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Collisional decoherence reexamined

Klaus Hornberger and John E. Sipe*
Institut für Experimentalphysik, Universita¨t Wien, Boltzmanngasse 5, 1090 Wien, Austria
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We rederive the quantum master equation for the decoherence of a massive Brownian particle due to
collisions with lighter particles from a thermal environment. Our careful treatment avoids the occurrence of
squares of Diracd functions. It leads to a decoherence rate that is smaller by a factor of 2p compared to
previous findings. This result, which is in agreement with recent experiments, is confirmed both by a physical
analysis of the problem and by a perturbative calculation in the weak-coupling limit.
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I. INTRODUCTION

A classic result of decoherence theory is the rapid de
in the off-diagonal matrix elements in the coordinate rep
sentation of the density operatorr(R1 ,R2 ;t) of a massive
Brownian particle suffering collisions with the lighter pa
ticles of a thermal bath. Early calculations by Joos and Z
@1# were improved by later authors, and the result of Ga
and Fleming@2# seems to be the most widely quoted@3#.
They find, in the limit of an infinitely massive Brownia
particle, that

]

]t
r~R1 ,R2 ;t ! 52F~R12R2!r~R1 ,R2 ;t !, ~1!

where

F~R!5«nE
0

`

dqn~q!
q

mE dn̂1dn̂2

4p

3~12eiq(n̂12n̂2)•R/\!u f ~qn̂2 ,qn̂1!u2, ~2!

with m the mass of the bath particles,n their number density,
andn(q)dq the fraction of particles with momentum magn
tude betweenq andq1dq; n̂1 and n̂2 are unit vectors, with
dn̂1 and dn̂2 the elements of solid angle associated w
them. The quantityf (q2 ,q1) is the scattering amplitude of
bath particle off the Brownian particle from initial momen
tum q1 to final momentumq2. Gallis and Fleming find«
52p.

We show here that this result is incorrect; the correct
sult is given by Eq.~2! with «51. Needless to say, thi
difference does not affect the qualitative conclusion that o
diagonal elements decay exceedingly quickly for even m
roscopically small uR12R2u. Nonetheless, experimenta
techniques are now available that permit the study of
quantum mechanical loss of coherence by collisions@4#.
Therefore not only is a qualitative understanding of decoh
ence effects needed, but a quantitatively correct descrip
is required as well. Moreover, derivations of benchma

*Permanent address: Department of Physics, University
Toronto, 60 St. George Street, Toronto, ON, Canada M5S 1A7
1050-2947/2003/68~1!/012105~16!/$20.00 68 0121
y
-

h
s

-

f-
c-

e

r-
n

k

equations in the theory of decoherence such as~1! and ~2!
illustrate the nature of the physics and the assumptions
volved, and uncovering the errors of earlier results serve
a cautionary tale that may facilitate the analysis of situatio
where the physics is more complicated.

In this paper we present two detailed calculations of
fundamental result~1! and~2!. The first is a scattering theor
calculation in the spirit of the usual derivations, but one th
avoids a pitfall of those calculations by using localized a
normalized states in the scattering calculation. The secon
a weak-coupling calculation that follows the spirit of mas
equation derivations undertaken in, e.g., quantum optics
the first calculation we find Eq.~2! with «51. In the second
we find Eq. ~2! with «51 and f (qn̂2 ,qn̂1) replaced by
f B(qn̂2 ,qn̂1), the first Born approximation to that scatterin
amplitude. This is precisely what would be expected, sin
the second calculation requires the assumption of weak
teraction; it thus serves to confirm the«51 result of the first.
Neither of these is the most elegant or general calcula
one could imagine; the first is rather cumbersome, and
second would be neater if generalized to second quant
form @5#. But the first has the advantage of displaying t
physics of decoherence in an almost pictorial way, wh
allowing a calculation involving the full scattering ampl
tude. And the second, in its simple form, establishes a c
connection with the usual approach to decoherence thro
the master equation approach common in quantum op
Totally separate in their approaches, we feel that toge
they are a convincing demonstration that«51.

These two calculations are presented in Secs. II and
below. In Sec. III we return to the traditional derivation an
highlight its inherent shortcomings. We show how it shou
be modified by using a simple physical argument, wh
leads to a replacement rule for the occurring square o
Dirac d function. This treatment then also yields the res
«51. Our concluding remarks are presented in Sec. V.

II. SCATTERING CALCULATION

To set our notation we begin with a review of the standa
approach used to calculate collisional decoherence. H
ever, we also wish to point out the difficulties that can ar
in its application, so we begin in a more detailed way than
normally done.
f
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To apply scattering theory in a careful way one has
begin with an asymptotic-in stateufm&uc&, a normalized ket
that is the direct product of a Brownian particle ketufm& and
a bath particle ketuc&. The asymptotic-in ket is the result o
the evolution of a product ketufm

(2`)&uc (2`)& at t52` to
t50 under the Hamiltonian that describes the free evolut
of both particles, without interaction. The effect of the tw
particle scattering operatorS on this asymptotic-in state
S(ufm&uc&), then produces the asymptotic-out state. Wh
evolved from t50 to t5` by the non-interacting Hamil-
tonian, the asymptotic-out state yields the actual statet
5` that evolves fromufm

(2`)&uc (2`)& at t52` under the
influence of the full Hamiltonian.

In general, of course,ufm&uc& does not describe th
actual ket at t50 that evolves fromufm

(2`)&uc (2`)& at
t52`, because the evolution of that actual ket involves
particle interaction. But if the ketsufm& anduc& are such that
the~short-range! interaction between the particles has not y
had an effect@e.g., Fig. 1~a! but not Fig. 1~b!#, thenufm&uc&
can be taken as theactual ket at t50 as well as the
asymptotic-in ket. We consider only ketsufm& and uc& of
this form below.

We now turn to the impending collision of a bath partic
characterized byuc& and a Brownian particle described by
reduced density operator att50 given by a convex sum o
projectorsufm&^fmu,

r in5(
m

pmufm&^fmu

5E dR1dR2uR1&ro~R1,R2!^R2u,

with probabilitiespm.0, (pm51. Here theuR1,2& label po-
sition eigenkets of the Brownian particle, and

ro~R1,R2!5(
m

pm^R1ufm&^fmuR2& ~3!

its position representation. Then

r in
total5r in^ uc&^cu ~4!

can be considered as both the full initial~at t50) density
operator and the full asymptotic-in density operator. The
asymptotic-out density operator is then

FIG. 1. Sketched are the wave packets associated withufm& and
uc& at t50. In configuration~a! the stateufm&uc& could be taken as
both an asymptotic-in state and an initial state att50; for configu-
ration ~b! that would not be possible.
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rout
total5Sr in

totalS †

5E dR1dR2S~ uR1&uc&)ro~R1,R2!~^cu^R2u!S †.

