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Moving atom-field interaction: Quantum motional decoherence and relaxation
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The reduced dynamics of an atomic qubit coupled both to its own quantized center of mass motion through
the spatial mode functions of the electromagnetic field, as well as the vacuum modes, is calculated in the
influence functional formalism. The formalism chosen can describe the entangled non-Markovian evolution of
the system with a full account of the coherent back-action of the environment on the qubit. We find a slight
increase in the decoherence due to the quantized center of mass motion and give a condition on the mass and
qubit resonant frequency for which the effect is important. In optically resonant alkali-metal atom systems, we
find the effect to be negligibly small. The framework presented here can nevertheless be used for general
considerations of the coherent evolution of qubits in moving atoms in an electromagnetic field.
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[. INTRODUCTION the atom’s motional degrees of freedom are usually relegated
to the background. Assuming that the atom moves adiabati-
Atomic motion is an unavoidable element in the consid-cally limits one’s consideration to those circumstances
eration of any AMO system and an integral part of experi-wherein the external degrees of freedom act merely as a pas-
mental designs in atom trapping devices. At issue here is thsive parameter in the environme(itere comprised of the
interaction between the internal degrees of freedom of aEMF and atomic motionof our system(the qubij, with no
atom, assumed to contain an effective two-level sysigm  dynamical interplay. In technical terms, this amounts to a
bit), and the electromagnetic fieldEMF), modified by the “test-field” approximation — that the qubit lives in a fixed
atom’s quantal motional degree of freedom. This problemenvironment defined by a set of parameters, among them the
has two aspectg1) How does the two-level activity affect adiabatic motion[27]. The test field approximation leaves
the atomic motion, and2) how does atomic motion affect out effects of changes in the environment on the system. To
the two-level activity? The first aspect is the basis for laseinclude the effects of the environmental variabthgami-
cooling and atom trapping, which have been studied in greatally, it is essential to perform a self-consistent back-action
detail and successfully implemented by well-known experi-calculation. This was done for the effect of a cavity EMF on
ments(for reviews, sed1—4]). This paper is aimed at the the two-level atom(2LA) in Ref.[16].
second aspect, specifically, how quantized motion affects the
qubit-EMF system dynamics, which is of interest in the de- B. Full coherence requires self-consistent treatment
sign of quantum computers based on atomic quiitsthe
form of a neutral atonf5—9] or ion[10]) in a QED cavity or
optical potential. Effects on internal dynamics due to quan
tized center-of-mas$COM) motion have previously been
studied in the situations of an atom in free spft#, in a
cavity[12—-14], and when the atom’s qubit and COM degrees T X o ; -
of freedom are entangldd5]. However, all have focused on formation is lost if one artificially isolates the linking com-

spontaneous emission rather than decoherence. The presgﬁlnem$ of the compIeFe quantum system. This brings up the
work probes the non-Markovian regime of atom-EMF inter- Necessity of self-consistency in any treatment of quantum

action, under the modest aim of explicitly computing howcoherence and entanglement issues. In the present case of a

entanglement with quantized motion through recoil affectduPitin an EMF, this requires that the fully entangled system

the decoherence and relaxation rates of an atomic qubit il &0mic 2LS(interna), the EMF, and the center-of-mass
gaxterna] degrees of freedom be treated coherently as a

free space. In order to achieve that end, we first discuss twi :
issues of importance in computations asherentreduced who_Ie and each factor mvo!ved be aIIowgd to evolve unde_r
dynamics, using path integral methods. the mfluence of the ot.hers in a self-consistent manner. This
self-consistency requirement leads to non-Markovian dy-
namics since memory effects arise naturally and are neces-
A. The importance of including back-action sary to preserve maximal coherence during the evolution

8l.

