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Electron structure of a dipole-bound anion confined in a spherical box

S. Ronen*
School of Chemistry, Tel Aviv University, Tel Aviv 69978, Israel

~Received 3 April 2003; published 22 July 2003!

We propose a model describing the interaction of an electron confined in a spherical box with a polar
molecule in the center of the box, including an inner repulsive potential. As a preparation to its investigation,
we calculate the average radius of a dipole-bound nonconfined electron, for which a closed form expression is
found. The angular dependence of the wave function is also discussed, with implications for the choice of basis
functions forab initio calculations. The Schro¨dinger equation in the spherical box is then solved. The negative
energy eigenstates of the system and the dependence of the ground-state energy on the radius of the confining
sphere are obtained. Interestingly, a very simple expression is found for the total number of negative energy
levels for a given dipole strength and confining sphere radius.

DOI: 10.1103/PhysRevA.68.012106 PACS number~s!: 03.65.Ge, 31.10.1z, 31.70.2f, 31.70.Dk
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I. INTRODUCTION

Presently, there is a considerable experimental and th
retical interest in the formation and structure of dipole-bou
anions, i.e, the binding of electrons to highly polar molecu
@1–5#. The wave functions describing these anions are m
more diffuse than those of more tightly bound conventio
‘‘valence’’ anion. Consequently, such states have small e
tron affinities, typically below 300 meV. In 1947, Fermi an
Teller @6# were the first to predict, within the Born
Oppenheimer~BO! approximation, that a dipole should bin
an electron only if the dipole moment is larger than 1.625
This is in contrast to the binding of an electron to a char
which occurs for any charge greater than zero. This phen
enon was discovered and clarified in molecular phys
twenty years later@7–10#. It was shown that the critical di
pole does not depend on the details of the short-range in
action. Earlyab initio calculations of dipole-bound state
were carried out, e.g, in Refs.@11–13#. Considering rota-
tional degrees of freedom@14–16#, it was found that the
critical dipole moment is about 2.5 D~depending on the
moment of inertia, and also somewhat on the short dista
repulsive potential!. However, non-BO effects are relative
unimportant for dipole-bound states with electron bindi
energies much larger than the molecular rotational consta
In agreement with the theory, only molecules with a dipo
moment greater than 2.5 D have been found experimen
to possess a dipole-bound electron. In some cases, this
vides the only route to bind excess electrons to molecule
clusters. Higher dipole moments are required for the e
tence of two or more dipole-bound states with binding e
ergy above a practical value of 1 meV. Such higher exci
states were observed experimentally@2#. Recently, it has
been suggested that the critical dipole required for elec
binding provides a physical realization of the phenomenon
quantum anomaly, known from the quantum-field theory@3#.

In the view of very diffuse nature of dipole-bound state
it is evident that such an anion will be particularly sensiti
to environmental effects, i.e, if put in an external field, nea
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wall, or embedded as an impurity in a quantum dot~for a
finite dipole embedded inside a polarizable medium,
critical dipole moment to bind an electron was recently c
culated in Ref.@17#!. It may thus serve as a useful enviro
mental probe. Here, we wish to consider the problem of c
finement by a spherical box. The model of an atom o
molecule confined in a box has proved to be a useful mo
for simulating the effect of neighboring atoms in man
physical situations. Such a model was first proposed
Michels, de Boer, and Bijl@18#, who considered the hydro
gen atom enclosed in a sphere of a finite radius. A deta
investigation of it was carried by Sommerfeld and Welk
@19#, and more recently by Refs.@20,21#. In Ref. @22#, the
model is applied for a hydrogenic impurity inside a quantu
dot. The electron structure of endohedrally confined hyd
gen was studied in Ref.@23#. Investigations have also bee
carried out for the hydrogen molecular anion inside hard a
soft spherical and prolate spheroidal boxes@24–26#.

The problem of confinement of a dipole-bound electr
has another practical aspect. Algorithms forab initio calcu-
lations of molecular states employ a finite basis set, usu
of Gaussian functions. Normally, these Gaussian functi
are localized around the nuclei. But for the description
dipole-bound states, there is a need to include very diff
Gaussians. One wishes to add as little diffuse functions
possible, while still obtaining a quantitatively satisfying a
proximation for the binding energy. The problem was a
dressed in Ref.@27#, based on the examination of a few m
lecular systems employing fullab initio calculation. It should
be useful to look for the general trend of the error introduc
by the spatial localization of the basis set in a simple mod
In the context of the present work, we assume that the ef
of truncation of the diffuse functions series should
roughly equivalent to that of a confining box with a radius
the order of the spatial extent of the most diffuse functio
That is, assuming that the basis set is made good enoug
describe wave functions localized within this volume.

