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Robustness of quantum gates in the presence of noise

Aram W. Harrow1,2,* and Michael A. Nielsen2,†

1MIT Physics, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA
2School of Physical Sciences, University of Queensland, Queensland 4072, Australia

~Received 24 January 2003; published 11 July 2003!

We define several quantitative measures of therobustnessof a quantum gate against noise. Exact analytic
expressions for the robustness against depolarizing noise are obtained for all bipartite unitary quantum gates,
and it is found that the controlled-NOT gate is the most robust two-qubit quantum gate, in the sense that it is the
quantum gate which can tolerate themost depolarizing noise and still generate entanglement. Our results
enable us to place several analytic upper bounds on the value of the threshold for quantum computation, with
the best bound in the most pessimistic error model beingpth<0.5.
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I. INTRODUCTION

An ideal quantum computer@1# is usually described as
sequence of unitary quantum gates applied to the qubits m
ing up the computer. A typical universal set of quantum ga
is the controlled-NOT ~CNOT! gate, and single-qubit unitar
operations@2#. A crucial element in a universal gate set
that it be capable of generatingentanglementbetween the
qubits making up the computer.

In the real world, quantum gates suffer from noise@3#,
which can inhibit the creation of entanglement. This probl
led to the development of fault-tolerant methods for quant
computation ~see Ref. @1#! based on quantum error
correcting codes@4,5#. One of the outstanding achievemen
of work on fault tolerance is thethreshold theoremfor quan-
tum computation@6–10#. The threshold theorem states th
under reasonable physical assumptions about noise in
computer, it is possible to correct for the effects of that no
provided the strength of the noise is below some cons
threshold,pth . ~Roughly speaking,pth can be thought of as
the maximal probability of error during a single quantu
gate that can be corrected using the methods of fault to
ance.! The exact value of the threshold depends on w
assumptions are made about the noise in the quantum c
puter, and estimates of the value of the threshold, theref
vary quite a bit. Typical current estimates place it in t
range 1024–1026.

Motivated by the practical problem of noise, and t
theory of fault-tolerant quantum computation, in this pap
we consider the problem of quantifying how robust a qu
tum gate is to the effects of noise. More precisely, for a giv
gateU we attempt to quantify how much noise the gate c
tolerate while preserving the ability to generate entang
ment. Since, in a sense we make precise below, entangle
generation is necessary for quantum computation to be
sible, even if the methods of fault-tolerant computation
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used, this program allows us to determineupper boundson
the value of the threshold.

Our work is different from most of the other works o
estimating thresholds, which usually aims to determinelower
bounds. The interest in lower bounds stems from their mo
immediate practical interest: if we know thatpth.1026, for
example, then that gives experimentalists a target to shoo
in pursuit of a working quantum computer. Nonetheless,
emphasized in Ref.@11#, from a fundamental point of view it
would be extremely interesting to have exact values for
threshold, and this requires techniques for obtaining up
bounds.

Our work is based upon the results of Vidal and Tarra
@12#, who investigated therobustnessof entangled quantum
states, that is, how much noise can be added to a quan
state before it becomes unentangled, i.e., separable.
work also naturally extends and complements the work
Aharonov and Ben-Or@11#, who, to our knowledge, have
done the only prior work obtaining upper bounds on t
value of the threshold.

Another interesting context in which our measures of g
robustness may be placed is the program of defining ‘‘
namic strength measures’’ for quantum dynamical operati
@13#. Dynamic strength measures quantify the intrins
power or strength of a quantum dynamical operation a
physical resource, much as an entanglement measure qu
fies the entanglement in a quantum state. Reference@13# de-
veloped a framework for the analysis of dynamic stren
measures, and we will see that gate robustness can b
garded as a measure of dynamic strength, and analy
within this framework.

The structure of the paper is as follows. Section II revie
background material on the Schmidt decomposition for
erators. This decomposition is central to our later work
the robustness of quantum gates. Section III reviews the
tion of separablequantum gates, which may be defined
the class of gates that cannot generate entanglement
quantum computer. Furthermore, this section proves th
quantum circuit containing only separable gates can be
ciently simulated on a classical computer. Section IV revie
Vidal and Tarrach’s work on the robustness of quant
states. This section also introduces an alternative measu
the robustness of quantum states useful in our later work
©2003 The American Physical Society08-1
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gate robustness, and proves some elementary properti
the new measure. Section V gives our definitions and res
on the robustness of quantum gates, and relates the resu
the theory of fault-tolerant quantum computation. Section
concludes.

II. THE OPERATOR-SCHMIDT DECOMPOSITION

The operator-Schmidtdecomposition is an operator an
log of the well-known Schmidt decomposition for pure qua
tum states@1#. The present treatment of the operator-Schm
decomposition is based on the discussion in Refs.@13,14#,
with the addition of a result on the continuity of the Schm
coefficients of a unitary operator.

We begin by introducing the Hilbert-Schmidt inner pro
uct ond3d operators, (Q,P)[tr(Q†P), for any operatorsQ
and P. We define an orthonormal operator basis to be a
$Qj% which satisfies the condition (Qj ,Qk)5tr(Qj

†Qk)
5d jk . For example, an orthonormal basis for the space
single-qubit operators is the set$I /A2,X/A2,Y/A2,Z/A2%,
where X, Y, and Z are the Paulis operators, andI is the
identity.

The operator-Schmidt decomposition states that any
eratorQ acting on systemsA andB may be written as@14#

Q5(
l

qlAl ^ Bl , ~1!

whereql>0, andAl andBl are orthonormal operator base
for A and B, respectively. A constructive proof of th
operator-Schmidt decomposition may be found in Ref.@14#.

To better understand the coefficientsql in the operator-
Schmidt decomposition, imagine that associated with e
system,A and B, there arereference systems RA and RB ,
with the same state space dimensionalitiesdA and dB as A
andB. Let

ua&[
(

j
u j RA

j A&

AdA

and ub&[
(

j
u j Bj RB

&

AdB

~2!

denote normalized, maximally entangled states ofRAA and
BRB , respectively. Now letE be a general quantum
operation.1 We definer(E) to be the density operator resul
ing whenE acts onua&ub&. We write this out explicitly, with
subscripts to make it clear which operations are acting
which systems:

r~E![~IRA
^ EAB^ IRB

!+~ ua&^au ^ ub&^bu!, ~3!

1Quantum operations are sometimes known ascompletely positive
maps. We use the more physically oriented terminology, since i
physical applications we have in mind. Note that we use ‘‘quant
gate’’ and ‘‘quantum operation’’ interchangeably, depending
whether the context is quantum computation or more genera
review of the theory of quantum operations may be found
Ref. @1#.
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whereIS denotes the identity quantum operation on a syst
S. In the special case whenE represents a unitary operationU
on AB, we definec(U) to be the quantum state obtaine
whenU acts onua&ub&, and letr(U) be the corresponding
density operator. Note that we will interchange notatio
such asc(U) and uc(U)&, depending on which is more
convenient in a particular context.

The Schmidt coefficients ofc(U) are closely connected
to the operator-Schmidt coefficients ofU, which we denote
uj . Letting U5( jujAj ^ Bj be an operator-Schmidt decom
position, we see that

c~U !5~ I RA
^ U ^ I RB

!ua&ub& ~4!

5(
j

uj~ I RA
^ Aj !ua&~Bj ^ I RB

!ub&. ~5!