In tackling problems where many factors enter, it is useful
to isolate one factor after another so that the remaining fac-
tors of interest to us can be simplified enough to yield some
solution. For quantum coherence and entanglement such
simplifications can lead to erroneous results, since phase in-

It is well known that the interaction between a two-level [2
system(2LS, or qubii and the EMF is the primary source of

its relaxation and decoherence, while effects associated with ~ C: Grassmannian and coherent state representation

of the influence functional

A theoretical scheme we found satisfactory in meeting
*Electronic address: sanjiv@physics.umd.edu these requirements is the influence functioi@) formalism
TElectronic address: hub@physics.umd.edu of Feynman and Vernofil7] or the related closed-time-path
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(CTP) effective action of Schwinger and Keldy$h8]. The = COM motion is through the spatial mode functions of the
influence of the environmental variables on the system oEMF. We shall restrict our consideration to an initial vacuum
interest is incorporated in the i@©r effective actionin such  EMF at zero temperature. The result of this calculation will
a way that the equations of motion obtained for the systenthus be the modification of the vacuum decoherence and re-
will already have included the back-action of the environ-laxation rates of a qubit when the effects of quantized atomic
mental variables on the system in a dynamically self-motion are included.
consistent manner. This scheme has been applied to a 2LA The first step towards obtaining the reduced system dy-
interacting with an EMF in Ref19]. There, a first-principles namics while retaining the full system’s coherence is to com-
derivation of the general master equations is given and appute the transition amplitudes between the initial and final
plied to the study of the decoherence of a 2LA in an EMF,states, which are the matrix elements of the evolution opera-
for the cases of a free quantum field and a cavity field in theor of the full system. We do this with coherent state path
vacuum at zero temperature. The authors found that for thimtegrals. For the EMF we use a bosonic coherent state rep-
standard resonant type of coupling characteristic of such sysesentation and for the two-level systdigubit) degree of
tems, the decoherence time is close to the relaxation time.freedom we use the Grassmannian coherent sfa@21].
Here we use the influence functional method for the treatCoherent states are by definition generated by the exponen-
ment of the back-action of the quantum field and the quantaiiated operation of the creation operator and a suitable label
motion of the atom on the qubit. In Sec. Il we compute theon a chosen fiducial state,
transition amplitude between an initial and final state using a

coherent state label for tHbosoni¢ states of the EMF and a |z)= exp(zb})|0y), 2
Grassmannian for théfermionic) 2LS. The coherent state
basis allows us to identify the Hilbert space of states with a | 7)=exp(7S,)|0). ()

tions is then a sum over all paths in this space. Once th [ the case of bosonic coherent states defined inBqthe

transition amplitude is computed in some sufficiently simpli- abelz is a complex number, and in the case of the Grass-

fied form, forward and backward versions can be combined@n coherent states defined in E8), the labely is an
nticommuting number. The chosen fiducial states are the

ndr formther nsity-matrix evolutionar .
and reduced to form the reduced density-matrix evolutio agMF vacuum and the lower two-level state, respectively.

operator. In Sec. Ill we calculate the evolutionary operato | der f t of states o b ful for the d
for the reduced density matrix when the EMF and motional h order for any set of states 1o be usetul for the decom-

degrees of freedom are integrated over. We derive an equg_osition of the transition matrix, they must have a resolution
tion describing the evolution of the on- and off-diagonal eI_of unity. The EMF and Grassmannian coherent states have

ements; the latter is the coherence function we seek. We entae following decompositions of unity:

in Sec. IV with a discussion of our results and comments on o
possible further developments on this subject. 1= J' du(z)|z)(zd = f du(n)|7){( 7|, (4)

space of coherent states. The sum over all quantum eVOITa-

Il. THE TRANSITION AMPLITUDE with the measures

Our system is a two-level atom interacting with its own
center-of-masg§COM) motion and the EMF. We begin with a
modified multimode Jaynes-Cummings-type Hamiltonian

du(z)= exp(—zz),

(e.g., dipole and rotating-wave approximation, see Appendix du(n) = exp(=n2).
A of Ref. [19]), Grassmann coherent states also share other well-known
p2 properties of coherent states, such as being nonorthogonal
H= m+ﬁwosz+ﬁ ; [wbb+gr(X)S, by and eigenstates of the annihilator,
N 2.2 )= exp(zZ'y), 77" )= exp(n7’),
+gk(X)S,bl]. o (zdZ') P(Zz'y (nln") pinn

The first term in the Hamiltonian is the COM kinetic energy. blzo =2z, S-[n)=mnln).

