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Collisional decoherence reexamined
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We rederive the quantum master equation for the decoherence of a massive Brownian particle due to
collisions with lighter particles from a thermal environment. Our careful treatment avoids the occurrence of
squares of Dirad functions. It leads to a decoherence rate that is smaller by a factorrafanpared to
previous findings. This result, which is in agreement with recent experiments, is confirmed both by a physical
analysis of the problem and by a perturbative calculation in the weak-coupling limit.
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[. INTRODUCTION equations in the theory of decoherence suclilasand (2)
illustrate the nature of the physics and the assumptions in-

A classic result of decoherence theory is the rapid decayolved, and uncovering the errors of earlier results serves as
in the off-diagonal matrix elements in the coordinate repre-a cautionary tale that may facilitate the analysis of situations
sentation of the density operatp(R;,R,;t) of a massive where the physics is more complicated.
Brownian particle suffering collisions with the lighter par-  In this paper we present two detailed calculations of the
ticles of a thermal bath. Early calculations by Joos and Zefiundamental resultl) and(2). The first is a scattering theory
[1] were improved by later authors, and the result of Galliscalculation in the spirit of the usual derivations, but one that
and Fleming[2] seems to be the most widely quotgg].  avoids a pitfall of those calculations by using localized and
They find, in the limit of an infinitely massive Brownian normalized states in the scattering calculation. The second is
particle, that a weak-coupling calculation that follows the spirit of master
equation derivations undertaken in, e.g., quantum optics. In
the first calculation we find Eq2) with e=1. In the second

we find Eq. (2) with e=1 and f(qn,,qn,) replaced by
fs(an,,qn,), the first Born approximation to that scattering

d
EP(RlaRZ;t):_F(Rl_RZ)P(RliRZ;t)a (1)

where amplitude. This is precisely what would be expected, since
o the second calculation requires the assumption of weak in-
oc g ( dn;dn, teraction; it thus serves to confirm the= 1 result of the first.
F(R)=an0 dq”(Q)mJ A Neither of these is the most elegant or general calculation
one could imagine; the first is rather cumbersome, and the
x(1_eiq(ﬁl—ﬁz)~R/h)|f(qﬁz,qﬁl)|2l (2)  second would be neater if generalized to second quantized

form [5]. But the first has the advantage of displaying the

with m the mass of the bath particlestheir number density, Physics of decoherence in an almost pictorial way, while
andv(q)dq the fraction of particles with momentum magni- allowing a calculation involving the full scattering ampli-

tude betweemj andq+dq; A, andn, are unit vectors, with tude. And the second, in its simple form, establishes a clear

dn ddhs the el f solid | iated wi hconnection with the usual approach to decoherence through
n, anddn, the elements of solid angle associated Withy,e master equation approach common in quantum optics.

them. The quantityf (q,,d,) is the scattering amplitude of & tqia)1y separate in their approaches, we feel that together
bath particle off the Brownian particle from initial momen- they are a convincing demonstration that 1.
tum g, to final momentumds. Gallis and Fleming finds These two calculations are presented in Secs. Il and IV
=2m. : . ) below. In Sec. Il we return to the traditional derivation and
We show here that this resu_lt is incorrect; the correct reyignjight its inherent shortcomings. We show how it should
sult is given by Eq.(2) with e=1. Needless to say, this pe modified by using a simple physical argument, which
difference does not affect the qualitative conclusion that off1o54s to a replacement rule for the occurring square of a
diagonal elements decay exceedingly quickly for even macp;rac 5 function. This treatment then also yields the result

roscopically small |R,—R,|. Nonetheless, experimental ; _1 oy concluding remarks are presented in Sec. V.
techniques are now available that permit the study of the

guantum mechanical loss of coherence by collisiphk
Therefore not only is a qualitative understanding of decoher-
ence effects needed, but a quantitatively correct description
is required as well. Moreover, derivations of benchmark To set our notation we begin with a review of the standard
approach used to calculate collisional decoherence. How-
ever, we also wish to point out the difficulties that can arise
*Permanent address: Department of Physics, University ofh its application, so we begin in a more detailed way than is
Toronto, 60 St. George Street, Toronto, ON, Canada M5S 1A7. normally done.

