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Electron structure of a dipole-bound anion confined in a spherical box
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School of Chemistry, Tel Aviv University, Tel Aviv 69978, Israel
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We propose a model describing the interaction of an electron confined in a spherical box with a polar
molecule in the center of the box, including an inner repulsive potential. As a preparation to its investigation,
we calculate the average radius of a dipole-bound nonconfined electron, for which a closed form expression is
found. The angular dependence of the wave function is also discussed, with implications for the choice of basis
functions forab initio calculations. The Schdinger equation in the spherical box is then solved. The negative
energy eigenstates of the system and the dependence of the ground-state energy on the radius of the confining
sphere are obtained. Interestingly, a very simple expression is found for the total number of negative energy
levels for a given dipole strength and confining sphere radius.
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[. INTRODUCTION wall, or embedded as an impurity in a quantum ot a
finite dipole embedded inside a polarizable medium, the
Presently, there is a considerable experimental and thee@ritical dipole moment to bind an electron was recently cal-
retical interest in the formation and structure of dipole-boundculated in Ref[17]). It may thus serve as a useful environ-
anions, i.e, the binding of electrons to highly polar moleculesmental probe. Here, we wish to consider the problem of con-
[1-5]. The wave functions describing these anions are mucfinement by a spherical box. The model of an atom or a
more diffuse than those of more tightly bound conventionaimolecule confined in a box has proved to be a useful model
“valence” anion. Consequently, such states have small elecfor simulating the effect of neighboring atoms in many
tron affinities, typically below 300 meV. In 1947, Fermi and physical situations. Such a model was first proposed by
Teller [6] were the first to predict, within the Born- Michels, de Boer, and Bij18], who considered the hydro-
OppenheimetBO) approximation, that a dipole should bind gen atom enclosed in a sphere of a finite radius. A detailed
an electron only if the dipole moment is larger than 1.625 D.investigation of it was carried by Sommerfeld and Welker
This is in contrast to the binding of an electron to a charge[19], and more recently by Ref$20,21. In Ref.[22], the
which occurs for any charge greater than zero. This phenonihodel is applied for a hydrogenic impurity inside a quantum
enon was discovered and clarified in molecular physicglot. The electron structure of endohedrally confined hydro-
twenty years latef7—10]. It was shown that the critical di- 9en was studied in Ref23]. Investigations have also been
pole does not depend on the details of the short-range integarried out for the hydrogen molecular anion inside hard and
action. Earlyab initio calculations of dipole-bound states SOft spherical and prolate spheroidal box24-26.
were carried out, e.g, in Ref§11-13. Considering rota- The problem of confinement of a dipole-bound electron
tional degrees of freedorfl4—16, it was found that the has another practical aspect. Algorithms & initio calcu-
critical dipole moment is about 2.5 [depending on the lations of molecular states employ a finite basis set, usually
moment of inertia, and also somewhat on the short distancef Gaussian functions. Normally, these Gaussian functions
repulsive potential However, non-BO effects are relatively are localized around the nuclei. But for the description of
unimportant for dipole-bound states with electron bindingdipole-bound states, there is a need to include very diffuse
energies much larger than the molecular rotational constant§aussians. One wishes to add as little diffuse functions as
In agreement with the theory, only molecules with a dipolePossible, while still obtaining a quantitatively satisfying ap-
moment greater than 2.5 D have been found experimentallproximation for the binding energy. The problem was ad-
to possess a dipole-bound electron. In some cases, this prétessed in Ref.27], based on the examination of a few mo-
vides the only route to bind excess electrons to molecules decular systems employing fudlb initio calculation. It should
clusters. Higher dipole moments are required for the exisbe useful to look for the general trend of the error introduced
tence of two or more dipole-bound states with binding en-Py the spatial localization of the basis set in a simple model.
ergy above a practical value of 1 meV. Such higher excitedn the context of the present work, we assume that the effect
states were observed experimentgﬂ@ﬂ_ Recenﬂy, it has of truncation of the diffuse functions series should be
been suggested that the critical dipole required for electrofioughly equivalent to that of a confining box with a radius of
binding provides a physical realization of the phenomenon othe order of the spatial extent of the most diffuse function.
quantum anomaly, known from the quantum-field the@)y  That is, assuming that the basis set is made good enough to
In the view of very diffuse nature of dipo|e_b0und State&deSCl'ibe wave functions localized within this volume.
it is evident that such an anion will be particularly sensitive
to environmental effects, i.e, if put in an external field, near a Il A SIMPLE MODEL AND SOME PROPERTIES
For a diffuse dipole-bound electron, the long-range inter-
*Electronic address: sronen@post.tau.ac.il action is given by that of an ideal dipole. As argued in Ref.
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[28], the effect of a short-range repulsive interaction may bebinding energy, ifC<— . Therefore, the critical dipole is
modeled by requiring the electron function to be zero insidethat minimal value for whictC= — 3 is an eigenvalue of the