Direct calculation shows thatAdA(I RA
^ Aj )ua& andAdB(Bj

^ I RB
)ub& form orthonormal bases forRAA and BRB , re-

spectively. Thus, the quantum statec(U) has Schmidt coef-
ficients uj /AdAdB equal, up to the factor 1/AdAdB, to the
Schmidt coefficients ofU.

The following proposition shows that the Schmidt coef
cients ofU are continuous functions ofU. In the statement of
the proposition,iM i5maxici51iMuc&i denotes the usual op
erator norm.

Proposition 1.Let U and V be operators onAB, with
respective Schmidt coefficientsuj and v j , ordered into de-
creasing order,u1>u2>•••, andv1>v2>•••. Then

2S 12

(
j

ujv j

dAdB

D <iU2Vi2. ~6!

To understand why Eq.~6! can be interpreted as a stat
ment about continuity requires a little thought. Note th
tr(U†U)5tr(V†V)5dAdB , and thus( juj

25( jv j
25dAdB . It

follows that we can think ofuj
2/dAdB andv j

2/dAdB as prob-
ability distributions. With this interpretation, the quanti
( jujv j /dAdB is just the fidelity of these two probability dis
tributions, and it follows from Eq.~6! that if U'V thenuj
'v j for all j.

Proof. The key is to observe that the normi•i is stable
when extended trivially to an ancilla system, i.e.,iM i
5iM ^ I i . Using this observation, we have

iU2Vi5i I RA
^ ~U2V! ^ I RB

i ~7!

>i@ I RA
^ ~U2V! ^ I RB

#ua&ub&i ~8!

5ic~U !2c~V!i . ~9!

Squaring both sides of the inequality, and interchanging
roles of the two sides, we obtain

ic~U !i21ic~V!i222Re@^c~U !uc~V!&#<iU2Vi2.
~10!

Sinceic(U)i25ic(V)i251, this implies

s

A
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2@12u^c~U !uc~V!&u#<iU2Vi2. ~11!

Sincec(U) andc(V) have Schmidt coefficientsuj /AdAdB

and v j /AdAdB, respectively, it follows from the results o
Refs. @15,16# that u^c(U)uc(V)&u<( jujv j /dAdB . Combin-
ing this inequality with Eq.~11! gives the desired result.j

III. SEPARABLE AND SEPARABILITY-PRESERVING
QUANTUM GATES

We now formally introduce the notion of separable qua
tum gates, and study their basic properties, in Sec. III
Section III B states and proves a theorem showing that qu
tum circuits built entirely out of separable quantum gates
be efficiently simulated on a classical computer. Finally, S
III C notes that the classical simulation theorem of the p
ceding section can be extended to a somewhat larger cla
gates, the ‘‘separability-preserving’’ gates, and consid
some of the implications of this fact.

A. Definition and basic properties

SupposeE is a quantum operation acting on a compos
quantum system with two components labeledA andB. E is
said to beseparableif it can be given an operator-sum rep
resentation of the form

E~r!5(
j

~Aj ^ Bj !r~Aj
†

^ Bj
†!. ~12!

Separable quantum operations were independently in
duced in Refs.@17,18#, where it was speculated that trac
preserving separable quantum operations might corresp
to the class of quantum operations that can be impleme
on a bipartite system using local operations and class
communication. This speculation was false@19#. However, a
related conjecture is true, namely, that trace-preserving s
rable quantum operations correspond to the class of tr
preserving quantum operations which cannot be used to
erate quantum entanglement. This follows from an eleg
characterization theorem of Ciracet al. @20# linking separa-
bility of a quantum operationE to separability of the quan
tum stater(E) introduced in Eq.~3!.

Theorem 1 (operation-separability theorem [20]). A trace-
preserving quantum operationE is separable if and only if
r(E) is a separable quantum state, that is,r(E) can be writ-
ten in the form

r~E!5(
j

pjr j
RAA

^ r j
BRB , ~13!

where thepj are probabilities,r j
RAA are quantum states o

systemRAA, andr j
BRB are quantum states of systemBRB .

When we say in the statement of the theorem thatr(E) is
separable, there is initially some ambiguity, due to the m
tiple ways the systemRAABRB can be decomposed into su
systems. To avoid this ambiguity, it is convenient to intr
duce notational conventions as follows. Lets be a state of a
composite systemCD. We says is separable with respect to
01230
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the C:D cut if s can be written ass5( j pjr j
C

^ r j
D for prob-

abilities pj , and quantum statesr j
C ,r j

D of systemsC andD,
respectively. The advantage of this notation comes w
more systems are introduced. For example, in the operat
separability theorem, the assertion is thatE is separable if
and only if r(E) is separable with respect to theRAA:BRB

cut.
We have stated the operation-separability theorem

trace-preserving quantum operations, but a similar result
holds for non-trace-preserving quantum operationsE. The
only change is that thepj are no longer probabilities, but ca
be any set of non-negative real numbers. We have also
stricted our attention to bipartite quantum operations, tha
E which act on quantum systems with just two componen
A and B; it is not difficult to show that an analogous stat
ment also holds fork-party quantum operationsE.

A nice corollary of the operation-separability theorem
that a quantum operation is separable if and only if it
incapable of producing entangled states. Furthermore,
connecting gate separability to state separability,
operation-separability theorem allows us to apply resu
from the theory of state separability to prove that cert
gates are separable, and thus incapable of producing
tanglement.

The operation-separability theorem tells us that a tra
preserving quantum operationE is separable precisely whe
r(E) is separable. However, it does not follow that all sep
rable states ofRAA:BRB can be written asr(E) for some
trace-preserving quantum operation. To understand this,
serve that whenE is trace preserving, trAB@r(E)# must be the
completely mixed state ofRARB . In general, however, it is
easy to find separable statess of RAA:BRB such that
trAB(s) is not completely mixed.

An elegant result of Horodeckiet al. @21# can be used to
characterize precisely which separable states can be wr
in the formr(E) for trace-preserving, separableE. Their re-
sult, which we have restated in the context of multipart
systems, is as follows.

Theorem 2. The set of density matrices,s, of RAABRB
such thats5r(E) for some trace-preserving quantum ope
tion E is precisely the set such that trAB(s) is the completely
mixed state ofRARB .

Combining this theorem with the operation-separabil
theorem we obtain the following result.

Theorem 3. The set of density matrices,s, of RAABRB
such thats5r(E) for some trace-preserving and separa
quantum operationE is precisely the set such that~a! s is
separable with respect to theRAA:BRB cut; and~b! trAB(s)
is the completely mixed state ofRARB .

B. Separable gates and quantum computation

Having discussed the basic properties of separable q
tum operations, we turn to their utility for quantum comp
tation. Imagine that a quantum circuit is built entirely out
separable quantum gates and single-qubit gates. It is i
itively plausible that such a quantum circuit can be e
ciently simulated on a classical computer, and we now pr
8-3
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this result. The major technical difficulty is the accuracy
quired in the simulation, and the associated computatio
overhead.

Our model of quantum computation is as follows. LetG
be a fixed set of one- and two-qubit quantum gates.
‘‘quantum gate’’ we mean a trace-preserving quantum ope
tion. We assume that all the two-qubit gates inG are sepa-
rable. We let$Cn% be a uniform family of quantum circuits
@1,22# containing p(n) gates, and acting onq(n) qubits,
wherep(n) andq(n) are polynomials in some parametern.
The initial state of the computer is assumed to be a com
tational basis state,ux&. The computation is concluded b
performing a measurement in the computational basis, yi
ing a probability distributionpx(y) over measurement out
comesy. The measurement may be either on all the qubits
on some prespecified subset. For instance, if one is solvi
decision problem, it is only necessary to measure the
qubit of the computer, to get a single 0 or 1 as output.