To determine terms such asS(uR&uc&) it is useful to first
consider the effect of theS operator on direct product
uP&up& of eigenketsuP& of the Brownian particle momentum
and eigenketsup& of the bath particle momentum. Since th
total momentum commutes with theS operator, the scatter
ing transformation can be reduced to a one-particle probl
with

S~ uP&up&!5E dquP2q&up1q&

3 K m*

m
p2

m*

M
P1qUSoUm*

m
p2

m*

M
PL ,

where the matrix element here is that of theone-particle
scattering operatorSo corresponding to the two-body inter
action acting in the Hilbert space of the bath particle, a
m* 5mM/(m1M ) is the reduced mass. In the limit that th
Brownian particle is much more massive than the bath p
ticle, M@m, this reduces to

S~ uP&up&)→E dquP2q&up1q&^p1quSoup&

or, moving to a position representation for the Brownian p
ticle,

S~ uR&up&)5E dquR&e2 iq•R/\up1q&^p1quSoup&

5E dquR&up1q&^p1que2 ip•R/\S oeip•R/\up&

5uR&~e2 ip•R/\S oeip•R/\up&),

wherep is the momentum operator for the bath particle, a
so for general statesuc&

S~ uR&uc&)5uR&~e2 ip•R/\S oeip•R/\uc&)

[uR&ucR&,

where

ucR&5e2 ip•R/\S oeip•R/\uc&,

and thus

rout
total5E dR1dR2uR1&ucR1&ro~R1,R2!^cR2u^R2u.

Although rout
total is not the final density operator att5`, but

only the asymptotic-out density operator, it evolves to t
final density operator through the noninteracting Ham
5-2
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tonian, and overlaps of the form̂cR2ucR1& will be preserved
during this free evolution. So the final reduced density o
erator for the Brownian particle att5` is

rfinal5E dR1dR2uR1&^c
R2ucR1&ro~R1,R2!^R2u

[E dR1dR2uR1&r~R1,R2!^R2u,

where

r~R1,R2!5^cR2ucR1&ro~R1 ,R2!. ~5!

As is well understood, decoherence arises because the
particle becomes entangled with the Brownian particle a
the two ~asymptotic-out! statesucR2& and ucR1& resulting
from scattering interactions associated with the same b
ket uc& and different position eigenketsuR2& and uR1& can
have negligible overlap even for smalluR22R1u. The change
of the Brownian particle’s reduced density operator by
single collision is

Dr~R1,R2![r~R1 ,R2!2ro~R1 ,R2!

5~^cR2ucR1&21!ro~R1,R2!. ~6!

It involves overlap terms of the form

^cR2ucR1&5^cue2 ip•R2 /\S o
†e2 ip•(R1ÀR2)/\Soeip•R1 /\uc&

5^cuS 2
†S1uc&

5trbath$S 2
†S1uc&^cu%, ~7!

where the operators

Sj5e2 ip•Rj /\Soeip•Rj /\ ~8!

for j 51,2 are translated scattering operators. We introd
correspondingTj operators according to

Sj511 iTj , ~9!

and using the unitarity of theSj , which follows immediately
becauseSo is unitary, we find

S 2
†S1511T 2

†T12
1

2
T 1

†T12
1

2
T 2

†T21
i

2
~T11T 1

†!

2
i

2
~T21T 2

†!

and so

^cR2ucR1&511^cuAuc&, ~10!

where

A5T 2
†T12

1

2
T 1

†T12
1

2
T 2

†T21
i

2
~T11T 1

†!2
i

2
~T21T 2

†!.

Thus the change in the Brownian particle reduced den
operator is

Dr~R1,R2!5^cuAuc&ro~R1 ,R2!. ~11!
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The general strategy is to evaluate the matrix elem
^cuAuc& by inserting complete sets of momentum eige
states,

^cuAuc&5E dq1dq2^cuq2&^q2uAuq1&^q1uc&, ~12!

determine ^q2uAuq1&, and then perform the momentum
eigenstate integrals. WritingSo511 iTo as well, and using
the relations~8! and ~9!, we find

^q2uAuq1&5ei (q1•R12q2•R2)/\^q2uT o
†eip•(R22R1)/\Touq1&

2
1

2
ei (q12q2)•R1 /\^q2uT o

†Touq1&

2
1

2
ei (q12q2)•R2 /\^q2uT o

†Touq1&

1
i

2
@ei (q12q2)•R1 /\2ei (q12q2)•R2 /\#

3^q2uTo1T o
†uq1&. ~13!

Since theSo operator matrix elements are given by@6#

^q2uSouq1&5d~q22q1!1
i

2p\m
d~E22E1! f ~q2 ,q1!,

~14!

where f (q2 ,q1) is the scattering amplitude, we can identif

^q2uTouq1&5
1

2p\m
d~E22E1! f ~q2 ,q1!

5
d~q22q1!

2p\q2
f ~q2 ,q1!, ~15!

whereEi5qi
2/(2m).

Now in the traditional approach@1–3# one calculates
]r(R1 ,R2)/]t by considering the changeDr(R1,R2) in a
time Dt due to collisions with bath particles that would pa
in the neighborhood of the Brownian particle, taking the d
tribution of their velocities from the assumed thermal eq
librium of the bath. To calculateDr(R1,R2) from one of
these bath particles, a box-normalized momentum eigens
uq̃& is used in place of a localized ketuc&. Unlike the
ufm&uc& states we introduced above, theufm&uq̃& obviously
cannot be considered either as asymptotic-in states or a
actual states att50 since theuq̃& are delocalized. Nonethe
less, the traditional approach seems to simplify the calcu
tion because, as is clear from Eq.~12!, only diagonal ele-
ments^quAuq& are required if the limit of an infinite box is
taken. But from the expression~13! for ^q2uAuq1& it is clear
that, when a resolution over a complete set of moment
statesuq8& is inserted betweenT o

† andTo and the expression
~15! for the matrix elements ofTo is used, the diagonal ele
ments^quAuq& involve thesquareof Dirac delta functions
d(q2q8). To evaluate these the ‘‘magnitude’’ ofd(0) must
be somehow set. This is done by relating it to an origin
5-3
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K. HORNBERGER AND J. E. SIPE PHYSICAL REVIEW A68, 012105 ~2003!
normalization volume of the box. While not implausibl
such a protocol is certainly not rigorous and is open to qu
tion.

To avoid the necessity of this kind of maneuver we w
employ bath statesuc& that are normalized andlocalized, as
is required by a strict application of scattering theory. Befo
addressing the full calculation for a bath in thermal equil
rium, we consider scattering involving a single stateuc&.

A. Scattering of a single bath ket

From Eqs. ~12! and ~13! for ^cuAuc& in terms of
^q2uAuq1&, it is clear that we require integrals of the form

I 15E dq1dq2u~q1 ,q2!^q2uTo1T o
†uq1&, ~16!

I 2(R)5E dq1dq2u~q1 ,q2!^q2uT o
†eip•R/\Touq1&,

which we work out in Appendix A for an arbitrary functio
u(q1 ,q2) of the two momentum variables. We find that w
can write these expressions exactly as

I 15E dqE
q̂'

dD uS q2
D

2
,q1

D

2 D M1~q,D! ~17!

and

I 2~R!5E dn̂ dqE
q̂'

dD uS q2
D

2
,q1

D

2 DeiQ•R/\M2~q,n̂,D!.

~18!

