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Unitary relation for the time-dependent SU„1,1… systems

Dae-Yup Song*
Department of Physics, University of Florida, Gainesville, Florida 32611, USA
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The system whose Hamiltonian is a linear combination of the generators of SU(1,1) group with time-
dependent coefficients is studied. It is shown that there is a unitary relation between the system and a system
whose Hamiltonian is simply proportional to the generator of the compact subgroup of SU(1,1). The unitary
relation is described by the classical solutions of a time-dependent~harmonic! oscillator. Making use of the
relation, the wave functions satisfying the Schro¨dinger equation are given, for a general unitary representation,
in terms of the matrix elements of a finite group transformation~Bargmann function!. The wave functions of
the harmonic oscillator with an inverse-square potential is studied in detail, and it is shown that through an
integral, the model provides a way of deriving the Bargmann function for the representation of positive discrete
series of SU(1,1).
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I. INTRODUCTION

Group theoretical methods could be useful in analyz
physical systems, and particularly the su(1,1)-type algeb
structure is known to appear in many quantum syste
@1–3#. Schemes for experimental realizations of the SU(1
states have been proposed@4,5# and the time-dependent qua
dratic system~a generalized harmonic oscillator! @6# is a re-
alization of particular representations of the SU(1,1) gro
The evolution operator and transition probabilities of the h
monic oscillator with a time-dependent frequency have b
known in terms of classical solutions of the oscillator@7#.
The wave functions of the quadratic systems@6,7#, if the
centers of probability distributions of the functions remain
the origin of the space coordinate, are closely related to
SU(1,1) coherent states of Perelomov@8#, which are ob-
tained by applying displacement-type elements of the gr
on a fiducial vector in a representation space.

Unitary transformation methods have long been rec
nized as a useful tool in finding the wave functions of t
coherent systems@9# and of the generalized harmonic osc
lators @7,10,11#. Through a unitary transformation metho
the complete set of wave functions for a general quadr
system has been given in terms of the classical solution
the system@6,11#, and the fact that wave functions are d
scribed by the classical solutions can be clearly underst
from the path-integral approach for this system@6#. On the
other hand, it turns out that the unitary transformation fo
time-dependent quadratic system can be used for the s
quadratic system with an inverse-square potential to give
wave functions@11#. Indeed, su(1,1) symmetry has been n
ticed in the model of the inverse-square potential@12#, and
the symmetry has been used to find the stationary wave f
tions for the case of a constant Hamiltonian@13#, which
would imply that a unitary transformation method may
applicable for general time-dependent SU(1,1) systems.

In this paper, we will consider the system which is d
scribed by Hamiltonian
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H5\@A0~ t !K01A1~ t !K114a~ t !K2#1b~ t !, ~1!

whereK0 ,K1, andK2, satisfying commutation relations

@K1 ,K2#52 iK 0 , @K2 ,K0#5 iK 1 , @K0 ,K1#5 iK 2 ,
~2!

are the Hermitian generators of the SU(1,1) group, a
A0(t),A1(t),a(t),b(t) are real functions of timet, with
A0(t)ÞA1(t). This system has long been consider
@2,14,15# particularly for applications in quantum optics, an
it has been suggested that solutions of a classical equatio
motion might be used in describing the wave functions@16#.
Sinceb(t) can be understood as a result of a simple unit
transformation which does not depend on the generators~see,
e.g., Ref.@6#!, from now on we will takeb(t)50. As an
extension of the unitary relation in the quadratic syste
@7,11#, we will give the unitary transformation which relate
the system ofH and the system described by

H052\wcK0 , ~3!

wherewc is a positive constant. The unitary transformation
described by the classical solutions of a time-dependent~har-
monic! oscillator. With a choice of the realizations of th
generators in terms of the canonical coordinates, the rela
we will give becomes the known one of the quadratic s
tems@11#; Due to the nonuniqueness in realizing the gene
tors, however, the relation in SU(1,1) is more general th
that in the quadratic system, even for the representation
SU(1,1), which correspond to the quadratic systems.

