

wherea(v) is again given by Eq.~67!. As expected, in this
limit the result is practically the same as we had for a sing
qubit operation—see Eq.~66!.

The dependence of the gate fidelity~78! on the quantum
dots separationd is very weak~the effective value of the cos
function under the integral sign is anything between 1/2 a
1 for large and small values ofd, respectively!. This means
that the obtained result is practically insensitive to the
sumptions regarding the degree of coherence between
phonon modes around each of the dots. Indeed, Eq.~78!
implies that both of the quantum dots interact with the sa
phonon bath. This corresponds to a case of having the
interacting with the same set of bulk modes. Another pos
bility is that the interquantum dot separation is smaller th
the phonon mean free path. In the case of separate pho
baths~which means the quantum dots electronic degrees
freedom interact with independent phonon modes or
separation between the dots exceeds the mean free pa
phonons!, the quantum dots become completely separate
the infidelity is given by its single-qubit expression~66!.
Both expressions are indistinguishable within a factor
'1. The weak dependence of the fidelity on the interd
separation at not too highT can be seen in Fig. 9, obtaine
by our exact numerical calculation.

The calculation in the other limiting caseDEab@V is
very similar. In this case, the quantum gate has two avoi
0-13
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crossings instead of one and their contributions add indep
dently. Since the width of the resonance is in both casesV,
the contributions of independent resonances add separ
and are again of the same order of magnitude as Eqs.~69!
and~70!. The dependence of the fidelity on the interdot se
ration is very weak again.

To quantify the discussion above, we performed the ex
numerical calculation of the fidelity matrix~62! using a cer-
tain shape of the detuning sweepD(t). The fidelity as a
function of the interdot separation and of the temperature
a specific value of the trion-trion shift is plotted in Fig.
The figure nicely shows both temperature regimes~69! and
~70!, as well as the weak dependence of the result on
separation between the dots. We also performed a few ca
lations for quantum dots of different sizes~effectively vary-
ing the cutoff parameterv l). The results of the calculation
are summarized in Tables~I! and~II !. The interdot separation
is 5 nm, the pulse duration is 1 ps.

H. Discussion

In this section, we performed a systematic study of va
ous decoherence mechanism associated with the intera
of the quantum dots with phonons. The results of our stu
can be summarized as follows.

The details of the interaction with phonons can be ‘‘co
pressed’’ into the spectral functionJ(v). It is characterized
by the strength of the coupling, the frequency dependenc
small v, and the value of the high-frequencies cutoffv l
;u/ l , whereu is the velocity of sound andl is the size of the
quantum dot.

The infidelity f turns out to be quite good for all the rea
istic situations we considered. This means that the pertu
tion theory is well applicable and, in the limit of small tem
peratures, the infidelityf 512exp$2G% is given by

TABLE I. The infidelity f at a temperatureT54 K for different
values of the Rabi frequencyV and of the trion-trion shiftDEab .
The dot size is 20 nm.

V
~meV!

f (DEab50.5
meV!

f (DEab51
meV!

f (DEab52
meV!

0.5 1.031023 2.131023 3.831023

1 1.431023 1.531023 2.631023

2 2.031023 1.831023 2.031023

4 1.131023 1.231023 1.231023

FIG. 9. The fidelity of the quantum gate as a function of t
interquantum dot separationd, for different values of the tempera
tureT: 0 K ~solid line!, 5 K ~long-dashed line!, 15 K ~dashed line!.
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G;
J~vc!

vc
, ~79!

where vc5min(vl ,vm) and vm; Ḋ/V is the inverse
characteristic time of the gate operation. In the higher te
perature limit (T@vc), the infidelity scales linearly with the
temperature

G;
J~vc!

vc

T

vc
. ~80!