The integration overq covers all momentum space, whileD
is a two-dimensional momentum vector ranging over
plane perpendicular toq; n̂ is a unit vector withdn̂ the
associated solid angle element. Moreover,

M1~q,D!5
1

2p\q F f S q1
D

2
,q2

D

2 D1 f * S q2
D

2
,q1

D

2 D G
~19!

and

M2~q,n̂,D!5
1

4p2\2

Q

q
f * S Q,q1

D

2 D f S Q,q2
D

2 D
~20!

with

Q5n̂Aq21
D2

4
. ~21!

With these formulas in hand we can address the expres
for ^cuAuc& once uc& is specified. To do this, we take th
bath particle wave function̂r 8uc& to be a Gaussian wav
packet centered atro in position andpo in momentum,

^r 8uc&5
eipo•(r82ro)/\

~pa2!3/4
e2ur82rou2/(2a2),
01210
s-

e
-

e

on

and characterized by

Dx5
a

A2
,

Dpx5
b

A2
,

with ab5\. For this minimum uncertainty wave packet w
find that the expression for^cuq2&^q1uc& in the integral~12!
for ^cuAuc& becomes

K cUq1
D

2 L K q2
D

2 Uc L
5S 1

pb2D 3/2

ei D•ro /\e2D2/(4b2)e2uq2pou2/b2
.

We now assume that this wave packet is located
enough away from the regions of space where the ini
density operator~3! is concentrated, and with an averag
momentum directed toward the Brownian particle such t
the combined density operator~4! can be taken both as a
initial density operator att50 and as the asymptotic-in den
sity operator~see Fig. 2!. Then using the expressions abo
we find

^cuAuc&5S 1

pb2D 3/2E dn̂ dq e2uq2pou2/b2E
q̂'

dDB~ n̂,q,D!,

~22!

where

B~ n̂,q,D!5eiq•(R12R2)/\eiQ•(R22R1)/\e2 i D•(ro2R̄)/\

3e2D2/(4b2)M2~q,n̂,D!

2
1

2
e2 i D•(ro2R1)/\e2D2/(4b2)M2~q,n̂,D!

2
1

2
e2 i D•(ro2R2)/\e2D2/(4b2)M2~q,n̂,D!

1
i

2
@e2 i D•(ro2R1)/\2e2 i D•(ro2R2)/\#

3e2D2/(4b2)M1~q,D!,

FIG. 2. For this configuration the direct product ofro and
uc&^cu can be taken as both the total asymptotic-in density oper
and the initial density operator att50.
5-4
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COLLISIONAL DECOHERENCE REEXAMINED PHYSICAL REVIEW A68, 012105 ~2003!
and where we have put

R̄[
R11R2

2
. ~23!

The Gaussian functions will keepD within aboutb of zero
andq within aboutb of po . We now assume that the centr
momentumpo is much greater in magnitude than its va
ance,po@b, and henceq@b for all q that make a significan
contribution; we also assume that the scattering amplit
varies little over the momentum rangeb. Then we can put

M1~q,D!'
1

p\q
Re@ f ~q,q!#,

M2~q,n̂,D!'
1

4p2\2
u f ~qn̂,q!u2.

Once these approximations are made, the integral overD of
the three terms inB(n̂,q,D) can be done immediately. Th
integral overD of the first term is not so simple becauseD
still appears inQ. In the exponential we have phase facto
that vary as

Q•~R22R1!

\
5Aq21

D2

4

n̂•~R22R1!

\

5
qn̂•~R22R1!

\
1

D2n̂•~R22R1!

8\q
1•••.

The first correction term is of order

b2uR22R1u
\q

5
~ uR22R1u/a!

~q/b!
. ~24!

Sinceq@b this term will still be much smaller than unit
even if the distance between the two positions of the Brow
ian particle is several widths of the wave packet. We assu
that uR22R1u is indeed such this quantity is much less th
unity. Then we can replace the phase by its leading or
expansion

Q•~R22R1!

\
'

qn̂•~R22R1!

\

in the exponentials of the first two integrals, and the integ
tion overD can be done as well. These are two-dimensio
integrals over a plane perpendicular toq, and so they are o
the form

E
q̂'

dDe2 i D•(ro2R̄)/\e2D2/(4b2)5~2p\!2Gq~ro2R̄…,

where we have used the fact thatab5\ and introduced

Gq(R)5
exp$2@R22~ q̂•R!2#/a2%

pa2
, ~25!
01210
e

-
e

er

-
l

which involvesR22(q̂•R)2, the square of the component o
R that is perpendicular toq[qq̂. In all, we find

^cuAuc&5E dq
e2uq2pou2/b2

~pb2!3/2
Aro~q!, ~26!

where

Aro(q)5Gq(ro2R̄)E dn̂ ei (qÀqn̂)•(R12R2)/\u f ~qn̂,q!u2

2
1

2
[Gq~ro2R1!1Gq~ro2R2…#E dn̂u f ~qn̂,q!u2

1
2p i\

q
@Gq~ro2R1!2Gq~ro2R2!#Re@ f ~q,q!#.

~27!
This is the result we will find most useful when we mov

to a thermal distribution of bath particles. But we close th
section with an observation that is of interest in its own rig
Consider the special case where the size of the bath par
wave packet is much larger than the distance between
pointsR1 andR2,

uR12R2u/a5uR12R2ub/\!1. ~28!

Then in theGq functions of Eq.~27! we can replaceR1 and
R2 by R̄. Moreover, since the integral in Eq.~26! restrictsq
to within a distance of aboutb of po , in Eq. ~27! we can
replaceq by po in the scattering amplitudes and in the pha
using the assumption already made that they vary little o
a range ofb; we can also replace theGq functions by corre-
spondingGpo

functions. The integral in Eq.~26! can then be
done, and using Eq.~11! we find

Dr~R1,R2!52ro~R1 ,R2!Gpo
(ro2R̄…

3E dn̂~12ei (po2pon̂)•(R12R2)/\!u f ~pon̂,po!u2.

The physics here is transparent since

Gpo
(ro2R̄)5

e2,2/a2

pa2
,

where, is the impact parameter of the collision~see Fig. 3!.
Decoherence occurs only if the bath particle does not ‘‘mis

FIG. 3. A configuration wherea@R5uR12R2u; the distance

,5Au22(u•p̂o)2 is the impact parameter, whereu5ro2R̄.
5-5
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K. HORNBERGER AND J. E. SIPE PHYSICAL REVIEW A68, 012105 ~2003!
the Brownian particle, i.e., if the impact parameter, is
smaller than the wave packet extension~as limited by the
uncertainty principle!; its maximum effect scales with th
integrated square of the amplitude of the normalized b
particle as it passes over the pair of points@1/(pa2)#; it
vanishes asuR12R2u→0 because the scattering by the tw
points then becomes identical; and it depends only on
scattering amplitude at momentum magnitudepo because the
variation of that scattering amplitude over the range of m
mentum components included in the wave packet has b
neglected.

B. Convex decompositions of the bath density operator

To apply the results derived above to a Brownian parti
subject to a thermal bath, we need to describe the effec
the thermal bath in terms of incident, normalized wave pa
ets. We start with a single bath particle restricted to a n
malization volumeV. In thermal equilibrium, at temperatur
kBT5b21, the bath state is specified by the density opera

rbath5
l3

V
e2bp2/(2m), ~29!

providedV is much larger than the cube of the thermal
Broglie wave length

l5A2p\2b

m
. ~30!

