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Robustness of quantum gates in the presence of noise
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We define several quantitative measures ofrtitistnes®f a quantum gate against noise. Exact analytic
expressions for the robustness against depolarizing noise are obtained for all bipartite unitary quantum gates,
and it is found that the controlledoT gate is the most robust two-qubit quantum gate, in the sense that it is the
quantum gate which can tolerate thestdepolarizing noise and still generate entanglement. Our results
enable us to place several analytic upper bounds on the value of the threshold for quantum computation, with
the best bound in the most pessimistic error model beipg 0.5.
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[. INTRODUCTION used, this program allows us to determimgper boundson
the value of the threshold.

An ideal quantum computdd] is usually described as a Our work is different from most of the other works on
sequence of unitary quantum gates applied to the qubits malestimating thresholds, which usually aims to deternhimesr
ing up the computer. A typical universal set of quantum gate®ounds The interest in lower bounds stems from their more
is the controlledNoT (CNOT) gate, and single-qubit unitary immediate practical interest: if we know thpg> 105, for
operationg 2]. A crucial element in a universal gate set is example, then that gives experimentalists a target to shoot for
that it be capable of generatirgntanglemenbetween the in pursuit of a working quantum computer. Nonetheless, as
qubits making up the computer. emphasized in Refl11], from a fundamental point of view it

In the real world, quantum gates suffer from no[@3,  Wwould be extremely interesting to have exact values for the

which can inhibit the creation of entanglement. This problemhreshold, and this requires techniques for obtaining upper
led to the development of fault-tolerant methods for quantunfounds. _ _
computation (see Ref. [1]) based on quantum error- Our work is based upon the results of Vidal and Tarrach

correcting code$4,5]. One of the outstanding achievements[lz]’ Whﬁ myesﬂgated thre]zobu.stnessafbentagglzd quantum
of work on fault tolerance is thihreshold theorenfor quan- states, that Is, how much noise can be added to a quantum

tum computatior[6—10]. The threshold theorem states that, state before it becomes unentangled, i.e., separable. Our
. . .~ work also naturally extends and complements the work of
under reasonable physical assumptions about noise in th

e ; ' Wfharonov and Ben-Of11], who, to our knowledge, have
computer, it is possible to correct for the effects of that oISy ne the only prior work obtaining upper bounds on the
provided the strength of the noise is below some consta

) Nalue of the threshold.
threshold,py,. (Roughly speakingpy, can be thought of as Apqther interesting context in which our measures of gate

the maximal probability of error during a single quantum ophustness may be placed is the program of defining “dy-
gate that can be corrected using the methods of fault tolefygmic strength measures” for quantum dynamical operations
ance) The exact value of the threshold depends on whaf13]. Dynamic strength measures quantify the intrinsic
assumptions are made about the noise in the quantum corgower or strength of a quantum dynamical operation as a
puter, and estimates of the value of the threshold, thereforgshysical resource, much as an entanglement measure quanti-
vary quite a bit. Typical current estimates place it in thefies the entanglement in a quantum state. Referghglede-
range 104-10"°, veloped a framework for the analysis of dynamic strength
Motivated by the practical problem of noise, and themeasures, and we will see that gate robustness can be re-
theory of fault-tolerant quantum computation, in this papergarded as a measure of dynamic strength, and analyzed
we consider the problem of quantifying how robust a quan-within this framework.
tum gate is to the effects of noise. More precisely, for a given The structure of the paper is as follows. Section Il reviews
gateU we attempt to quantify how much noise the gate carbackground material on the Schmidt decomposition for op-
tolerate while preserving the ability to generate entangleerators. This decomposition is central to our later work on
ment. Since, in a sense we make precise below, entanglemehte robustness of quantum gates. Section Ill reviews the no-
generation is necessary for quantum computation to be posion of separablequantum gates, which may be defined as
sible, even if the methods of fault-tolerant computation arethe class of gates that cannot generate entanglement in a
quantum computer. Furthermore, this section proves that a
quantum circuit containing only separable gates can be effi-

*Electronic address: aram@mit.edu; ciently simulated on a classical computer. Section IV reviews
URL: http://web.mit.edu/aram/ Vidal and Tarrach’'s work on the robustness of quantum

"Electronic address: nielsen@physics.ug.edu.au; states. This section also introduces an alternative measure of
URL: http://www.ginfo.org/people/nielsen/ the robustness of quantum states useful in our later work on
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gate robustness, and proves some elementary properties whereZg denotes the identity quantum operation on a system
the new measure. Section V gives our definitions and resultS. In the special case whehrepresents a unitary operatioh

on the robustness of quantum gates, and relates the resultsdn AB, we definey(U) to be the gquantum state obtained
the theory of fault-tolerant quantum computation. Section ViwhenU acts on|«)|8), and letp(U) be the corresponding

concludes. density operator. Note that we will interchange notations
such asy(U) and |#(U)), depending on which is more
Il. THE OPERATOR-SCHMIDT DECOMPOSITION convenient in a particular context.

] o The Schmidt coefficients ofy(U) are closely connected
The operator-Schmidtlecomposition is an operator ana- to the operator-Schmidt coefficients of which we denote

log of the well-known Schmidt decomposition for pure quan-y. . |ettingU=3 u;A ®B; be an operator-Schmidt decom-
tum stateg1]. The present treatment of the operator—Schmidtp'osition, we seeJtHat] :

decomposition is based on the discussion in REf8,14),
with the addition of a result on the continuity of the Schmidt Pp(U)=(Ig,@UaI RB)|a>|,3) (4)
coefficients of a unitary operator.

We begin by introducing the Hilbert-Schmidt inner prod-
uct ondx d operators, Q,P)=tr(Q'P), for any operator =2 uj(l r,®AD|@)(Bj®Ig,)|B). 5
andP. We define an orthonormal operator basis to be a set .
{Q;} which satisfies the condition Q;,Q)=tr(Q/QY)  Direct calculation shows thatda(lr,®Aj)| ) and Jdg(B

=0, . For example, an orthonormal basis for the space ofg)
ik . . lgr.)|B) form orthonormal bases faR,A and BRg, re-
- / / B
single-qubit operators is the st/ 2 X/2,Y/y2,2/+2}, spectively. Thus, the quantum stat€U) has Schmidt coef-

where X, Y, and Z are the Paulic operators, and is the e
P ficients u;/\dadg equal, up to the factor {tdg, to the

identity. Schmidt coefficients ob)
The operator-Schmidt decomposition states that any op- :
P ! POSIton States y op The following proposition shows that the Schmidt coeffi-

eratorQ acting on systemé andB may be written a$14 . . .
Q 9 y y $14] cients ofU are continuous functions &f. In the statement of

the proposition||M||=may,-4|M|)| denotes the usual op-
Q=2 qA®B, (1)  erator norm.
! Proposition 1.Let U and V be operators oAB, with

respective Schmidt coefficients andv;, ordered into de-
whereq,;=0, andA, andB, are orthonormal operator bases P . Ui

i =U=--- =p,=...,
for A and B, respectively. A constructive proof of the * oo 9 ordeni; >, : andvy=vy Then
operator-Schmidt decomposition may be found in R&#].
To better understand the coefficiersin the operator- E Ujuj
Schmidt decomposition, imagine that associated with each ol 1- <|lu—V|Z. 6
U=V (6)
system,A and B, there arereference systems,Rand Rg, dads
\;vrl]tgéhie?ame state space dimensionalitigsand dg as A To understand why Eq6) can be interpreted as a state-
’ ment about continuity requires a little thought. Note that
tr(UTU) =tr(V'V) =dadg, and thusS;u?=3p?=ddg.. It
iria isir follows that we can think ofi?/d,dg andv?/d,dg as prob-
4 A . B i i
)= ! and |B)= ! ?) ability distributions. With this interpretation, the quantity
Jd, Jdg Sjujv;/dadg is just the fidelity of these two probability dis-
tributions, and it follows from Eq(6) that if U~V thenu;
denote normalized, maximally entangled statefRgA and  ~uv; for all j.