In the following section, we will give the unitary relatio
between the systems ofH and ofH0, and the relation will be
discussed in some explicit realizations. In Sec. III, maki
use of the unitary relation, the wave functions satisfying
Schrödinger equation will be given in terms of the matr
elements of a finite group transformation~Bargmann func-
tion! which, in turn, will be determined by the classical s
lutions of a~harmonic! oscillator. In Sec. IV, the representa
tions that correspond to harmonic-oscillator systems will
studied, and other expressions of the Bargmann function
these representations will be given, which generalizes
known results on transition probabilities@7#. It will be fur-
al
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ther shown that the wave functions of the system ofH0,
obtained through the unitary transformation, can be writ
in a simple form. In Sec. V, the wave functions of the qu
dratic system with an inverse-square interaction will be st
ied, while the set of the wave functions gives a represe
tion space of the positive discrete seriesD1(k) which is one
of the unitary irreducible representations~UIRs! of the
SU(1,1) group. It will be shown that the wave functions
the quadratic system with an inverse-square potential co
be used to find the Bargmann function ofD1(k) through an
integral. The last section will be devoted to the discussio
and an appendix will be added to reveal the equivalent
pressions of the Bargmann function.

II. A UNITARY RELATION

For the description of the unitary relation, we introdu
M (t) as

M ~ t !5
2wc

A0~ t !2A1~ t !
~4!

andu(t),v(t) as the two real, linearly independent solutio
of the second-order differential equation:

ÿ1
Ṁ ~ t !

M ~ t !
ẏ1F1

4
~A0

22A1
2!24a21

2

M

d

dt
~Ma!Gy50. ~5!

For 1
4 (A0

22A1
2)24a21(2/M )(d/dt)(Ma).0, this is an

equation of motion of a generalized harmonic oscillator@6#.
By definingr(t) and time constantV, which are positive, as

r~ t !5Au2~ t !1v2~ t !, ~6!

V5M ~ t !@u~ t !v̇~ t !2u̇~ t !v~ t !# ~7!

and a real function oft, t(t), through relation

ei t5
u1 iv

r
, ~8!

one may find that unitary operator

U5expF i
M

2wc
S ṙ

r
12aD ~e2iwctK11e22iwctK212K0!G

3expF lnSAwc

V
r D ~e2iwctK12e22iwctK2!G

3exp@2i ~wct2t!K0# ~9!

satisfies relation

US 2 i\
]

]t
1H0DU†52 i\

]

]t
1H. ~10!

In Eq. ~9!, K1 andK2 are defined as

K15e22iwct~K11 iK 2!, K25K1
† , ~11!

so that
01210
n
-
-
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dt
~e2iwctK1!50,

d

dt
~e22iwctK2!50. ~12!

GeneratorsK0 , K1 , andK2 then satisfy commutation rela
tions

@K0 ,K6#56K6 , @K1 ,K2#522K0 . ~13!

By making use of the commutation relations in Eq.~13!,
with the fact that

d

dt
~M ṙ !2

V2

Mr31M F1

4
~A0

22A1
2!24a21

2

M

d

dt
~Ma!Gr50,

~14!

one can explicitly verify the relation of Eq.~10! @17#.
The Casimir operationC,

C5K0
22K1

22K2
25K0

22
1

2
~K1K21K2K1!, ~15!

is used in characterizing the UIRs of the SU(1,1) grou
which are all infinite dimensional. If we reparametrize t
eigenvalues ofC as k(k21), it has been known that, fo
both cases ofk51/4 andk53/4, the su(1,1) algebra can b
realized by the operators of a quadratic system; IfL0 , L1,
andL2 are written as

L05
1

4\ S p2

wc
1wcx

2D , L15
1

4\ S 2
p2

wc
1wcx

2D ,

L252
1

4\
~xp1px!, ~16!

with commutation relation@x,p#5 i\, one can find that
$L0 ,L1 ,L2% can be a basis of the su(1,1) algebra w
C52(3/16)I . If this expression of the generators of th
SU(1,1) group is plugged into Eqs.~9! and~10!, one can find
relation

ULS 2 i\
]

]t
1

1

2
~p21w0

2x2! DUL
†

52 i\
]

]t
1

p2

2M ~ t !
1

M ~ t !

8
@A0

2~ t !2A1
2~ t !#x2

2a~ t !@xp1px#, ~17!

with

UL5expF i
M

2\
S ṙ

r
12aD x2GexpF2

i

2\
lnSAwc

V
r D

3~xp1px!GexpF i

2\ S t2
t

wc
D ~p21wc

2x2!G . ~18!