The usual convex decomposition of Eq.~29! in terms of
the delocalized energy eigenstates is the obvious one
aside from the freedom in choosing orthogonal states fr
among a degenerate set, it is the only one in terms of
thogonal states. But a host of others can also be found
particularly convenient set of convex decompositions for
problem at hand can be obtained by using

e2bp2/(2m)5S b̄

b
D 3/2E dp

e2b̂p2/(2m)

~2pm/b̂ !3/2
e2b̄(p2p)2/(2m),

~31!

which holds as long asb̂ and b̄ are both positive and

1

b
5

1

b̄
1

1

b̂
,

or, in terms of the pseudotemperatureskBT̂[b̂21 and kBT̄

5b̄21,

T5T̄1T̂.

In order to use the decomposition~31! for rbath, we write

e2b̄(p2p)2/(2m)5e2b̄(p2p)2/(4m)I Ve2b̄(p2p)2/(4m),

and take the identity operator in position representation,
01210
th

e

-
en

e
of
-

r-

r

d,
m
r-
A
r

IV5E
V

dr ur &^r u,

where the integration covers the bath volumeV. We find

rbath5E
V

dr

V E dpm̂~p!uc rp&^c rpu, ~32!

where

m̂~p!5S b̂

2pm
D 3/2

e2b̂p2/(2m) ~33!

is a normalized momentum distribution function,*m̂(p)dp
51, and the states

uc rp&[l3/2S b̄

b
D 3/4

e2b̄(p2p)2/(4m)ur &

5l̄3/2e2b̄(p2p)2/(4m)ur & ~34!

are characterized by the length scale

l̄5A2p\2b̄

m

@compare with Eq.~30!#. One then immediately finds

^r 8uc rp&5
2A2

l̄3/2
eip•(r82r )/\e22pur82r u2/l̄2

, ~35!

so the wave packetuc rp& is centered atr and has an averag
momentump. Indeed, it is of the Gaussian form used in t

preceding section with minimal uncertainties,b[A2mkBT̄
anda[\/b. Thus these wave packets have

~Dpx!
2

2m
5

kBT̄

2
,

while if we calculate the momentum variance associa
with the distribution functionm̂(p),

~dpx!
2[E px

2m̂~p!dp,

we find

~dpx!
2

2m
5

kBT̂

2
.

That is,

~Dpx!
2

2m
1

~dpx!
2

2m
5

kBT

2
.

We see that in the class~32!, ~33! of convex decompositions
of rbatha part of the thermal kinetic energy is associated w
the size of the wave packets themselves, while the rest
5-6
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sides in the motion of the centers of the wave packets. If
take T̂→0 then the wave packets are essentially all at r
characterized by a sizel̄→l, which is the thermal de Bro
glie wavelength. On the other hand, forT̂@T̄ the wave pack-
ets are much larger than the thermal de Broglie wavelen
and essentially all the thermal kinetic energy is associa
with the expectation value of the momenta of the wave pa
ets; we have

^p2&
2m

[
1

2mE p2m̂~p!dp5
3

2
kBT̂,

and so a typical speed for the wave packets is

vwp[A3kBT̂

m
.

C. Scattering of a thermal bath of particles

With the preliminaries of the preceding sections we
now in a position to begin the calculation of the effect o
thermal bath on the coherence of a massive Brownian
ticle. We begin with a number of assumptions and choi
that will be made, and then discuss their applicability a
relevance in the context of the calculation.

1. Assumptions and choices

~1! We neglect initial correlations, taking the initial fu
density operator att50 to be a direct product of a Brownia
particle density operator and a density operator for the b
particles in thermal equilibrium,

r total~ t50!5ro^ rbath. ~36!

~2! We assume that the density of bath particles is m
less thanl23; then the issue of particle degeneracy does
matter and we may consider the density operator of the t
bath to be just the product of density operators for individ
particles. Thus we can calculate effects ‘‘particle by p
ticle.’’ We choose a volumeV much larger than any othe
volume of interest.

~3! We use a convex decomposition ofrbath for a single
bath particle of the type described above, withT̄!T such
that

T̂'T

and therefore

b2!^p2&. ~37!

This rendersb sufficiently small so that the variation in sca
tering amplitudes over the momentum spread of a w
packet is negligible for essentially all of the wave packets
the convex decomposition.

~4! The value ofT̄ should also be small enough that th
neglect of the variation of the scattering amplitudes in
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integral~22! is justified, and that we can use the approxim
tion of neglecting terms of the order of Eq.~24! above. For
the latter we need

b2

\q
uR22R1u5

2mkBT̄

\q
uR22R1u!1.

Now for typical wave packets the average momentump, and

henceq, will be of the order ofmvwp5A3mkBT̂, so this
condition becomes

2kBT̄

\vwp

uR22R1u5S 8p

3
D 1/2 T̄

ATT̂

uR22R1u

l
!1,

and sinceT̂'T this reduces to

T̄!
uR22R1u

l
T.

~5! We choose a coarse-graining timeDt sufficiently large
that

vwpDt@a, ~38!

vwpDt@uR22R1u.

That is, a typical packet travels a distance much greater t
its width and much greater than the distance between the
decohering sites during the coarse-graining time. Using
expressions forvwp anda above, andT̂'T, the first condi-
tion reads

Dt@
\

kBT
AT

T̄
. ~39!

The second condition is essentially independent ofT̄ as long
as T̂'T, and simply demands that a typical bath partic
wave packet can travel many times the distance between
decohering sites during the coarse-graining time.

It is easy to see that for anyR1 andR2 of interest we can
meet all these conditions by the choice of a large enoughDt,
and we will see below that for a small enough density
change in the reduced density operator will be small o
any givenDt. Hence our approximations will generally b
valid in the low density limit.

2. Calculation

The convex decomposition~32! we use for the density
operator of a bath particle leads us to think almost classic
about the collision of the wave packetsuc rp& with our
Brownian particle. In a naive classical picture the bath p
ticles of a givenp that can be considered as coming in t
ward a collision with the Brownian particle in timeDt are
those that lie on any of the planes perpendicular top and
extending out a distancepDt/m in the direction2p̂ from R̄
@recall Eq.~23!; see Fig. 4#. Of course, some of these wi
5-7
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completely miss the Brownian particle, but none have ha
collision with it in the past. For a givenp we refer to this
region of space asR(p).

Returning to the wave packets, note that those with c
tral positionsr close to theR1 or R2 of interest will initially
be overlapping with regions of space for whichro(R1 ,R2) is
nonvanishing; here any talk of a collision is inappropria
since at initiation, att50, the Brownian and bath particle
would immediately be strongly interacting. This is an artifa
of the assumption~36! of an initially uncorrelated state
which is clearly unphysical. If the uncorrelated state we
taken seriously, there would be a rapid ‘‘jolt’’ or shift in th
reduced density operator due to the setup of correlations@7#.
These effects we neglect here, as they are implicitly
glected in most such calculations; we do note that, forDt
large enough, the regionsR(p) for p of interest will be suf-
ficiently large that only a small fraction of the wave packe
in the sphere will fall in this problematic class.

