PHYSICAL REVIEW A 68, 012108 (2003
Unitary relation for the time-dependent SU(1,1) systems
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The system whose Hamiltonian is a linear combination of the generators of SU(1,1) group with time-
dependent coefficients is studied. It is shown that there is a unitary relation between the system and a system
whose Hamiltonian is simply proportional to the generator of the compact subgroup of SU(1,1). The unitary
relation is described by the classical solutions of a time-deper{iantnoni¢ oscillator. Making use of the
relation, the wave functions satisfying the Satinger equation are given, for a general unitary representation,
in terms of the matrix elements of a finite group transformati®argmann function The wave functions of
the harmonic oscillator with an inverse-square potential is studied in detail, and it is shown that through an
integral, the model provides a way of deriving the Bargmann function for the representation of positive discrete
series of SU(1,1).
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|- INTRODUCTION H=A[Ag()Ko+ Ay(DKy+4a()K,]+B(1), (1)

Group theoretical methods could be useful in analyzingvhereKg,K;, andK,, satisfying commutation relations
physical systems, and particularly the su(1,1)-type algebraic L » .
structure is known to appear in many quantum systems [K1,Ka]==iKo, [Kz,Ko]=iKy, [Ko,Ki]=iKz,
[1-3]. Schemes for experimental realizations of the SU(1,1)
states have been propodeds] and the time-dependent qua- 46 the Hermitian generators of the SU(L,1) group, and
dr_atlc_ systema _generallzed harmpnlc oscillajd6] is a re- Ao(t),AL(1),a(t),B(t) are real functions of time, with
alization of particular representations of the SU(1,1) groupAo(t);&Al(t)_ This system has long been considered
The evolution operator and transition probabilities of the harr5 14 19 particularly for applications in quantum optics, and
monic oscillator with a time-dependent frequency have beef} g heen suggested that solutions of a classical equation of

known in terms of classical solutions of the oscillaf@i. motion might be used in describing the wave functipb].

The wave functiqns Of the q_uadratic systef@?], if the_ SinceB(t) can be understood as a result of a simple unitary
centers of probability distributions of the functions remain atiansformation which does not depend on the generéses

the origin of the space coordinate, are closely related to thg g., Ref.[6]), from now on we will takeB(t)=0. As an
SU(1,1) coherent states of Perelomf®, which are ob- o tansion of the unitary relation in the quadratic systems

tained by applying displacement-type elements of the group; 11) \ye will give the unitary transformation which relates

on a fiducial vector in a representation space. the system oH and the system described by
Unitary transformation methods have long been recog-

nized as a useful tool in finding the wave functions of the Ho=2AWK, ©)
coherent system®] and of the generalized harmonic oscil-
lators [7,10,11. Through a unitary transformation method, wherew, is a positive constant. The unitary transformation is
the complete set of wave functions for a general quadraticlescribed by the classical solutions of a time-dependenrt
system has been given in terms of the classical solutions ahonic oscillator. With a choice of the realizations of the
the system 6,11], and the fact that wave functions are de- generators in terms of the canonical coordinates, the relation
scribed by the classical solutions can be clearly understoodie will give becomes the known one of the quadratic sys-
from the path-integral approach for this systg®h. On the tems[11]; Due to the nonuniqueness in realizing the genera-
other hand, it turns out that the unitary transformation for ators, however, the relation in SU(1,1) is more general than
time-dependent quadratic system can be used for the santeat in the quadratic system, even for the representations of
quadratic system with an inverse-square potential to give th8U(1,1), which correspond to the quadratic systems.
wave functiong11]. Indeed, su(1,1) symmetry has been no- In the following section, we will give the unitary relation
ticed in the model of the inverse-square poteritid], and  between the systems bfand ofH,, and the relation will be
the symmetry has been used to find the stationary wave fundiscussed in some explicit realizations. In Sec. Ill, making
tions for the case of a constant Hamiltonigt3], which  use of the unitary relation, the wave functions satisfying the
would imply that a unitary transformation method may beSchralinger equation will be given in terms of the matrix
applicable for general time-dependent SU(1,1) systems. elements of a finite group transformatiéBargmann func-
In this paper, we will consider the system which is de-tion) which, in turn, will be determined by the classical so-
scribed by Hamiltonian lutions of a(harmonig oscillator. In Sec. 1V, the representa-
tions that correspond to harmonic-oscillator systems will be
studied, and other expressions of the Bargmann function for
*Permanent address: Department of Physics, Sunchon Nationtihese representations will be given, which generalizes the
University, Suncheon 540-742, Korea. known results on transition probabiliti¢g]. It will be fur-
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ther shown that the wave functions of the systemHgf d i d i
obtained through the unitary transformation, can be written g1 (&K =0, G (e7""IK)=0. (12)
in a simple form. In Sec. V, the wave functions of the qua-