II. A SIMPLE MODEL AND SOME PROPERTIES

For a diffuse dipole-bound electron, the long-range int
action is given by that of an ideal dipole. As argued in R
©2003 The American Physical Society06-1
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@28#, the effect of a short-range repulsive interaction may
modeled by requiring the electron function to be zero ins
a sphere of radiusa of the order of the molecular core d
mension. For our problem, we also add the requirement
the wave-function be zero outside an external confin
sphere of radiusb.a. We neglect the effects of the dipol
rotation.

The Schro¨dinger equation is

S 2
\2

2me
“2e

D•r

r 2
2ED C50, ~1!

and the boundary conditions are

C~a,u,f!5C~b,u,f!50. ~2!

Dimensional analysis shows that only two independ
dimensionless quantities can be constructed, which may
chosen as

a5
2MeD

\2
52

D

ea0
or D5a31.271 D, ~3!

wherea0 is the Bohr radius and

R5
b

a
. ~4!

It is therefore sufficient to solve the problem fora5a0.
Then, for any othera ~and the same ratioR), the energy
eigenvalues scale as (a0 /a)2. This may be compared with
the hydrogen atom problem, for which a natural length sc
~the Bohr radius! exists, while here it is only the introductio
of the repulsive core potential which brings a typical leng
scale into the problem.

From now on, we shall use atomic units, i.e.,\5e5me
51. We puta51 andb5R. Equation~1! is separable in
spherical coordinates. Choosing thez axis along the dipole
moment, and putting

C~r ,u,f!5F~r !Q~u!eimf, ~5!

we obtain the following equations:

F2
1

r 2

d

dr S r 2
d

dRD2
C

r 2
12EGF50 ~6!

and

F2
1

sinu

d

du S sinu
d

du D1
m2

sin2u
2a cosu2CGQ50, ~7!

whereC is the separation constant, andm is an integer.
With no confining sphere, i.e.,R5`, the radial equation

is known1 to have no bound states at all ifC.2 1
4 , and an

infinite number of bound states, converging toward z

1See, for instance, Ref.@33#, Sec. 35.
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binding energy, ifC,2 1
4 . Therefore, the critical dipolea is

that minimal value for whichC52 1
4 is an eigenvalue of the

angular equation.
We follow Ref.@7# in the analysis of the angular equatio

which remains unchanged for radially confined problem.
restrict ourselves to the casem50. We look for a solution as
a sum of Legendre polynomials:

Q~u!5(
l 50

`

dl Pl~cosu!. ~8!

Equation~7! is equivalent to the following three-term recu
sion relation to be obeyed by the coefficientsdl ’s:

a
l

2l 21
dl 211@ l ~ l 11!2C#dl1a

l 11

2l 13
dl 1150. ~9!

According to a standard method@21#, the set of all these
recursion relations can be transformed into a continued f
tion expansion for the eigenvalue C in terms of itself and
parametera. In the present case, we obtain

C52
a2

3~1322C!2
~2a!2

5~2332C!2
~3a!2

7~3342C!2•••

.

~10!

This is an implicit equation determiningC as a function of
a. It has a discrete infinity of solutions, corresponding to t
number of nodes of the angular wave function, the grou
state being without any nodes. Fora50, we already know
that

Cl~a50!5 l ~ l 11!, l 50,1,2. . . . ~11!

Here, we shall limit ourselves to the discussion of t
lowest eigenvalueC of the angular equation. In Ref.@7#, C
was expressed as a power series ina, which with the re-
quirementC52 1

4 , leads to the determination of the critica
dipole moment:a51.27863, i.e,D51.6250 D.

The series is converging fast for small dipole momen
For the range of dipole moments we wish to consider he
we take another approach. We terminate the continued f
tion at the 15th depth level and solve the equation by num
cal root finding. In this and in the following computation
we have made use of the symbolic and numerical softw
packageMATHEMATICA .2 In this way, the lowest eigenvalu
C was found for dipole moments in the range 0–20 D,
depicted in Fig. 1.