Il. SCATTERING CALCULATION
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(b) Pl Spelst
o = 0|¢> o Ol;j’

|Pm) |Pm)

=J dRydR,S(|R)[)) po( R, R2) ((#l(Ra]) ST

To determine terms such &(|R)|#)) it is useful to first
FIG. 1. Sketched are the wave packets associated #ithand  consider the effect of theS operator on direct products
|) att=0. In configuration(a) the state ¢,)|1) could be taken as  |P)|p) of eigenketgP) of the Brownian particle momentum
both an asymptotic-in state and an initial stat¢=a0; for configu-  gn(g eigenket$p) of the bath particle momentum. Since the
ration (b) that would not be possible. total momentum commutes with th#operator, the scatter-

ing transformation can be reduced to a one-particle problem,
To apply scattering theory in a careful way one has towijth

begin with an asymptotic-in state,)| /), a normalized ket
that is the direct product of a Brownian particle ket,) and
a bath particle kelty). The asymptotic-in ket is the result of 5(|P>|D>)=f dg|P—q)|p+a)
the evolution of a product kg, )[4 ) att=— to
t=0 under the Hamiltonian that describes the free evolution m_* —m—*P+ S m* m*
of both particles, without interaction. The effect of the two- X mP M 4 <0 Ty M '
particle scattering operataf on this asymptotic-in state,
S(|¢m)|#)), then produces the asymptotic-out state. Wherwhere the matrix element here is that of thee-particle
evolved fromt=0 to t=o by the non-interacting Hamil- scattering operata$, corresponding to the two-body inter-
tonian, the asymptotic-out state yields the actual state at action acting in the Hilbert space of the bath particle, and
== that evolves from ¢, )|y~ att=—= under the ~m*=mM/(m+M) is the reduced mass. In the limit that the
influence of the full Hamiltonian. Brownian particle is much more massive than the bath par-
In general, of course|¢,,)|#) does not describe the ticle, M>m, this reduces to
actual ket at t=0 that evolves from|g{, ™)y~ at
t=—o, because the evolution of that actual ket involves the
particle interaction. But if the ketsb,,) and| ) are such that S(|P)|p))—>f daP—aplp+a)(p-+alSolp)
the (short-rangginteraction between the particles has not yet
had an effecte.qg., Fig. 1a) but not Fig. 1b)], then| )| ) or, moving to a position representation for the Brownian par-
can be taken as thactual ket att=0 as well as the ticle,
asymptotic-in ket. We consider only keftg,,) and|) of
this form below. o RIA
We now turn to the impending collision of a bath particle 5(|R>|P>):j dg|Rye™ "™ p+q)(p+a|So|p)
characterized byis) and a Brownian particle described by a
reduced density operator &0 given by a convex sum of

projectors| ¢m)( b,

=f dg|R)|p+a)(p+qle” P RS PRIt p)

:|R>(e—ip~R/ﬁSoeip~R/ﬁ|p>)’
Pin= 2 Pl Bm)(b
" lm) (S wherep is the momentum operator for the bath particle, and
so for general states))

:f dR;dR;|R1)po(R1,R2)(Ra|, S(|R>|<//))=|R>(e_i"'R/hSoeip'R/h|l,/!))

with probabilitiesp,,>0, =p,,= 1. Here thdR; ;) label po- =|R)[4%),
sition eigenkets of the Brownian particle, and
where
Po(R1R2) =2 Pro( Ryl $m)( bmlRz) 3 |pf)=e 1P RIS eP Ry,
. N ] and thus
its position representation. Then
pCPI= i@ | Y] @) Pou = f dR1dRo|R1)|472) po( Ry, Ro) (472(R .

can be considered as both the full initi@t t=0) density  Although pg{}ta' is not the final density operator &t o, but
operator and the full asymptotic-in density operator. The fullonly the asymptotic-out density operator, it evolves to the
asymptotic-out density operator is then final density operator through the noninteracting Hamil-
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tonian, and overlaps of the for(m’/R2|¢Rl> will be preserved The general strategy is to evaluate the matrix element
during this free evolution. So the final reduced density op{#|.A|#) by inserting complete sets of momentum eigen-

erator for the Brownian particle at« is states,
= Ryl /R
Piinal J AR1IRAIR1) (9724 )poRu.Ro)(Re| (Yl Aly)= f da;dax(#laz){( gl Alaraily),  (12)
EfdedR2|R1>p(R1,R2)<R2|, determine (q,|.A|g.), and then perform the momentum

eigenstate integrals. Writing,=1+i7, as well, and using
the relationg8) and(9), we find

where

p(R1,R2) = (4| R po( Ry, Ry). (5) (0ol Al qy) = € 1 Ri= G2 R (| T T ib- (Re= R/ | g )
As is well understood, decoherence arises because the bath . .
particle becomes entangled with the Brownian particle and — 5 e Ry ToT | a)

the two (asymptotic-out states|4R2) and |4R1) resulting
from scattering interactions associated with the same bath 1 (1= )Ry /i +

ket |¢) and different position eigenket®,) and|R;) can TpeT (92| 7 5 Zola)
have negligible overlap even for smgR,— R;|. The change

of the Brownian particle’s reduced density operator by a
single collision is

Ap(R1,R2)=p(R1,R2) = po(R1,R2)
= ("2 R1) = 1) po(Ry, Ry). (6)