dratic system with an inverse-square interaction will be studGenerator«,, K. , andK_ then satisfy commutation rela-
ied, while the set of the wave functions gives a representagons

tion space

of the positive discrete seri2$(k) which is one

of the unitary irreducible representationf/IRs) of the [Ko, Ki]=%=K., [Ki,K_]=—2K,. (13

SU(1,1) group. It will be shown that the wave functions of
the quadratic system with an inverse-square potential coul

be used to

By making use of the commutation relations in H@3),

find the Bargmann function®f (k) through an with the fact that

integral. The last section will be devoted to the discussions, _ 02 1 2 d

and an appendix will be added to reveal the equivalent ex—(Mp) = —3+M Z(A%—Af)—4az+ m a(Ma)}p=0,

pressions of the Bargmann function. P (14
Il. A UNITARY RELATION one can explicitly verify the relation of Eq10) [17].

For the
M(t) as

andu(t),v(

of the second-order differential equation:

- . . . The Casimir operatiol,
description of the unitary relation, we introduce P

2 2 2 2 1
2w, @
Ao(t) —Aqg(t) is used in characterizing the UIRs of the SU(1,1) group,
) ) ) which are all infinite dimensional. If we reparametrize the
t) as the two real, linearly independent SO"Jt'onSeigenvalues ofC ask(k—1), it has been known that, for
both cases ok=1/4 andk=3/4, the su(1,1) algebra can be
realized by the operators of a quadratic systert; df L4,

M(t)=

M(t). 1 2 d :
n ﬁtiw Z(AS_Ai)_4az+ o &(Ma) y=0. (5) andL, are written as
) 1P e L P e
For %.(AO—Al)—_4a2+(2/M)(d/(_1t)(Ma)>O,_ this is an Lo=77 VTC+WCX » Limgzl - VTC+WCX ,
equation of motion of a generalized harmonic oscilld&ir
By definingp(t) and time constarf2, which are positive, as 1
Lo=— 25 (XP+pX), (16

p(1)=Uu(t) + (1), (6)
with commutation relationx,p]=i#%, one can find that

Q=M(t)[u(t)v(t)—u(t)v(t)] () {Ly,L;,L,} can be a basis of the su(1,1) algebra with
C=—(3/16)l. If this expression of the generators of the

and a real function of, 7(t), through relation SU(1,1) group is plugged into Eq®) and(10), one can find
u+iv relation
= p ® g 1
UL(—iﬁ—Jr E(p2+ng2) u/
one may find that unitary operator Jt
P> M(t)
M i i = —ifi—+ s+ ——[A3(1) — AZ(1)]x?
u=exp[i o §+2a (ez'Wc‘K++e—2'WctK+2Ko)} gt 2M(t) 8 [AS() = AT(D)]x
[
—a(t)[xp+px], 17
We 2iw t —2iw,t
XexgIn P (e”Me'K, —e 7K ) with
Xexd 2i(wt—7)Kp] (9) B M p ) i fw,
U =ex |% ;+2a X©|ex —ﬁln P

satisfies relation

In Eq. (9), K, andK_ are defined as

so that

X (Xp+ pX) (p?+w2x?)|. (18

i T
ex;{%( t— W_c
For 3(A3—A2)—4a’+ (2/M)(d/dt)(Ma)>0, the relation
of Eq. (17) becomes the relation between a general quadratic
K,=e 2We(K,+iK,), K_=K!, (11)  system and a simple harmonic oscillafdd,7]. For 1(A

—Af)—4a2+(2/M)(d/dt)(Ma)$O, one may find that the
relation in Eq.(17) is true, though, in these casés$, may