In calculations involving the rest of the wave packets
R(p), we can take the initial density operator also to be
asymptotic-in density operator, and use the scattering the
calculation for a bath particle wave packet given above. C
sideringN bath particles in a volumeV, the total result for
Dr(R1 ,R2) @recall Eqs.~11! and ~32!# is then

Dr~R1,R2!5Nro~R1 ,R2!E dpm̂~p!E
R(p)

dr

V
^c rpuAuc rp&,

where we assume that the inclusion of the problematic c
of wave packets identified above will not lead to serio
error. Using the result~26! from our scattering calculation
above, we have

Dr~R1,R2!5nro~R1 ,R2!E dpm̂~p!E
R(p)

dr

3E dq
e2uq2pu2/b2

~pb2!3/2
Ar~q!.

If in fact the strong condition~28! can be assumed then th
integral overq can be evaluated immediately, as was do
following Eq. ~28!, and then also the integral overp can be
performed. But this is not necessary. We can simply n

FIG. 4. For wave packets with momentump and centers in the
hatched regionR(p), we take the initial density operator to be th
direct productro^ uc rp&^c rpu. For some wave packets, such asA,
an actual collision will occur, while for others, such asB, one will
not.
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that, by virtue of Eq.~37!, m̂(p) will vary little over the
range b where e2uq2pu2/b2

peaks and falls. Hence we ca
replacem̂(p) by m̂(q) and R(p) by R(q) and immediately
do the integral overp to yield

Dr~R1,R2!5nro~R1 ,R2!E dqm̂~q!E
R(q)

drAr~q!.

Since the onlyr dependence is in theGq @see Eq.~25!#, one
can now do ther integral for each fixedq, putting dr
5dr'dr i, where r i refers to the distance in the directio
2q. Since the integration overr' is unrestricted in the re-
gion R(q), we have

E
R(q)

dr'Gq~r'2Ri
'!51

for Ri5R1 , R2, or R̄ @see Eq.~25!#. On the other hand, ther
is no dependence onr i,

E
R(q)

dr i5
q

m
Dt,

and so we find

Dr~R1,R2!

Dt
5nro~R1 ,R2!E dq

q

m
m̂~q!

3E dn̂~ei (qÀqn̂)•(R12R2)/\21!u f ~qn̂,q!u2.

Finally, we recall thatT̂'T and therefore putm̂(q)'m(q),
where

m~q!5S b

2pmD 3/2

e2bq2/(2m) ~40!

@cf. Eq. ~33!#. Now if n(q) is the thermal distribution func-
tion for the momentum magnitude of the bath particles a
q5qŝ, whereŝ is a unit vector anddŝ the associated elemen
of solid angle, we have

m~q!dq5
n~q!dqdŝ

4p
, ~41!

and hence on a coarse-grained time scale we find Eqs~1!
and ~2! with «51.

III. THE TRADITIONAL APPROACH: A REMEDY

We showed in the preceding section how the problem
evaluating a squared Dirac function can be circumvented
expressing the thermal state of the bath particles in an o
complete, nonorthogonal basis of Gaussian wave pac
@see Eq.~32!#. However, it is certainly reasonable to explo
the possibility of using the standard diagonal representa
of the thermal bath density operator, which facilitates t
formal calculation considerably. After all, all the represen
tions of rbath are equally valid and should yield the sam
5-8
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COLLISIONAL DECOHERENCE REEXAMINED PHYSICAL REVIEW A68, 012105 ~2003!
master equation provided the calculation is done in a cor
way. It is therefore worthwhile to search for a way to de
properly with such an ill-defined object as the ‘‘square’’ of
d distribution function.

In this section we show how a proper evaluation of t
diagonal momentum basis matrix elements can be im
mented. This leads to an alternate derivation of the ma
equations~1! and~2!, and allows us to highlight the origin o
the problem plaguing earlier workers and to discuss furt
implications. However, rather than attempting a mathem
cally rigorous formulation, we base our presentation on
simple physical argument. Our point is that such an argum
can lead to a prescription for correctly evaluating improp
products of Diracd functions, although this differs from pre
vious naive treatments.

A. A single collision

Let us consider again the action of asingle scattering
event on the Brownian particle in position representat
ro(R1 ,R2) and in the limit of a large mass. It follows from
the discussion in Sec. II that after the collision it diffe
merely by a factor from the initial Brownian state,

r~R1 ,R2!5h~R1 ,R2!ro~R1 ,R2!, ~42!

which is given by

h~R1 ,R2!5trbath$e
2 ip•R2 /\S o

†eip•(R22R1)/\Soeip•R1 /\rbath%
~43!

@see Eqs.~5! and ~7!#. In Sec. II only pure statesrbath

5uc&^cu of the bath particle were considered, but the re
soning is immediately generalized to mixed states.

The factor h(R1 ,R2) may be called the decoherenc
function, since it describes the effective loss of coherenc
the Brownian state that arises from disregarding the scatt
bath particle. The normalization ofrbath implies

lim
uR12R2u→0

h~R1 ,R2!51, ~44!

which means that the collision does not change the posi
distribution of the Brownian point particle,r(R,R)
5ro(R,R). On the other hand, possible quantum corre
tions between increasingly far separated points will van
since a collision may be viewed as a position measurem
of the Brownian particle by the bath which destroys sup
positions of distant locations:

lim
uR12R2u→`

h~R1 ,R2!50. ~45!

This complete loss of coherence implies that the collis
took place with a probability of 1. It could be realized,
particular, by taking the incoming bath particle state to b
momentum eigenket in a box centered on one of the sca
ing sites.
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In thermal equilibrium the density operator~29! of the
bath particle can be written as

rbath5
l3

V (
pPPV

e2bp2/(2m)up̃&^p̃u

5
~2p\!3

V (
pPPV

m~p!up̃& ^p̃u, ~46!

with the normalized momentum distribution function~40! at
b51/(kBT). The up̃& are momentum eigenkets normalize
with respect to the bath volumeV,

up̃&5
~2p\!3/2

V1/2
up&, ~47!

and the sum involves those momentap«PV whose associ-
ated wave functions satisfy periodic boundary conditions
the boxV. The kets~47! form an orthonormal basis,

(
p«PV

up̃&^p̃u5IV , ~48!

whereIV is the identity operator in the space of wave fun
tions that are periodic inV; they must be distinguished from
the standard momentum kets

^r up&5
eip•r /\

~2p\!3/2
, ~49!

which satisfy

^pup8&5d~p2p8!

and span the full space,

E dpup&^pu5I. ~50!

Since the bath state~46! is diagonal in the momentum
representation, an explicit expression for the decohere
function ~43! is readily obtained:
5-9



K. HORNBERGER AND J. E. SIPE PHYSICAL REVIEW A68, 012105 ~2003!
h~R1 ,R2!→E dpm~p!^p̃ue2 ip•R2 /\S o
†eip•(R22R1)/\S oeip•R1 /\ up̃&

5E dpm~p!F12^p̃uT o
†Toup̃&1eip•(R12R2)/\^p̃uT o

†eip•(R22R1)/\Toup̃&]

5E dpm~p!F12
~2p\!3

V E dp8~12ei (p2p8)•(R12R2)/\!z^p8uToup& z2G . ~51!
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In the first line the sum over momentap«PV was replaced
by an integral according to the usual prescription

~2p\!3

V (
p«PV

→E dp.