These expressions are the central results of the section. T
can be applied to estimate the fidelities of both single-qu
operations and of the quantum gates~in the latter case there
is also a weak dependence on the separation between
quantum dots!. The accuracy of the simple estimations alo
the lines of Eqs.~79! and~80! was checked by exact numer
cal calculations of the fidelity in a wide parameter range. T
contributions of the piezoelectric coupling are numerica
smaller by two to three orders of magnitude in all our calc
lations.

VIII. STATE READ OUT BY QUANTUM JUMPS

A necessary requirement for a quantum information p
cessing implementation scheme is the ability to perform
accurate measurement of a single qubit. Implementation
highly efficient solid-state measurement scheme designe
measure the spin or charge of single electron is a hig
difficult task @36#.

Monitoring the fluorescence from a single QD has be
suggested as a mean to measure single scattering e
within QDs @37#, as well as a means for final read out of th
spin state for the purpose of quantum computation@14#. Re-
cently, it has been verified experimentally that the spin st
of an electron residing in a QD can be read using circu
pumped polarized light@38#. In this section, we describe how
it is possible to devise an optical read out scheme base
the idea of the Pauli blocking in QDs even in the presence
heavy-~light-! hole mixing. We describe two situations: a
ideal case with no heavy-~light-! hole mixing and the realis-
tic case which includes mixing. In the ideal case, the time
measurement, i.e., the time in which one can still extract
information regarding the spin state of the confined electr
is limited only by the spin decoherence time, whereas in
case of mixing the measurement time is also limited by
typical time for a spin flip induced by the excitation proces

The system we have in mind is described by Fig. 10. I

TABLE II. The infidelity f at a temperatureT54 K for different
values of the Rabi frequencyV and of the trion-trion shiftDEab .
The dot size is 10 nm.

V
~meV!

f (DEab50.5
meV!

f (DEab51
meV!

f (DEab52
meV!

0.5 1.031023 2.531023 5.631023

1 1.631023 1.931023 4.231023

2 3.231023 2.831023 3.031023

4 4.331023 4.131023 3.631023
0-14
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the single-QD counterpart of Eq.~32!, taking into account
also the decay rates from the excited level, which we callux&
here for simplicity. We ignore the detuningsd andD, which
are not relevant here, as well as the decay ratek01 from state
u0& to u1&, since the typical time scale for it@39# is much
larger than the typical time scale in which the spin dire
tional information is lost due to the laser mediated spin
which is now the bottleneck process limiting the measu
ment time.

A. Ideal case, i.e., no mixing

Let us first consider the case when«50. Shining as1

pulse on the QD, we obtain due to the Pauli-blocking eff
in QDs the usual two-level situation: no fluorescence fr
initial state u0&, full fluorescence from stateu1&. The final-
state measurement, i.e., measuring the spin state of the
cess electron in the QD is obtained by the quantum-ju
technique~e.g., Ref.@14#!: when the original state of the spi
in a QD is u1& a fluorescence pattern is obtained, where
stateu0& is completely decoupled from the laser field sin
exciton creation is blocked by the Pauli principle.

The typical time scale which limits the process is the s
coherence time in the QD which is of the order of micros
onds, i.e., in a time of that order of a microsecond the spin
the electron in the QD will flip from theu1& fluorescing state
to the u0& dark state and the fluorescence pattern will
terminated. The average number of photons emitted be
the spin typically flips its state is given by the ratio of th
spin coherence time to the typical rate for spontaneous e
sion, which is of the order of a few nanoseconds. Therefo
typically one should obtain of the order of 103 photons be-
fore the original spin information is destroyed.

B. Case with mixing

A realistic QD will exhibit mixing of the heavy- and light
hole states. This invalidates the assumption of perfect P
blocking withs1 light and can be viewed as a rotation by
angle 2« in the $u0&,u1&% space. The mixing parameter«
will typically be of the order of the lattice constanta to a
typical length scale defining the QD in our casea/L'0.1,
whereL is the size of the dot in the growth direction.