BRg, respectively. Now let€ be a general quantum Proof. The key is to observe that the nofjw| is stable
operation: We definep(&) to be the density operator result- when extended trivially to an ancilla system, i.dM|

ing when€ acts on|a)|8). We write this out explicitly, with =M ®1]||. Using this observation, we have
subscripts to make it clear which operations are acting on
which systems: lU=V|=[llr,®(U-V)@Ig] )
p(E)=(Tr, @ Ens® Try)°(|a)(al®| B)(B]), ) =|[1r,@(U—-V)&lg ]la)|B)ll tS)
=[lp(U) = (V). €)

1 . . e ) . ) ) ) )
Quantum operations are sometimes knowea@spletely positive  gqyaring both sides of the inequality, and interchanging the
maps We use the more physically oriented terminology, since it iSroles of the two sides. we obtain

physical applications we have in mind. Note that we use “quantum

gate” and “quantum operation” interchangeably, depending on ||y U)||2+ | y(V)||>— 2Ré ((U)|¢(V))]<[U— V]2
whether the context is quantum computation or more general. A (
review of the theory of quantum operations may be found in

Ref.[1]. Since| ¢(U)|?>=]#(V)||?=1, this implies
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2[1— (W) (V) |1=[U -V (1)  the C:D cutif o can be written as'=3;p;p{ ® p; for prob-

abilities p;, and quantum state;fiC ,ij of systemsC andD,

respectively. The advantage of this notation comes when

more systems are introduced. For example, in the operation-

separability theorem, the assertion is tdais separable if

and only if p(€) is separable with respect to tiR\A:BRg

cut.

IIl. SEPARABLE AND SEPARABILITY-PRESERVING We have stated the operation-separability theorem for
QUANTUM GATES trace-preserving quantum operations, but a similar result also

We now formally introduce the notion of separable quan-nolds for non-trace-preserving quantum operatiénsThe
tum gates, and study their basic properties, in Sec. Il AONly change is that thg; are no longer probabilities, but can
Section 11l B states and proves a theorem showing that quarf€ any set of non-negative real numbers. We have also re-
tum circuits built entirely out of separable quantum gates car§lficted our attention to bipartite quantum operations, that is,
be efficiently simulated on a classical computer. Finally, Sec€ Which act on quantum systems with just two components,
Il C notes that the classical simulation theorem of the preA @ndB; it is not difficult to show that an analogous state-
ceding section can be extended to a somewhat larger class BNt also holds fok-party quantum operation& _
gates, the “separability-preserving” gates, and considers A nice corollary of the operation-separability theorem is
some of the implications of this fact. that a quantum operation is separable if and only if it is
incapable of producing entangled states. Furthermore, by
connecting gate separability to state separability, the
operation-separability theorem allows us to apply results

Supposef is a quantum operation acting on a compositefrom the theory of state separability to prove that certain
quantum system with two components labefedndB. £is  gates are separable, and thus incapable of producing en-
said to beseparableif it can be given an operator-sum rep- tanglement.

Since¢(U) and ¢(V) have Schmidt coefficients;/\dadg
andv;/\dadg, respectively, it follows from the results of
Refs.[15,16] that[((U)|¢(V))|<Z;ujv;/dadg. Combin-
ing this inequality with Eq(11) gives the desired resulill

A. Definition and basic properties

resentation of the form The operation-separability theorem tells us that a trace-
preserving quantum operatighis separable precisely when
Ep)=2, (Aj®Bj)p(AJT®BJT). (12) (&) is separable. However, it does not follow that all sepa-
]

rable states oR,A:BRg can be written ap (&) for some
trace-preserving quantum operation. To understand this, ob-
Separable quantum operations were independently intrasgrye that whed is trace preserving, A&l p(€)] must be the
duced in Refs[17,18, where it was speculated that trace- completely mixed state dR,Rg. In general, however, it is
preserving separable quantum operations might corresporgbsy to find separable states of R4,A:BRg such that
to the class of quantum operations that can be implemented, () is not completely mixed.
on a bipartite system using local operations and classical an elegant result of Horodeckit al. [21] can be used to
communication. This speculation was fald®]. However, a  characterize precisely which separable states can be written
related conjecture is true, namely, that trace-preserving sepg; the formp(&) for trace-preserving, separalfie Their re-

rable quantum operations correspond to the class of tracgyi, which we have restated in the context of multipartite
preserving quantum operations which cannot be used to 9€Rystems, is as follows.

erate quantum entanglement. This follows from an elegant” Theorem 2 The set of density matrices;, of R,ABRg

characterization theorem of Cirat al. [20] linking separa- such thair= p(&) for some trace-preserving quantum opera-

bility of a quantum operatiod to separability of the quan- jon ¢ is precisely the set such thag (o) is the completely
tum statep(&) introduced in Eq(3). mixed state ORARg .

Theorem 1 (operation-separability theorem [20)trace- Combining this theorem with the operation-separability
preserving quantum operatiahis separable if and only if hagrem we obtain the following result.
p(&) is a separable quantum state, thatpi&) can be writ- Theorem 3The set of density matrices;, of R,ABR,

ten in the form such thato=p(&) for some trace-preserving and separable
quantum operatiorf is precisely the set such th&) o is
p()=2, pjp_RAA®p!3RB, (13)  separable with respect to thA:BRg cut; and(b) trag(o)
J ) ) is the completely mixed state &\Rg .

where thep; are probabilities,ojRAA are quantum states of
SyStemRAA, andijRB are quantum states of systeBiRg.. B. Separable gates and quantum computation

When we say in the statement of the theorem H{&) is Having discussed the basic properties of separable quan-
separable, there is initially some ambiguity, due to the multum operations, we turn to their utility for quantum compu-
tiple ways the systerR,ABRg can be decomposed into sub- tation. Imagine that a quantum circuit is built entirely out of
systems. To avoid this ambiguity, it is convenient to intro-separable quantum gates and single-qubit gates. It is intu-
duce notational conventions as follows. leebe a state of a itively plausible that such a quantum circuit can be effi-
composite syster@D. We sayo is separable with respectto ciently simulated on a classical computer, and we now prove
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this result. The major technical difficulty is the accuracy re-
quired in the simulation, and the associated computational D X pipj. 2 Pjo; | <> pD(p;.,07). (15
overhead. ! ) '

Our model of quantum computation is as follows. Ikt (3) The trace distance isontractive That is, if £ is a

be a fixed set of one- and two-qubit quantum gates. BXrace—preserving quantum operation, th&(&(p),&(a))
“gquantum gate” we mean a trace-preserving quantum opera—gD(p o).

tion. We assume that all 'ghe two-qL_Jbit gatesdirare sepa- (4) The trace distance has trstability property D(p,
rable. We lef{C,} be a uniform family of quantum circuits o 0,®@3)=D(py1,p2).