The next two terms are the qubit and EMF energies, respecFhe center of mass or external degree of freedom can be
tively. The last two terms are the interaction between theepresented in either the position or momentum basis. In the
qubit, EMF, and the atom’s COM degree of freedom. Notecoherent state basis the Hamiltonian E.can be written in
thatP and X are both operators. Coupling of the qubit to its its Q representatiof22—29 as|[cf. Eq. (2.8) of [19]]

_ _ M X2 _ - S
H{zd{zd 7, 1X) = 5~ +hoennth 2 [0t n9dX) 2t 20dX) 7). (5)

The transition matrix elements between the initial and final coherent states are then
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K(t,0)= ({1} 7 X ,t] exp

_%Ht)Hzik}niXivO)- (6)

Using the completeness property of #fiEEMF and Grassmanrcoherent state basis to facilitate time discretization of the
transition matrix{17] puts the transition matrix elements in a coherent state path integral representation. After insei@ng the
representation, the transition elements transform into a sum over paths in the coherent state labels. Having done the above, the
transition matrix becomes a triple functional integral,

ei wot/2

— — iM [t
na)+ 2 znzd) - fox ds

K(t,0)=f DXf DyD ][ Dz.Dz. exp
k

t

xend - [

0

In this form the transition matrix elements can be evaluated exactly by a combination of stationary phase and correlation

function methods which exploit the truncating properties of Grassmann variables. The order of evaluation will be the EMF,
COM, and then Grassmann functional integrals. The details follow.

ds|. (7)

n+ieenn+ ; Zz+i ; OKZZd ; (X Z+i ; 29(X) 7

A. EMF path integral

First, the EMF coherent state part of the triple path integral can be evaluated by the stationary phasd Iiigtibe
variational equations of motion for the electromagnetic field variables i "Bare

2=~z —ig(X) 7, ®)
which have integral solutiongf. Eq. (2.14) of [16]]

2(9) =287 fosdr X (r)Je™ e p(r). ©

The transition amplitude from an initial EMF vacuurz{}=0) to an arbitrary final state becomes

() - ft

0

i o M, iwot/2
nntio,nn+ 7X ds|e'®o

K(t,0)=J’ Dxf D 7D 7 exp

t _ X _ t S I . —
Xl;[ exp| —i fodS&[X(S)]e"“k(“s)sz n(s)— JOdSLdrgk[X(S)]gk[X(r)]e"‘”k(s‘”77(8)n(r) -

(10

The path integral for the EMF degrees of freedom is now complete.

B. COM path integral

Second, the position path integral can be evaluated as a set of zero-, one-, and two-point functions. Note in the transition
amplitude of Eq(10) that since the EMF is taken to be in an initial vacuum, any source term(®r will be proportional to
7; . The variational equation of motion derived from Eg0) for #(s) yields

n(8)=—iwen(s)—i j:dr; 9 X(8)1g X(r)Je "D g(r) (11)

with the boundary condition(0)= %;. Therefore,n(s)=u(s)n;. We use this to expand the exponent in the transition
amplitude of Eq(10). Due to the nilpotency of the Grassmann varialfies, ni2=0), it will truncate after the first term in the
expansion.