U] 'ha+H U= 'h(9+H 10
IE 0 = IE . ()
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not be useful in finding wave functions for a general qua-Making use of the realization of generators

dratic system, which are localized for all timheSinceL; and

K; share the same algebraic structure, proving (@ con- K _(1/2 0 ) _(0 1) _( 0 0)

stitutes a proof of the general relation of Eg0). ol o —112/" *7lo o/’ -~ \l=-1 o)
It should be, however, mentioned that, even for the qua-

dratic systems ofC=—(3/16)I, Eq. (10) is more general

than Eq.(17), as much as the realization of the algebra is notone can find thag(«,B) is parametrized as

unique. For example, generatots,, L;, and L, of the

/2 (Wet—7)
SU(1,1) group can be realized as o= e et \ / } /WC
- ~ - =r
L0:L0| Ll:_L11 L2:_L2' (19)
In this realization, Eq(10) is written as + +2a 28)
q(10 ch—ﬂ(p )|, (
|ﬁ + (p2+W2X2) U~ . ge—l(p/Z el (Wet+7) 1\F+ \/Wc
— I\ —+p\ =
J M 2 \ _|§|2 2 p ¥ We Q
= — J— - 2 —_ 2 2
|hat+ 8w§[A°(t) A2 (O ]p~+ 2M(t) iM (. . 29
+ p+2ap)|.
+a(t)[xp+px], (20) VW)
with Among the representations of §1) 1) group, we only
consider the UIR$18]. In a UIR, a basis state can be de-
M [p i W, noted agm,q,k) satisfying
Ur=ex 2ﬁ +2a p?|ex Eln ar . '
C(e~? (M= )m,qq,k)) =k(k—1)(e~? (M % m,qq k)),

(30

X (Xp+px) (21

exp{ zlﬁ (t— —) (p?+w3x?)|.

Ill. WAVE FUNCTIONS OF THE SU (1, 1) SYSTEMS

Ko(e™ 2 (M)t m,qg,k)) = (m+ o) (€=M %) m,qq k).
(31)

There are four classes of UIRs, amdnust be integef2,18].
Making use of the Baker-Campbell-Hausda(d#, disen- ~ When a group element is acted on a basis state of a UIR, if
tanglement formula (see, e.g., Ref3]) with the commuta- we assume the completeness of the representation, the result
tion relations in Eq.(13), one can find that operatdd is  should be written as a linear combination of the basis states
written as of the UIR. Sincee 2(M"%)|m,q,,k) satisfies the Scrb
_ . inger eqation
U= (e§K+e7KOe_ gK—)el‘PKO, (22)

where i %(G_Zi(m+q°)t|m,%,k>) =Ho(e™ (M9 m,qg,k)),

) ' (32
— —+wep+iM(p+2ap)

£= Qp e2iwct’ (23)
;+ch—iM (pt+2ap)

from the unitary relation of Eq(10), one can find that the
state given by

W 0.0 = U (872 (M99 m, g, k) (33

_ 2
=In(1+]€%, (24) should satisfy the Schdinger equation

o iM(p+2 J
| ;+ch+| (p+2ap) iﬁﬁ|qu’q0’k>:|-||q;quo'k>, (34)

e=2(Wt—7)—Ii Ir‘.Q . (25
;+ch—iM (p+2ap) while W, o ) may be written as
In Eq.(22), £ denotes the complex conjugatedfElementg W g0 = V(g) (™2™ 90 m,qg, k)

of SU(1,1) may be written in the form
=3 V(e p)(e 2 0m' g k).

B
g(a,B)= (— E)’ la|?—|B|2=1. (26)

B (35
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Though Eq.(35) is valid in any UIR, from now on we only A. For a general quadratic system
consider the representation of positive discrete s&iegk),

wherek>0, go=k, (k is rea), andm=0,1,2,3... . Since
go=K in this representatiorgy will be omitted or replaced
by k. A basis state oD * (k) could then be written as F(a,b;c;z)=(1-2)"°F

Making use of transformation formu(d.9]

z—1

z
a,c—b;c;—) (39

T(2k)

and Eq.(A2), one can find thavf:f?'m(a, B) may be written
m!T'(m+ 2k)

(e_Zi(m+k)t|m,k>): as

(Ks)™M(e™ 2 0k)).
(36)
) 3 I'(m+m'+2k)
The explicit expression dﬂﬂq‘?’m(a,ﬁ), the Bargmann func- Viw ml @ 8)= VmIT (m+2K)(m)!T(m’ +2k)
tions, are known in this case, ail, ) is written as[2,18]