In the second line we introduced the operatorTo5 i (12So)
and used the unitarity ofSo ,

i ~To2T o
†!52T o

†To ,

as in Sec. II and in@2,3#. The last line follows after inserting
a complete set of states~50! and noting the relation~47!.

The expression in square brackets in Eq.~51! should be
well defined and finite. However, it involves two arbitrari
large quantities, the ‘‘quantization volume’’V, which stems
from the normalization of the bath particle, and the squa
amplitude of theTo operator with respect to~improper! mo-
mentum kets. The simple matrix element is given by
expression~15!:

^p8uToup&5
d~p2p8!

2p\p
f ~p8,p!, ~52!

involving the scattering amplitude and ad function which
ensures the conservation of energy during an elastic c
sion. The squared modulus of Eq.~52! is not well defined in
the sense of distributions, but depends on the specific lim
ing process from which the Diracd function originates. Yet
one would naturally expect that an appropriate replacem
has the form

u^p8uToup&u2→d~p2p8!g~p!u f ~p8,p!u2 ~53!

with g(p) a function involving the quantization volume.
We note that Eq.~51! displays the correct limiting behav

ior ~44! since the expression in parentheses vanishes aR1
→R2. On the other hand, for large separations of the poi
the phase in Eq.~51! oscillates rapidly and it will not con-
tribute to the integral in the limituR12R2u→`. Therefore
the limit ~45! allows one to specify the unknown functio
g(p) in Eq. ~53!. One obtains

g~p!5
V

~2p\!3

1

s~p!p2
,

with
01210
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s~p!5E dn̂u f ~pn̂,p!u2

the total cross section for scattering at momentump. For-
mally, this means that one should treat the expression inv
ing the squaredd function and scattering amplitude as

ud~p2p8! f ~p8n̂,p!u2→ V

2p\s~p!
d~p2p8!u f ~pn̂,p!u2.

~54!

B. The master equation

A master equation can now be derived in the same sp
as above. In the low density limit for the bath particles, t
decohering effect of each collision can be treated indep
dently and the overall decoherence in a short time intervalDt
is determined only by the mean number and type of sin
collisions.

For bath particles with momentump the mean number o
collisions is given byj (p)s(p)Dt, where j (p)5nupu/m is
the flux, and we replace 1/V by n, the number density of
bath particles. Hence, the average change in the Brow
state duringDt reads

r~R1 ,R2!2ro~R1 ,R2!

Dt
52nE dpm~p!

p

mE dn̂

3~12ei (p2pn̂)•(R12R2)/\!

3u f ~pn̂,p!u2ro~R1 ,R2!,

and noting Eq.~41! we have on a coarse-grained time sca
which is much larger than the typical interval between co
sions

]

]t
r~R1 ,R2!52F~R12R2!r~R1 ,R2!, ~55!

with F given by Eq.~2!, again with«51.

C. Interpretation

It is clear that the derivation of the decoherence funct
~43! does not hold rigorously even for volume-normaliz
~47! momentum states, since their amplitude is uniform
space and they cannot be considered as asymptotic-i
asymptotic-out states. Nonetheless, the fact that one ob
the ‘‘correct’’ master equation by using the diagonal mome
5-10
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COLLISIONAL DECOHERENCE REEXAMINED PHYSICAL REVIEW A68, 012105 ~2003!
tum representation~46! indicates that it can be reasonable,
least in a formal sense, to extend the applicability of Eq.~43!
to volume-normalized momentum eigenstates.

Then the appearance of the total cross section in the
propriate replacement rule~54! has a clear physical interpre
tation. The squared matrix element of theTo operator with
respect to two orthogonal proper states may be viewed as
probability for a transition between the states due to a co
sion. The appropriate normalization of the probability nec
sary in the limit of improper states is then effected by t
appearance of the total cross sections(p) in Eq. ~54!, which
is absent in the usual naive treatments of the squaredd func-
tion.

This point of view is confirmed by the fact that the ru
~54!, which was derived from a simple physical argume
~45!, implies a conservation condition. Integrating Eq.~54!
we have

~2p\!3

V E dp8u^p8uToup&u2→E dp8d~p2p8!
u f ~p8,p!u2

p2s~p!
51

~56!

and hence, using Eq.~50! and switching to volume-
normalized states,

^p̃uToT o
† up̃&→1. ~57!

Inserting the identity~48! yields

(
p8PPV

z^p̃8uToup̃& z2→1. ~58!

This is reminiscent of the situation of a multijunction in m
soscopic physics@8#, or of the scattering off a quantum grap
@9#, where one defines a transition matrixTmn5utmnu2 that
connects a finite number of incoming and outgoing chann
There thetmn are the transmission amplitudes between
incoming and outgoing states, and current conservation
plies

(
m

Tmn51 with Tmn5utmnu2,

in analogy to Eq.~58!.
The fact that the conservation relation~58! has no mean-

ingful equivalence in the continuum limitV→` is closely
connected to the difficulty of evaluating the squared scat
ing amplitude in the momentum representation. It sugge
that the diagonal representation ofrbath can be used in a
rigorous formulation of the master equation only if the tra
sition from a discrete to a continuous set of bath state
delayed until after the square of the scattering matrix elem
is evaluated. A calculation along this line, albeit in a pert
bative framework, is presented in the following section.

IV. WEAK-COUPLING CALCULATION

We now consider an approach that is totally different fro
the derivation in Sec. II. Instead of performing a scatter
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calculation, we obtain a master equation for the reduced d
sity operator from a weak-coupling approximation that
very similar to the analyses of quantum optics. Again t
assumption of a low density of bath particles will allow us
calculate the effect of the bath particles one particle at a ti
so we begin with our Brownian particle and a single ba
particle restricted to a box of normalization volumeV.
While we will take the limit V→` in the course of the
calculation, we can do it in such a way that products of Dir
delta functions never appear.

In the absence of any interaction between the particles
Hamiltonian reads

Ho5
P 2

2M
1

p2

2m
,

wherem and M are the bath and Brownian particle mass
andp andP are their momentum operators. The normaliz
eigenstates ofHo are direct productsuP̃&up̃&, where up̃& is
given by Eq.~47! with Eq. ~49!, and similarly

^RuP̃&5
eiP•R/\

AV
. ~59!

The values ofp and P are restricted to a discrete setp,P
PPV , so that the wave functions respect periodic bound
conditions. Our full Hamiltonian is then

H5Ho1V~r2R!,

wherer andR are, respectively, the bath and Brownian pa
ticle position operators, andV describes the interaction.

In the interaction picture the full density operator evolv
according to

r I
total~ t !5U~ t !r I

total~0!U†~ t !, ~60!

whereU(t)511 iT(t) and

T~ t !52
1

\E0

t

HI~ t8!U~ t8!dt8,

with

HI~ t !5eiH ot/\V~r2R!e2 iH ot/\. ~61!