[1,22] containing p(n) gates, and acting on(n) qubits, (5) SupposeE, are positive-operator-valued measure ele-
wherep(n) andq(n) are polynomials in some parameter  ments describing the statistics from an arbitrary quantum
The initial state of the computer is assumed to be a cOMpUs,easurement. Lat(y)=tr(pE,) ands(y)=tr(cE,) be the

tational basis statex). The computation is concluded by cqrresponding probability distributions fprande-. Then the
performing a measurement in the computational basis, y|eId|:1 distance and the trace distance are related by the
ing a probability distributionp,(y) over measurement out- inequality

comesy. The measurement may be either on all the qubits, or

on some prespecified subset. For instance, if one is solving a D(r(y),s(y))<D(p,0). (16)
decision problem, it is only necessary to measure the first
qubit of the computer, to get a single 0 or 1 as output. We now describe how the classical simulation is per-

What does it mean to simulate this computation efficientlyformed, followed by an analysis to determine the accuracy of
on a classical computer? Suppose we have a classical coriite simulation.
puter that, on input ok, produces outpuy with probability Variables used in the classical simulatioRor eachj]
distribution p,(y). A good measure of how well this simu- =1,...g(n), we lets; be a three-dimensional real vector.

lates the quantum computation is the distance For prob-  Each vectors; is valid, meaning that it has the following
ability distributionsr (y) ands(y), thel; distance is c_iefmed three propertiesta) Each component OEE] is in the range
by D(r(y),s(y))=Z,|r(y)—~s(y)|/2. Thus, we require that _1 q]: () each component is specified kdits of preci-

D(pu(Y). Px(¥))=Z,|px(y) — Px(y)|/2 satisfies sion, wherel is a number that will be fixed by the later
- analysis, in order to ensure the overall accuracy is at keast
We use the notatiors=(sy, ...Sqm) to denote the

for scl)me parametee>h0. WehWi” show that the ICompUIta' 3q(n)-dimensional real vector containing all tsgs as sub-
tional resources to achieve this accuracy on a classical com- = - z - ;
MWectors. We say that is valid if eachs; is valid. It will also

puter scale asO(poly(p(n)/e€)), where polyt) is some o onvenient to introduce the notation
polynomial of fixed degree not depending on the circuit fam-

ily {C,}. Thus, high accuracies in the simulation can be

achieved with modest computational cost. p(s)=
As an example of the practical implications of this result,

suppos€C,} is a uniform family of quantum circuits solv- o N )

ing a decision problem, outputting the correct answer to afNOt€ thatp(s) is a legitimate density operator of(n) qu-

instancex of the decision problem with probability at least bits, wheneves is valid. The idea of the classical simulation

3/4. Our result implies that there is a classical simulationis that the variables will be used to represent the staté).

using O(poly(p(n))) gates, and outputting the correct solu- Note thatp(s) is not a variable used in the classical simula-
tion to the decision problem with probability 2/8lhe prob- tion: it is simply a mathematical notation convenient in the
ability of obtaining the correct answer may easily be bOOSte%nalysis of the simulation.

up beyond 3/4 by a constant number of repetitipns. Initial state of the classical variablesSuppose the initial

~To a_malyze the methodi described bglow for classicakiate of the quantum computer [is), wherex has binary
simulation, we need the notion of thece distancea quan- expansionty - - -Xq( . If X;=0 we set§j=(0,0,1) initially,

tum generalization of thé, distance. The trace distance " " "~ - o
D(p,o) between density matricgsand o is defined byf1] ~ While if x;=1 we sets;=(0,0,-1) initially.
Simulating a single-qubit gaté\ single-qubit gate can be

D(p,0)=tr|p—o|/2. Note that we use the same notation _ . g
(p,)=trp—o] regarded as a two-qubit separable gate in which one of the

D(-,-) for the trace distance and thg distance, with the oy = .
meaning to be determined from context. The properties Ogubns is acted on trivially. Thus, we need only consider the
case of two-qubit separable gates.

the trace distance are discussed in detail in Rgf.and we . ) ) .
Simulating a two-qubit separable gat8upposef is a

need only a few properties here. ) . !
(1) The trace distance satisfies theangle inequality ~ Wo-aubit separable gate, and it acts on qubitandB. We

D(p,7)<D(p,0)+D(o,7). simulate this gate by using as input to the following sto-
(2) The trace distance oubly convexmeaning that i, chastic gate simulation Erocedure, which producﬁes*a valid

are probabilities, ang; and o; are corresponding density 3q(n)-dimensional vectos’ as output. We then set=s’,

matrices, then and repeat over, going through each galg, . . . &y, in

|+§1'(;' |+§q(n)‘0'
5 ®-~~®T. a7
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the computation, until a final output value ofis produced,

at which point we proceed to the simulation of the final €1, - -

measurement, described below.
Gate simulation procedurel'he procedure is as follows.

(1) Input to the procedure: A valid vectas,
(2) Body of the procedure: Find valid three—vecté};sand
sk, and a probability distributiom; containing at most 16

elements, and with eagh; specified tol bits of precision,
such that

| +Sp-0 l+sg-o
®
2 2

l+sh-c I+sh-o
2P

J

<c27/, (18)

for some constant that does not depend df A, or B. To
see that this is possible, we make use of the fact that

5 5 (19

| +Spy-0 1+Sg-0
®

is a separable, two-qubit state, and therefore, by Cavdthe
ry’s theorem[23], can be written in the form
s l+th-o I+tho
q' ® ’
T2 2

where theq; are probabilitiesth ,t} are real three-vectors

satisfying||th,|t5|=<1, and there are at most 16 terms in

the sum. Choosing thg; to be probabilities which arebit
approximations to the;, and thesh ,s to be valid vectors
which approximate’y , t’ also tol bits, we obtain the result.

Note that while Carattaglory’s theorem ensures that such

PHYSICAL REVIEW 88, 012308 (2003

tors afterm steps of the simulation procedure, that is, after
.,&m have been simulated. For=0, . .. p(n) define

=2, P(S)p(S). (20)
S

It is not difficult to see that the distribution obtained by mea-

suring o™ in the computational basis of the substs

exactly the same as the output distributipg(y) produced
by the classical simulation.

Form=0, ... p(n) definec™ to be the state of the actual
quantum computer aftem gates have been applied. Thus
a®=|x)(x|, e1=£,(¢), and so on. The idea of the proof
that the classical simulation works well is to bound the dis-
tance betweew™ and ™. We do this using the following
lemma.

Lemma 1 Suppose a valid vectaris used as input to the
gate simulation procedure with probabilil;y(g), and let

p(§ ") be the corresponding output distribution on valid vec-
tors. Define

o'=2 p(sHp(s’). (2D

s’

=2, p(s)p(s),

If the gate simulation procedure simulates the ggtehen
we have

D(&(o),0")=<c27", (22

wherec is the constant introduced earlier in the discussion of
the gate simulation procedure.