X (@)™ ™ 2K g™ TME(—m, —m— 2K

0

o +1:—m-m’—2k+1:aa)
W= 3 VO (@,8)(e 2 R qo k). mem aa)
0

m'= 37) C(-pm \/F(m+2k)I‘(m’+2k)
(2k—=1)! m!(m’)!
i a0 : — ;
As shown in the Appendixy.; ., can be given as X (@) "M ~2kgmgm’~m
1
K I'(m+m'+2k) X F| —m,m+ 2k;2k; —_) (40
VE) (e, B)= aa
* VmIT (m+2K)(m )T (m’ + 2k)
X;—m—m’—zklgm’(_g)m For k=1/4, a relation between the hypergeometric function
and the associate Legendre function with non-negative inte-
aa gersp,q,
XF —m,—m’;—m—m’—2k+1;—:),
BB
(38 Fl —paa+ i
plq 2 1 2 ’
. . . I
whereF(a,b;c;z) is the hypergeometric functiofi]. :(_1)q(2(qu)l-;” (1—x3)P-D2PIP(x)  (41)
IV. GENERALIZED HARMONIC OSCILLATORS obtained from a more general one in Rd®], can be used to

. . find a simpler expression 01(1,/4) ,B), as
As is well known[13], the representation spaces lof P P m m( @)

=1/4 and 3/4 ofD* (k) reduce to the Hilbert space of a

simple harmonic oscillatotm,1/4) in a representation space wa (—p)m™m f2em)l [ o) mrm)e2
of SU(1,1) corresponds §@m) of a simple harmonic oscil- Vi mle,B)= = N
lator, which is an eigenstate of Hamiltonidhy=2Aw_.L a (2m)! \ e
with energy eigepvalue @+ 3)Aw,. For. k=3/4, |n,3/4} (m—m')2
corresponds to eigenstd@m+ 1) of H, with energy eigen- B pm’ - m 1 47
value (2n+1+3)Aw,. Since the unitary relation of Eq. X E m’+m \/—— : (42)
(10) reduces to the one for the quadratic systems if we aa
choose a basis of the su(1,1) algebra, as in @§), for
1(A3—AD)—4a’+(2/M)(d/dt)(Ma))0, one can find the Fork=3/4, formula
explicit expressions of e M Y2x|U |m,3) and
e '@M+32x|U |m,2), as in Refs[6,11]. F( _p.g+ §.§.Xz
In this section V')  will be studied in more detail for 202
both cases ok=1/4 and 3/4, which will generalize the 2p 1
known result§7,13]. It will also be shown that, if the unitary :(—1)q(2q+—1)” ;(1—x2)<9*q>’2P313+1(x), (43)

relation becomes a relation between the same system de-
scribed byH,, operatorU and (thus, the corresponding
Bargmann functioncan be written in a very simple form.  can be used to find
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(=)™ ™ [ 2m+1)! [ @) MM FD2
="
\/; (2m +1)_\a

B (m—m’)/2 / 1
X\ = Pm’;m+1 :
B Vaa

For the case oM (t) =1 anda(t) =0, with the choice of the

(44)
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Cm’m/(e72i(m +k)t|m1,k>),
0

W= 2 (50)

wherec, ,/ is a constant.

For a generak with Ag(t)=2w., A.(t)=a(t)=0, it
may be easy to find that wave functions satisfying B4)
should also be written as in E¢G0). A wave function in a
simple harmonic-oscillator system can be obtained by super-
posing the wave functions d&f=1/4 andk=3/4, so a wave

basis in Eq(16), H of Eg. (1) becomes the Hamiltonian of & {,nction in this system is written as
harmonic oscillator of unit mass and time-dependent fre-

quency ((t)=(W/2)[Ag(t)+A.(t)]). In this case, one

can find that Eqs42) and(44) exactly reproduce Eq83) of
Ref. [7].

B. For a simple harmonic oscillator
For the case ofAy(t)=2w, and A;(t)=a(t)=0, H of

Eq. (1) becomed, of Eq. (3), and the unitary relation given
in Eq. (10) becomes a relation between the same system. In

this casep satisfies

2

;;—F+w§p=o, (45)

which makes it possible to analyze unitary operdtbiin
more detail. Making use of this fact in EGL5), one can find
that

d

gné=0 (46)
and

d =0 4

FTEamY (47)

Though Egs.(46) and (47) are valid for generak, to be
explicit, we first consider the realization given in Ef6). In
this realization, by defining

a.= (Wex+ip), al=

1
———(WX—ip),
\/TVVC( C p)

(48)

1
V2hw,

with a real constanp, and a complex consta®t,, one can
find thatU, can be written as

galal IN(1+| &2 1
Uﬁﬂ[{%ez'wc‘ ex In(A+ &[5 ala.+ =

2 2
% exr{ _ gcaécac eZiWcI

re
2

U, of k=1/4 or 3/4, thus, shows that, ia! (a.a.) is
applied on a state to give a new state, phase faetg'c!