Introducing mixing requires one to treat the full thre
level l configuration shown in Fig. 10. As opposed to t

FIG. 10. Thel configuration one has to consider to include ho
mixing.
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usual atomicl configuration@40#, here one cannot distin
guish betweenu0&^xu andu1&^xu transitions. These two tran
sitions are mediated through the same photon. The diss
tive evolution of the density matrixr̃(t) is given by@41#

ṙ̃005 i
V

2
«~r̃x02 r̃0x!,

ṙ̃115 i
V

2
~ r̃x12 r̃1x!,

ṙ̃xx5 i
V

2
@ r̃1x2 r̃x11«~r̃0x2 r̃x0!#2~11«2!kr̃xx ,

ṙ̃015 i
V

2
~«r̃x12 r̃0x!,

ṙ̃0x5 i
V

2
@«~ r̃xx2 r̃00!2 r̃01#2~11«2!

k

2
r̃0x ,

ṙ̃1x5 i
V

2
~ r̃xx2 r̃112«r̃10!2~11«2!

k

2
r̃1x . ~81!

The probability that at timet no photon has been emitted
starting from statea at time t0, is

Pa
(0)~ t2t0!5tr@ r̃~a,t !#, ~82!

where at the initial timet0 we taker̃(a,t0)[ua&^au. Figure
11 shows an example of their evaluation withV53 meV,
k51 ns21, and«50.1.

Note that, in contrast to the ‘‘common’’l configuration
@40#, in Eq. ~81! both of the recycling terms,kr̃xx and

FIG. 11. Probability that at timet the first photon has not ye
been emitted, starting from stateu0& ~above! or u1& ~below! at time
t50. Parameters are quoted in the text.
0-15
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«2kr̃xx , are missing, since it is the same photon that indu
both these transitions, i.e., we cannot distinguish between
two transitions via photon detection. This implies that wh
the first photon is emitted, say at timet1, the system col-
lapses either into stateu0&—with probability p05«2/(1
1«2)—or into stateu1&—with probability p151/(11«2)—
whence the evolution starts over again. Therefore, the p
ability that, at the timet.t i ( i>1), the (i 11)th photon has
not been emitted is

Pa
( i )~ t2t i !5

«2P0
(0)~ t2t i !1P1

(0)~ t2t i !

11«2
, ~83!

which is independent of the initial stateua&. A typical pho-
toemission pattern will look like Fig. 12: a sequence
pulses, each one made out of a bunch of the order of 1«2

photons, separated by no-emission windows. This is the t
cal quantum-jump pattern, one obtains in the presence o
emission probability having the form of a sum of differe
exponentials like Eq.~83!.

The only feature which allows for discriminating the tw
patterns is the first bunch of photons, which are emitted
most immediately in the case of stateu1&, and after a sen-
sible delay in the case of stateu0&, due to the fact that, prio
to the first photoemission, it was stillP0

(0)(t)ÞP1
(0)(t).

Therefore, a detector with 100% efficiency would be s
capable of discriminating between the two logical states e
in the presence of hole mixing.

Another option would be available in II-VI semiconduct
systems, showing energetic inversion between light-
heavy-hole states as described in Sec. VI. To be specific
us refer to the left part of Fig. 8. In that case, the transition
be excited for probing the QD state is the one marked as~2!.
Hole mixing results in an unwanted coupling to the transit
~1!. This can be compensated for by simply adding a sm
component ofs1 light, proportional to the mixing paramete

FIG. 12. Simulation of photon counts for a system starting fr
stateu0& ~top! and from stateu1& ~middle!. An expanded view of the
first few photon counts is displayed in the bottom graph. Parame
are the same as in Fig. 11.
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«. The error affecting this operation would scale linea
with the imprecision in«, which is not straightforward to
predict theoretically, yet it can be measured in a real situa
to a good accuracy.

