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Moving atom-field interaction: Quantum motional decoherence and relaxation

S. Shresta* and B. L. Hu†

Department of Physics, University of Maryland, College Park, Maryland 20742, USA
~Received 17 March 2003; published 24 July 2003!

The reduced dynamics of an atomic qubit coupled both to its own quantized center of mass motion through
the spatial mode functions of the electromagnetic field, as well as the vacuum modes, is calculated in the
influence functional formalism. The formalism chosen can describe the entangled non-Markovian evolution of
the system with a full account of the coherent back-action of the environment on the qubit. We find a slight
increase in the decoherence due to the quantized center of mass motion and give a condition on the mass and
qubit resonant frequency for which the effect is important. In optically resonant alkali-metal atom systems, we
find the effect to be negligibly small. The framework presented here can nevertheless be used for general
considerations of the coherent evolution of qubits in moving atoms in an electromagnetic field.
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I. INTRODUCTION

Atomic motion is an unavoidable element in the cons
eration of any AMO system and an integral part of expe
mental designs in atom trapping devices. At issue here is
interaction between the internal degrees of freedom of
atom, assumed to contain an effective two-level system~qu-
bit!, and the electromagnetic field~EMF!, modified by the
atom’s quantal motional degree of freedom. This probl
has two aspects:~1! How does the two-level activity affec
the atomic motion, and~2! how does atomic motion affec
the two-level activity? The first aspect is the basis for la
cooling and atom trapping, which have been studied in g
detail and successfully implemented by well-known expe
ments~for reviews, see@1–4#!. This paper is aimed at th
second aspect, specifically, how quantized motion affects
qubit-EMF system dynamics, which is of interest in the d
sign of quantum computers based on atomic qubits~in the
form of a neutral atom@5–9# or ion @10#! in a QED cavity or
optical potential. Effects on internal dynamics due to qu
tized center-of-mass~COM! motion have previously bee
studied in the situations of an atom in free space@11#, in a
cavity @12–14#, and when the atom’s qubit and COM degre
of freedom are entangled@15#. However, all have focused o
spontaneous emission rather than decoherence. The pr
work probes the non-Markovian regime of atom-EMF inte
action, under the modest aim of explicitly computing ho
entanglement with quantized motion through recoil affe
the decoherence and relaxation rates of an atomic qub
free space. In order to achieve that end, we first discuss
issues of importance in computations ofcoherentreduced
dynamics, using path integral methods.

A. The importance of including back-action

It is well known that the interaction between a two-lev
system~2LS, or qubit! and the EMF is the primary source o
its relaxation and decoherence, while effects associated
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the atom’s motional degrees of freedom are usually relega
to the background. Assuming that the atom moves adiab
cally limits one’s consideration to those circumstanc
wherein the external degrees of freedom act merely as a
sive parameter in the environment~here comprised of the
EMF and atomic motion! of our system~the qubit!, with no
dynamical interplay. In technical terms, this amounts to
‘‘test-field’’ approximation — that the qubit lives in a fixed
environment defined by a set of parameters, among them
adiabatic motion@27#. The test field approximation leave
out effects of changes in the environment on the system
include the effects of the environmental variablesdynami-
cally, it is essential to perform a self-consistent back-act
calculation. This was done for the effect of a cavity EMF
the two-level atom~2LA! in Ref. @16#.

B. Full coherence requires self-consistent treatment

In tackling problems where many factors enter, it is use
to isolate one factor after another so that the remaining
tors of interest to us can be simplified enough to yield so
solution. For quantum coherence and entanglement s
simplifications can lead to erroneous results, since phase
formation is lost if one artificially isolates the linking com
ponents of the complete quantum system. This brings up
necessity of self-consistency in any treatment of quant
coherence and entanglement issues. In the present case
qubit in an EMF, this requires that the fully entangled syst
of atomic 2LS~internal!, the EMF, and the center-of-mas
~external! degrees of freedom be treated coherently a
whole and each factor involved be allowed to evolve un
the influence of the others in a self-consistent manner. T
self-consistency requirement leads to non-Markovian
namics since memory effects arise naturally and are ne
sary to preserve maximal coherence during the evolu
@28#.