For 1
4 (A0

22A1
2)24a21(2/M )(d/dt)(Ma).0, the relation

of Eq. ~17! becomes the relation between a general quadr
system and a simple harmonic oscillator@11,7#. For 1

4 (A0
2

2A1
2)24a21(2/M )(d/dt)(Ma)<0, one may find that the

relation in Eq.~17! is true, though, in these cases,UL may
8-2
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not be useful in finding wave functions for a general qu
dratic system, which are localized for all timet. SinceLi and
Ki share the same algebraic structure, proving Eq.~17! con-
stitutes a proof of the general relation of Eq.~10!.

It should be, however, mentioned that, even for the q
dratic systems ofC52(3/16)I , Eq. ~10! is more general
than Eq.~17!, as much as the realization of the algebra is
unique. For example, generatorsL̃0 , L̃1, and L̃2 of the
SU(1,1) group can be realized as

L̃05L0 , L̃152L1 , L̃252L2 . ~19!

In this realization, Eq.~10! is written as

UL̃S 2 i\
]

]t
1

1

2
~p21wc

2x2! DUL̃
†

52 i\
]

]t
1

M

8wc
2 @A0

2~ t !2A1
2~ t !#p21

wc
2

2M ~ t !
x2

1a~ t !@xp1px#, ~20!

with

UL̃5expF i
M

2\wc
2S ṙ

r
12aD p2GexpF i

2\
lnSAwc

V
r D

3~xp1px!GexpF i

2\ S t2
t

wc
D ~p21w0

2x2!G . ~21!

III. WAVE FUNCTIONS OF THE SU „1, 1… SYSTEMS

Making use of the Baker-Campbell-Hausdorff~or, disen-
tanglement! formula ~see, e.g., Ref.@3#! with the commuta-
tion relations in Eq.~13!, one can find that operatorU is
written as

U5~ejK1egK0e2 j̄K2!eiwK0, ~22!

where

j5

2
V

r
1wcr1 iM ~ ṙ12ar!

V

r
1wcr2 iM ~ ṙ12ar!

e2iwct, ~23!

g5 ln~11uju2!, ~24!

w52~wct2t!2 i ln

V

r
1wcr1 iM ~ ṙ12ar!

V

r
1wcr2 iM ~ ṙ12ar!

. ~25!

In Eq. ~22!, j̄ denotes the complex conjugate ofj. Elementg
of SU(1,1) may be written in the form

g~a,b!5S a b

b̄ ā
D , uau22ubu251. ~26!
01210
-

-

t

Making use of the realization of generators

K05S 1/2 0

0 21/2D , K15S 0 1

0 0D , K25S 0 0

21 0D ,

~27!

one can find thatg(a,b) is parametrized as

a5
eiw/2

A12uju2
5

ei (wct2t)

2 F1

r
AV

wc
1rAwc

V

1
iM

AwcV
~ṙ12ar!G , ~28!

b5
je2 iw/2

A12uju2
5

ei (wct1t)

2 F2
1

r
AV

wc
1rAwc

V

1
iM

AwcV
~ṙ12ar!G . ~29!

Among the representations of SU~1, 1! group, we only
consider the UIRs@18#. In a UIR, a basis state can be d
noted asum,q0 ,k& satisfying

C~e22i (m1q0)tum,q0 ,k&)5k~k21!~e22i (m1q0)tum,q0 ,k&),
~30!

K0~e22i (m1q0)tum,q0 ,k&)5~m1q0!~e22i (m1q0)tum,q0 ,k&).
~31!

There are four classes of UIRs, andm must be integer@2,18#.
When a group element is acted on a basis state of a UIR
we assume the completeness of the representation, the r
should be written as a linear combination of the basis sta
of the UIR. Sincee22i (m1q0)um,q0 ,k& satisfies the Scro¨d-
inger eqation

i\
]

]t
~e22i (m1q0)tum,q0 ,k&)5H0~e22i (m1q0)tum,q0 ,k&),

~32!

from the unitary relation of Eq.~10!, one can find that the
state given by

uCm,q0 ,k&5U~e22i (m1q0)tum,q0 ,k&) ~33!

should satisfy the Schro¨dinger equation

i\
]

]t
uCm,q0 ,k&5HuCm,q0 ,k&, ~34!

while uCm,q0 ,k& may be written as

uCm,q0 ,k&5V~g!~e22i (m1q0)tum,q0 ,k&)

5(
m8

V
m8,m

(k,q0)
~a,b!~e22i (m81q0)tum8,q0 ,k&).