C. Case of perfect detection

We start by considering the error for the caseh51,
whereh is the parameter describing the detection efficien
On introducing hole mixing the detector would still be ab
to discriminate between the two logical states but mixi
will be the cause for two types of measurement errors wh
can occur. Starting with the system in stateu1& there is a
possibility for no photon to be emitted from the QD durin
the whole measurement time. The probability for this type
error is given byP1

(0)(t). In the other case, starting with th
system initially inu0& at least one photon might be emitte
during the measurement time. The probability for this sort
error is given by 12P0

(0)(t). The measurement time has
be chosen in such a way as to minimize the sum of these
errors. For the same parameters employed in Fig. 11,
obtain an estimate for the optimal measurement time of
order of a few tens of nanosecond. What typically happen
practice is that, as shown in Fig. 12, by appropriate ti
windowing the first bunch of photons coming from stateu1&
can be safely discriminated from the~later! photons coming
from stateu0&.

D. Finite detection efficiency

We now consider the case in whichh,1. The lowest
detector efficiency in which we can still hope to discrimina
between the two logical states is given byh51/^N&, where
@42# ^N&51/«2 is the average number of photons to be em
ted before a system starting off in stateu1& flips to stateu0&.
In our case, this is not a tight constraint, since semicondu
photodetectors have a very high quantum efficiency@43#
hmat'0.98. If we require the ability to discriminate betwee
single-photon events, that figure is modified to about 8
~for avalanche photodiodes!. The typical wavelength emitted
by the recombination process in QDs lies well within t
spectral window which is due to the cutoff by band-gap e
ergy of such detectors. The main source for low detect
efficiency is due to the probability for the emitted photon
reach the detector, i.e., the difficulty arising due to fin
angle coverage of the detector. The situation, however,
be significantly improved by coupling the QD with a micro
cavity as described in Ref.@14#.

It is important to note that we can use an avalanche p
ton counting mode so that each photon arriving creates
e-h pair which then amplifies in the device to produce
current spike. The need to wait a few nanoseconds be
detecting the next photon is not a limitation in our case sin
the measurement process we are considering is essentia
one shot measurement process, as long as the dark cou
low enough.

Working with a detector with a finite efficiency mean
that we have to choose the measurement time so as to en
the fluorescent state emits a few photons thus increasing
probability one of them will be detected. This increases

rs
0-16
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probability for an error due to a photon being emitted by
initial stateu0& sinceP0

(0)(t) decays exponentially with time
Moreover, a further possibility for error is introduced in
our measurement scheme. Starting initially in stateu1&, the
QD can emit a photon or photons which will go undetec
and the spin can flip into stateu0&, i.e., the information re-
garding the spin state is lost without being detected. T
probability Pe for such an error is given by

Pe5«2(
n50

N S 12h

11«2D n11

5
«2~12h!

«21h
F12S 12h

11«2D N11G ,
~84!

which is simply the sum overn incidents in which the emit-
ted photons were not detected and no spin-flip occurred
on then11 incident such a spin-flip occurred~without the
photon being detected!. This type of error turns out not to b
particularly sensitive to the time of measurement. Given t
the number of photon emitted in the first bunch in Fig. 12
of the order of«22'102 in our case as discussed above, a
taking an efficiencyh50.8, we obtain an error due to finit
detection efficiency of the order of 0.2%.

IX. CONCLUSIONS

To claim that a certain implementation scheme for qu
tum information processing is viable, one has to carefu
understand the fundamental sources of decoherence acti
that specific physical system, and to show that they can
tually be controlled. To this aim, in this paper, we analyz
in detail the different decoherence mechanisms affectin
recently proposed all-optical scheme for quantum comp
tion based on electron spin in quantum dots. In particular,
took into account the effect of hole mixing and of couplin
to phonons at a finite temperature, estimating their impac
each of the building blocks of a quantum computer: sing
qubit and two-qubit gates, and state read out. We develo
a strategy to circumvent such unwanted effects via an a
batic laser excitation scheme, simulated its performance
der realistic conditions and evaluated the corresponding
delity. Our scheme turns out to be able to suppress the e
of both of these decoherence sources on the proposed
and therefore constitutes a viable proposal for all-opti
quantum information processing in semiconductor quan
dots.
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APPENDIX A: COUPLING CONSTANTS,
MICROSCOPIC CALCULATION

The phonons are coupled to the charge distribution i
QD by means of either deformation or piezoelectric coupl
potentials. The corresponding coupling constants are eith

lq
D5

qD~q!