a sphere of radius of the order of the molecular core di- angular equation.

mension. For our problem, we also add the requirement that We follow Ref.[7] in the analysis of the angular equation,
the wave-function be zero outside an external confiningvhich remains unchanged for radially confined problem. We
sphere of radiud>a. We neglect the effects of the dipole restrict ourselves to the case=0. We look for a solution as

rotation. a sum of Legendre polynomials:
The Schrdinger equation is B
42 D.r 0(6)=>, d,P,(cosh). (8)
—om Y-e—5 —E|¥=0, 1) =0
r
¢ Equation(7) is equivalent to the following three-term recur-
and the boundary conditions are sion relation to be obeyed by the coefficied{s:
= = [ I+1
¥(2.0.6)=¥(,6,4)=0. @ Gt [0+ 1)~ Cldi+ g di1=0. (9

Dimensional analysis shows that only two independent
dimensionless quantities can be constructed, which may b&ccording to a standard methd@1], the set of all these

chosen as recursion relations can be transformed into a continued frac-
tion expansion for the eigenvalue C in terms of itself and the
2MeD D parameterr. In the present case, we obtain
a= =2— or D=aXx1.271 D, 3
h2 eqy 2
C— _ o
wherea, is the Bohr radius and (2a)?
3(1x2-C)— 5
b 5(2x3-C) - 0%
RZE' 4 7(3X4—-C)—---
(10

It is therefore sufficient to solve the problem fara,.
Then, for any othem (and the same rati®), the energy
eigenvalues scale ag{/a)?. This may be compared with
the hydrogen atom problem, for which a natural length scale
(the Bohr radiusexists, while here it is only the introduction

This is an implicit equation determinin@ as a function of
a. It has a discrete infinity of solutions, corresponding to the
number of nodes of the angular wave function, the ground
Gtate being without any nodes. Fe=0, we already know

of the repulsive core potential which brings a typical Iength that
scale into the problem. Ci(a=0)=I(I+1), 1=0,1.2.... (11
From now on, we shall use atomic units, i.25e=m,
=1. We puta=1 andb=R. Equation(1l) is separable in Here, we shall limit ourselves to the discussion of the
spherical coordinates. Choosing thexis along the dipole lowest eigenvalue of the angular equation. In Ref7], C
moment, and putting was expressed as a power seriesxinwhich with the re-
3 img quirementC= — , leads to the determination of the critical
W(r,0,)=F(r)0(6)e™?, (5 dipole momenta—1.27863, i.eD = 1.6250 D.

. . S The series is converging fast for small dipole moments.
we obtain the following equations: . ; .
For the range of dipole moments we wish to consider here,
we take another approach. We terminate the continued frac-
1d d : : )
{ — _( r2_— F=0 (6) tion atthe 15th depth level and solve the equation by numeri-
r2d dR cal root finding. In this and in the following computations,
we have made use of the symbolic and numerical software
and packageMATHEMATICA .2 In this way, the lowest eigenvalue
C was found for dipole moments in the range 0-20 D, as
_ ii 01 m depicted in Fig. 1.
sing dé sm2 We now wish to make an observation, which although not
directly related to the confinement problem, is of importance
whereC is the separation constant, andis an integer. for the choice of the angular range of basis functions in re-
With no confining sphere, i.eR=c, the radial equation alistic ab initio calculations. KnowingC for each givena,
is knowrt to have no bound states at allGf>—%, and an we can now use the recursion relation of E8). to find the
infinite number of bound states, converging toward zerccoefficientsd, of the Legendre polynomials. We determine

c
-5 +2E

2

— a COSO—

cle=o, (7)