~35!
8-3
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Though Eq.~35! is valid in any UIR, from now on we only
consider the representation of positive discrete seriesD1(k),
wherek.0, q05k, (k is real!, andm50,1,2,3, . . . . Since
q05k in this representation,q0 will be omitted or replaced
by k. A basis state ofD1(k) could then be written as

~e22i (m1k)tum,k&)5A G~2k!

m!G~m12k!
~K1!m~e22iktu0,k&).

~36!

The explicit expression ofVm8,m
(k) (a,b), the Bargmann func-

tions, are known in this case, anduCm,k& is written as@2,18#

uCm,k&5 (
m850

`

Vm8,m
(k)

~a,b!~e22i (m81k)tum8,q0 ,k&).

~37!

As shown in the Appendix,Vm8,m
(k) can be given as

Vm8,m
(k)

~a,b!5
G~m1m812k!

Am!G~m12k!~m8!!G~m812k!

3ā2m2m822kbm8~2b̄ !m

3FS 2m,2m8;2m2m822k11;
aā

bb̄
D ,

~38!

whereF(a,b;c;z) is the hypergeometric function@19#.

IV. GENERALIZED HARMONIC OSCILLATORS

As is well known @13#, the representation spaces ofk
51/4 and 3/4 ofD1(k) reduce to the Hilbert space of
simple harmonic oscillator.um,1/4& in a representation spac
of SU(1,1) corresponds tou2m& of a simple harmonic oscil-
lator, which is an eigenstate of HamiltonianH052\wcL0
with energy eigenvalue (2m1 1

2 )\wc . For k53/4, un,3/4&
corresponds to eigenstateu2m11& of H0 with energy eigen-
value (2m111 1

2 )\wc . Since the unitary relation of Eq
~10! reduces to the one for the quadratic systems if
choose a basis of the su(1,1) algebra, as in Eq.~16!, for
1
4 (A0

22A1
2)24a21(2/M )(d/dt)(Ma)&0, one can find the

explicit expressions of e2 i (2m11/2)t^xuULum, 1
4 & and

e2 i (2m13/2)t^xuULum, 3
4 &, as in Refs.@6,11#.

In this section,Vm8,m
(k) will be studied in more detail for

both cases ofk51/4 and 3/4, which will generalize th
known results@7,13#. It will also be shown that, if the unitary
relation becomes a relation between the same system
scribed by H0, operator U and ~thus, the corresponding
Bargmann function! can be written in a very simple form.
01210
e

e-

A. For a general quadratic system

Making use of transformation formula@19#

F~a,b;c;z!5~12z!2aFS a,c2b;c;
z

z21D ~39!

and Eq.~A2!, one can find thatVm8,m
(k) (a,b) may be written

as

Vm8,m
(k)

~a,b!5
G~m1m812k!

Am!G~m12k!~m8!!G~m812k!

3~ ā !2m2m822k~b!m82mF~2m,2m22k

11;2m2m822k11;aā!

5
~21!m

~2k21!!
AG~m12k!G~m812k!

m! ~m8!!

3~ ā !2m822kambm82m

3FS 2m,m12k;2k;
1

aā
D . ~40!

For k51/4, a relation between the hypergeometric functi
and the associate Legendre function with non-negative i
gersp,q,

FS 2p,q1
1

2
;
1

2
;x2D

5~21!q
~2p!!!

~2q21!!!
~12x2!(p2q)/2Pq1p

q2p~x!, ~41!

obtained from a more general one in Ref.@19#, can be used to
find a simpler expression ofVm8,m

(1/4) (a,b), as

Vm8,m
(1/4)

~a,b!5
~21!m1m8

Aā
A ~2m!!

~2m8!!
S a

ā
D (m1m8)/2

3S b̄

b
D (m2m8)/2

Pm81m
m82mS 1

Aaā
D . ~42!