C. Grassmannian and coherent state representation
of the influence functional

A theoretical scheme we found satisfactory in meet
these requirements is the influence functional~IF! formalism
of Feynman and Vernon@17# or the related closed-time-pat
©2003 The American Physical Society10-1
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~CTP! effective action of Schwinger and Keldysh@18#. The
influence of the environmental variables on the system
interest is incorporated in the IF~or effective action! in such
a way that the equations of motion obtained for the sys
will already have included the back-action of the enviro
mental variables on the system in a dynamically se
consistent manner. This scheme has been applied to a
interacting with an EMF in Ref.@19#. There, a first-principles
derivation of the general master equations is given and
plied to the study of the decoherence of a 2LA in an EM
for the cases of a free quantum field and a cavity field in
vacuum at zero temperature. The authors found that for
standard resonant type of coupling characteristic of such
tems, the decoherence time is close to the relaxation tim

Here we use the influence functional method for the tre
ment of the back-action of the quantum field and the qua
motion of the atom on the qubit. In Sec. II we compute t
transition amplitude between an initial and final state usin
coherent state label for the~bosonic! states of the EMF and a
Grassmannian for the~fermionic! 2LS. The coherent stat
basis allows us to identify the Hilbert space of states wit
space of coherent states. The sum over all quantum ev
tions is then a sum over all paths in this space. Once
transition amplitude is computed in some sufficiently simp
fied form, forward and backward versions can be combin
and reduced to form the reduced density-matrix evolution
operator. In Sec. III we calculate the evolutionary opera
for the reduced density matrix when the EMF and motio
degrees of freedom are integrated over. We derive an e
tion describing the evolution of the on- and off-diagonal
ements; the latter is the coherence function we seek. We
in Sec. IV with a discussion of our results and comments
possible further developments on this subject.

II. THE TRANSITION AMPLITUDE

Our system is a two-level atom interacting with its ow
center-of-mass~COM! motion and the EMF. We begin with
modified multimode Jaynes-Cummings-type Hamilton
~e.g., dipole and rotating-wave approximation, see Appen
A of Ref. @19#!,

H5
P2

2M
1\voSz1\ (

k
@vkbk

†bk1gk~X!S1bk

1ḡk~X!S2bk
†#. ~1!

The first term in the Hamiltonian is the COM kinetic energ
The next two terms are the qubit and EMF energies, resp
tively. The last two terms are the interaction between
qubit, EMF, and the atom’s COM degree of freedom. No
that P andX are both operators. Coupling of the qubit to
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COM motion is through the spatial mode functions of t
EMF. We shall restrict our consideration to an initial vacuu
EMF at zero temperature. The result of this calculation w
thus be the modification of the vacuum decoherence and
laxation rates of a qubit when the effects of quantized ato
motion are included.

The first step towards obtaining the reduced system
namics while retaining the full system’s coherence is to co
pute the transition amplitudes between the initial and fi
states, which are the matrix elements of the evolution ope
tor of the full system. We do this with coherent state pa
integrals. For the EMF we use a bosonic coherent state
resentation and for the two-level system~qubit! degree of
freedom we use the Grassmannian coherent states@20,21#.
Coherent states are by definition generated by the expo
tiated operation of the creation operator and a suitable la
on a chosen fiducial state,

uzk&5 exp~zkbk
†!u0k&, ~2!

uh&5 exp~hS1!u0&. ~3!

In the case of bosonic coherent states defined in Eq.~2!, the
label zk is a complex number, and in the case of the Gra
mann coherent states defined in Eq.~3!, the labelh is an
anticommuting number. The chosen fiducial states are
EMF vacuum and the lower two-level state, respectively.