See, for instance, Ref33], Sec. 35. 2MATHEMATICA 4, version 4.2.0.0, Wolfram Research, Inc.
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ofF— change of only 1.6% for a linear water trimer with a dipole
moment & 7 D was found, while a change of 14% was found
-2 for a cyclic water trimer with a smaller dipole moment of 3.4
D. How could these contradicting trends be understood?
-4 As shown below, the lowest dipole-bound state of a sys-

tem with big dipole moment is considerably more localized
than that of a small dipole, and its spatial extent becomes
more comparable with the size of the molecule. This is also

Separation constant C
1
()]

-8 evident from Fig. 1 of27]. In such a case, the approxima-
tion made in our model of an ideal dipole interaction ceases
-10 to be valid. But if so, then for highelexcited dipole-bound
states, which are much more diffuse, the model should again
0 Dipole moment (debye) 20 apply. It seems therefore, that for molecules with a large

dipole moment, the importance of includirg) functions
FIG. 1. The separation constatfor eigenstates with no nodes should be greater for higher excited dipole-bound states.
in the angular coordinates, as a function of dipole moment strength. For the two water trimer configurations, it was also found
The vertical grid line marks the critical dipole for the existence of a[25] that electronic correlation effects beyond second-order
bound state, at 1.6250 D. perturbation theoryfwhich make significant contribution to
the total binding energyare quite insensitive to the addition
do by requiring normalization of the wave function. For this of the d functions. The simple model considered here obvi-
aim, we computedi, for |=1—8 with a good convergence ously cannot address this phenomenon. It might be addressed

for the higher dipole moments. Defining with the recently proposed pseudopotential methods includ-
ing dispersion interaction®9,30.
, 1 Next, consider the radial equation, E®), first for the
| :\/ﬁdl : (12 nonconfined problem. In this case, its solution is givef by
. . K, (kr)
the new scaled coefficienty correspond to normalized Le- F(r)=A } (13
gendre polynomials. In Fig. 2, we plal for I=1-4. As Jr

usual, the wave functions with=0,1,23 . . . aredenoted by
s,p,d,f.... Wenote, first, that the-type contribution rises

initially linearly with the dipole moment, thé-type quadrati- 1
cally, etc. This is as should be expected from considering the v=~/C+=

where

ideal dipole interaction as a perturbation to free spherical o
harmonics, since only levels differing M =1 are coupled.
However, for the bigger dipole moments, there is a signifi-2nd
cant contribution even frord functions. K2= _2E (15)
In Ref. [5], addingd diffuse functions(on top ofsp) to '
d_escribe the dipole-bound state of the _I:il-anion, With_a _ with the boundary condition, at=a=1, of
dipole moment of 5.88 D, was shown to increase the binding
energy by 13%. On the other hand, in Rgf7], an energy K,(k)=0. (16)
1f Here,K,(x) is the modified Bessel function of the second
\ - s kind, andA is a normalization constant. For dipole moments
0.8l above the critical valugC < — 7 so that we encounter a pure
imaginary orderv=is, with
0.6f 1
s=1/—|C+ Z . (17)
0.4}

A The functionK (r) of pure imaginary order and realis
0.2r e T T real. Its behavior ag—0 is given by

O-;I-a'_’_.____-.___:_._—-—-—————.—— . | ; | )
0 5 10 15 20 Kis(r):_\/%sw{sln(i)_g(s)

Dipole moment (debye)

[1+0(r?)],
(18

FIG. 2. The coefficients of functions of tyge p, d, andf for
the angular wave function with no nodes. The vertical grid line
marks the critical dipole. 3See Ref[34], p. 1665.
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FIG. 3. The ground-state binding energy of the dipole-bound
electron. Note that the energy should be scaled according to th
repulsive potential length scale bgq/a)?. The vertical grid line
marks the critical dipole.

FIG. 4. The average electron radius at the ground state as a
unction of the dipole moment strength. This should be scaled ac-
cording to the repulsive potential length scale lay (a).