What does it mean to simulate this computation efficien
on a classical computer? Suppose we have a classical
puter that, on input ofx, produces outputy with probability
distribution p̃x(y). A good measure of how well this simu
lates the quantum computation is theL1 distance. For prob-
ability distributionsr (y) ands(y), theL1 distance is defined
by D„r (y),s(y)…[(yur (y)2s(y)u/2. Thus, we require tha
D„ px(y),p̃x(y)…5(yupx(y)2 p̃x(y)u/2 satisfies

D„ px~y!,p̃x~y!…<e ~14!

for some parametere.0. We will show that the computa
tional resources to achieve this accuracy on a classical c
puter scale asO(poly„ p(n)/e…), where poly(•) is some
polynomial of fixed degree not depending on the circuit fa
ily $Cn%. Thus, high accuracies in the simulation can
achieved with modest computational cost.

As an example of the practical implications of this resu
suppose$Cn% is a uniform family of quantum circuits solv
ing a decision problem, outputting the correct answer to
instancex of the decision problem with probability at lea
3/4. Our result implies that there is a classical simulat
usingO(poly„ p(n)…) gates, and outputting the correct sol
tion to the decision problem with probability 2/3.~The prob-
ability of obtaining the correct answer may easily be boos
up beyond 3/4 by a constant number of repetitions.!

To analyze the method described below for class
simulation, we need the notion of thetrace distance, a quan-
tum generalization of theL1 distance. The trace distanc
D(r,s) between density matricesr ands is defined by@1#
D(r,s)[trur2su/2. Note that we use the same notati
D(•,•) for the trace distance and theL1 distance, with the
meaning to be determined from context. The properties
the trace distance are discussed in detail in Ref.@1#, and we
need only a few properties here.

~1! The trace distance satisfies thetriangle inequality,
D(r,t)<D(r,s)1D(s,t).

~2! The trace distance isdoubly convex, meaning that ifpj
are probabilities, andr j and s j are corresponding densit
matrices, then
01230
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j

pjr j ,(
j

pjs j D<(
j

pjD~r j ,s j !. ~15!

~3! The trace distance iscontractive. That is, if E is a
trace-preserving quantum operation, thenD„E(r),E(s)…
<D(r,s).

~4! The trace distance has thestability property, D(r1
^ s,r2^ s)5D(r1 ,r2).

~5! SupposeEy are positive-operator-valued measure e
ments describing the statistics from an arbitrary quant
measurement. Letr (y)[tr(rEy) and s(y)[tr(sEy) be the
corresponding probability distributions forr ands. Then the
L1 distance and the trace distance are related by
inequality

D„r ~y!,s~y!…<D~r,s!. ~16!

We now describe how the classical simulation is p
formed, followed by an analysis to determine the accuracy
the simulation.

Variables used in the classical simulation. For each j

51, . . . ,q(n), we let sW j be a three-dimensional real vecto
Each vectorsW j is valid, meaning that it has the following
three properties:~a! Each component ofsW j is in the range
@21,1#; ~b! each component is specified tol bits of preci-
sion, wherel is a number that will be fixed by the late
analysis, in order to ensure the overall accuracy is at lease;
and ~c! isW j i<1.

We use the notationsW[(sW1 , . . . ,sWq(n)) to denote the
3q(n)-dimensional real vector containing all thesW j ’s as sub-
vectors. We say thatsW is valid if eachsW j is valid. It will also
be convenient to introduce the notation

r~sW ![
I 1sW1•sW

2
^ •••^

I 1sWq(n)•s

2
. ~17!

Note thatr(sW) is a legitimate density operator ofq(n) qu-
bits, wheneversW is valid. The idea of the classical simulatio
is that the variablessW will be used to represent the stater(sW).
Note thatr(sW) is not a variable used in the classical simul
tion; it is simply a mathematical notation convenient in t
analysis of the simulation.

Initial state of the classical variables. Suppose the initial
state of the quantum computer isux&, wherex has binary
expansionx1•••xq(n) . If xj50 we setsW j5(0,0,1) initially,
while if xj51 we setsW j5(0,0,21) initially.

Simulating a single-qubit gate. A single-qubit gate can be
regarded as a two-qubit separable gate in which one of
qubits is acted on trivially. Thus, we need only consider
case of two-qubit separable gates.

Simulating a two-qubit separable gate. SupposeE is a
two-qubit separable gate, and it acts on qubitsA andB. We
simulate this gate by usingsW as input to the following sto-
chastic gate simulation procedure, which produces a v
3q(n)-dimensional vectorsW 8 as output. We then setsW5sW 8,
and repeat over, going through each gate,E1 , . . . ,Ep(n) , in
8-4
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the computation, until a final output value ofsW is produced,
at which point we proceed to the simulation of the fin
measurement, described below.

Gate simulation procedure. The procedure is as follows.
~1! Input to the procedure: A valid vector,sW.
~2! Body of the procedure: Find valid three-vectorssWA

j and

sWB
j , and a probability distributionpj containing at most 16

elements, and with eachpj specified tol bits of precision,
such that

DS ES I 1sWA•sW

2
^

I 1sWB•sW

2
D(

j
pj

I 1sWA
j
•sW

2
^

I 1sWB
j
•sW

2 D
<c22 l , ~18!

for some constantc that does not depend onE, A, or B. To
see that this is possible, we make use of the fact that

ES I 1sWA•sW

2
^

I 1sWB•sW

2
D ~19!

is a separable, two-qubit state, and therefore, by Carathe´odo-
ry’s theorem@23#, can be written in the form

(
j

qj

I 1 tWA
j
•sW

2
^

I 1 tWB
j
•sW

2
,

where theqj are probabilities,tWA
j , tWB

j are real three-vector

satisfying i tWA
j i ,i tWB

j i<1, and there are at most 16 terms
the sum. Choosing thepj to be probabilities which arel-bit
approximations to theqj , and thesWA

j ,sWB
j to be valid vectors

which approximatetWA
j , tWB

j also tol bits, we obtain the result
Note that while Carathe´odory’s theorem ensures that su

probabilities and vectors exist, finding them may be no
trivial. The obvious technique, a brute force search o
probability distributions and valid vectors, requires poly(2l)
operations, where poly(•) is some fixed polynomial func
tion. Although we believe that likely better techniques
perhaps even polynomial inl—are possible, for the purpose
of the present simulation poly(2l) turns out to be sufficient

~3! Output of the procedure: ForkÞA,B we definesWk
j

[sWk . SetsW j5(sW1
j , . . . ,sWq(n)

j ). Note thatsW j is valid, by con-

struction. With probabilitypj , outputsW 85sW j .
Simulating the final measurement in the computatio

basis. Let S be the subset of qubits that is measured at
output of the quantum computation. For eachkPS, let sk

3 be

the third component ofsWk . The measurement result for th
qubit is 0 with probability (11sk

3)/2, and 1 with probability

(12sk
3)/2. Note that, by definition,p̃x(y) is the distribution

over possible outcomes,y, produced by following this
procedure.

Analysis. The key to the analysis of the classical simu
tion is a simple equivalence between the classical simula
and certain measurements on quantum states. Suppos
definep̃m(sW) to be the probability distribution on valid vec
01230
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tors afterm steps of the simulation procedure, that is, af
E1 , . . . ,Em have been simulated. Form50, . . . ,p(n) define

s̃m[(
sW

p̃m~sW !r~sW !. ~20!