t 1
acact = (49

2

|¢>:nzo Cne—i[n+(1/2)]wct|n>' (51)

wherec, is a constant.
V. HARMONIC OSCILLATOR WITH
AN INVERSE-SQUARE INTERACTION

It has been known that generators @t (k) of SU(1,1)
can be realized gd2]

1 29| wx?
k_ 2 c
pLk=— = p24 2 +W°X2
1= aw P 4

1
hLEz—Z(prr pX), (52

whereg=2(k—%)(k— 2)#2. For the system of Hamiltonian
H=2AhwLE on the half-linex>0, the wave functions are

given as[20]
Aw\ Y4 !
fi ) (F(n+2k)
WCXZ kfl/4ex _WCXZ L2k-1 WCXZ
27 )" i

f
where L, is the associated Laguerre polynomial defined
through

1/2
e 2i(n+k)wt

dn (kix,t)=

X

(53

diLy dLy
X—— +(a+1-X)——+nLy(x)=0.

dx? dx (54

However,

ot
n | pxt]=(=1)"
e 22 (2n) I\t

W X2 W,
xXexp ———|H, —X
2h h

1/2
) o2+ (14wt

(e?<') should be multiplied at the same time, which proves

that

implies that
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pr(kix,ty=e 2Rt x n k) =(—1)"¢5 (K;x,t).
(59

If we chooseL, LX, andL¥ as the generators of SU(1,1),
becomedJ, , andU, ¢; (k;x,t) can be calculated d41]

én (Kix, ) =ULy (Kix,1)

40 1/4 n! 1/2 QXZ k—1/4
_ : e~ 2(n+k)T
(E?) &Yn+2b (hp%

X @ 'Mb 2iM
xXex _ﬁ FTZ_I ;— 1vVia

Qx?
xLﬁ"‘1<ﬁ—p2 (56)
Equations(37) and (55) then suggest that
S (kx,0= 2 (=)™ ™VG (@ By (KxD. (57
Making use of the integration formu(@1]
Jo e P LE(AX)LE(ux)dx
F(m+n+a+1) (b—\)"(b—pu)™
- m'!n! bm+n+a+1
b(b—\— )
XFl—-m,—n;—-m-n—a, —————|,
“ (b=N)(b—w)
(58)

which is valid for Rew>—1 and Ré&>0, one can indeed
find that

J:Eﬁ;(k;x,t)¢>;(k;x,t)dx: (=)™ MVE (@,B).
(59

If we consider a system described by Hamiltonidi(e)
=[1/2(1+i€)][p?+(29/x?) ]+ (1+i€)(W2x?2) with real
positive €, one can show that kernelpropagator
K(xp,tp;Xa,ta) of the systen(see, e.g., Ref2]) reduces to
the kernel of free particle of unit mass, in the limit tf
—t,+0 ande—0, which would imply completeness of set
{#7 (k;x,t)[n=0,1,2 .. .}. Indeed, if we assume complete-
ness, the fact in E¢59) amounts to a proof for the relation
in Eq. (57).

One can also takd.X, TX, T, as the generators of
SU(1,1), while

Ck=—Lk, Tk=-Lk, (60)

SinceLX =e~2W{(Lk+iLk)=—L¥ |, Egs.(36) and(55) im-
ply that

PHYSICAL REVIEW A68, 012108 (2003

S—/1,. _ F(Zk) Tkym (s— /.
b (Kxt)= \/m('—+) ¢y (kix.t). (61)

If we use these generators in the unitary relation of (&Q),
the relation and Eq37) imply that wave function

¢MK&U=2%VEAaﬁ%ﬁRKxU

(62)
satisfies the Schringer equation
. d M, )
it = dn(kix, 1) = S—V\@[Ao(t)—Al(t)]
¥ 29
X —ﬁzmﬂ'? }(ﬁn(k;x,t)
2
WC 2 .
+ mx |a(t)ﬁ
X2 i 1 k; 63
X&—'— d’n( lxrt)' ( )