After expanding and truncating the integrand, the position path integral is

iM [t
f DXexr{——J’ ds X
2 Jo

t S _ . _
= [Cas [TarS qaxc@Taxne e e )| (12

1-1 [[dsS GUX(s)le Tz (9
0 k
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There are thus three correlation functions which need to be computed. First the spatial mode functions must be chosen in order
to specify the targeted correlation functions. For an electromagnetic field in free @macavity or boundarigs

A
gk(X) = —=exp(ik-X), (13

Vo

the correlations functions are computed in the Appendix. Substituting these expressions back iit0) Eies for the
transition amplitude

_ iM _ t _ M |32 .
K(t,0)=f D7D nexp| + o+ (Xf_xi)2+7]f77(t)_f (nnt+ioonpds|| 5 — gl wotl2gmio(s™r)
0

it
[t A .S Fos(t=9) Ll o iogT
X[l—lJods; \/Tkexp |Ek'(Xf—Xi)—mTk e 'ek=9z n(s)
t s A2 s—r i [t—(s—r)](s—r) ]—
- fo dsf0 dr; w—kexp —|Tk.(xf—xi oM . kz}n(s)n(r)}. (14

The path integral for the external degrees of freedom is now complete.

C. Qubit path integral

Finally, the Grassmann variable path integral can be evaluated along its stationary path. The variational equation of motion
for the Grassmann field variable in Ed.4) is

i s A2
(&)= —ivon(s)- | drS 2 s ), 15

with the definition

i s(t—s) )
ATV

S
—iwks—i—k-(Xf— (16)

mi(S)= exp I

Note that the final timé enters as a parameter in the variational equation of motion just as the mass or position do. The reason
for this is that the above variational equation of motion is for the evolution of the atom from an initial time to a final time, so
the time is an explicit parameter.

Rewriting the above variational equation in Laplace space allows the nonlocal integral part to be transformed with the
convolution theorem. The solution is in terms of an inverse Laplace transform,

(©=nmue)= 1 [ 92 a7
S)=n:U:(S)= —— —_—,
TSI T om0 )i 24 1o+ (2)

with the definition

AZ [
u(z)=— f e >‘exp

Wy Jo

i s(t—s)

o 2
oM : k<|dz (18

S
—iwks—i?k-(Xf—Xi)—

The solution thus becomes a contour integral. The pole of the denominator A Ea@an be found ta(\?),
Zo=—iwo—m(—iw,) + O\, (19)

Finding the pole to orde®(\?) gives a solution to the same order,

K- (X¢—X;) kZ) ik2
W~ ot —————— — 5

t 2M

. 1 (=
ui(s)=e '@t exp[—)\ztz w—f dsexp } (20)
K oo

Evaluating the transition amplitude along its stationary path with the second-order pole approximation yields an expression
for the transition matrix that is second order in its action,
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3/2 ' iM ) A
K(t,0)= pyre exp|iwyt/2+ Z—t(Xf—Xi) +O(\)

X exp : (21)

is(t—s) .\—
2—I\/Itk2)sz 7(S)

_ t A\
nim() =i fods; =
k

All three functional integrals are now evaluated. In the next section we proceed to derive the evolutionary operator for the
density matrix by combining the transition amplitudes into a closed loop.

exp( _|wk(t_s)+|?k(Xf_X|)_

IIl. EVOLUTIONARY OPERATOR

At this point the expression of Eq21) for the transition amplitude can be combined with its counterpart propagating
backwards in time and traced over all final EMF states. The result gives the evolutionary operator for the reduced density
matrix (we may call it the reduced propagator for short

Jr= f dxf1;[ du(zq)K(t,0)K*(t,0), (22)

and is formed by integrating out the environmental variables which in our case are the EMF and the atom’s motional degrees
of freedom.

The evolution of the qubit density-matrix elements with back-action from the EMF and the atomic motion can be calculated
from the reduced propagator

pr(t)= J du(7)du(7))du(Xi)Ir pa(0)®px(0). (23
The functionsp,(0) andpx(0) are initial states for the two-level atomic and external degrees of freedom, respectively,

pa(t)=poo(0)+ 7ip106(0) + 7/ pos(0) + 77 p11(0), (24)
px(1)=D(X;)P*(X;). (25

The function® (X) is the initial (external center-of-mass wave function of the atom. From &) the on- and off-diagonal
components of the reduced density-matrix elements evolved tottane given by