We now wish to make an observation, which although n
directly related to the confinement problem, is of importan
for the choice of the angular range of basis functions in
alistic ab initio calculations. KnowingC for each givena,
we can now use the recursion relation of Eq.~9! to find the
coefficientsdl of the Legendre polynomials. We determin

2MATHEMATICA 4, version 4.2.0.0, Wolfram Research, Inc.
6-2
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ELECTRON STRUCTURE OF A DIPOLE-BOUND ANION . . . PHYSICAL REVIEW A68, 012106 ~2003!
d0 by requiring normalization of the wave function. For th
aim, we computeddl for l 5128 with a good convergenc
for the higher dipole moments. Defining

dl85
1

A2l 11
dl , ~12!

the new scaled coefficientsdl8 correspond to normalized Le
gendre polynomials. In Fig. 2, we plotdl8 for l 51 –4. As
usual, the wave functions withl 50,1,2,3 . . . aredenoted by
s,p,d, f . . . . Wenote, first, that thep-type contribution rises
initially linearly with the dipole moment, thed-type quadrati-
cally, etc. This is as should be expected from considering
ideal dipole interaction as a perturbation to free spher
harmonics, since only levels differing byD l 51 are coupled.
However, for the bigger dipole moments, there is a sign
cant contribution even fromd functions.

In Ref. @5#, addingd diffuse functions~on top of sp) to
describe the dipole-bound state of the LiH2 anion, with a
dipole moment of 5.88 D, was shown to increase the bind
energy by 13%. On the other hand, in Ref.@27#, an energy

FIG. 1. The separation constantC for eigenstates with no node
in the angular coordinates, as a function of dipole moment stren
The vertical grid line marks the critical dipole for the existence o
bound state, at 1.6250 D.

FIG. 2. The coefficients of functions of types, p, d, andf for
the angular wave function with no nodes. The vertical grid li
marks the critical dipole.
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change of only 1.6% for a linear water trimer with a dipo
moment of 7 D was found, while a change of 14% was foun
for a cyclic water trimer with a smaller dipole moment of 3
D. How could these contradicting trends be understood?

As shown below, the lowest dipole-bound state of a s
tem with big dipole moment is considerably more localiz
than that of a small dipole, and its spatial extent becom
more comparable with the size of the molecule. This is a
evident from Fig. 1 of@27#. In such a case, the approxima
tion made in our model of an ideal dipole interaction cea
to be valid. But if so, then for higher~excited! dipole-bound
states, which are much more diffuse, the model should ag
apply. It seems therefore, that for molecules with a la
dipole moment, the importance of includingd functions
should be greater for higher excited dipole-bound states.

For the two water trimer configurations, it was also fou
@25# that electronic correlation effects beyond second-or
perturbation theory~which make significant contribution to
the total binding energy! are quite insensitive to the additio
of the d functions. The simple model considered here ob
ously cannot address this phenomenon. It might be addre
with the recently proposed pseudopotential methods inc
ing dispersion interactions@29,30#.

Next, consider the radial equation, Eq.~6!, first for the
nonconfined problem. In this case, its solution is given b3

F~r !5A
Kn~kr !

Ar
, ~13!

where

n5AC1
1

4
~14!

and

k2522E, ~15!

with the boundary condition, atr 5a51, of

Kn~k!50. ~16!

Here, Kn(x) is the modified Bessel function of the secon
kind, andA is a normalization constant. For dipole momen
above the critical value,C,2 1

4 so that we encounter a pur
imaginary ordern5 is, with

s5A2S C1
1

4D . ~17!

The functionKn(r ) of pure imaginary order and realr is
real. Its behavior asx→0 is given by

Kis~r !52A p

s sinh~ps!
sinFs lnS z

2D2s~s!G@11O~r 2!#,

~18!

3See Ref.@34#, p. 1665.

h.
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S. RONEN PHYSICAL REVIEW A 68, 012106 ~2003!
where

s~s!5arg@G~11 is!#. ~19!

It is seen that fork→0, this function crosses zero a
infinite number of times, thus satisfying the boundary con
tion, Eq. ~16!, for an infinite number of eigenstates with e
ponentially decreasing binding energy. We denote thenth
root of Eq.~16! for a given value ofs asksn . From Eq.~18!,
we obtain the asymptotic ratio between successive en
eigenvaluesEsn for a largen:

Es(n11)

Esn
→expS 2

2p

s D . ~20!