For k53/4, formula

FS 2p,q1
3

2
;
3

2
;x2D

5~21!q
~2p!!!

~2q11!!!

1

x
~12x2!(p2q)/2Pq1p11

q2p ~x!, ~43!

can be used to find
8-4
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Vm8,m
(3/4)

~a,b!5
~21!m1m8

Aā
A ~2m11!!

~2m811)!S a

ā
D (m1m811)/2

3S b̄

b
D (m2m8)/2

Pm81m11
m82m S 1

Aaā
D . ~44!

For the case ofM (t)51 anda(t)50, with the choice of the
basis in Eq.~16!, H of Eq. ~1! becomes the Hamiltonian of
harmonic oscillator of unit mass and time-dependent
quency (w(t)5A(wc/2)@A0(t)1A1(t)#). In this case, one
can find that Eqs.~42! and~44! exactly reproduce Eq.~83! of
Ref. @7#.

B. For a simple harmonic oscillator

For the case ofA0(t)52wc and A1(t)5a(t)50, H of
Eq. ~1! becomesH0 of Eq. ~3!, and the unitary relation given
in Eq. ~10! becomes a relation between the same system
this case,r satisfies

r̈2
V2

r3 1wc
2r50, ~45!

which makes it possible to analyze unitary operatorU in
more detail. Making use of this fact in Eq.~45!, one can find
that

d

dt
ln j50 ~46!

and

d

dt
w50. ~47!

Though Eqs.~46! and ~47! are valid for generalk, to be
explicit, we first consider the realization given in Eq.~16!. In
this realization, by defining

ac5
1

A2\wc

~wcx1 ip !, ac
†5

1

A2\wc

~wcx2 ip !,

~48!

with a real constantwc and a complex constantjc , one can
find thatUL can be written as

UL5expFjcac
†ac

†

2
e22iwctGexpF ln~11ujcu2!

2 S ac
†ac1

1

2D G
3expF2

j̄cacac

2
e2iwctGexpF iwc

2 S ac
†ac1

1

2D G . ~49!

UL of k51/4 or 3/4, thus, shows that, ifac
†ac

† (acac) is
applied on a state to give a new state, phase factore22iwct

(e2iwct) should be multiplied at the same time, which prov
that
01210
-

In

s

uCm,k&5 (
m850

`

cm,m8~e22i (m81k)tum8,k&), ~50!

wherecm,m8 is a constant.
For a generalk with A0(t)52wc , A1(t)5a(t)50, it

may be easy to find that wave functions satisfying Eq.~34!
should also be written as in Eq.~50!. A wave function in a
simple harmonic-oscillator system can be obtained by su
posing the wave functions ofk51/4 andk53/4, so a wave
function in this system is written as

uc&5 (
n50

`

cne2 i [n1(1/2)]wctun&, ~51!

wherecn is a constant.

V. HARMONIC OSCILLATOR WITH
AN INVERSE-SQUARE INTERACTION

It has been known that generators forD1(k) of SU(1,1)
can be realized as@12#

\L0
k5

1

4wc
S p21

2g

x2 D1
wcx

2

4
,

\L1
k52

1

4wc
S p21

2g

x2 D1
wcx

2

4
,

\L2
k52

1

4
~xp1px!, ~52!

whereg52(k2 1
4 )(k2 3

4 )\2. For the system of Hamiltonian
Hk52\wcL0

k on the half-linex.0, the wave functions are
given as@20#

fn
s2~k;x,t !5S 4wc

\ D 1/4S n!

G~n12k! D
1/2

e22i (n1k)wct

3S wcx
2

\ D k21/4

expS 2
wcx

2

2\ DLn
2k21S wcx

2

\ D ,

~53!

where Ln
a is the associated Laguerre polynomial defin

through

x
d2Ln

a

dx2 1~a112x!
dLn

a

dx
1nLn

a~x!50. ~54!

However,

fn
s2S 1

4
;x,t D 5~21!nS 2Awc

22n(2n)!Ap\
D 1/2

e22i [n1(1/4)]wct

3expS 2
wcx

2

2\
DHnSAwc

\
xD

implies that
8-5
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fn
s~k;x,t ![e22i (n1k)wct^xun,k&5~21!nfn

s2~k;x,t !.
~55!