In order for any set of states to be useful for the deco
position of the transition matrix, they must have a resolut
of unity. The EMF and Grassmannian coherent states h
the following decompositions of unity:

15 E dm~zk!uzk&^z̄ku5 E dm~h!uh&^h̄u, ~4!

with the measures

dm~zk!5 exp~2 z̄kzk!,

dm~h!5 exp~2h̄h!.

Grassmann coherent states also share other well-kn
properties of coherent states, such as being nonorthog
and eigenstates of the annihilator,

^z̄kuz8k&5 exp~ z̄kz8k!, ^h̄uh8&5 exp~ h̄h8!,

bkuzk&5zkuzk&, S2uh&5huh&.

The center of mass or external degree of freedom can
represented in either the position or momentum basis. In
coherent state basis the Hamiltonian Eq.~1! can be written in
its Q representation@22–25# as @cf. Eq. ~2.8! of @19##
H~$z̄k%,$zk%,h̄,h,X!5
M Ẋ2

2
1\voh̄h1\ (

k
@vkz̄kzk1h̄gk~X!zk1 z̄kḡk~X!h#. ~5!

The transition matrix elements between the initial and final coherent states are then
0-2
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K~ t,0!5^$z̄f k%h̄ fX f ,tu expS 2
i

\
Ht D u$zik%h iX i ,0&. ~6!

Using the completeness property of the~EMF and Grassmann! coherent state basis to facilitate time discretization of
transition matrix@17# puts the transition matrix elements in a coherent state path integral representation. After insertinQ
representation, the transition elements transform into a sum over paths in the coherent state labels. Having done the
transition matrix becomes a triple functional integral,

K~ t,0!5 E DX E Dh̄Dh)
k

Dz̄kDzk expF h̄ fh~ t !1 (
k

z̄f kzk~ t !2
iM

2 E
0

t

Ẋ dsG eivot/2

3 expF2E
0

tS h̄ḣ1 ivoh̄h1 (
k

z̄kżk1 i (
k

vkz̄kzki (
k

h̄gk~X!zk1 i (
k

z̄kḡk~X!h DdsG . ~7!

In this form the transition matrix elements can be evaluated exactly by a combination of stationary phase and co
function methods which exploit the truncating properties of Grassmann variables. The order of evaluation will be th
COM, and then Grassmann functional integrals. The details follow.

A. EMF path integral

First, the EMF coherent state part of the triple path integral can be evaluated by the stationary phase method@17#. The
variational equations of motion for the electromagnetic field variables in Eq.~7! are

żk52 ivkzk2 i ḡk~X!h, ~8!

which have integral solutions@cf. Eq. ~2.14! of @16##

zk~s!5zike
2 ivks2 i E

0

s

dr ḡk@X~r !#e2 ivk(s2r )h~r !. ~9!

The transition amplitude from an initial EMF vacuum ($zik%50) to an arbitrary final state becomes

K~ t,0!5 E DX E Dh̄Dh expF h̄ fh~ t !2 E
0

t S h̄ḣ1 ivoh̄h1
iM

2
ẊDdsGeivot/2

3)
k

expF2 i E
0

t

dsḡk@X~s!#e2 ivk(t2s)z̄f k h~s!2 E
0

t

dsE
0

s

drgk@X~s!#ḡk@X~r !#e2 ivk(s2r )h̄~s!h~r !G .
~10!

The path integral for the EMF degrees of freedom is now complete.

B. COM path integral

Second, the position path integral can be evaluated as a set of zero-, one-, and two-point functions. Note in the t
amplitude of Eq.~10! that since the EMF is taken to be in an initial vacuum, any source term forh(s) will be proportional to
h i . The variational equation of motion derived from Eq.~10! for h(s) yields

ḣ~s!52 ivoh~s!2 i E
0

s

dr (
k

gk@X~s!#ḡk@X~r !#e2 ivk(s2r )h~r ! ~11!

with the boundary conditionh(0)5h i . Therefore,h(s)5u(s)h i . We use this to expand the exponent in the transit
amplitude of Eq.~10!. Due to the nilpotency of the Grassmann variables~i.e.,h i

250), it will truncate after the first term in the
expansion.