This ratio holds for an attractive long-range 1/r 2 potential
with any short-range repulsive potential, though the abso
position of the energy levels is dependent on the later.
form of this dependence was established in Ref.@31#.

For each value of the dipole moment, using the results
the lowest eigenvalueC, the largest rootks1 , corresponding
to the ground state, was calculated. The dependence o
ground-state energy on the dipole moment is presente
Fig. 3.

For thenth level, the normalization constantA in Eq. ~13!
is given by

A5
A2

Kis11~ksn!
. ~21!

It may be expected that a given eigenvalue of the nonc
fined system will be significantly perturbed by the confin
ment only when the radius of the sphere is not much lar
than the spatial extent of the corresponding eigenstate.
therefore of interest to calculate the mean radial distanc
the wave function. This is given by

r̄ 5E
1

`

r 3@F~r !#2dr5A2E
1

`

r 2@Kis~ksnr !#2dr. ~22!

FIG. 3. The ground-state binding energy of the dipole-bou
electron. Note that the energy should be scaled according to
repulsive potential length scale by (a0 /a)2. The vertical grid line
marks the critical dipole.
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Using the symbolic capability ofMATHEMATICA , an ana-
lytic expression for this integral involving hypergeometr
functions 2F3 was found, which holds for an arbitrary valu
of kns , not necessarily a root of Eq.~16!. This expression is
quite complicated and is given in the Appendix, but evalu
ing it within MATHEMATICA is much faster than performing
numerical integration to the same degree of accuracy.
result is presented in Fig. 4. It can be seen that for dip
moments smaller than 4 D, there is a very rapid rise in
distance of the electron from the center, while for dipo
moments larger than 6 D, there is a gradual decrease, an
average distance of the electron is of the order of the m
lecular core size.

III. THE NEGATIVE ENERGY SPECTRUM
OF THE CONFINED ELECTRON

We shall now determine the negative energy spectrum
the confined electron. Strictly speaking, the levelE50 does
not have any special physical meaning for a confinem
with an infinite potential. However, this is an approximatio
to a more realistic model in which the potential barrier sh
be large and finite. Then, energy levels above zero will
scribe nonbound states, so that2E again corresponds to th
binding energy.

The general solution of Eq.~6! can be written as

F~r !5
AIn~kr !1BKn~kr !

Ar
, ~23!

with the boundary conditions

F~1!5F~R!50, ~24!

whereI n(r ) is the modified Bessel function of the first kind
andn andk are the same as in Eqs.~14! and ~15!.

For an imaginary ordern5 is, I is(r ) is a complex-valued
function. Negative values of the energy correspond to reak,
while positive ones to imaginaryk. For a realr, we have
I n(r )5I 2n* (r ). It is convenient to work with real functions
We define

d
he FIG. 4. The average electron radius at the ground state a
function of the dipole moment strength. This should be scaled
cording to the repulsive potential length scale by (a0 /a).
6-4
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ELECTRON STRUCTURE OF A DIPOLE-BOUND ANION . . . PHYSICAL REVIEW A68, 012106 ~2003!
Pis~r !5Re@ I is~r !#, ~25!

and

Qis~r !5Im@ I is~r !#52
sinh~sp!

p
Kis~r !, ~26!

and we rewrite Eq.~23! as

F~r !5
APis~kr !1BQis~kr !

Ar
, ~27!

with A andB real.
The small-r behavior ofPis(kr) andQis(kr) is given by

Pis~r !5Asinh~ps!

ps
cosFs lnS r

2D2s~s!G@11O~r 2!#,

~28!

and

Qis~r !5Asinh~ps!

ps
sinFs lnS r

2D2s~s!G@11O~r 2!#,

~29!

with s(s) as in Eq.~19!.
For a larger, their asymptotic behavior is given by

Pis~r !;
er

A2pr
, ~30!

and

Qis~r !;2
sinh~sp!

A2pr
e2r . ~31!

Equations~27! and~24! lead to the following equation fo
the eigenvaluesk:

Wis~k![Pis~k!Qis~kR!2Pis~kR!Qis~k!50. ~32!

This implicitly determines the dependence of the energy l
els onR and the dipole moment.

Let us first examine the condition for a given energy
genvalue to become zero as a result of changing the co
ing sphere radiusR. For k→0, we may replace the function
Pis(k) and Qis(kR) with their small argument behaviors
Eqs.~28! and ~29!. We then obtain

Wis~k→0!;sin@s ln~R!#50. ~33!