If we chooseL0
k , L1

k , andL2
k as the generators of SU(1,1),U

becomesUL , andULfn
s2(k;x,t) can be calculated as@11#

fn
2~k;x,t !5ULfn

s2~k;x,t !

5S 4V

\r2D 1/4S n!

G~n12k! D
1/2

e22i (n1k)tS Vx2

\r2 D k21/4

3expF2
x2

2\
S V

r2 2 iM
ṙ

r
22iMa D G

3Ln
2k21S Vx2

\r2 D . ~56!

Equations~37! and ~55! then suggest that

fn
2~k;x,t !5 (

m50

`

~21!n1mVm,n
k ~a,b!fm

s2~k;x,t !. ~57!

Making use of the integration formula@21#

E
0

`

e2bxxaLn
a~lx!Lm

a ~mx!dx

5
G~m1n1a11!

m!n!

~b2l!n~b2m!m

bm1n1a11

3FS 2m,2n;2m2n2a;
b~b2l2m!

~b2l!~b2m! D ,

~58!

which is valid for Rea.21 and Reb.0, one can indeed
find that

E
0

`

f̄m
s2~k;x,t !fn

2~k;x,t !dx5~21!n1mVm,n
k ~a,b!.

~59!

If we consider a system described by HamiltonianHk(e)
5@1/2(11 i e)#@p21(2g/x2)#1(11 i e)(wc

2x2/2) with real
positive e, one can show that kernel~propagator!
K(xb ,tb ;xa ,ta) of the system~see, e.g., Ref.@2#! reduces to
the kernel of free particle of unit mass, in the limit oftb
→ta10 ande→0, which would imply completeness of se
$fn

s2(k;x,t)un50,1,2, . . . %. Indeed, if we assume complete
ness, the fact in Eq.~59! amounts to a proof for the relatio
in Eq. ~57!.

One can also takeL0
k , L̃1

k , L̃2 as the generators o
SU(1,1), while

L̃1
k52L1

k , L̃2
k52L2

k . ~60!

SinceL̃1
k 5e22iwct(L̃1

k1 i L̃ 2
k)52L1

k , Eqs.~36! and~55! im-
ply that
01210
fn
s2~k;x,t !5A G~2k!

m!G~m12k!
~ L̃1

k !mf0
s2~k;x,t !. ~61!

If we use these generators in the unitary relation of Eq.~10!,
the relation and Eq.~37! imply that wave function

fn~k;x,t !5 (
m50

`

Vm,n
k ~a,b!fm

s2~k;x,t ! ~62!

satisfies the Schro¨dinger equation

i\
]

]t
fn~k;x,t !5F M

8wc
2 @A0

2~ t !2A1
2~ t !#

3S 2\2
]2

]x21
2g

x2 D Gfn~k;x,t !

1F wc
2

2M ~ t !
x22 ia~ t !\

3S 2x
]

]x
11D Gfn~k;x,t !. ~63!

VI. DISCUSSIONS

We have shown that for the systems of su(1,1) symme
there is a unitary relation between the system whose Ha
tonian is given as a linear combination of the generators
SU(1,1) group with time-dependent coefficients, and a s
tem of the Hamiltonian which is simply proportional to th
generator of the compact subgroup. The unitary relation
obtained through an extension of that between the gen
quadratic system and a simple harmonic oscillator. Howe
it should be mentioned that the relation is still formal, in t
sense that the explicit form of the relation is given providi
classical solutionsu(t) andv(t) are known. For the case tha
M is constant anda50, if A0

2,A1
2, Eq. ~5! becomes the

equation of motion of an inverted harmonic oscillator, so th
r diverges as time goes to infinity. Ifr diverges, for a qua-
dratic system, the probability distribution of a wave functio
obtained through the unitary relation spreads out all over
space, while it may be possible that a meaningful syst
could be defined algebraically with divergingr.