A2rv~q!V
, ~A1!

in the case of deformation coupling, or

lq
p5

r~q!

A2rv~q!V
M ~q!, ~A2!

in the case of piezoelectric coupling. In both cases,r is the
mass density of the sample and

M ~q!5
24pee14

eq3
qxqyqz[M

qxqyqz

q3
~A3!

is the coupling potential. Here,e is the dielectric constant o
the sample ande14 is the material constant. The form facto

r~q!5E dr @ ucv~r !u22ucc~r !u2#exp~2 iq•r ! ~A4!

and @44#

D~q!5E dr @Dvucv~r !u22Dcucc~r !u2#exp~2 iq•r !

~A5!

are related to the exciton charge density. The wave functi
cvandcc describe the hole and the electron states making
the exciton.Dc ,Dv are the deformation coupling potential

The calculation of the coupling constants relies on a m
croscopic model. We consider a QD in a static external e
tric field F0 directed along thex axis. Within the simplest
model with harmonic confinement potential the Hamiltoni
for the single-particle electron (i 5e) and the holes (i 5h)
states is given by

H5
p2

2mi
1

miv i
2~r 1r 0i !

2

2
2

miv i
2r 0i

2

2
, ~A6!

where r 0i5eiF0 /miv i
2 is a measure of the electric-fiel

strength in ‘‘oscillator units of length,’’v i is the frequency of
the confining potential,mi andei are the mass and the charg
of the particles~the electrons or holes!.

To clarify the effects of external electric field and com
pare the relative strength of the different types of the c
pling, let us consider first the somewhat unrealistic but o
erwise simple model of a spherically symmetric QD. In th
case, the wave function is given by

c i5S 1

p l i
2D 3/2

expH 2
~r2r0i !

2

2l i
2 J , ~A7!
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wherel i5(miv i)
21/2 is the ground-state localization lengt

Then, in the case of deformation coupling, a simple calcu
tion gives the following expression forJ function ~for sim-
plicity, we put l e5 l h):

J~v!5
v3

4p2ru5
expH 2

v2l 2

2u2 J
3FDe

21Dh
222DeDh

sin~2vr 0 /u!

2vr 0 /u G . ~A8!

The obtained result shows the two important features. F
of all, since DeÞDh the J function is superohmic in the
external field of any strength. Essentially this means tha
static electric field does not qualitatively change the inter
tion with the phonons. Second, the functionJ(v) has a large
frequency cutoff atv l5u/ l , which is nothing else but the
inverse flight time of a phonon through the QD.

The piezoelectric coupling behaves somewhat differe
Recalculating theJ function using the coupling constan
~A2!, we find

Jp~v!5
M2v

560p2ru3 FexpS 2
v2l c

2

2u2 D 1expS 2
v2l v

2

2u2 D
22expS 2

v2l c
2

4u2 D expS 2
v2l v

2

4u2 D f S 2
v

u
r 0D G ,

~A9!

where f (0)51 and f (x)→0 at x→`. Since the piezoelec
tric potential M is the same for the electrons and for t
holes, in the limit of small electric-field strength, we have

JF050
p ~v→0!5

M2v5~ l c
22 l v

2!2

6720p2ru7
. ~A10!

The coupling is still superohmic, but it contains a larg
power of v than the deformation coupling. Moreover, th
value of the coupling potentialM is also numerically smal
for common materials and thus the interaction of a QD w
the phonons is dominated by the deformation coupling.