After expanding and truncating the integrand, the position path integral is

E DX expF2
iM

2 E
0

t

ds ẊGF12 i E
0

t

ds(
k

ḡk@X~s!#e2 ivk(t2s)z̄f k h~s!

2 E
0

t

dsE
0

s

dr (
k

gk@X~s!#ḡk@X~r !#e2 ivk(s2r )h̄~s!h~r !G . ~12!
012110-3
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There are thus three correlation functions which need to be computed. First the spatial mode functions must be chose
to specify the targeted correlation functions. For an electromagnetic field in free space~no cavity or boundaries!

gk~X!5
l

Avk

exp~ ik•X!, ~13!

the correlations functions are computed in the Appendix. Substituting these expressions back into Eq.~10! gives for the
transition amplitude

K~ t,0!5 E Dh̄Dh expF1
iM

2t
~X f2X i !

21h̄ fh~ t !2 E
0

t

~ h̄ḣ1 ivoh̄h!dsG S M

2p i t D
3/2

eivot/2e2 ivk(s2r )

3H 12 i E
0

t

ds(
k

l

Avk

expF i
s

t
k•~X f2X i !2

i

2M

s~ t2s!

t
k2Ge2 ivk(t2s)z̄f k h~s!

2 E
0

t

dsE
0

s

dr (
k

l2

vk
expF2 i

s2r

t
k•~X f2X i !2

i

2M

@ t2~s2r !#~s2r !

t
k2G h̄~s!h~r !J . ~14!

The path integral for the external degrees of freedom is now complete.

C. Qubit path integral

Finally, the Grassmann variable path integral can be evaluated along its stationary path. The variational equation o
for the Grassmann field variable in Eq.~14! is

ḣ t~s!52 ivoh t~s!2 E
0

s

dr (
k

l2

vk
m t~s2r ! h t~r !, ~15!

with the definition

m t~s!5 expF2 ivks2 i
s

t
k•~X f2X i !2

i

2M

s~ t2s!

t
k2G . ~16!

Note that the final timet enters as a parameter in the variational equation of motion just as the mass or position do. The
for this is that the above variational equation of motion is for the evolution of the atom from an initial time to a final tim
the time is an explicit parameter.

Rewriting the above variational equation in Laplace space allows the nonlocal integral part to be transformed w
convolution theorem. The solution is in terms of an inverse Laplace transform,

h t~s!5h iut~s!5
h i

2p i Eg2 i`

g1 i` eszdz

z1 ivo1m̃~z!
, ~17!

with the definition

m̃ t~z!5
l2

vk
E

0

`

e2szexpF2 ivks2 i
s

t
k•~X f2X i !2

i

2M

s~ t2s!

t
k2Gdz. ~18!

The solution thus becomes a contour integral. The pole of the denominator in Eq.~17! can be found toO(l2),

zo52 ivo2m̃~2 ivo!1O~l4!. ~19!

Finding the pole to orderO(l2) gives a solution to the same order,

ut~s!5e2 ivot expH 2l2t (
k

1

vk
E

0

`

dsexpF2 i S vk2vo1
k•~X f2X i !

t
2

k2

2M D s2
ik2

2Mt
s2G J . ~20!

Evaluating the transition amplitude along its stationary path with the second-order pole approximation yields an ex
for the transition matrix that is second order in its action,
012110-4
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K~ t,0!5S M

2p i t D
3/2

expF ivot/21
iM

2t
~X f2X i !

21O~l4!G
3 expF h̄ fh t~ t !2 i E

0

t

ds(
k

l

Avk

expS 2 ivk~ t2s!1 i
s

t
k•~X f2X i !2

is~ t2s!

2Mt
k2D z̄f k h t~s!G . ~21!