Proof. Let p(s’|s) be the probability thas ' is output by
the gate simulation procedure, given tids input. Then we

probabilities and vectors exist, finding them may be non-havep(s’)=33p(s’|s)p(s), so
trivial. The obvious technique, a brute force search over

probability distributions and valid vectors, requires poly(2
operations, where poly] is some fixed polynomial func-

tion. Although we believe that likely better techniques—

o' =2 P92 P(s'[S)p(s"). (23

perhaps even polynomial in—are possible, for the purposes applying the double convexity of the trace distance gives

of the present simulation poly{Rturns out to be sufficient.

(3) Output of the procedure: Fdt#A,B we define§{(
=s,. Sets'=(s}, ... 8},). Note thats! is valid, by con-
struction. With probabilityp; , outputs'=s'.

D(E(0),0)=2 p<§>D(5<p<§>>,2 p<§'|§>p<§'>>.
(24

Simulating the final measurement in the computational
basis Let S be the subset of qubits that is measured at théBy inspection of the construction used in the gate simulation

output of the quantum computation. For e&ahS, let sﬁ be

procedure, notably Eq.18), and the stability property for

the third component of, . The measurement result for that trace distance, we have

qubit is 0 with probability (1 sﬁ)lz, and 1 with probability

(1-s})/2. Note that, by definitionp,(y) is the distribution D(g(p(g)),z p(§f|§)p(§')) <c27'. (25)
over possible outcomesy, produced by following this s’
procedure.

Analysis The key to the analysis of the classical simula-Combining this observation with Eq.(24) gives
tion is a simple equivalence between the classical simulatio® (£(¢),0')<c2~', which was the desired result. |
and certain measurements on quantum states. Suppose Weproposition 2 For m=0,...p(n), D(c™ ™

define}im(§) to be the probability distribution on valid vec- <cm2~'.
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Proof. We induct orm. Form=0, the result follows from simulate classically. This conclusion was subsequently clari-
the fact thato®=50. Assuming that the result is true for, ~ fied and extended by Jozsa and Lind@d]. However, the

we now prove it form+ 1. By the triangle inequality conclusions of both Refg11,24 are not applicable in the
present context, since they apply in the context of pure state
D(o™ L o™ N <D(e™ L&y (™) entanglement of a quantum computer, rather than the mixed-
state case considered in this paper.
+D(Enp1(o™), ™ D). (26) The issue of mixed-state quantum information processing

o . . . . was considered by Braunstehal. [25], who raised, without
By definition ™" *=£&n.4(0™), so this equation may be answering, the question of what role mixed-state entangle-
rewritten as ment can play in quantum computation.This line of thought
Ml ~mil m ~m has been carried further by many authors, without com-
D(o™ 5 0™ ) <D (Eni1(0™), Emra(0™) pletely answering the question. See R¢$6,27] for recent
D, 1 (3™, T, 27 work and further references.
Applying the contractivity of the trace distance to the first C. Separability-preserving gates

term, and Lemma 1 to the second term, we obtain It is straightforward to extend the proof of Theorem 4 in a

variety of ways, without changing the conclusion that an
efficient classical simulation of the quantum circuit is pos-
Applying the inductive hypothesis to the first term gives ~ SiPle. In particular, we can change the gateg iso they act
on anybounded numbeof qudit systems, rather thatwo-
D(¢™ o™ HY<cm2'+c2 '=c(m+1)27!, (29  qubitsystems.

Furthermore, the proof relies on properties of gate§ in
which completes the induction. B that are weaker than separability. In particular, the gates in
We conclude from the proposition th&i(oP(™,oP(M)  need only beseparability preservingthat is,£(p) is sepa-
<cp(n)2~". It follows from Eq.(16) that the simulated dis- rable for any separable staje We denote the class of
tribution P,(y) and the actual distributiop,(y) are related ~Separability-preserving gates by SP. To see that this is a

by the inequalityD( py(y).Pu(y))=cp(n)2~'. Choosing| weaker property, note thawap is separability preserving

. since it maps product states to product statessiap is not
Loasg the least integer greater than jog(n)/e], we therefore separable, since it can generate entanglement with the aid of

local ancilla systems. More generally, note thag is sepa-
~ - rable with respect té\:B if and only if Eag®Za:g IS Sepa-
Dpy)puy))=e. (30 rability preserving with respect tAA’:BB’.
The total number of times the gate simulation procedure is Since the proof of Theorem 4 only relied on the state in
performed isp(n), and the number of operations performed EQ. (19) being separable, it still holds when the available
in one iteration of the gate simulation procedure scales agates are all separability preserving. However, no simple and
poly(2'), so the total number of operations in the classicaleasy-to-use characterization of the separability-preserving
simulation isO(poly(p(n)/€)), where we change the nota- gates is known, which is why we prefer, for most of the
tion by letting poly() be a(new) polynomial function. We remainder of this paper, to work with the separable gates. We
have proved the following theorem. do make occasional later use of separability-preserving gates,
Theorem 4 Let G be a fixed set of one- and two-qubit SO it is convenient to note here a few properties. Note that all
gates. Suppose all two-qubit gates Gnare separable. Let Separable gates are in SP, and for gates operating on multiple
{C,} be a uniform family of quantum circuits of sizgn),  qudits, any permutation of the quditfor example Swap) is
acting onq(n) qubits, where botip(n) andq(n) are poly- in SP Furthermore, SP is convex and is closed under com-
nomials. The initial state of the computer is a computationaP0sition, so
basis statgx). The computation is concluded by performing ! .
a measurem>ent in the computational basis on some prespeci- SP2Hul{£-P-£ separable anf a permutatioh 31)
fied subseft of the qubits, yielding a probability distribution

Px(y) over possible measurement outcorgeShen for any  However, it is unclear whether this convex hull describes all
€>0, it is possible to sample from a distributigg(y) sat- of SP. For example, the operation which measures a pair of

isfying D(p(Y),p«(Y))<e€ using a classical algorithm tak- dubits in the Bell basis and stores the answer in the compu-

ing O(poly(p(n)/e)) steps, where poly( is a fixed poly- tational basis[i.e., (00)+|11))/2 becomes|00), (|00)

nomial. —|11))/\/2 becomes|01), etc,...] is certainly in SP
Results related to Theorem 4 have been obtained in théhough it does not seem that it can be expressed as a convex

past, but, so far as we have determined, no proof of thisombination of&eP, for separableS, and permutations

result has previously been published. In particular, AharonovPx 2

and Ben-Of11] studied the role of entanglement in quantum

computation, proving that many-party entanglement must be

present in order for a quantum computation to be difficult to ?wWe thank Keiji Matsumoto for pointing this out to us.