B ( M )3 , o iM , M oy
p11(t)=p11(0) it fdxff dX; f dX;® (X)) P*(X{) exp E(Xf_xi) _E(Xf_xi) ul(tug(t), (26

M \3 ) ) iM , M L
p1o(t)=p10(0) 2t fdxff dX; J dX;D(X;)P* (X{) exp Z_t(xf_xi) _z_t(xf_xi) Uy(t). (27)

3/2

The EMF, as previously stated, is in a vacuum state, but the M252
choice of an initial center-of-mass wave function has notyet  p,o(t)=p1(0) —=| 5———~
been made. To closely model an atom with fixed position and V| 12=2iM o2t
momentum, we use a minimum uncertainty Gaussian wave _ s
function centered at{,=0,P,=0), Xf dRu(x,t) exp| — M%o le‘
0 ’ t2—2iM ot
O(X)=7" g 32exp| — —l (28)
2072

The functionu(x,t) is given by Eq.(20) with x=|X;—X;|.
The evolution of the coherence function is found to fol-
Such an initial wave function simplifies the expressions forlow an exponential decay with a decay rate slightly faster
the diagonal and off-diagonal matrix elements of the qubit. than in the infinite mass case. The percentage change in the
The result for the off-diagonal components, which mea-decoherence rate of the off-diagonal versus the stationary
sures the coherence of the qubit under such conditions, igubit case is plotted in Fig. 1. The decay rate increases with
shown here, decreasing mass and matches the stationary qubit result
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0.20F ' ' ' ' ] center-of-mass motion. These two problems correspond to
[ ] the two aspects described in the Introduction. Here we con-
0.15F 1 sider the second aspect mentioned above, aiming at the effect

of quantum motional decoherence of the qubit, i.e., the back-
action of atomic motion on a two-level system in free space
as mediated by the EMF.

% increase
o
o
T
1

0.05EF b We find that the inclusion of the external degrees of free-
f ] dom only slightly alters the decoherence and relaxation rates
0.00L , : : . ] as compared to a stationary atom. Typical experimental pa-
3 4 5 6 7 8 rameters fall to the right end in the plot of Fig. 1. A rubidium
log,, m" atom used as a qubit would have a nondimensionalized mass

of approximately logkic?/%w,)=8, which places it in a

FIG. 1. A plot of the percentage increase in the decoherence afegime in which the effect of motion-induced decoherence is
the off-diagonal matrix elements of the reduced density matrix vernegligible. For optical qubit transition frequencies in general,
sus the nondimensionalized mass* = (Mc%%w,)]. The decoher- motion-induced decoherence will not be a factor unless the
ence rate increases as the mass of the atom containing the qubitrisass of the qubit is four to five orders of magnitude smaller
decreased. As the mass is increased, the decoherence rate asyRan the mass of a typical alkali-metal atom. One can con-
totes to the value of a stationary atom obtained by Anastopoulog|,de tentatively that in general AMO implementations,
and Hu[19]. This is consistent with a smaller mass qubit being motion-induced decoherence of a free qubit is negligibly
more affected by its recoil than a heavy mass qubit. Typical experis )| Since the calculation done here is coherent and non-
mental parameters fall to the right end of the shown plot. Markovian, one can view our result as confirming the valid-

. . - ity of the adiabati imation in alkali-metal at
given by[19] in the limit of infinite mass. We expect that a :qﬁbﬁs © adiabatic approximation i alkall-metalatom

qubit in a smaller mass object is more affected by recoil than Although the result of the calculation is the expected one,

a qubit in heavy mass. The variation in the decoherence ratg e technique described here is the first able to compute the

with changes in the external wave-function size is relativelyd : : ;
. . ; ecoherence of a qubit coupled to its own quantized COM
flat and cannot reliably be resolved with the available com- d b g

i d hi We find that so | without any form of Markovian approximation, while allow-
puting power and machiné accuracy. We find that so fong aﬁ]g the qubit-EMF coupling to be the nonlinear form derived
the resonant frequency is small enough or the mass la