All three functional integrals are now evaluated. In the next section we proceed to derive the evolutionary operator
density matrix by combining the transition amplitudes into a closed loop.

III. EVOLUTIONARY OPERATOR

At this point the expression of Eq.~21! for the transition amplitude can be combined with its counterpart propaga
backwards in time and traced over all final EMF states. The result gives the evolutionary operator for the reduced
matrix ~we may call it the reduced propagator for short!,

JR5 E dX f)
k

dm~zf k!K~ t,0!K* ~ t,0!, ~22!

and is formed by integrating out the environmental variables which in our case are the EMF and the atom’s motional
of freedom.

The evolution of the qubit density-matrix elements with back-action from the EMF and the atomic motion can be cal
from the reduced propagator

rR~ t !5 E dm~h i !dm~h i8!dm~X i !JR rA~0! ^ rX~0!. ~23!

The functionsrA(0) andrX(0) are initial states for the two-level atomic and external degrees of freedom, respectivel

rA~ t !5r00~0!1h̄ ir10~0!1h i8r01~0!1h̄ ih i8r11~0!, ~24!

rX~ t !5F~X i !F* ~X i !. ~25!

The functionF(X) is the initial ~external! center-of-mass wave function of the atom. From Eq.~23! the on- and off-diagona
components of the reduced density-matrix elements evolved to timet are given by

r11~ t !5r11~0!S M

2p i t D
3 E dX f E dX i8 E dX iF~X i !F* ~X i8! expH iM

2t
~X f2X i !

22
iM

2t
~X f2X i8!2J ūt~ t !ut~ t !, ~26!

r10~ t !5r10~0!S M

2p i t D
3 E dX f E dX i8 E dX iF~X i !F* ~X i8! expH iM

2t
~X f2X i !

22
iM

2t
~X f2X i8!2J ut~ t !. ~27!
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The EMF, as previously stated, is in a vacuum state, but
choice of an initial center-of-mass wave function has not
been made. To closely model an atom with fixed position a
momentum, we use a minimum uncertainty Gaussian w
function centered at (Xo50,Po50),

F~X!5p23/4s23/2expF2
X2

2s2G . ~28!

Such an initial wave function simplifies the expressions
the diagonal and off-diagonal matrix elements of the qub

The result for the off-diagonal components, which me
sures the coherence of the qubit under such conditions
shown here,
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r10~ t !5r10~0!
4

Ap
S M2s2

t222iM s2 t
D 3/2

3E
0

`

dxx2u~x,t ! expF2
M2 s2

t222iM s2t
x2G .

~29!

The functionu(x,t) is given by Eq.~20! with x5uX f2X i u.
The evolution of the coherence function is found to fo

low an exponential decay with a decay rate slightly fas
than in the infinite mass case. The percentage change in
decoherence rate of the off-diagonal versus the station
qubit case is plotted in Fig. 1. The decay rate increases w
decreasing mass and matches the stationary qubit re
0-5
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given by @19# in the limit of infinite mass. We expect that
qubit in a smaller mass object is more affected by recoil th
a qubit in heavy mass. The variation in the decoherence
with changes in the external wave-function size is relativ
flat and cannot reliably be resolved with the available co
puting power and machine accuracy. We find that so long
the resonant frequency is small enough or the mass l
enough that the atomic recoil velocity is nonrelativist
which is where this theory is valid, then the motional dec
herence will contribute negligibly to the decay of the qub

IV. DISCUSSION

Often, one may separate the dynamics of an atom’s
tion from those of its internal degrees of freedom by argu
that the time scales associated with the motion of the a
are much longer than those of the two-level activity. This
the rationale behind the adiabatic approximation adopted
most considerations of the atomic dynamics. However,
herence requirements in quantum computing impleme
tions may prompt one to question this assumption. One
of our investigation is to test for nonadiabatic effects
atomic quantum computing schemes. Another is to desc
the effect of recoil from the emission and reabsorption
virtual particles in the atom-EMF interaction upon th