D(c™ o™ <D(o™ o™ +c27". (29
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IV. ROBUSTNESS OF QUANTUM STATES However, robustness is easily extended to more than two

To understand how robust quantum gates are to noise, it gartles, and it is convenient to have a notation to express the

useful to first review prior work on the robustness of en_extended notion. Suppose, for example, thaand o are

H H A:B:C H _
tangled quantum states. This section describes Vidal's an?[naetgstgsz ttrrlzarglitr(?irigft\(/a:?uicdf-ls—ﬁiﬁ I?ha 4(—1':”Ui)slzedea1-
Tarrach’s[12] definitions and results on the robustness of tptto P

guantum states, introduces a measure of robustness, and ngle with respect téB:C. Different ways of grouping the

lates that measure to Vidal and Tarrach’s measure. The me omponents of many-party quantum systems are han(_jled n
e obvious way. So, for example, we can define a notion of

sure and its properties will be of special interest in appl'ca_robustnessRA:Bc(p||cr), when systems andC are grouped
tions to gate robustness. together. Explicitly,RABS(p||o) is the minimal value of
Let p be a quantum state of a bipartite systaB, and let Ogether. EXpICTy, (pllo) is the a value o

o be a state oAB. Vidal and Tarrach12] define therobust- such thap +to is separable with respect RBC.
ness ofp relative to o, R(p||o), to be the smallest non- These examples may be extended in a natural way to the

negative numbet such that the state random robustness and robustness, as well as to thg case
where more systems are present, and to more complicated
1 t groupings of subsystems. Most of our work concerns two-
1—+tp+ 1% (32 party robustness, and so we usually do not explicitly include
superscripts in expressions suchRis®(p).

The robustness has many useful properties, which are ex-
plored in detail in Ref[12]. We mention just a few of the
latter definition in terms of unnormalized quantum states ‘%eorrﬁxs;g;klﬂ%;rrogegﬁgfohr?sremg;gomgfs-tmseanié?;?”@r:;gg{
frequently useful. Note that Refl2] specifies thato be unitary operations. Ver, 11 gleme

monotone that cannot be increased under local operations

separable; however, we wil find it convenient to extend theand classical communication. It is also a convex function of
definition to nonseparable also, specifying thaR(pl|o) :

— ¢ if no value oft exists such that the state in E82) is p. As for the random robustness, Vidal and Tarrpt®] have

separable. At first sight one is tempted to ask why we choosgg;aemoidaanu?el}egg?t fo(r)rp;lgif(;rrttirtlee gogfesrmgss in the special
this definition for the robustness, and not the related quantit§ P %, P Y '

is separable. Equivalently, we can defiRép||o) to be the
smallest non-negativé such thatp+to is separable; this

2
min{p:p=0,(1—p)p+po is separable (33 R(¢)= E wj) -1, (35)
]

This latter definition has a more obvious physical interpreta- ) o
tion as the minimal probability with whickr can be mixed ~Wherey; are the Schmidt coefficients far. In the course of
with p to obtain a separable state. It follows from the defi-their proof, Vidal and Tarrach explicitly construct a statg,
nitions that the quantity of Eq(33) is equal toR(p|lo)/  such that|y)(¢|+R(¥)a, is separableo, may be ex-
[1+R(p|o)]. The reason we do not work with the quantity Pressed in terms of the Schmidt decompositipe)
of Eq. (33), despite its apparently more compelling physical == #jli)li) by
interpretation, is that the robustness defined in B8) has

: . - L 1
useful and easy-to-prove convexity properties not satisfied - KMkl @131, 36
by Eq.(33), namely,R(p||) is convex in both the first and 7VTR(Y) g’l otk @Il 39
the second entry. L . .
A special case oR(p||o) of particular interest is thean- In the definition of robustness we mixgdwith a sepa-

dom robustnesslefined to be the robustnessmfelative to  rable quantum stater, trying to determine what minimal
the maximally mixed staté¢/d,dg. We denote the random level of mixing will produce separability. Another natural
robustness of a state by R, (p)=R(p|/dadg). Vidal and definition of robustness would allow to range overarbi-
Tarrach[12] found a useful formula for the random robust- trary density matrices, not just separable density matrices.
ness of a pure statg of AB in terms of a Schmidt decom- That is, we can definBy(p)=min,R(p|o), where theg sub-

position ¢=3;¢;|j)|j) with ordered Schmidt coefficients script indicates that we are minimizirggobally over all pos-
1= = -=0: sible density matrices.

How are Ry(p) and R(p) related? It is clear from the
R/ (¢)=y1¢,dad5 . (34)  definitions thaRy(p) <R(p). We will prove that the reverse
inequality is also true whep= ¢ is a pure state:

So far we have discussed the robustness of a ptedéa-
tive to another fixed state. We now definghe robustnesef
p, R(p), to be theminimumrelative robustnesk(p| o) over
all separabler. Thus, the robustness ¢f is a measure of
how much local noise can be mixed withtbefore it becomes We do not know whetheR(p) =R(p) in general. To com-
separable. plete the proof of Eq(37), we show that if there exists a

We have defined three notions of robustness for quanturdensity operatoro such thaty+to is separable, ther
states,R(p||a),R/(p), andR(p). All three definitions have >(ijj)2—1. (Our proof both extends and simplifies a
assumed that is a state of dipartite quantum systerAB. similar proof in Ref.[12] for the robustnesR(p).)

2
Rg<w>=R<¢>:($ w,») ~1. (37)
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The proof is based on the positive partial transpose criteTwo other measures of robustness aregéparable robust-
rion of Peres[28]. Let us denote the partial transpose onnessand theglobal robustnesswvhich we define in Sec. V B,
systemsA andB by T, andTg, respectively. Then the posi- and use to prove bounds on the threshold for quantum com-
tive partial transpose criterion implies thatf+ to is sepa-  putation.Our results on these measures of robustness are less

rable, theny™8+to '8 is a positive operator. complete, and so our discussion is more limited.
Next, we introduce an operatdvl defined by M=I
—Uswap WhereUgpap= 2jilj)(k| ® [k)(j| is the linear A. Random robustness of quantum gates

operator interchanging states of systarand systenB. Note
that M is positive, sinc&JéWApzl implies thatUgyp has
eigenvalues=1, and thusM is a diagonalizable operator ~ The random robustness 6f R, (&), is defined to be equal
with eigenvalues 0 and 2. to the robustness & relative to the completely depolarizing
We now combine the results of the previous two para-channel,D(p)=1/d,dg for all statesp of systemAB:
graphs. Since the trace of a product of two positive operators
is non-negative, it follows that@tr(M'8)+t tr(Mo'8). R/()=R(&|D). (41)
Using a little algebra and the observation that for any two
operatorsK andL tr(KLT8)=tr(KTAL), this inequality may The random robustness is especially interesting because it
be rewritten as measures the robustnessédigainst complete randomization
T T of systemsA andB. Another way of stating this is to imagine

—tr((MTag)<t tr(MTAg). (38 that we are applying the operatighwith probability 1—p,
and randomizing the system#s and B with probability p.
Then the threshold probability at which this gate crosses the
separable-inseparable threshold is

1. Definition and basic properties

Direct calculation shows tha¥l "A=1—|a)(«a|, where|a)

EE]-|j>|j> is the (unnormalizedl maximally entangled state.