VI. DISCUSSIONS

We have shown that for the systems of su(1,1) symmetry,
there is a unitary relation between the system whose Hamil-
tonian is given as a linear combination of the generators of
SU(1,1) group with time-dependent coefficients, and a sys-
tem of the Hamiltonian which is simply proportional to the
generator of the compact subgroup. The unitary relation is
obtained through an extension of that between the general
quadratic system and a simple harmonic oscillator. However,
it should be mentioned that the relation is still formal, in the
sense that the explicit form of the relation is given providing
classical solutions(t) andv (t) are known. For the case that
M is constant anca=0, if A§<A2, Eq. (5) becomes the
equation of motion of an inverted harmonic oscillator, so that
p diverges as time goes to infinity. if diverges, for a qua-
dratic system, the probability distribution of a wave function
obtained through the unitary relation spreads out all over the
space, while it may be possible that a meaningful system
could be defined algebraically with divergimpg

Another point worthy of being mentioned is that the for-
mal relation is true even for the case of negatiét). In
fact, for a constant HamiltoniaH, the Schrdinger equation
is invariant under the exchange Hf——H andt« —t. In
the case ofAy(t)=—2w, andA,(t) =a(t)=0 whereM(t)
=—1 and thusH=—H,, one can take the classical solu-
tions as u(t)=sinwgt, wv(t)=coswg, so that U
—exd 2it(2wKy)]. By applying thisU on a stationary state
g 2(MHGWetim qq,k), one will have the state
—e2(Mtdo)Wel|m g4, k). This fact, therefore, suggests that
the invariance may be included in the unitary relation.

It would be interesting to find similar unitary relations in
the systems with other symmetries. The unitary relation for
the SU(1,1) system has been found, based on the relation in
harmonic oscillators which may be the simplest system with
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the symmetry. This implies that, if we find a unitary relation ( a;)

in a simple system of a symmetry, the relation could be gen- Fl —m,—m’;—m—-m’'—2k+1;,—
eralized for other systems with the same symmetry. Though BB
SU(1,1) is a noncompact group, the generalization itself e
would be possible for a compact group. In addition, it would = F( -m,—m;—m—-m’ —2k+1; _:)
be interesting to find the implications of the unitary relation

in a system where the su(1,1) symmetry is a part of the
symmetry of the system. (m)H!T (M’ +2k)

T (M —m)IT(m+m’ +2K)

(=Bp)"
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APPENDIX
In order to show that the Bargmann function given in Eq. XF(=m,1-m-2k;1+m'—m;—Bp)
(38) is equal to the standard expressj@nlg], the hypergeo- (A5)

metric function in the equation can be written as

and form’=m,
ao
F(—m,—m’;—m—m’—2k+1;—:>
BB

VE (@.8)=Anm(a) ™ "M 2(—gym-m’

XF(—m’,1-m’—2k;1+m—m’; - Bf),
(AB)

1
=F(—m,—m’;—m—m’—2k+1;1+—_
BB

I'(m’'+2k)I'(m+2k) 1 where
= Fl —m,—m’;2k;— —|,

T T(2KT(m+m’ +2Kk) 2

1 ((m’)!l“(m’+2k) A7)

m!T"(m+ 2k)

(A1) Amm=

where the last equality is obtained through a formula given ) _ _
in Ref. [19]. With the Appell's symbol &,s) defined for ~ Since the hypergeometric series of any hypergeometric func-

(m"—m)!

non-negative integers by tion used in this paper terminates, the series always con-
verges. Making use of the expressionlbfiven in Eq.(22)
_ 1 (s=0) and the basis state in E(B6), the expression of Bargmann
(a,s)= a(a+1)---(a+ts—1) (s>0)|’ function [Egs. (A5) and (A6)] can also be directly derived

for D* (k) as

formula
(b,1) Ve (@,8)=e 2™ m’ k|U|m,k)
F(—1,b;c;—y)=—=y'F(—-1,1-1—c;1-1—b; - 1ly),
(c,) — @il(m+K)p—2(m-m")1]
(A2) -
is known for a non-negative integéin Ref.[18], which is X(m’ k|e+e”*oe™ & ~|m,k)
valiq as long ast§,|)#0. Form=m’, Eq.(A2) can be used (MK e—2(m-m")]
to find e
o x(m’ k|e” ¢K-e~ oetk+|m k)
Fl —m,—m’;—m-m’'—-2k+1;,— .
BB B e'(Mmther(2k)
m! T (m-+ 2k) _ J(m)H)ImIT (m+2k) T (m’ + 2k)
_ _ -m
(m—m’)!F(m+m’+2k)( AB) * (_E)pgq )
_ > (0K (K_)™ *Pe~ o
XF(—=m',—m’'—2k+1;1-m’+m;—BB). pa=o PO
(A3) X(K4)9" M ok), (A8)
Form’=m, Eq. (A2) can also be used to give while the remaining procedures are straightforward.
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