Its solutions are

Rn5expS np

s D , n51,2,3, . . . ~34!
01210
-

-
n-

This equation describes the successive external radiiRn at
which the nth dipole-bound state is ionized. We call the
‘‘critical cage radii,’’ after Ref.@20#. At the smallest critical
cage radius,

R15expS p

s D , ~35!

the ground state is ionized. For smaller radii, there are
negative energy eigenvalues. Another way to derive this
sult is to putE50 directly in Eq.~6!. The general solution is
given by

F~r !5
A cos@s ln~r !#1B sin@s ln~r !#

Ar
. ~36!

Requiring this solution to satisfy the boundary conditio
leads again to Eq.~33!.

FIG. 5. Upper curve: the ground-state critical cage radius a
function of the dipole moment strength. For a comparison,
lower curve shows the average radius of the unconfined elect
from Fig. 4. Both scale asa/a0 with the repulsive potential length
scalea.

FIG. 6. Plots of the ground-state energy of the confined elec
as a function of the radius of the spherical box. The energy
normalized by the energy of the unconfined case, and the radiu
the critical cage radius. Each curve corresponds to a given di
moment.
6-5
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S. RONEN PHYSICAL REVIEW A 68, 012106 ~2003!
The dependence of the ground-state critical cage radiu
the dipole moment strength is depicted in Fig. 5. For a co
parison, the average radius of the unconfined electron is
shown on the same plot. The critical cage radius is big
with the ratio between them varying from 1.14 at 20 D
1.76 at 2 D. So far, we have discussed the case for which
eigenstates have no nodes in the orbital coordinatesu,f. In
general, the same relation holds, with the parameters being
dependent not only on the dipole moment but also on
number of orbital nodes.

It is interesting to compare this result with that for th
confined hydrogen problem, for which the critical cage ra
for the hydrogen states (n,l ) are given@19,20,32# in terms of
roots of the Bessel function of the first kind:

J2l 11~2A2Rnl!50. ~37!

An immediate consequence of Eq.~34! is that for a given
radiusR, the numberN(s) of bound states is given by

N~s!5Fs ln R

p G , ~38!
01210
on
-
so
r,

he

e

ii

where@x# is the biggest integer, not bigger thanx.
We have calculated numerically the biggest root, cor

sponding to the ground state, for various values of the dip
moment andR. We normalize the energy of the confine
electron by that of the unconfined case, from Fig. 3. Al
because the relevant range ofR depends on the dipole mo
ment strength, it is convenient to normalize it by the groun
state cage radius, Eq.~35! and Fig. 5. The results are de
picted in Fig. 6. When interpreting this figure, it is importa
to bear in mind the huge variability of the actual~non-
normalized! radii and energies between large and small
pole moments. The figure shows that the scaled quant
exhibit a similar, though not identical , functional depe
dence. The larger the dipole moment, the less sensitive is
normalized energy to the confinement and it begins to d
toward zero at smaller normalized confinement radius.
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APPENDIX

Using MATHEMATICA , it is found that

E
1

`

r 2@Kn~kr !#2dr5

4n21G~n!2
2F3S 1

2
2n,

3

2
2n;12n,

5

2
2n,122n;k2D ~k2!2n

2n23

2

42n21G~2n!2
2F3S 1

2
1n,

3

2
1n;11n,

5

2
1n,112n;k2D ~k2!n

2n13

2

pcsc~pn!2F3S 1

2
,
3

2
;
5

2
,12n,11n;k2D

6n
1

p2~4n221!sec~pn!

32~k2!3/2
. ~A1!

The generalized hypergeometric function2F3(a,b;c,d,e;x) is defined by the power series:

2F3~a,b;c,d,e;x!5 (
n50

`
~a!n~b!n

~c!n~d!n~e!n

xn

n!
, ~A2!

where the Pochhammer symbol (a)n is given by

~a!n5
G~a1n!

G~a!
. ~A3!

The integral was verified with numerical integration of test cases.4 We note that in this formula, the parameterk does not
have to be a root ofKn(k). The formula is valid for anyk with Re(k).0. It seems plausible that the additional conditi
Kn(k)50 which corresponds to the boundary condition discussed in the text, may lead to further simplification of the fo

4MATHEMATICA is not free of bugs. In fact, in version 4.2.0.0, we caution against a bug in the evaluation of a similar Bessel integ
r instead ofr 2.
6-6
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