It follows that tr(MTAy)=1—(Z;4;)*> and tr(MT"Ac)

<tr(o)=1. Substituting these results into E(8) gives R.(£)

(EJ-z,bj)z—lst, which was the desired bound. pth:r—- (42)
1+R (&)

V. ROBUSTNESS OF QUANTUM GATES
Q From Eq.(40), we see that the random robustness for an

operation is related to the random robustness of a state b
We now extend state robustnessgwantum gatesSup- P y

ose& and F are trace-preserving quantum operations on a RAABR
Eomposite systermB. Tﬁen we dgef?ne theobugtness of R(E)=R"2(p(£)). (43)
relative to F, R(&||F), to be the minimum value of such o ) )
that Specializing to the case whefds a unitary quantum opera-
tion U, we see thatR,(U)=RrRAA:BRB(p(U)). However,
LEJF L}_ (39 P(V) is a pure state. We showed earlier thgU) has
1+t 1+t Schmidt coefficiental;/\dadg, whereu; are the Schmidt

. ] ] coefficients ofU. This observation, together with Eqgl3)
is separable. EquivalentiR(&]|F) can be defined to be the gng (34) implies the formula

minimal value oft such that+tFis separable. Applying the
operation-separability theorem, we immediately find the use- R/(U)=dadguyUs, (44)
ful formula

— RRAABRg where we order the Schmidt coefficients 0Of so thatu,
R(@IAH=R (&)]p(F)). (40 =u,=---=0. [Note that in deriving this equation, we have

Just as for quantum states, the notion of gate robustnegsplacedd, by di, anddg by dé in Eq. (34), since we are
extends in a natural way to systems of more than two partiesyorking with robustness for thR,A:BRg system]
and we use notations analogous to those introduced earlier, It is, perhaps, not immediately clear what the physical
such asRABC(&g|F) and RABE(E|F), to describe this sce- relevance of the random robustness is.After all, in real physi-
nario. Note that these notations will also be extended in &al systems, the effects of noise on a quantum gate will not
natural way to the random robustness and robustness of usually be to simply mix in some depolarization, together
guantum gate, as defined below. As for quantum states, whewith the gate. Despite this, there is still a very good physical
identifying superscripts is omitted, we assume that the quarreason to be interested in the random robustness. The reason
tum gate in question acts on a bipartite syst&B is that, as we show in more explicit detail below, the random

Motivated by several different classes of noise commonlyrobustness can be used to analyze the particular noise models
occurring in physical systems, we now use the notion ofwhich have been used in estimating bounds on the threshold
relative gate robustness to define and study several differefor quantum computation. In turn, it has been argL&d10]
measures of robustness for quantum gates. First is the rathat by analyzing and correcting for the effects of noise in
dom robustness, which we define and study in Sec. V Athoseparticular models, it is possible to make general state-
Also in this section, we use results on the random robustnessents about a wide class of physically reasonable noise
to place bounds on the threshold for quantum computationmnodels. Thus, although the physical scenario considered in
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the definition of the random robustness appears rather spdrastically affect its robustness against the effects of noise.
cialized, it will enable insight into much more general physi- We now prove a quantitative form of this statement for uni-
cal situations. tary gates.

As an example, we may ask how robust theoT is Proposition 4 (continuity of random robustnesgpet U
against the effects of depolarizing noise? TheoT has the andV be unitary gates acting on a systefnof dimension
Schmidt decomposition[13] 2|0)(0|®1/y2+ 2|1)(1] da, and a systen of dimensiondg . Then
®X/\/2, so Eq.(44) implies thatR,(CNOT)=8. Interestingly,
we can also show that theNoT is the most robust two-qubit
gate. Indeed, a more general bound on the random rObusmev?/ﬁereszmin(dA i)
may be_proved for an arbitrary quaptum operatignof a Proof. Let u; andv; be the ordered Schmidt coefficients
composite systerAB. The argument is as follows. Suppose of U andV resj,pectivély From Eq44)
¢ is a quantum state of a syste@D, whereC has dimen- ' ' o

IR(U)—R(V)|<dydid3|U—V|>?, (45)

sion dc and D has dimensiond,. We have R,(#) IR,(U)— R, (V)| = dadg|usts—v4105|
=dcdp i pr<dcdp/2. By convexity of the random robust-
ness, we havé,(p)=<d.dp/2 for any statep of CD. Ap- =dadg|(Ur—v 1)Uzt 01 (U~ v))]

plying this result to the state(&) of RyA:BRg gives

<dpdg|u;— + -
R (&) =R (p(&))=d2d3/2. These results may be summa- ads|Us =4 || +valjuz=v-|

rized as a proposition. <d3d3(|u;—v4|+|u—v,|)
Proposition 3.Let £ be any trace-preserving quantum op-
eration acting on system& andB. ThenR, (&) <dad3/2. If <d2d23 |u;—vl. (46)
]

dy=dg=2 thenR,(£)<R,(cNOT)=8.
The random robustness has many physically interesting ]
properties. Below we list six easily proved properties, before  1he second part of the proof is to observe that by the
discussing in more depth two less easily proved propertiesc@uchy-Schwartz inequality,
Our discussion of these properties is, in part, motivated by
the framework of “dynamic strength” measures introduced > |uj—vj|$dM2 (u12+vj2—2ujvj (47)
in Ref.[13], although the properties we discuss are interest- i i
ing independent of that motivation. In R¢L3] it was argued

that these properties, especially the propertgtadining dis- 2 Un.
cussed below, are essential if a measure can be said to quan- i iV
tify the strength of a quantum dynamical operation as a =2dydads 1—m . (48

physical resource. By showing that these properties are sat-
isfied, we thus show that the random robustness is a gooflpplying  Proposition 1, we  obtain Siluj—v;|

measure of dynamic strength. _ ~ =dydadg|U—V|2 Combining with Eq.(46) gives the
(1) Non-negativity and localityR,(£) =0 with equality if  regylt. =
and only if€ is a separable quantum operation. Another physically interesting question is to ask how the

(2) Local unitary invariance: léx ,Ug ,Va, Vg are all local  random robustness of a gafge&, composed of quantum
unitary quantum operations, with the system being acted ogatest; andé&, relates to the random robustness of the indi-
indicated by the subscript, thaR, (UsQUg)oE(VA® Vg)) vidual gates. The following proposition bounds the random

=R, (&). robustness of the combined operation.

(3) Exchange symmetnR, (&) =R, (SWAPE&swap), that Proposition 5 (chaining for random robustneskgt £, be
is, the random robustness is not affected if we interchanga doubly stochastic quantum operation, that is, a quantum
the role of the systems. operation which is both trace preserving and unfia.,

(4) Time-reversal invariance: For a unitaty, R,(U) E1()=1], and let&, be an arbitrary trace-preserving quan-
=R, (UM. tum operation. Then

(5) Convexity: The random robustnes(€) is convex
in £ Ri(€1°E) <R(ED) T R(E) T R(EDR(E). (49

(6) Reduction: Suppose a trace-preserving quantum op-
eration& acting onAB is obtained from a trace-preserving  Note that unitary operations are trace preserving and uni-
guantum operationF acting on ABC as follows: &(pag) tal, so the proposition is true whefy and &, are unitary.
=trc[ Flpag®oc)], for some fixed staterc of systemC.  There is an equivalent way of phrasing Proposition 5 that is
Then the random robustness satisfies the reduction properiyhysically more intuitive. Define
namely,RMB(&) <RMBC( 7).