Using the unitarity of the time evolution,U†(t)U(t)
5U(t)U†(t)5I, we find from Eq.~60! and the definition of
T(t) that

r I
total~ t !2r I

total~0!5
1

2
i @T~ t !1T†~ t !,r I

total~0!#

1T~ t !r I
total~0!T†~ t !

2
1

2
T†~ t !T~ t !r I

total~0!

2
1

2
r I

total~0!T†~ t !T~ t !.
5-11
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This equation is exact. The first term on the right side
scribes a unitary modification to the dynamics of the den
operator due to the interaction with the bath particles;
neglect it here since it will not lead to decoherence. For
other terms we make the standard weak-coupling approxi
tions @10#: we replaceT(t) by

To52
1

\E0

Dt

HI~ t8!dt8,

assume an initially uncorrelated density operatorr I
total(0)

5ro^ rbath @cf. Eq. ~36!#, and at timeDt trace over the bath
to find the change in the reduced density operator for
Brownian particle as

Dr I5trbathH TororbathTo
†2

1

2
To

†Tororbath2
1

2
rorbathTo

†ToJ .

~62!

To constructTo we begin with a Fourier expansion of th
interaction potential, writing

V~r2R!5
~2p\!3

V (
qPPV

V̄~q!eiq•(r2R)/\, ~63!

choosing the prefactor for later convenience. Then, form
Eq. ~61! by inserting resolutions of unity~48! in terms of the
energy eigenstates between the free evolution terms and
potential, we find

HI~ t !5
~2p\!3

V (
P,qPPV

V̄~q!uP2q̃& ^P̃u

3expS i t

\

uP2qu22P2

2M D
3 (

pPPV

up1q̃& ^p̃u expS i t

\

up1qu22p2

2m D . ~64!

Although this approach leads easily to considering the m
general problem of a finite mass Brownian particle, we de
that to a later communication. Here we take the infinite m
limit for the Brownian particle by takingM→` in Eq. ~64!,
and we can then write

HI~ t !5
~2p\!3

V (
P,qPPV

L̃Pqgq~ t !,

where

L̃Pq5uP2q̃& ^P̃u

and

gq~ t !5V̄~q! (
pPPV

up1q̃& ^p̃u expS i t

\

up1qu22p2

2m D .

Using these in the expression~62! for Dr, we find
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Dr5
~2p\!6

V2 (
P8,q8,P9,q9PPV

~2L̃P8q8roL̃P9q9
†

2L̃P9q9
† L̃P8q8ro2roL̃P9q9

† L̃P8q8!Y~q8,q9!,

with

Y~q8,q9!5
1

2\2E0

DtE
0

Dt

trbath$gq8~ t8!rbathgq9
†

~ t9!%dt8dt9.

Here we no longer distinguish between the Schro¨dinger and
the interaction picture of the reduced density operator si
they yield the same evolution in the infinite mass limit. T
response functionY(q8,q9) involves the correlator

trbath$gq8~ t8!rbathgq9
†

~ t9!%

5dq8q9uV̄~q8!u2 (
pPPV

Np

3expF i ~ t82t9!

\ S up1q8u22p2

2m D G ,
where

Np5^p̃urbathup̃&

is the probability associated with stateup̃&. At this point we
include the fact thatN particles exist in volumeV by multi-
plying the one-particle probability byN. Moreover, for a
large volumeV we can replace the summation over the ba
momenta by an integral,

(
pPPV

Np

V
•••→E dp nm~p!•••,

where n is the bath particle density andm(p) the thermal
distribution function~40!. This yields

trbath$gq8~ t8!rbathgq9
†

~ t9!%

5dq8q9VuV̄~q8!u2E nm~p!

3expF i ~ t82t9!

\ S up1q8u22p2

2m D Gdp

[dq8q9VGq8~ t92t8!, ~65!

with

Gq~ t92t8!5nuV̄~q!u2E m~p!

3expF i ~ t82t9!

\ S up1qu22p2

2m D Gdp ~66!

for all q. Then we have
5-12
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Dr5
~2p\!6

V2

V

2\2 (
P8,P9,qPPV

~2L̃P8qroL̃P9q
†

2L̃P9q
† L̃P8qro

2roL̃P9q
† L̃ P̃8q!I q~Dt !, ~67!

where

I q~Dt ![E
0

DtE
0

Dt

Gq~ t92t8!dt8dt9.

Now that the Kroneckerd appearing in Eq.~65! has been
summed we can pass to the continuum limitV→` and
switch from the box-normalized states~59! to the standard
momentum kets for the Brownian particle,

^RuP&5
eiP•R/\

A~2p\!3
.

This is done by the replacements

V

~2p\!3
L̃Pq→uP2q&^Pu[LPq

and

~2p\!3

V (
PPPV

→E dP. ~68!

We obtain

Dr

4p3\
5E dP8dP9dq~2LP8qroLP9q

†
2LP9q

† LP8qro

2roLP9q
† LP8q!I q~Dt !.

Similarly, the Fourier transform of Eq.~63! yields in the limit
~68!,

V̄~q!5E dr

~2p\!3
V~r !e2 iq•r /\

5^quVu0&

as the momentum matrix element of the interaction.
By means of the Fourier expansion

Gq~ t !5E dv

2p
Ḡq~v!e2 ivt , ~69!

we can write

I q~Dt !5
1

2pE dvḠq~v!Fsin~vDt/2!

v/2 G2

,

where
01210
Ḡq~v!5
2pnm\

q
uV̄~q!u2S b

2pmD 1/2

3expF2
bm\2

2q2 S v2
q2

2m\ D 2G , ~70!

as we show in Appendix B. It follows that for time interva

Dt@b\ ~71!

we can setḠq(v)'Ḡq(0), andI q(Dt)'Ḡq(0)Dt for essen-
tially all q of importance in Eq.~67!; a coarse-graining time
long enough that Eq.~71! is satisfied is sufficient to guaran
tee that Fermi’s golden rule holds and energy conservatio
satisfied for the scattering bath particles. We then obtai
master equation for the reduced density operator of
Brownian particle,

dr

dt
54p3\E dP8dP9dq~2LP8qrLP9q

†
2LP9q

† LP8qr

2rLP9q
† LP8q!Ḡq~0!.

Although not explicitly in Lindblad form this equation yield
a completely positive evolution ofr and can be put in Lind-
blad form, sinceḠq(0).0.

To see the physics of this result and to compare it w
earlier work we go into the coordinate representat
r(R1 ,R2 ;t)5^R1ur(t)uR2&, where we find

]

]t
r~R1 ,R2 ;t ! 52F~R12R2!r~R1 ,R2 ;t !,

with

F~R!58p3\E dq~12e2 iq•R/\!Ḡq~0!. ~72!

While this in practice might be a useful expression for eva
atingF(R) directly, to compare with earlier work it is easie
to return first to Eq.~66! and formally determineḠq(0).
Inserting in Eq.~72! leads to

F~R!516p4\2nE dqE dpm~p!uV̄~q!u2

3@12e2 iq•R/\#dS up1qu22p2

2m D ,

and with the introduction of a new variablep85p1q to
replaceq,

F~R!516p4\2nE E dp8dpm~p!uV̄~p82p!u2

3@12ei (pÀp8)•R/\#dS ~p8!22p2

2m D .