It is not difficult to see that the distribution obtained by me
suring s̃p(n) in the computational basis of the subsetS is
exactly the same as the output distributionp̃x(y) produced
by the classical simulation.

For m50, . . . ,p(n) definesm to be the state of the actua
quantum computer afterm gates have been applied. Thu
s05ux&^xu, s15E1(s0), and so on. The idea of the proo
that the classical simulation works well is to bound the d
tance betweensm and s̃m. We do this using the following
lemma.

Lemma 1. Suppose a valid vectorsW is used as input to the
gate simulation procedure with probabilityp(sW), and let
p(sW 8) be the corresponding output distribution on valid ve
tors. Define

s[(
sW

p~sW !r~sW !, s8[(
sW 8

p~sW 8!r~sW 8!. ~21!

If the gate simulation procedure simulates the gateE, then
we have

D„E~s!,s8…<c22 l , ~22!

wherec is the constant introduced earlier in the discussion
the gate simulation procedure.

Proof. Let p(sW 8usW) be the probability thatsW 8 is output by
the gate simulation procedure, given thatsW is input. Then we
havep(sW 8)5(sWp(sW 8usW)p(sW), so

s85(
sW

p~sW !(
sW 8

p~sW 8usW !r~sW 8!. ~23!

Applying the double convexity of the trace distance gives

D„E~s!,s8…<(
sW

p~sW !DS E„r~sW !…,(
sW 8

p~sW 8usW !r~sW 8!D .

~24!

By inspection of the construction used in the gate simulat
procedure, notably Eq.~18!, and the stability property for
trace distance, we have

DS E„r~sW !…,(
sW 8

p~sW 8usW !r~sW 8!D<c22 l . ~25!

Combining this observation with Eq. ~24! gives
D„E(s),s8…<c22 l , which was the desired result. j

Proposition 2. For m50, . . . ,p(n), D(sm,s̃m)
<cm22 l .
8-5
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Proof. We induct onm. Form50, the result follows from
the fact thats05s̃0. Assuming that the result is true form,
we now prove it form11. By the triangle inequality

D~sm11,s̃m11!<D„sm11,Em11~ s̃m!…

1D„Em11~ s̃m!,s̃m11
…. ~26!

By definition sm115Em11(sm), so this equation may be
rewritten as

D~sm11,s̃m11!<D„Em11~sm!,Em11~ s̃m!…

1D„Em11~ s̃m!,s̃m11
…. ~27!

Applying the contractivity of the trace distance to the fi
term, and Lemma 1 to the second term, we obtain

D~sm11,s̃m11!<D~sm,s̃m!1c22 l . ~28!

Applying the inductive hypothesis to the first term gives

D~sm11,s̃m11!<cm22 l1c22 l5c~m11!22 l , ~29!

which completes the induction. j

We conclude from the proposition thatD(sp(n),s̃p(n))
<cp(n)22 l . It follows from Eq.~16! that the simulated dis
tribution p̃x(y) and the actual distributionpx(y) are related
by the inequalityD„ px(y),p̃x(y)…<cp(n)22 l . Choosingl
to be the least integer greater than log2@cp(n)/e#, we therefore
have

D„ px~y!,p̃x~y!…<e. ~30!

The total number of times the gate simulation procedure
performed isp(n), and the number of operations perform
in one iteration of the gate simulation procedure scales
poly(2l), so the total number of operations in the classi
simulation isO(poly„ p(n)/e…), where we change the nota
tion by letting poly(•) be a~new! polynomial function. We
have proved the following theorem.

Theorem 4. Let G be a fixed set of one- and two-qub
gates. Suppose all two-qubit gates inG are separable. Le
$Cn% be a uniform family of quantum circuits of sizep(n),
acting onq(n) qubits, where bothp(n) andq(n) are poly-
nomials. The initial state of the computer is a computatio
basis state,ux&. The computation is concluded by performin
a measurement in the computational basis on some pres
fied subsetSof the qubits, yielding a probability distribution
px(y) over possible measurement outcomesy. Then for any
e.0, it is possible to sample from a distributionp̃x(y) sat-
isfying D„ px(y),p̃x(y)…,e using a classical algorithm tak
ing O(poly„ p(n)/e…) steps, where poly(•) is a fixed poly-
nomial.

Results related to Theorem 4 have been obtained in
past, but, so far as we have determined, no proof of
result has previously been published. In particular, Aharo
and Ben-Or@11# studied the role of entanglement in quantu
computation, proving that many-party entanglement mus
present in order for a quantum computation to be difficult
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simulate classically. This conclusion was subsequently cl
fied and extended by Jozsa and Linden@24#. However, the
conclusions of both Refs.@11,24# are not applicable in the
present context, since they apply in the context of pure s
entanglement of a quantum computer, rather than the mix
state case considered in this paper.

The issue of mixed-state quantum information process
was considered by Braunsteinet al. @25#, who raised, without
answering, the question of what role mixed-state entan
ment can play in quantum computation.This line of thoug
has been carried further by many authors, without co
pletely answering the question. See Refs.@26,27# for recent
work and further references.

C. Separability-preserving gates

It is straightforward to extend the proof of Theorem 4 in
variety of ways, without changing the conclusion that
efficient classical simulation of the quantum circuit is po
sible. In particular, we can change the gates inG so they act
on anybounded numberof qudit systems, rather thantwo-
qubit systems.

Furthermore, the proof relies on properties of gates inG
that are weaker than separability. In particular, the gatesG
need only beseparability preserving, that is,E(r) is sepa-
rable for any separable stater. We denote the class o
separability-preserving gates by SP. To see that this
weaker property, note thatSWAP is separability preserving
since it maps product states to product states, butSWAP is not
separable, since it can generate entanglement with the a
local ancilla systems. More generally, note thatEAB is sepa-
rable with respect toA:B if and only if EAB^ IA8B8 is sepa-
rability preserving with respect toAA8:BB8.

Since the proof of Theorem 4 only relied on the state
Eq. ~19! being separable, it still holds when the availab
gates are all separability preserving. However, no simple
easy-to-use characterization of the separability-preserv
gates is known, which is why we prefer, for most of th
remainder of this paper, to work with the separable gates.
do make occasional later use of separability-preserving ga
so it is convenient to note here a few properties. Note tha
separable gates are in SP, and for gates operating on mu
qudits, any permutation of the qudits~for example,SWAP! is
in SP. Furthermore, SP is convex and is closed under c
position, so

SP$Hull$E+P:E separable andP a permutation%.
~31!

However, it is unclear whether this convex hull describes
of SP. For example, the operation which measures a pa
qubits in the Bell basis and stores the answer in the com
tational basis@i.e., (u00&1u11&)/A2 becomesu00&, (u00&
2u11&)/A2 becomesu01&, etc., . . . # is certainly in SP
though it does not seem that it can be expressed as a co
combination ofEk+Pk for separableEk and permutations
Pk .2

2We thank Keiji Matsumoto for pointing this out to us.
8-6
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IV. ROBUSTNESS OF QUANTUM STATES

To understand how robust quantum gates are to noise,
useful to first review prior work on the robustness of e
tangled quantum states. This section describes Vidal’s
Tarrach’s @12# definitions and results on the robustness
quantum states, introduces a measure of robustness, an
lates that measure to Vidal and Tarrach’s measure. The m
sure and its properties will be of special interest in appli
tions to gate robustness.