The random robustness satisfies two other physically in- C/(&=IN[1+R(&)]. (50
teresting properties that are more difficult to prove. First of
all, the random robustnessdentinuousin £. Physically, this  ThenC,(&) is monotonically related to the random robust-
is self-evident: making a small change dnshould not too ness of€, and thus can be thought of as carrying the same
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qualitative information about the robustness of the gateg D)oz are both in SP. This holds because for gny(D
Simple algebra shows that the conclusion of Proposition 5 7)e74(p)=(1/d,) @traUpUT, which is manifestly sepa-
may be recast in the form rable, and a similar result holds fofZ® D)ol{. Note that
such gates may not be separable: for examib T)oswap

Cr(&1°E) <Ci(E) + Ci(&). (52) +(Z®D)oswaP is separability preserving, but not separable.
The simplicity and clarity of this form may, perhaps, make it __From this Zobser;/atlon, and E€G7), it follows that£ is in
more useful in some circumstances. SP if (1-p)U+p(D®D) is separable. Comparing with
Proof. By definition of the random robustness, the quan_the earlier results on random robustness, we see that this
tum operations becomes true whep?/(1-p)?=R (U)=8. We see thaf
will be separability preserving when

E1+R(E)D (52

and _RUW-VR() _8-\8_ -
P="RU)-1 7 5
ETR(E)D (53

are separable quantum operations. Furthermore, since tf@d thus, when this condition is satisfied, the quantum com-
composition of two separable quantum operations is sepdautation may be efficiently simulated on a classical com-
rable, and&;eD="D-E,=D-D=D (using the unitality of Puter. If we assume, as is usually done, that quantum com-
&), we can compose the operations of E@®) and(53) to ~ Puters may not be efficiently simulated on a classical

see that computer, then it follows that the threshold for quantum
computation is guaranteed to be less than 0.74.
E1eE+H[RI(E)TRI(E)+HR(ENDR(E)]D (59 In their work on obtaining upper bounds for the threshold,
Aharonov and Ben-Of11] considered a similar model of
is separable, and thus quantum computation, in which each qubit is independently

dephased after each quantum gate. The main difference be-
Ri(€1°8) <R (ED)+R(E) +RI(EDR(E), (59 tween their model and ours is that we have used depolariz-
- ing, rather than dephasing noise.Which of these more accu-
rately describes the noise occurring in a real physical system
depends, of course, upon the physical system in question.
Aharonov and Ben-Or obtained an upper bound pgf
<0.97; of course, this cannot be directly compared to our

Suppose we are trying to do fault-tolerant quantum comypner hound, since the noise models are different,
putation using single-qubit gates and some entangling two-

gubit unitary gatdJ. U might be thecNOT gate; it can also
be any other entangling two-qubit gate, at least in principle B. Robustness against more general noise
[29,30, and still be capable of universal quantum computa-
tion when assisted by single-qubit gates. Suppose, further-
more, that theU gates are afflicted with noise of a special ~Depolarization is only one of many kinds of noise that
type, namely, immediately after a gate acts, each qubit ighay afflict a quantum gate. Other classes of noise motivate
independently depolarized with probability. Let 2(p)  ©Other measures of gate robustness. We now introduce two
=UpU" denote the quantum operation corresponding/to More measures of robustness, based on two natural classes of
Then the quantum operation describing this noise process [¥0ise. The first measure is the separable robustness, which
measures the gate’s resilience against separable noise. The
Ep)=(1—p)2U(p)+p(1—p)(DRTI)Up) separable robustnes¥(€) is defined to be the minimum
) relative robustnessR(&||F) over all separable, trace-
+p(1=p)(Z&D)Ulp)+p(PED)Up). preserving quantum operatiofs The second measure is the
(56) global robustness, which measures the resilience of the gate
_ _ against arbitrary noise. The global robustn&g¢) is de-
Note that (O® D)°U(p) =(D®D)(p), so this expression can fined to be the minimum relative robustnd®&] F) over all

as required.

2. Random robustness and the threshold for quantum
computation

1. Definitions and general results

be simplified to trace-preserving quantum operatiaAs
A priori, it is apparent thaR,(£)<R4(€), but it is not
—(1_p)2 _ o g\¢)=NRs
&p)=(1=p)Ulp)+p(1=p)(DBI)Up) clear whether or not the two quantities are equal. Further-

+p(1-p)(Z®D)U(p)+pA(DoD)(p). (57) more, the gate robustnesses may be related to state robust-
ness by the following inequalities:
This expression cannot immediately be analyzed using our
expressions for the random robustness of a gate, due to the -
two terms in which a single qubit is depolarized. Fortunately, Rp(OI=RLE), 59
we can simplify the analysis by showing that these terms are
always separability preserving, that isP®Z)ei/ and R(p(U))=Ry(V). (60
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To see the first of these inequalities, note H&tR(E) Fis  see that theNOT is substantially less robust against general

separable, for some separable quantum operakioft fol- noise than depolarizing noise; the worst-case noise is easily
lows that p(E+Ry(E) F)=p(E) +R(E)p(F) is a separable calculated from Eq(62).
quantum state. Sincg(F) is separable, Eq(59) follows Proof. We already know thaR(p(U))<Ry(U)<Ry(U),

from the definition ofR(p(£)). The proof of Eq.(60) is  so it suffices to prove th&s(U)<R(p(U)). To prove this,
similar, but also makes use of the fact, noted in B3), that  we use the construction of Vidal and Tarrach, B8§), to see

Ry(#)=R(¥) for any pure statey. _ _ that p(U) + R(p(U))o ) is separable, where
Do inequalities(59) and (60) hold with equality? We do 1
not know the answer to this question, but suspect that the _
answer is, in general, “no,” in both cases. Our reasoning for 7(p(U) R(p(U)) % uu )kl @ 1], (63)
this suspicion is as follows. Recall from Sec. Ill, in particu-
lar, Theorem 3, that not all separable states can be written as [Ky=>r,@A)[a), [H=(B@Ig,)|B). (64)

p(F) for some separable quantum operatiBnRecall also
the construction, Eq.36), used in finding the separablg,  Using the fact that thé, andB, are proportional to unitary
which minimizesR(¢{|o,;). Using this construction, it is not operations, a calculation shows thatelfo,u)) is a com-
difficult to find examples of unitaryJ for which the sepa- pletely mixed, separable state. By Theorem 3 we conclude
rable stater, ) does not correspond to any trace-preservingthat there exists a trace-preserving, separable quantum opera-
separable quantum operation, as characterized in Theoremtbn F such thatp(F) =0, . [Another way of seeing this
Fortunately, there is a large and interesting class of gateis to directly verify thatF as defined by Eq(62) satisfies
for which inequalitieg59) and(60) hold with equality. This  p(F)=0,y,.] Thus
class includes theNnoT and SWAP gates.
Theorem 5.Let U be a bipartite unitary gate acting on p(U)+R(p(U))p(F)=p[U+R(p(U))F] (65
systemsA andB with dimensiongd, anddg . Assume that) ) )
has the Schmidt decompositiah==,u;A;©B; , where the is separable_, \_N_hende!+ R(p(U))F is separa_lble. It follows
A, satisfy AjAl=1/d,, and theB; satisfyB;B/=1/dg. That ILOemp:ggfdef'”'“O” thaRs(U)=R(p(U)). which completes
|_|§r,]et2e A; and B; are all proportional to unitary operators. it is not difficult to verify thatRy(€) and Ry(€) satisfy
properties similar to those satisfied by the random robust-