Using the symbolic capability offATHEMATICA, an ana-
lytic expression for this integral involving hypergeometric
functions ,F; was found, which holds for an arbitrary value
of k,s, not necessarily a root of E¢L6). This expression is
quite complicated and is given in the Appendix, but evaluat-
ing it within MATHEMATICA is much faster than performing
numerical integration to the same degree of accuracy. The
; . o result is presented in Fig. 4. It can be seen that for dipole
ponentially decreasing binding energy. We denote itte .\, ents smaller than 4 D, there is a very rapid rise in the
root of Eq.(16) for a given value o asks,. From EQ.(18),  gigrance of the electron from the center, while for dipole

we obtain the asymptotic ratio between successive energy,oments larger than 6 D, there is a gradual decrease, and the
eigenvaluesss, for a largen: average distance of the electron is of the order of the mo-

E 5 lecular core size.
Ss(nt1) 7
E.. —>exp{ S ) (20

This ratio holds for an attractive long-ranger 2 potential ) ]
with any short-range repulsive potential, though the absolute Ve shall now determine the negative energy spectrum of
position of the energy levels is dependent on the later. ThEhe confined electron. Strictly speaking, the lefzet O does
form of this dependence was established in Ref]. not have any special physical meaning for a confinement
For each value of the dipole moment, using the results folVith an infinite potential. However, this is an approximation
the lowest eigenvalu€, the largest rooks; , corresponding 0 @ more realistic model in which the potential barrier shall
to the ground state, was calculated. The dependence of tf¢ large and finite. Then, energy levels above zero will de-
ground-state energy on the dipole moment is presented icribe nonbound states, so thakE again corresponds to the

where
o(s)=ardI'(1+is)]. (19
It is seen that fork—0, this function crosses zero an

infinite number of times, thus satisfying the boundary condi-
tion, Eq.(16), for an infinite number of eigenstates with ex-

Ill. THE NEGATIVE ENERGY SPECTRUM
OF THE CONFINED ELECTRON

Fig. 3. binding energy.
For thenth level, the normalization constaatin Eq. (13) The general solution of Eqb) can be written as
is given by
Al,(kr)+BK,(kr)
A::Rf——fi—j. (ZD
is+1\%sn with the boundary conditions
It may be expected that a given eigenvalue of the noncon- F(1)=F(R)=0, (24)

fined system will be significantly perturbed by the confine-

ment only when the radius of the sphere is not much largefhere (r) is the modified Bessel function of the first kind,
than the spatial extent of the corresponding eigenstate. It i§nq, andk are the same as in Eq<.4) and (15).
therefore of interest to calculate the mean radial distance of For an imaginary order=is, |,(r) is a complex-valued

the wave function. This is given by function. Negative values of the energy correspond to keal

while positive ones to imaginarig. For a realr, we have

— [ rerE(r 2dr:A2fwr2 K (ker)2dr. (220 1.r)=1%,(r). It is convenient to work with real functions.
| e Kk Par @2 LO-I
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Pis(r)=Reljs(r)], (25)
and
sinh(sm)
Qis(r) =Im[lis(r)]=— ———Kjs(r), (26)
and we rewrite Eq(23) as
- APis<kr>}BQis<kr>, 7

with A andB real.
The smallr behavior ofP;s(kr) andQs(kr) is given by

Pis(r)=\/ Smi—zs)cos{s In(%) —o(9)

and

Qis(r)= \/—szzs)si

with o(s) as in Eq.(19).
For a larger, their asymptotic behavior is given by

[1+0(r?)],
(28)

r{sln(%) —O'(S)}[l-i‘ o(r?)],
(29

r

Pis(r)~ ot (30)
and
Qu(r)~— 2T (31
2r

Equationg27) and(24) lead to the following equation for
the eigenvaluegk:

Wis(K) = Pis(k) Qis(kR) = Pis(kR)Qis(k) =0.  (32)

This implicitly determines the dependence of the energy lev-

els onR and the dipole moment.
Let us first examine the condition for a given energy ei-

genvalue to become zero as a result of changing the confin

ing sphere radiuR. Fork—0, we may replace the functions
Pis(k) and Q;s(kR) with their small argument behaviors,
Egs.(28) and(29). We then obtain

W,s(k—0)~sinsIn(R)]=0. (33
Its solutions are
Rn:exp( ?) n=123... (34

PHYSICAL REVIEW A8, 012106 (2003
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FIG. 5. Upper curve: the ground-state critical cage radius as a
function of the dipole moment strength. For a comparison, the
lower curve shows the average radius of the unconfined electron,
from Fig. 4. Both scale aa/a, with the repulsive potential length
scalea.