The p8 integration can be done in polar coordinates,p8

5p8n̂, i.e., dp85(p8)2dp8dn̂. Then, since
5-13
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dS ~p8!22p2

2m D5dS p81p

2m
~p82p! D5

m

p
d~p82p!,

we have

F~R!516p4\2nmE E dn̂ dpm~p!puV̄~pn̂2p!u2

3@12ei (pÀpn̂)•R/\#,

which, with the aid of Eq.~41!, yields

F(R)54p3\2mnE E pn~p!dp dn̂ dŝuV̄~pn̂2pŝ!u2

3@12ei (pŝÀpn̂)•R/\#.

Finally, we use the fact that the first order Born approxim
tion for the scattering amplitude is given by@6#

f B~p8,p!52~2p!2m\V̄~p82p! ~73!

to find

F~R!5nE E p

m
n~p!dp

dn̂ dŝ

4p
u f B~pn̂,pŝ!u2

3@12ei (pŝÀpn̂)•R/\#,

in agreement with Eq.~2! for «51, if the full scattering
amplitude is replaced by its first Born approximation.

V. CONCLUSIONS

In this article we presented two detailed derivations of
quantum master equation for a massive Brownian part
subject to collisions with particles from a thermalized en
ronment, and a third argument for the master equation ba
on physical motivations. They represent rather different st
egies of dealing with the principal problem that arises in
formulation of collisional decoherence: The momentu
eigenstates that are the most natural for describing the
sity operator of the thermal bath do not constitute pro
states for the application of scattering theory.

By representing the thermal bath with an appropri
overcomplete basis, we obtained in Sec. II the full mas
equation in a calculation that is mathematically and phy
cally convincing, but cumbersome. The perturbative tre
ment in Sec. IV permitted the avoidance of improper sta
up to a point where they could be handled in an unambi
ous way. Yet this calculation hides some of the physics
volved and does not in itself suggest an immediate gene
zation to higher orders in the perturbation parameter. M
straightforward, but a bit speculative, is the use of the
placement rule put forward in Sec. III. It yields the mas
equation immediately, but lacks the mathematical founda
one would wish for an equation describing a process as
damental as decoherence by collisions. The strategies d
oped here lead to natural generalizations, both to the m
general problem of a Brownian particle of finite mass and
01210
-

e
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ed
t-
e

n-
r

e
r

i-
t-
s
-
-
li-
e
-

r
n
n-
el-
re
o

other collisional decoherence processes. We plan to tur
them in future communications.

Different as the three approaches may be, they all sug
that previous results in the literature predict decohere
rates that are quantitatively too large. This conclusion is
only of theoretical interest. A recent experiment@4# on the
decoherence of fullerene matter waves by collisions w
background gas atoms was sensitive to the presence o
sence of the factor of 2p that has been the focus of th
article. And, indeed, the observed decoherence rates a
full agreement with the equation derived in this article a
exclude the previous results.
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APPENDIX A

In this appendix we confirm the results~17! and ~18!,
beginning from the definitions~16!. We begin by inserting a
complete set of momentum eigenstates to write the ma
element appearing inI 2(R) as

^q2uT o
†eip•R/\Touq1&5E dq8^q2uT o

†eip•R/\uq8&^q8uTouq1&

5E dq8eiq8•R/\^q2uT o
†uq8&^q8uTouq1&.

Then using the expression~15! for the matrix elements ofTo
and notingd(q22q8)d(q82q1)5d(q22q1)d(q82q1), we
find

I 15E dq1dq2

2p\q2
u~q1 ,q2!@ f ~q2 ,q1!1 f * ~q1 ,q2!#d~q22q1!,

~A1!

I 2~R!5E dq1dq2dq8

4p2\2q1q2

u~q1 ,q2!eiq8•R/\ f * ~q8,q2!

3 f ~q8,q1!d~q82q1!d~q22q1!,

and sod(q22q1) appears in both these expressions. Th
are simplified if we make a change of variables from (q1 ,q2)
to (q,s), whereq25q1s/2 andq15q2s/2. The Jacobian of
this transformation is unity, sodq1dq25dqds, and

d~q22q1!5dSAq21
s2

4
1s•q2Aq21

s2

4
2s•qD .

We do thes integral first, and we single out the component
s along q̂ by writing

sÄnq̂1D,
5-14
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whereD is a two-dimensional vector lying in the plane pe
pendicular toq̂. Thends5dndD, and

d~q22q1!5d„g~n!…

for fixed D, where

g~n!5Aq21
D21n2

4
1qn 2Aq21

D21n2

4
2qn,

which as a function ofn vanishes atn50. Thus

d„g~n!…5
d~n!

udg/dnun50
5

Aq21D2/4

q
d~n!,

and for any functionU(q1 ,q2) we have

dq1dq2U~q1 ,q2!d~q22q1!

5dqdndDUS q2
s

2
,q1

s

2D d„g~n!…

5dqdD
Q

q
US q2

D

2
,q1

D

2 D , ~A2!

where we have put

Q[Aq21
D2

4
5Uq2

D

2U5Uq1
D

2U5q15q2

@cf. Eq. ~21!#. Using this in the first of Eqs.~A1! we imme-
diately find Eq.~17!; using it in the second of Eqs.~A1! we
find Eq. ~18!:

I 2~R!5E dqdq8

4p2\2Eq̂'

dD

qQ
uS q2

D

2
,q1

D

2 D
3eiq8•R/\ f * S q8,q1

D

2 D f S q8,q2
D

2 D d~q82Q!

5E dqdn̂

4p2\2Eq̂'
dD

Q

q
uS q2

D

2
,q1

D

2 DeiQ•R/\

3 f * S Q,q1
D

2 D f S Q,q2
D

2 D ,

where to get from the first to the second equality we have
dq85(q8)2dq8dn̂, wheredn̂ is an element of solid angle
and definedQ as in Eq.~21!.

APPENDIX B

Here we confirm the result~70!. From the inverse trans
form of Eq. ~69! we have, using Eq.~66!,
01210
ut

Ḡq~v![E dt eivtGq~ t !

52p\nuV̄~q!u2E m~p!dS up1qu22p2

2m
2\v Ddp

5p\uV̄~q!u2nE n~p!dp dad„sv~a!…, ~B1!

where

sv~a!5
2pqa1q2

2m
2\v.

To get from the second to the third equality of Eq.~B1! we
have put

up1qu22p2

2m
5

2p•q1q2

2m

5
2pqa1q2

2m
,

wherea5cosu, and u is the angle betweenp and q, and
used Eq.~41!, writing dŝ5dadf, wheref is the azimuthal
angle aroundq. The functionsv(a) has a single root

ao5
2m\v2q2

2pq
,

which, for there to be a contribution to the integral in E
~B1!, must satisfy21<ao<1. Sincep andq are both posi-
tive this implies

p>pcut[
u2m\v2q2u

2q
.

Finally, noting that

d„sv~a!…5
md~a2ao!

pq
,

we obtain the expression

Ḡq~v!5
pm\

q
uV̄~q!u2nE

pcut

` n~p!

p
dp.

In thermal equilibrium,

n~p!54pS b

2pmD 3/2

e2bp2/(2m)p2,

this integral immediately yields Eq.~70!.
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