Let r be a quantum state of a bipartite systemAB, and let
s be a state ofAB. Vidal and Tarrach@12# define therobust-
ness ofr relative to s, R(ris), to be the smallest non
negative numbert such that the state

1

11t
r1

t

11t
s ~32!

is separable. Equivalently, we can defineR(ris) to be the
smallest non-negativet such thatr1ts is separable; this
latter definition in terms of unnormalized quantum states
frequently useful. Note that Ref.@12# specifies thats be
separable; however, we will find it convenient to extend
definition to nonseparables also, specifying thatR(ris)
[1` if no value oft exists such that the state in Eq.~32! is
separable. At first sight one is tempted to ask why we cho
this definition for the robustness, and not the related quan

min$p:p>0,~12p!r1ps is separable%. ~33!

This latter definition has a more obvious physical interpre
tion as the minimal probability with whichs can be mixed
with r to obtain a separable state. It follows from the de
nitions that the quantity of Eq.~33! is equal toR(ris)/
@11R(ris)#. The reason we do not work with the quanti
of Eq. ~33!, despite its apparently more compelling physic
interpretation, is that the robustness defined in Eq.~32! has
useful and easy-to-prove convexity properties not satis
by Eq. ~33!, namely,R(ris) is convex in both the first and
the second entry.

A special case ofR(ris) of particular interest is theran-
dom robustness, defined to be the robustness ofr relative to
the maximally mixed stateI /dAdB . We denote the random
robustness of a stater by Rr(r)[R(ri I /dAdB). Vidal and
Tarrach@12# found a useful formula for the random robus
ness of a pure statec of AB in terms of a Schmidt decom
position c5( jc j u j &u j & with ordered Schmidt coefficient
c1>c2>•••>0:

Rr~c!5c1c2dAdB . ~34!

So far we have discussed the robustness of a stater rela-
tive to another fixed states. We now definethe robustnessof
r, R(r), to be theminimumrelative robustnessR(ris) over
all separables. Thus, the robustness ofr is a measure of
how much local noise can be mixed withr before it becomes
separable.

We have defined three notions of robustness for quan
states,R(ris),Rr(r), andR(r). All three definitions have
assumed thatr is a state of abipartite quantum systemAB.
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However, robustness is easily extended to more than
parties, and it is convenient to have a notation to express
extended notion. Suppose, for example, thatr and s are
states of a tripartite systemABC. ThenRA:B:C(ris) is de-
fined to be the minimal value oft such thatr1ts is sepa-
rable with respect toA:B:C. Different ways of grouping the
components of many-party quantum systems are handle
the obvious way. So, for example, we can define a notion
robustness,RA:BC(ris), when systemsB andC are grouped
together. Explicitly,RA:BC(ris) is the minimal value oft
such thatr1ts is separable with respect toA:BC.

These examples may be extended in a natural way to
random robustness and robustness, as well as to the
where more systems are present, and to more complic
groupings of subsystems. Most of our work concerns tw
party robustness, and so we usually do not explicitly inclu
superscripts in expressions such asRA:B(r).

The robustness has many useful properties, which are
plored in detail in Ref.@12#. We mention just a few of the
more striking properties here. The robustness is invariant
der local unitary operations. Moreover, it is an entanglem
monotone that cannot be increased under local operat
and classical communication. It is also a convex function
r. As for the random robustness, Vidal and Tarrach@12# have
obtained an elegant formula for the robustness in the spe
case of a pure state,c, of a bipartite systemAB,

R~c!5S (
j

c j D 2

21, ~35!

wherec j are the Schmidt coefficients forc. In the course of
their proof, Vidal and Tarrach explicitly construct a statesc ,
such that uc&^cu1R(c)sc is separable.sc may be ex-
pressed in terms of the Schmidt decompositionuc&
5( jc j u j &u j & by

sc5
1

R~c! (
kÞ l

ckc l uk&^ku ^ u l &^ l u. ~36!

In the definition of robustness we mixedr with a sepa-
rable quantum states, trying to determine what minima
level of mixing will produce separability. Another natura
definition of robustness would allows to range overarbi-
trary density matrices, not just separable density matric
That is, we can defineRg(r)[minsR(ris), where theg sub-
script indicates that we are minimizingglobally over all pos-
sible density matricess.

How are Rg(r) and R(r) related? It is clear from the
definitions thatRg(r)<R(r). We will prove that the reverse
inequality is also true whenr5c is a pure state:

Rg~c!5R~c!5S (
j

c j D 2

21. ~37!

We do not know whetherRg(r)5R(r) in general. To com-
plete the proof of Eq.~37!, we show that if there exists a
density operators such thatc1ts is separable, thent
>(( jc j )

221. „Our proof both extends and simplifies
similar proof in Ref.@12# for the robustnessR(r).…
8-7
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The proof is based on the positive partial transpose cr
rion of Peres@28#. Let us denote the partial transpose
systemsA andB by TA andTB , respectively. Then the pos
tive partial transpose criterion implies that ifc1ts is sepa-
rable, thencTB1tsTB is a positive operator.

Next, we introduce an operatorM defined by M[I
2USWAP, where USWAP[ ( jku j &^ku ^ uk&^ j u is the linear
operator interchanging states of systemA and systemB. Note
that M is positive, sinceUSWAP

2 5I implies thatUSWAP has
eigenvalues61, and thusM is a diagonalizable operato
with eigenvalues 0 and 2.

We now combine the results of the previous two pa
graphs. Since the trace of a product of two positive opera
is non-negative, it follows that 0<tr(McTB)1t tr(MsTB).
Using a little algebra and the observation that for any t
operatorsK andL tr(KLTB)5tr(KTAL), this inequality may
be rewritten as

2tr~MTAc!<t tr~MTAs!. ~38!

Direct calculation shows thatMTA5I 2ua&^au, where ua&
[( j u j &u j & is the ~unnormalized! maximally entangled state
It follows that tr(MTAc)512(( jc j )

2 and tr(MTAs)
<tr(s)51. Substituting these results into Eq.~38! gives
(( jc j )

221<t, which was the desired bound.

V. ROBUSTNESS OF QUANTUM GATES

We now extend state robustness toquantum gates. Sup-
poseE andF are trace-preserving quantum operations o
composite systemAB. Then we define therobustness ofE
relative to F, R(EiF), to be the minimum value oft such
that

1

11t
E1

t

11t
F ~39!

is separable. Equivalently,R(EiF) can be defined to be th
minimal value oft such thatE1tF is separable. Applying the
operation-separability theorem, we immediately find the u
ful formula

R~EiF!5RRAA:BRB
„r~E!ir~F!…. ~40!

Just as for quantum states, the notion of gate robust
extends in a natural way to systems of more than two par
and we use notations analogous to those introduced ea
such asRA:B:C(EiF) and RA:BC(EiF), to describe this sce
nario. Note that these notations will also be extended i
natural way to the random robustness and robustness
quantum gate, as defined below. As for quantum states, w
identifying superscripts is omitted, we assume that the qu
tum gate in question acts on a bipartite systemAB.

Motivated by several different classes of noise commo
occurring in physical systems, we now use the notion
relative gate robustness to define and study several diffe
measures of robustness for quantum gates. First is the
dom robustness, which we define and study in Sec. V
Also in this section, we use results on the random robustn
to place bounds on the threshold for quantum computat
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Two other measures of robustness are theseparable robust-
nessand theglobal robustness, which we define in Sec. V B,
and use to prove bounds on the threshold for quantum c
putation.Our results on these measures of robustness are
complete, and so our discussion is more limited.