. ) I SS 1a1%Fom the EMF spatial mode functions. Useful applications of
enqugh that the .atom|c rgcon .velocny IS non'relatlwstlc, this method will include any situations in which the COM
which is where th'.s theory IS _val|d, then the motional dec_o'motion of an atom back-acts onto its internal qubit dynamics
herence will contribute negligibly to the decay of the qubit. and the full multimode structure of the EMF is relevant. Two
such examples, as drawn from the references cited in the
IV. DISCUSSION Introduction, are an atomic qubit in a cavity and an atom

Often, one may separate the dynamics of an atom’s mo\lVith an entangled qubit and EMF degrees of freedom. In the

tion from those of its internal degrees of freedom by arguin ormer, the_ presence of the cavity Walls.increases the cavity
that the time scales associated with the motion of the ato o?e_ r(tacons %r_‘t thet aftor[r2|6]. Thte tl_atter 'S.titttr?e centﬁr of
are much longer than those of the two-level activity. This isCE"{@in two-qubit gate implementatiof, with the question

the rationale behind the adiabatic approximation adopted fo, ere being how well coherence is maintained when a qubit

most considerations of the atomic dynamics. However, COi_s entangled both internally and externally. Calculation in

herence requirements in quantum computing implementd[-hat case can provide an important feasibility test of quantum

tions may prompt one to question this assumption. One airfomputing applications which utilize such entanglement.
of our investigation is to test for nonadiabatic effects in
atomic quantum computing schemes. Another is to describe
the effect of recoil from the emission and reabsorption of This work is supported in part by NSF Grant No. PHY98-
virtual particles in the atom-EMF interaction upon the 00967 and by a contract under ARDA.
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APPENDIX: COM FUNCTIONAL INTEGRAL

The position path integral which needs to be evaluated is

[ oxexs - [Casx | exp| -i [ ds3 Guxcse Tzt
0 0
t S _ X _
B fodsfo dr S gdX(9)TGIX()le K V(s n(r) | (A1)

which can be expanded and truncated to
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M ftd X

t S _ X I
- JOdSJO dr; g X(8) g X(r)]e kS p(s) (1) |. (A2)

1-i f ‘dsS gl X(s)Je =9z (s)
0 k

J DX exp

There are thus three correlation functions which need to be computed. First the spatial mode functions must be chosen in order
to specify the targeted correlation functions. For an electromagnetic field in free @macavity or boundarigs

A
gk(X) = —=exp(ik-X), (A3)
Vo
the correlations functions are
fxf'th M ftd x| =[ 2 expl ™ (x, - x,)? A4
%0 exp| — 5 | d7 (D =\57] &P 5p Xe=X)7|, (A4)
Xt " iM td . [ MR iM ) 'Sk i s(t—s)k2
J;(ivo DX exp|i ~X(S)—7f0 T X(7)|= >t exp E(Xf—xi) +I? -(Xf—xi)—m n ,  (Ab)
JXMDX K X(8)+ K- X(r)— ftd o | = 2™ expl ™ (¢, - 32— i k. (-
%0 exp| —ik-X(s)+ik-X(r)— —- , 97 (D =\ &P 5p X=X —i——k-(Xs=Xi)
i [t=(s—r)](s—r) ,
oM n k=l (A6)
Substituting these expressions back into 8d) gives for the transition amplitude
_ _ t_ — _ M |32 iM .
K(t.0)=f D 7D 7 exp +77f77(t)_j (nn+iwony)ds|e o’ —) exp| 5 (Xp—X;)? e k570
0 2t 2t
[t N s i s(t—s) o _
_ _ k. X ) — —iwy(t—s)
x{l |fo ds; \/w_kexpltk (X4=Xi) = 5o ——K?|e Zek 7(S)
t s A2 s—r i [t=(s—D)](s—r) ,|—
—fodsfodr; w—kexp{ﬂTk.(xf—xi)—m n k2| 5(s)7(r) . (A7)
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