This equation describes the successive external Rydiit
which thenth dipole-bound state is ionized. We call them
“critical cage radii,” after Ref.[20]. At the smallest critical

cage radius,
R,= exp(

the ground state is ionized. For smaller radii, there are no
negative energy eigenvalues. Another way to derive this re-
sult is to putE=0 directly in Eq.(6). The general solution is
given by

w

2

(35

AcogsIn(r)]+BsinsiIn(r)]

Jr

Requiring this solution to satisfy the boundary conditions
leads again to Eq33).

F(r)= (36)

1.

0.8r

0.6r

d Energy

l1ze

1
o
'S

o

Norma
N

1.5 2 2.5 3
Normalized radial distance

3.

FIG. 6. Plots of the ground-state energy of the confined electron
as a function of the radius of the spherical box. The energy is
normalized by the energy of the unconfined case, and the radius by
the critical cage radius. Each curve corresponds to a given dipole
moment.
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The dependence of the ground-state critical cage radius amhere[x] is the biggest integer, not bigger than
the dipole moment strength is depicted in Fig. 5. For a com- We have calculated numerically the biggest root, corre-
parison, the average radius of the unconfined electron is alssponding to the ground state, for various values of the dipole
shown on the same plot. The critical cage radius is biggemmoment andR. We normalize the energy of the confined
with the ratio between them varying from 1.14 at 20 D toelectron by that of the unconfined case, from Fig. 3. Also,
1.76 at 2 D. So far, we have discussed the case for which theecause the relevant range Rfdepends on the dipole mo-
eigenstates have no nodes in the orbital coordindtes In ment strength, it is convenient to normalize it by the ground-
general, the same relation holds, with the parameteging  state cage radius, Eq35) and Fig. 5. The results are de-
dependent not only on the dipole moment but also on theicted in Fig. 6. When interpreting this figure, it is important
number of orbital nodes. to bear in mind the huge variability of the actu@on-

It is interesting to compare this result with that for the normalized radii and energies between large and small di-
confined hydrogen problem, for which the critical cage radiipole moments. The figure shows that the scaled quantities
for the hydrogen states(l) are given19,20,33 in terms of  exhibit a similar, though not identical , functional depen-

roots of the Bessel function of the first kind: dence. The larger the dipole moment, the less sensitive is the
normalized energy to the confinement and it begins to drop
J21+1(2V2R) =0. (387)  toward zero at smaller normalized confinement radius.

An immediate consequence of E&4) is that for a given
radiusR, the numbemN(s) of bound states is given by ACKNOWLEDGMENTS
| thank Professor O. Cheshnovsky and Professor P. Jung-
(39) wirth for introducing me to the subject of dipole-bound

states, and for their encouragement.

sinR

™

N(s)=

APPENDIX

Using MATHEMATICA, it is found that

1
471 ( V)22F3( 5=V,

3 5
2 V;l—v,——v,l—ZV;k2>(k2)V

2 2
2v—3

erz[KV(kr)]zdr=
1

470 (= )R,

1 3 5
§+V,E+V;1+ v, =+ v,1+2v;k? (kz)”

2v+3

N| o

3.
151

N| =

_ 2
wcsctTrV)zF3< x Vv1+”'k) 72(4v2—1)sec )

_ 5 + 3210 ) (A2)

The generalized hypergeometric functighz(a,b;c,d,e;x) is defined by the power series:

2F3(a,b;C,d,e;X):2 (a)p(b), x

(©)(d)(e). nl A2
n=o (¢),(d)(e), n!”’ (A2)
where the Pochhammer symbal)(, is given by
I'(a+n)
(@~ T3 (A3)

The integral was verified with numerical integration of test cA3&. note that in this formula, the paramekedoes not
have to be a root oK (k). The formula is valid for ank with Re(k)>0. It seems plausible that the additional condition
K, (k) =0 which corresponds to the boundary condition discussed in the text, may lead to further simplification of the formula.

4MATHEMATICA is not free of bugs. In fact, in version 4.2.0.0, we caution against a bug in the evaluation of a similar Bessel integral with
r instead ofr?.
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