A. Random robustness of quantum gates

1. Definition and basic properties

The random robustness ofE, Rr(E), is defined to be equa
to the robustness ofE relative to the completely depolarizin
channel,D(r)5I /dAdB for all statesr of systemAB:

Rr~E![R~EiD!. ~41!

The random robustness is especially interesting becau
measures the robustness ofE against complete randomizatio
of systemsA andB. Another way of stating this is to imagin
that we are applying the operationE with probability 12p,
and randomizing the systemsA and B with probability p.
Then the threshold probability at which this gate crosses
separable-inseparable threshold is

pth5
Rr~E!

11Rr~E!
. ~42!

From Eq. ~40!, we see that the random robustness for
operation is related to the random robustness of a state

Rr~E!5Rr
RAA:BRB

„r~E!…. ~43!

Specializing to the case whereE is a unitary quantum opera
tion U, we see thatRr(U)5Rr

RAA:BRB
„r(U)…. However,

r(U) is a pure state. We showed earlier thatr(U) has
Schmidt coefficientsuj /AdAdB, whereuj are the Schmidt
coefficients ofU. This observation, together with Eqs.~43!
and ~34! implies the formula

Rr~U !5dAdBu1u2 , ~44!

where we order the Schmidt coefficients ofU so that u1
>u2>•••>0. @Note that in deriving this equation, we hav
replaceddA by dA

2 , anddB by dB
2 in Eq. ~34!, since we are

working with robustness for theRAA:BRB system.#
It is, perhaps, not immediately clear what the physi

relevance of the random robustness is.After all, in real ph
cal systems, the effects of noise on a quantum gate will
usually be to simply mix in some depolarization, togeth
with the gate. Despite this, there is still a very good physi
reason to be interested in the random robustness. The re
is that, as we show in more explicit detail below, the rand
robustness can be used to analyze the particular noise mo
which have been used in estimating bounds on the thres
for quantum computation. In turn, it has been argued@6–10#
that by analyzing and correcting for the effects of noise
thoseparticular models, it is possible to make general sta
ments about a wide class of physically reasonable no
models. Thus, although the physical scenario considere
8-8
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DEGREE OF ROBUSTNESS OF A QUANTUM GATE IN . . . PHYSICAL REVIEW A68, 012308 ~2003!
the definition of the random robustness appears rather
cialized, it will enable insight into much more general phy
cal situations.

As an example, we may ask how robust theCNOT is
against the effects of depolarizing noise? TheCNOT has the
Schmidt decomposition@13# A2u0&^0u ^ I /A21A2u1&^1u
^ X/A2, so Eq.~44! implies thatRr~CNOT!58. Interestingly,
we can also show that theCNOT is the most robust two-qubi
gate. Indeed, a more general bound on the random robus
may be proved for an arbitrary quantum operation,E, of a
composite systemAB. The argument is as follows. Suppo
c is a quantum state of a systemCD, whereC has dimen-
sion dC and D has dimensiondD . We have Rr(c)
5dCdDc1c2<dCdD/2. By convexity of the random robust
ness, we haveRr(r)<dCdD/2 for any stater of CD. Ap-
plying this result to the stater(E) of RAA:BRB gives
Rr(E)5Rr„r(E)…<dA

2dB
2/2. These results may be summ

rized as a proposition.
Proposition 3.Let E be any trace-preserving quantum o

eration acting on systemsA andB. ThenRr(E)<dA
2dB

2/2. If
dA5dB52 thenRr(E)<Rr~CNOT!58.

The random robustness has many physically interes
properties. Below we list six easily proved properties, bef
discussing in more depth two less easily proved propert
Our discussion of these properties is, in part, motivated
the framework of ‘‘dynamic strength’’ measures introduc
in Ref. @13#, although the properties we discuss are intere
ing independent of that motivation. In Ref.@13# it was argued
that these properties, especially the property ofchaining, dis-
cussed below, are essential if a measure can be said to q
tify the strength of a quantum dynamical operation as
physical resource. By showing that these properties are
isfied, we thus show that the random robustness is a g
measure of dynamic strength.

~1! Non-negativity and locality:Rr(E)>0 with equality if
and only if E is a separable quantum operation.

~2! Local unitary invariance: IfUA ,UB ,VA ,VB are all local
unitary quantum operations, with the system being acted
indicated by the subscript, thenRr„(UA^ UB)+E+(VA^ VB)…
5Rr(E).

~3! Exchange symmetry:Rr(E)5Rr~SWAP+E+SWAP!, that
is, the random robustness is not affected if we intercha
the role of the systems.

~4! Time-reversal invariance: For a unitaryU, Rr(U)
5Rr(U

†).
~5! Convexity: The random robustnessRr(E) is convex

in E.
~6! Reduction: Suppose a trace-preserving quantum

erationE acting onAB is obtained from a trace-preservin
quantum operationF acting on ABC as follows: E(rAB)
5trC@F(rAB^ sC)#, for some fixed statesC of systemC.
Then the random robustness satisfies the reduction prop
namely,Rr

A:B(E)<Rr
A:BC(F).

The random robustness satisfies two other physically
teresting properties that are more difficult to prove. First
all, the random robustness iscontinuousin E. Physically, this
is self-evident: making a small change inE should not too
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drastically affect its robustness against the effects of no
We now prove a quantitative form of this statement for u
tary gates.

Proposition 4 (continuity of random robustness). Let U
and V be unitary gates acting on a systemA of dimension
dA , and a systemB of dimensiondB . Then

uRr~U !2Rr~V!u<dMdA
3dB

3 iU2Vi2, ~45!

wheredM[min(dA ,dB).
Proof. Let uj andv j be the ordered Schmidt coefficien

of U andV, respectively. From Eq.~44!,

uRr~U !2Rr~V!u5dAdBuu1u22v1v2u

5dAdBu~u12v1!u21v1~u22v2!u

<dAdBuu12v1uuu2u1uv1uuu22v2u

<dA
2dB

2~ uu12v1u1uu22v2u!

<dA
2dB

2(
j

uuj2v j u. ~46!

The second part of the proof is to observe that by
Cauchy-Schwartz inequality,

(
j

uuj2v j u<dM(
j

~uj
21v j

222ujv j ! ~47!

52dMdAdB
S 12

(
j

ujv j

dAdB

D . ~48!

Applying Proposition 1, we obtain ( j uuj2v j u
<dMdAdBiU2Vi2. Combining with Eq. ~46! gives the
result. j

Another physically interesting question is to ask how t
random robustness of a gateE1+E2 composed of quantum
gatesE1 andE2 relates to the random robustness of the in
vidual gates. The following proposition bounds the rando
robustness of the combined operation.

Proposition 5 (chaining for random robustness). Let E1 be
a doubly stochastic quantum operation, that is, a quan
operation which is both trace preserving and unital@i.e.,
E1(I )5I ], and letE2 be an arbitrary trace-preserving qua
tum operation. Then

Rr~E1+E2!<Rr~E1!1Rr~E2!1Rr~E1!Rr~E2!. ~49!

Note that unitary operations are trace preserving and
tal, so the proposition is true whenE1 and E2 are unitary.
There is an equivalent way of phrasing Proposition 5 tha
physically more intuitive. Define

Cr~E![ ln@11Rr~E!#. ~50!