FIG. 1. A plot of the percentage increase in the decoherenc
the off-diagonal matrix elements of the reduced density matrix v
sus the nondimensionalized mass@m* 5(Mc2/\vo)#. The decoher-
ence rate increases as the mass of the atom containing the qu
decreased. As the mass is increased, the decoherence rate a
totes to the value of a stationary atom obtained by Anastopo
and Hu @19#. This is consistent with a smaller mass qubit bei
more affected by its recoil than a heavy mass qubit. Typical exp
mental parameters fall to the right end of the shown plot.
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center-of-mass motion. These two problems correspond
the two aspects described in the Introduction. Here we c
sider the second aspect mentioned above, aiming at the e
of quantum motional decoherence of the qubit, i.e., the ba
action of atomic motion on a two-level system in free spa
as mediated by the EMF.

We find that the inclusion of the external degrees of fre
dom only slightly alters the decoherence and relaxation ra
as compared to a stationary atom. Typical experimental
rameters fall to the right end in the plot of Fig. 1. A rubidiu
atom used as a qubit would have a nondimensionalized m
of approximately log(Mc2/\vo)58, which places it in a
regime in which the effect of motion-induced decoherence
negligible. For optical qubit transition frequencies in gener
motion-induced decoherence will not be a factor unless
mass of the qubit is four to five orders of magnitude sma
than the mass of a typical alkali-metal atom. One can c
clude tentatively that in general AMO implementation
motion-induced decoherence of a free qubit is negligi
small. Since the calculation done here is coherent and n
Markovian, one can view our result as confirming the val
ity of the adiabatic approximation in alkali-metal ato
qubits.

Although the result of the calculation is the expected o
the technique described here is the first able to compute
decoherence of a qubit coupled to its own quantized CO
without any form of Markovian approximation, while allow
ing the qubit-EMF coupling to be the nonlinear form deriv
from the EMF spatial mode functions. Useful applications
this method will include any situations in which the CO
motion of an atom back-acts onto its internal qubit dynam
and the full multimode structure of the EMF is relevant. Tw
such examples, as drawn from the references cited in
Introduction, are an atomic qubit in a cavity and an ato
with an entangled qubit and EMF degrees of freedom. In
former, the presence of the cavity walls increases the ca
mode recoils on the atom@26#. The latter is at the center o
certain two-qubit gate implementations@9#, with the question
there being how well coherence is maintained when a q
is entangled both internally and externally. Calculation
that case can provide an important feasibility test of quant
computing applications which utilize such entanglement.

ACKNOWLEDGMENTS

This work is supported in part by NSF Grant No. PHY9
00967 and by a contract under ARDA.

of
r-

it is
mp-
s

i-
APPENDIX: COM FUNCTIONAL INTEGRAL

The position path integral which needs to be evaluated is

E DX expF2
iM

2 E
0

t

ds ẊG expF2 i E
0

t

ds(
k

ḡk@X~s!#e2 ivk(t2s)z̄f kh~s!

2 E
0

t

dsE
0

s

dr (
k

gk@X~s!#ḡk@X~r !#e2 ivk(s2r )h̄~s!h~r !G , ~A1!

which can be expanded and truncated to
0-6
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E DX expF2
iM

2 E
0

t

ds ẊGF12 i E
0

t

ds(
k

ḡk@X~s!#e2 ivk(t2s)z̄f k h~s!

2 E
0

t

dsE
0

s

dr (
k

gk@X~s!#ḡk@X~r !#e2 ivk(s2r )h̄~s!h~r !G . ~A2!

There are thus three correlation functions which need to be computed. First the spatial mode functions must be chose
to specify the targeted correlation functions. For an electromagnetic field in free space~no cavity or boundaries!

gk~X!5
l

Avk

exp~ ik•X!, ~A3!

the correlations functions are
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Substituting these expressions back into Eq.~10! gives for the transition amplitude
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