Another point worthy of being mentioned is that the fo
mal relation is true even for the case of negativeM (t). In
fact, for a constant HamiltonianH, the Schro¨dinger equation
is invariant under the exchange ofH↔2H and t↔2t. In
the case ofA0(t)522wc andA1(t)5a(t)50 whereM (t)
521 and thusH52H0, one can take the classical solu
tions as u(t)5sinwct, v(t)5coswct, so that U
52exp@2it(2wcK0)#. By applying thisU on a stationary state
e22i (m1q0)wctum,q0 ,k&, one will have the state
2e2i (m1q0)wctum,q0 ,k&. This fact, therefore, suggests th
the invariance may be included in the unitary relation.

It would be interesting to find similar unitary relations
the systems with other symmetries. The unitary relation
the SU(1,1) system has been found, based on the relatio
harmonic oscillators which may be the simplest system w
8-6
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the symmetry. This implies that, if we find a unitary relatio
in a simple system of a symmetry, the relation could be g
eralized for other systems with the same symmetry. Tho
SU(1,1) is a noncompact group, the generalization its
would be possible for a compact group. In addition, it wou
be interesting to find the implications of the unitary relati
in a system where the su(1,1) symmetry is a part of
symmetry of the system.
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APPENDIX

In order to show that the Bargmann function given in E
~38! is equal to the standard expression@2,18#, the hypergeo-
metric function in the equation can be written as

FS 2m,2m8;2m2m822k11;
aā

bb̄
D

5FS 2m,2m8;2m2m822k11;11
1

bb̄
D

5
G~m812k!G~m12k!

G~2k!G~m1m812k!
FS 2m,2m8;2k;2

1

bb̄
D ,

~A1!

where the last equality is obtained through a formula giv
in Ref. @19#. With the Appell’s symbol (a,s) defined for
non-negative integerss by

~a,s![H 1 ~s50!

a~a11!•••~a1s21! ~s.0!
J ,

formula

F~2 l ,b;c;2y!5
~b,l !

~c,l !
ylF~2 l ,12 l 2c;12 l 2b;21/y!,

~A2!

is known for a non-negative integerl in Ref. @18#, which is
valid as long as (b,l )Þ0. Form>m8, Eq. ~A2! can be used
to find

FS 2m,2m8;2m2m822k11;
aā

bb̄
D

5
m!G~m12k!

~m2m8!!G~m1m812k!
~2bb̄!2m8

3F~2m8,2m822k11;12m81m;2bb̄!.

~A3!

For m8>m, Eq. ~A2! can also be used to give
01210
-
h
lf

e

rt-
-
-

.

n

FS 2m,2m8;2m2m822k11;
aā

bb̄
D

5FS 2m8,2m;2m2m822k11;
aā

bb̄
D

5
~m8!!G~m812k!

~m82m!!G~m1m812k!
~2bb̄!2m

3F~2m,2m22k11;12m1m8;2bb̄!.

~A4!
After some algebra with the above formulas, one can fi

that, the Bargmann function ofD1(k) given in Eq.~38! is
equivalent to the standard expression@2,18#: For m8>m,

Vm8,m
(k)

~a,b!5Am8,m~ ā !2m82m22k~b!m82m

3F~2m,12m22k;11m82m;2bb̄!

~A5!

and form8<m,

Vm8,m
(k)

~a,b!5Am,m8~ ā !2m82m22k~2b̄ !m2m8

3F~2m8,12m822k;11m2m8;2bb̄!,

~A6!

where

Am8m5
1

~m82m!!
S ~m8!!G~m812k!

m!G~m12k! D 1/2

. ~A7!

Since the hypergeometric series of any hypergeometric fu
tion used in this paper terminates, the series always c
verges. Making use of the expression ofU given in Eq.~22!
and the basis state in Eq.~36!, the expression of Bargman
function @Eqs. ~A5! and ~A6!# can also be directly derived
for D1(k) as

Vm8,m
(k)

~a,b!5e22i (m2m8)t^m8,kuUum,k&

5ei [(m1k)w22(m2m8)t]

3^m8,kuejK1egK0e2 j̄K2um,k&

5ei [(m1k)w22(m2m8)t]

3^m8,kue2 j̄K2e2gK0ejK1um,k&

5
ei (m1k)wG~2k!

A~m8!!m!G~m12k!G~m812k!

3 (
p,q50

`
~2 j̄ !pjq

p!q!
^0,ku~K2!m81pe2gK0

3~K1!q1mu0,k&, ~A8!

while the remaining procedures are straightforward.
8-7
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