Then Cr(E) is monotonically related to the random robus
ness ofE, and thus can be thought of as carrying the sa
8-9
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A. W. HARROW AND M. A. NIELSEN PHYSICAL REVIEW A68, 012308 ~2003!
qualitative information about the robustness of the ga
Simple algebra shows that the conclusion of Propositio
may be recast in the form

Cr~E1+E2!<Cr~E1!1Cr~E2!. ~51!

The simplicity and clarity of this form may, perhaps, make
more useful in some circumstances.

Proof. By definition of the random robustness, the qua
tum operations

E11Rr~E1!D ~52!

and

E21Rr~E2!D ~53!

are separable quantum operations. Furthermore, since
composition of two separable quantum operations is se
rable, andE1+D5D+E25D+D5D ~using the unitality of
E1), we can compose the operations of Eqs.~52! and~53! to
see that

E1+E21@Rr~E1!1Rr~E2!1Rr~E1!Rr~E2!#D ~54!

is separable, and thus

Rr~E1+E2!<Rr~E1!1Rr~E2!1Rr~E1!Rr~E2!, ~55!

as required. j

2. Random robustness and the threshold for quantum
computation

Suppose we are trying to do fault-tolerant quantum co
putation using single-qubit gates and some entangling t
qubit unitary gateU. U might be theCNOT gate; it can also
be any other entangling two-qubit gate, at least in princi
@29,30#, and still be capable of universal quantum compu
tion when assisted by single-qubit gates. Suppose, furt
more, that theU gates are afflicted with noise of a spec
type, namely, immediately after a gate acts, each qub
independently depolarized with probabilityp. Let U(r)
[UrU† denote the quantum operation corresponding toU.
Then the quantum operation describing this noise proces

E~r!5~12p!2U~r!1p~12p!~D^ I!+U~r!

1p~12p!~I^ D!+U~r!1p2~D^ D!+U~r!.

~56!

Note that (D^ D)+U(r)5(D^ D)(r), so this expression ca
be simplified to

E~r!5~12p!2U~r!1p~12p!~D^ I!+U~r!

1p~12p!~I^ D!+U~r!1p2~D^ D!~r!. ~57!

This expression cannot immediately be analyzed using
expressions for the random robustness of a gate, due to
two terms in which a single qubit is depolarized. Fortunate
we can simplify the analysis by showing that these terms
always separability preserving, that is, (D^ I)+U and (I
01230
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^ D)+U are both in SP. This holds because for anyr, (D
^ I)+U(r)5(I /dA) ^ trAUrU†, which is manifestly sepa-
rable, and a similar result holds for (I^ D)+U. Note that
such gates may not be separable: for example, (D^ I)+SWAP

1(I^ D)+SWAP is separability preserving, but not separab
From this observation, and Eq.~57!, it follows thatE is in

SP if (12p)2U1p2(D^ D) is separable. Comparing with
the earlier results on random robustness, we see that
becomes true whenp2/(12p)25Rr(U)58. We see thatE
will be separability preserving when

p>
Rr~U !2ARr~U !

Rr~U !21
5

82A8

7
'0.74, ~58!

and thus, when this condition is satisfied, the quantum co
putation may be efficiently simulated on a classical co
puter. If we assume, as is usually done, that quantum c
puters may not be efficiently simulated on a classi
computer, then it follows that the threshold for quantu
computation is guaranteed to be less than 0.74.

In their work on obtaining upper bounds for the thresho
Aharonov and Ben-Or@11# considered a similar model o
quantum computation, in which each qubit is independen
dephased after each quantum gate. The main difference
tween their model and ours is that we have used depola
ing, rather than dephasing noise.Which of these more a
rately describes the noise occurring in a real physical sys
depends, of course, upon the physical system in ques
Aharonov and Ben-Or obtained an upper bound ofpth
,0.97; of course, this cannot be directly compared to
upper bound, since the noise models are different.

B. Robustness against more general noise

1. Definitions and general results

Depolarization is only one of many kinds of noise th
may afflict a quantum gate. Other classes of noise motiv
other measures of gate robustness. We now introduce
more measures of robustness, based on two natural class
noise. The first measure is the separable robustness, w
measures the gate’s resilience against separable noise
separable robustnessRs(E) is defined to be the minimum
relative robustnessR(EiF) over all separable, trace
preserving quantum operationsF. The second measure is th
global robustness, which measures the resilience of the
against arbitrary noise. The global robustnessRg(E) is de-
fined to be the minimum relative robustnessR(EiF) over all
trace-preserving quantum operationsF.

A priori, it is apparent thatRg(E)<Rs(E), but it is not
clear whether or not the two quantities are equal. Furth
more, the gate robustnesses may be related to state ro
ness by the following inequalities:

R„r~E!…<Rs~E!, ~59!

R„r~U !…<Rg~U !. ~60!
8-10
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To see the first of these inequalities, note thatE1Rs(E)F is
separable, for some separable quantum operationF. It fol-
lows that r„E1Rs(E)F…5r(E)1Rs(E)r(F) is a separable
quantum state. Sincer(F) is separable, Eq.~59! follows
from the definition ofR„r(E)…. The proof of Eq.~60! is
similar, but also makes use of the fact, noted in Eq.~37!, that
Rg(c)5R(c) for any pure statec.

Do inequalities~59! and ~60! hold with equality? We do
not know the answer to this question, but suspect that
answer is, in general, ‘‘no,’’ in both cases. Our reasoning
this suspicion is as follows. Recall from Sec. III, in partic
lar, Theorem 3, that not all separable states can be writte
r(F) for some separable quantum operationF. Recall also
the construction, Eq.~36!, used in finding the separablesc
which minimizesR(cisc). Using this construction, it is no
difficult to find examples of unitaryU for which the sepa-
rable statesr(U) does not correspond to any trace-preservi
separable quantum operation, as characterized in Theore

Fortunately, there is a large and interesting class of g
for which inequalities~59! and~60! hold with equality. This
class includes theCNOT andSWAP gates.

Theorem 5.Let U be a bipartite unitary gate acting o
systemsA andB with dimensionsdA anddB . Assume thatU
has the Schmidt decompositionU5( jujAj ^ Bj , where the
Aj satisfyAjAj

†5I /dA and theBj satisfyBjBj
†5I /dB . That

is, the Aj and Bj are all proportional to unitary operator
Then

Rg~U !5Rs~U !5R„r~U !…5

S (
j

uj D 2

dAdB
21. ~61!

Furthermore, the quantum operationF defined by

F~r![

(
kÞ l

ukul~Ak^ Bl !r~Ak
†

^ Bl
†!

(
kÞ l

ukul

~62!

is an instance of the type of noise against whichU is least
robust. That is,F is trace preserving, andU1R„r(U)…F is
separable. Note thatF is manifestly separable.

The application of the theorem of most interest for us
the CNOT. It is not necessarily obvious that theCNOT has a
Schmidt decomposition with the properties required by
theorem; after all, we earlier wrote the Schmidt decompo
tion for the CNOT as A2u0&^0u ^ I /A21A2u1&^1u ^ X/A2,
and this is not of the required form. However, while t
Schmidt coefficients are unique, the operators appearin
the Schmidt decomposition may not be unique, when two
more of the coefficients are degenerate. It turns out that th
is an alternative form of the Schmidt decomposition for t
CNOT which is of the right form. This follows, for example
from Proposition 4 of Ref.@13#, and can also be verified
directly, with a little algebra. The explicit form is not particu
larly illuminating, so we omit it here.