2 ness, and thus can be regarded as measures of dynamic
(2 Uj) strength. The major difference is continuity: the lack of an
Rg(U):RS(U):R(p(U))=]—— 1. (61  explicit formula for the sgparable anq g_IobaI robus_tness has
dads prevented us from obtaining quantitative continuity state-

ments like those we obtained for the random robustness, al-

Furthermore, the quantum operatighdefined by though it is still not difficult to argue that both quantities are

continuous.
> ul(Ac@B))p(Al®B/)
_ k#l 2. General robustness and the threshold for quantum
Flp)= s (62) computation
ugu .
& As with the random robustness, we can &eandR, to

obtain bounds on the threshold for quantum computation.

is an instance of the type of noise against whithis least The method for obtaining a bound is similar. Suppose we
robust. That is,F is trace preserving, and+ R(p(U))F is have a quantum computer capable of arbitrary single-qubit
separable. Note thaf is manifestly separable. gates and a single two-qubit gaté, Then there exist§ such

The application of the theorem of most interest for us isthatU + Ry(U)< is separable. Suppose that whenever we ap-
the cNOT. It is not necessarily obvious that tleoT has a  ply U, there is probabilityp that instead€ occurs. If p
Schmidt decomposition with the properties required by the=R,(U)/[1+Ry(U)] then this set of operations can be ef-
theorem; after all, we earlier wrote the Schmidt decomposificiently simulated classically, and we conclude that
tion for the cNOT as v2[0)(0|®1/V2+2[1)(1|@X/\2,  <R,(U)/[1+Ry(U)]. Similar remarks apply folRy(U),
and this is not of the required form. However, while the only the noise in that case is restricted to be separable.
Schmidt coefficients are unique, the operators appearing in Note that both these noise models are more adversarial, or
the Schmidt decomposition may not be unique, when two opessimistic, than the noise model in Sec. VA2, and the
more of the coefficients are degenerate. It turns out that thenéreshold bounds are thus tighter. In particular, these models
is an alternative form of the Schmidt decomposition for theallow correlated two-qubit noise, while the earlier model as-
CNOT which is of the right form. This follows, for example, sumes independent noise on the two qubits. Which model is
from Proposition 4 of Ref[13], and can also be verified more realistic obviously depends upon which system a gate
directly, with a little algebra. The explicit form is not particu- is implemented in. However, we do expect correlated errors
larly illuminating, so we omit it here. similar to those in the present models to play a role in many

Equation(61) now tells us thaRy(CNOT)=Rg(cNOT)=1.  real-world two-qubit gates, due to interactions occurring dur-
Comparing with the random robustnes$s,(CNOT)=8, we  ing the gate.
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The bounds obtained usings and Ry are, in general, 1
tighter than those obtained by studyiRg, as in Sec. V A 2. pPS ———————,
However, without specific formulas faRs(U) andRy(U) it N(p(E)"p(F))
is difficult to derive bounds on the threshold without resort-
ing to numerical calculation. Fortunately, if the only entan-
gling gate available is of the form described by Theorem 5where\;(-) denotes the largest eigenvalue, and the inverse
then we can calculate the optimal noise process, and this a generalized inverse jf(€) is not invertible.

(67)

corresponding robustnesBy(U)=Ry(U)=R(p(U)). For The theorem is a straightforward consequence of the fol-
example, for thecNoT, this gives the boun@,<1/2 on the lowing theorem, and the Jamiolkowgl&3] isomorphism be-
threshold, sincé&k,(CNOT)=Rg(CNOT)=1. tween states and operations.

An alternative approach to proving bounds on the thresh- Theorem 8.Let p and o be density matrices, and let O
old is provided by the following general bound on the ro-<p=<1. Then there exists a density matrixsuch thatp
bustness. The bound says, roughly, that if all two-qubit uni-— po+(1—p) 7 if and only if the support ofr is contained
tary gates are available, then without loss of generality thgyithin the support ofp, andp<1/\,(p~1o), wherexy(-)

Wo_ﬁ;[ hoise ig gepolarizting noise. t ; denotes the largest eigenvalue, and the inverse is a general-
eorem 6.For any trace-preserving quantum operation; ; e ; :
£, max,R(UJE)=max,R (U)— /2 ized inverse ifp is not invertible. .
' ; AZBI S ) _ Proof. Supposep=po+(1—p)7. Since o and 7 are
As a corollary, if all one- and two-qubit gates are avall- ,qjive it is clear that the support of bathand = must be
able, but we do not make any assumptions about the nois ontained within the support ¢f. It will be convenient to

the worst possible noise will be depolarizing noigey D, work in the vector space corresponding to the Suppoy, of
and the corresponding bound on the threshold,is8/9. L . . . o '
§oris invertible. Sincer is positive, we have=po, as an

Proof. Completely depolarizing noise can be represente rator in litv. Premultiolving and timultiolving b
as applying a random unitary operatidp with probability OE%ZaO equalty. /2e lfl,fy g and postmuitiplying by

A /B gives |=pp Y2gp~Y2  Comparing the largest
Pk, where each/,= Vi@V is a product of local gates and eigenvalues of these two operators gives the desired

+ ; _

ZPVipVe | for anTy density operatop. Thus D=2 piVk inequality. The converse is proved by running the argument

whereV(p) =VypVy. backward. u
SinceR is convex in the second argument aPdE=D

for any operatior€, it follows that for any unitaryJ,

VI. CONCLUSION
R(U||D) =R(U||D=€) _
We have defined several measures of the robustness of
:R(UE v 5) quantum gates against the effects of noise, and used these
. Pick measures to prove that certain noisy quantum gate sets can
be efficiently simulated on a classical computer, even if the
_ methods of fault-tolerant computation are used. Our results
<§k: ka(UHVkoé‘)—Ek: PRVLUIS), (66) imply an upper bound on the threshold for quantum compu-
tation, p;,=<0.5. A key component in proving these results
was a proof that any quantum computation involving only
separable quantum gates can be efficiently simulated on a
classical computer. Furthermore, we have studied gate ro-
bustness as a measure of the strength of a quantum operation,
. considered as a physical resource, and shown that robustness
tinz)e;}ng(UHD)smamR(UHS) for any trace-preserving opera- gatisfies many properties such a strength measure is expected
: to have.
We conclude with a result tying our techniques more i addedRecently, we learnt that E¢37) was proved

closely to the physical situation. Suppose we are attempti”ﬁhdependently by SteindB4], and, in the case of qubits, by
to perform quantum computation in the laboratory using & o straete and Verscheld®@s].

noisy gate€ meant to approximate an ideal, unitary quantum
gateU. U is known exactly, for it is a theoretical construct,
and £ has been experimentally determined using quantum

where the last equality follows from the fact the} is a
product of local gates.

Let Ro=max,RU[&)=max;,R(V{U||§). Then Eq. (66)
implies that R(U|D)<=pRp=Ry for any U, so
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