The large electric-field limit of Eq.~A9! is somewhat in-
teresting. One can see that we have

JF05`
p ~v→0!5

M2v

280p2ru3
, ~A11!

which is, at first glance, an indication of ohmic type of co
pling. Nevertheless, one should keep in mind that
Jp-function decreases quickly whenv*v l and hence the
argument of thef-function never exceeds;r 0 / l . This means
that the functionf ;1 practically everywhere in the course
the integration in Eq.~48! and hence the coupling remain
superohmic in the whole relevant parameters range.

The analysis above paves the way to a more realistic
culation. Consider Hamiltonian~A6! acting in two-
dimensional (x andy directions!, whereas the motion in thez
direction is confined within a box of lengthLz . The wave
function ~of the ground state! is
01231
-

st

a
-

t.

r

e

l-

c i5A 2

Lz
sin

pz

Lz
Amiv i

p
expH 2

~r 1r 0i !
2

2l i
2 J , ~A12!

wherel i5Amiv i . The Fourier component is given by

E d3rc2exp$2 iq•r%5Fz~qz!F~q!, ~A13!

whereq5(qx ,qy) is the vector in thex-y plane, and

F~q!5expH 2
q2l 2

4
1 iq•r0J , ~A14!

and

Fz~qz!5
4p2i @exp~ iqzL !21#

~qzL !324p2qzL
. ~A15!

We note that, in spite of its ugly appearance, the form fac
Fz is no where singular on the real axis and quickly deca
whenqzL@1. The normalization ensures thatFz(0)51.

For simplicity consider the limit of very strong confine
ment: Lz! l c,v . Then, neglecting the piezoelectric couplin
and using the zero-argument value for functionFz , we ob-
tain

J~v!5
v3

4p2ru5
expH 2

v2l 2

2u2 J
3FDc

21Dv
222DcDv f 1S 2

v

u
r 0D G , ~A16!

where we have

f 1~x!5
1

4pE du sinudf cos~xsinu cosf!. ~A17!

At small value of its argument this function gives 1 an
vanishes whenx→`. The presentedJ function is always
superohmic and is not qualitatively different from that co
sidered above for an idealistic spherically symmetric QD
shares all the important features of the simpler model abo
In particular, the large-frequency cutoff is defined by t
same inverse phonon flight time through the QD:v l;u/ l .

In short, we presented a number of examples of
spectral-function calculations. Both in the case of piezoel
tric and of deformation coupling, theJ function is super-
ohmic, with the exponentss53 ands55, respectively. The
quantityv l;u/ l plays the role of the high-frequency cutof

APPENDIX B: ADIABATIC EFFECTIVE HAMILTONIAN;
APPLICABILITY OF PERTURBATION EXPANSIONS

The phonon interaction terms in Hamiltonian~47! may
well be large and hence the perturbation-theory expansio
powers oflq may not always be well justified. A remarkab
opportunity to extract nonperturbative results originates fr
our adiabatic assumption.

Indeed our quantum gate proposal relies on adiabatic
0-18



f

al
cu

ic
ie

il-
d

l

E
on
ve
e
io

th

-
ro

e
e
th
lle

-

on
by

lled
rm
een

our
ng-
ho-

ires

red
on

n

the
-

of
e
ur-
id.

dy-
by

tion

ex-

SPIN-BASED ALL-OPTICAL QUANTUM COMPUTATION . . . PHYSICAL REVIEW A68, 012310 ~2003!
nipulations of the external parameters of Hamiltonian~47!.
Assume that bothV(t) andD(t) change on a time scalet.
Extreme adiabatic condition implies

v lt@1, ~B1!

i.e., the considered QD dynamics can be considered slow
almost all of the phonon modes. According to Ref.@34#, this
condition can be formally used to adiabatically eliminate
the phonon modes with frequencies exceeding a certain
off v* : t21!v* !v l and obtain the effective adiabat
Hamiltonian for the slow phonon modes with frequenc
v&v* . At zero temperatureT50, the effective Hamlito-
nian takes the form

Hph5F2D̃1 (
q,v(q),v

*

lq~bq1bq
†!G ue&^eu1

Ṽ

2
~ ue&^gu

1ug&^eu!1 (
q,v(q),v

*

v~q!bq
†bq . ~B2!