Equation~61! now tells us thatRg~CNOT!5Rs~CNOT!51.
Comparing with the random robustness,Rr~CNOT!58, we
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see that theCNOT is substantially less robust against gene
noise than depolarizing noise; the worst-case noise is ea
calculated from Eq.~62!.

Proof. We already know thatR„r(U)…<Rg(U)<Rs(U),
so it suffices to prove thatRs(U)<R„r(U)…. To prove this,
we use the construction of Vidal and Tarrach, Eq.~36!, to see
that r(U)1R„r(U)…sr(U) is separable, where

s„r~U !…5
1

R„r~U !… (
kÞ l

ukukuk&^ku ^ u l &^ l u, ~63!

uk&[~ I RA
^ Ak!ua&, u l &[~Bl ^ I RB

!ub&. ~64!

Using the fact that theAk andBl are proportional to unitary
operations, a calculation shows that trAB(sr(U)) is a com-
pletely mixed, separable state. By Theorem 3 we concl
that there exists a trace-preserving, separable quantum o
tion F such thatr(F)5sr(U) . @Another way of seeing this
is to directly verify thatF as defined by Eq.~62! satisfies
r(F)5sr(U) . ] Thus

r~U !1R„r~U !…r~F!5r@U1R„r~U !…F# ~65!

is separable, whenceU1R„r(U)…F is separable. It follows
from the definition thatRs(U)<R„r(U)…, which completes
the proof. j

It is not difficult to verify thatRs(E) and Rg(E) satisfy
properties similar to those satisfied by the random robu
ness, and thus can be regarded as measures of dyn
strength. The major difference is continuity: the lack of
explicit formula for the separable and global robustness
prevented us from obtaining quantitative continuity sta
ments like those we obtained for the random robustness
though it is still not difficult to argue that both quantities a
continuous.

2. General robustness and the threshold for quantum
computation

As with the random robustness, we can useRs andRg to
obtain bounds on the threshold for quantum computati
The method for obtaining a bound is similar. Suppose
have a quantum computer capable of arbitrary single-q
gates and a single two-qubit gate,U. Then there existsE such
thatU1Rg(U)E is separable. Suppose that whenever we
ply U, there is probabilityp that insteadE occurs. If p
>Rg(U)/@11Rg(U)# then this set of operations can be e
ficiently simulated classically, and we conclude thatpth
<Rg(U)/@11Rg(U)#. Similar remarks apply forRs(U),
only the noise in that case is restricted to be separable.

Note that both these noise models are more adversaria
pessimistic, than the noise model in Sec. V A 2, and
threshold bounds are thus tighter. In particular, these mo
allow correlated two-qubit noise, while the earlier model a
sumes independent noise on the two qubits. Which mode
more realistic obviously depends upon which system a g
is implemented in. However, we do expect correlated err
similar to those in the present models to play a role in ma
real-world two-qubit gates, due to interactions occurring d
ing the gate.
8-11
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The bounds obtained usingRs and Rg are, in general,
tighter than those obtained by studyingRr , as in Sec. V A 2.
However, without specific formulas forRs(U) andRg(U) it
is difficult to derive bounds on the threshold without reso
ing to numerical calculation. Fortunately, if the only enta
gling gate available is of the form described by Theorem
then we can calculate the optimal noise process, and
corresponding robustnessRs(U)5Rg(U)5R„r(U)…. For
example, for theCNOT, this gives the boundpth<1/2 on the
threshold, sinceRg~CNOT!5Rs~CNOT!51.

An alternative approach to proving bounds on the thre
old is provided by the following general bound on the r
bustness. The bound says, roughly, that if all two-qubit u
tary gates are available, then without loss of generality
worst noise is depolarizing noise.

Theorem 6.For any trace-preserving quantum operati
E, maxUR(UiE)>maxURr(U)5dA

2dB
2/2.

As a corollary, if all one- and two-qubit gates are ava
able, but we do not make any assumptions about the no
the worst possible noise will be depolarizing noise,D^ D,
and the corresponding bound on the threshold ispth<8/9.

Proof. Completely depolarizing noise can be represen
as applying a random unitary operationVk with probability
pk , where eachVk5Vk

A
^ Vk

B is a product of local gates an
(pkVkrVk

†}I for any density operatorr. Thus D5(pkVk

whereVk(r)5VkrVk
† .

SinceR is convex in the second argument andD+E5D
for any operationE, it follows that for any unitaryU,

R~UiD!5R~UiD+E!

5RS Ui(
k

pkVkED
<(

k
pkR~UiVk+E!5(

k
pkR~Vk

†UiE!, ~66!

where the last equality follows from the fact thatVk is a
product of local gates.

Let R05maxUR(UiE)5maxUR(Vk
†UiE). Then Eq. ~66!

implies that R(UiD)<(kpkR05R0 for any U, so
maxUR(UiD)<maxUR(UiE) for any trace-preserving opera
tion E.

We conclude with a result tying our techniques mo
closely to the physical situation. Suppose we are attemp
to perform quantum computation in the laboratory using
noisy gateE meant to approximate an ideal, unitary quantu
gateU. U is known exactly, for it is a theoretical construc
and E has been experimentally determined using quan
process tomography@31,32#. For what values ofp is it pos-
sible to find a trace-preserving quantum operationG, such
thatE5pU1(12p)G? The answer to a generalization of th
question is provided by the following theorem.

Theorem 7.Let E andF be trace-preserving quantum o
erations, and let 0<p<1. Then there exists a trace
preserving quantum operationG such that E5pF1(1
2p)G if and only if the support ofr(F) is contained within
the support ofr(E), and
01230
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l1„r~E!21r~F!…
, ~67!

wherel1(•) denotes the largest eigenvalue, and the inve
is a generalized inverse ifr(E) is not invertible.

The theorem is a straightforward consequence of the
lowing theorem, and the Jamiolkowski@33# isomorphism be-
tween states and operations.

Theorem 8.Let r and s be density matrices, and let
<p<1. Then there exists a density matrixt such thatr
5ps1(12p)t if and only if the support ofs is contained
within the support ofr, and p<1/l1(r21s), wherel1(•)
denotes the largest eigenvalue, and the inverse is a gen
ized inverse ifr is not invertible.

Proof. Supposer5ps1(12p)t. Since s and t are
positive, it is clear that the support of boths andt must be
contained within the support ofr. It will be convenient to
work in the vector space corresponding to the support ofr,
sor is invertible. Sincet is positive, we haver>ps, as an
operator inequality. Premultiplying and postmultiplying b
r21/2 gives I>pr21/2sr21/2. Comparing the larges
eigenvalues of these two operators gives the des
inequality. The converse is proved by running the argum
backward. j

VI. CONCLUSION

We have defined several measures of the robustnes
quantum gates against the effects of noise, and used t
measures to prove that certain noisy quantum gate sets
be efficiently simulated on a classical computer, even if
methods of fault-tolerant computation are used. Our res
imply an upper bound on the threshold for quantum com
tation, pth<0.5. A key component in proving these resu
was a proof that any quantum computation involving on
separable quantum gates can be efficiently simulated o
classical computer. Furthermore, we have studied gate
bustness as a measure of the strength of a quantum opera
considered as a physical resource, and shown that robus
satisfies many properties such a strength measure is exp
to have.

Note added. Recently, we learnt that Eq.~37! was proved
independently by Steiner@34#, and, in the case of qubits, b
Verstraete and Verschelde@35#.
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