Hamiltonian~B2! has the same form as the original Ham
tonian~47!. The effect of the high-frequency mode is limite
to the renormalization of the frequency detuning

D̃5D2
1

2E dv
J~v!

v
, ~B3!

and Rabi frequency~tunneling term in the spin-boson mode!

Ṽ5VexpS 2E
v

*

` dv

2

J~v!

v2 D . ~B4!

In the superohmic case, the integral in the exponent of
~B4! converges atv&v* and hence, does not depend
v* . Thus, in the adiabatic approximation, we can con
niently setv* 50. This means that at zero temperature, ev
a strong phonon coupling leads only to the renormalizat
of the Hamiltonian parameters~the Rabi frequency!. The
measure of the Rabi frequency renormalization yields
perturbation-theory expansion parameter:

V2Ṽ

V
;E dv

2

J~v!

v2
;

J~v l !

v l
!1. ~B5!

The effective Hamiltonian~B2! does not rely on this condi
tion, whereas a perturbation theory for arbitrary fast p
cesses would do.

The situation is somewhat different at finite temperatur
The QD can still change its state ‘‘coherently,’’ i.e., in th
course of Rabi oscillations which are characterized by
new temperature-dependent renormalized value, ca
Huang-Rhys factor in Ref.@34#:
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Ṽ5VexpH 2E
0

`dv

2

J~v!

v2
@112N~v!#J , ~B6!

whereN(x)5@exp(x/T)21#21 is the Bose occupation num
ber. This is nothing else but the generalization of Eq.~B4!
now taking into account finite occupation of the phon
modes. In addition to that the QD can change its state
either absorbing or emitting a phonon. This process is ca
incoherent tunneling and has no effective Hamiltonian fo
~generally speaking there is no obvious separation betw
the fast and slow variables!.

In the quantum gate proposal, we suggest to operate
qubit starting from the ground state and adiabatically cha
ing parameters. This means that the QD cannot emit a p
non of a high energyv*t21 ~since it is in the ground state!.
The absorption of a phonon from the thermal bath requ
finite occupancy of a state with energyv;Ṽ, which can be
made exponentially small, providedT!Ṽ.

The results of this section also make sense if compa
with perturbation theory. Consider the case of the phon
coupling. There is no corrections to eigenenergies~37! to
first order in powers oflq . The second-order perturbatio
theory gives

dE65(
q

lq
2

4 H @16 cos~u!#2

vq

1
sin2~u!

AD21V21vq
J .

~B7!

In the adiabatic limit~B1!, we can expand in powers ofD/v l
andV/v l to obtain the expression

dE65
1

2
~16 cosu!E dv

J~v!

v

2
sin2u

4
AD21V2E dv

J~v!

v2
. ~B8!

The same expression could be obtained by substituting
renormalized values~B3! and ~B4! into the adiabatic ener
gies~37! and expanding the obtained expression in powers
the small parameter~B5!. This once again shows that th
results of the adiabatic renormalization coincide with pert
bation theory whenever both approaches are equally val

We conclude that the effective Hamiltonian~B2! with
renormalized value of the Rabi transition amplitude~B6! can
be used as a good nonperturbative tool to study the QD
namics in the presence of phonons. Its validity is ensured
the fact that theJ function for the deformation coupling is
superohmic and relies on the time scale separation cond
~B1!. In the case whenv lt*1, the adiabatic approximation
fails and one has to resort to perturbation theory, whose
pansion parameter is given by Eq.~B5!.
0-19
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