It involves overlap terms of the form

+ IE[ei((h_QZ)'Rl/fi_ ei(ql_QZ)'Rz/ﬁ]

X (G| To+ T 3] ay).- (13)

Since theS, operator matrix elements are given [}

(2| yRa) :<¢|e—ip'Rz/ﬁSge—iP'(Rl—Rz)/ﬁgoeiP'R1/ﬁ| ) (92l Solas) = 8(a—ay) + Z;W o(Ex—E1)f(az,a1),
= (y1S28lv) .
— troad S ) (. ) wheref(q,,q;) is the scattering amplitude, we can identify
where the operators <q2|7;|q1>=ﬁ5(E2— Epf(dz.a1)
Si=e RIS giv-Ry (8) 5= 01)
for j=1,2 are translated scattering operators. We introduce ~ 2whaq, (0.4, 9

correspondingZ; operators according to 5
whereE;=q;/(2m).
§=1+i7;, €) Now in the traditional approachl-3] one calculates
] o ] ) . dp(R1,R,)/dt by considering the chang&p(R4,R,) in a
and using the unitarity of th§;, which follows immediately  time At due to collisions with bath particles that would pass
becauses, is unitary, we find in the neighborhood of the Brownian patrticle, taking the dis-
fa + 1, 1, i + tribution of their velocities from the assumed thermal equi-
S261=1+ T 1= 5T = 5T+ 5 (T +Ty) librium of the bath. To calculaté\p(R;,R;) from one of
these bath particles, a box-normalized momentum eigenstate
_%(724‘7;) |a> is used in place of a localized kéty). Unlike the

|pm)| /) states we introduced above, thi,)|q) obviously
cannot be considered either as asymptotic-in states or as the

Rol 1Riv actual states at=0 since the[q) are delocalized. Nonethe-
(P Yy =1+ (| Al ), (10 |ess, the traditional approach seems to simplify the calcula-
tion because, as is clear from E{.2), only diagonal ele-
ments(q|.A|q) are required if the limit of an infinite box is
i i taken. But from the expressida3) for (q,|.A|q,) it is clear
T}TZ+ E(Tl+ TI)— E(TZ+ T;). that, when a resolution over a complete set of momentum
statesq’) is inserted betweef| and7, and the expression
Thus the change in the Brownian particle reduced density15) for the matrix elements of;, is used, the diagonal ele-
operator is ments(q|.A|g) involve thesquareof Dirac delta functions
8(g—q’). To evaluate these the “magnitude” é{0) must
Ap(R1,Ry) = (4| Al ) po(R1,Ry). (1)  be somehow set. This is done by relating it to an original

and so
where

+ 1 1
A=T7T,~ 57171_ 2
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normalization volume of the box. While not implausible, R ro
. . . . Po

such a protocol is certainly not rigorous and is open to ques- 4/@
tion. )

To avoid the necessity of this kind of maneuver we will
employ bath statels/) that are normalized anidcalized as po(R1, R2)
is required by a strict application of scattering theory. Before
addressing the full calculation for a bath in thermal equilib- R,
rium, we consider scattering involving a single stajg. FIG. 2. For this configuration the direct product pf and

|#){ | can be taken as both the total asymptotic-in density operator

A. Scattering of a single bath ket and the initial density operator &£ 0.

From Egs. (12 and (13) for (| A|#) in terms of

(9, Alay), it is clear that we require integrals of the form and characterized by

a
|1=f da;daau(ds,02)(02| To+ 7 3| a), (16) AX:E’
|2(R):f daydaau(ds ,02)(0| 756 ¥ Tolay), Ap :i
X \/E’

which we work out in Appendix A for an arbitrary function o _
u(d;,q,) of the two momentum variables. We find that we with ab=4. For this minimum uncertainty wave packet we
can write these expressions exactly as find that the expression fdi/|g,)(q,|#) in the integral(12)

A A for (| .A|¢) becomes
|1:jquldAu(q—5,q+5 Mi(@,d) (17 Al A
“ [vioa) o214

1

h?

and

3/2
) eiA-ro/ﬁe—A2/(4b2)e—|q—p0|2/b2_

- A A -
IZ(R)=j dnquudAu(q—E,q+§)e'Q'R’ﬁM2(q,n,A).
q

(18) We now assume that this wave packet is located far

The integration oveq covers all momentum space, while enough away from the regions of space where the initial

is a two-dimensional momentum vector ranging over thedensity operator(3) is concentrated, and with an average
. oA . o momentum directed toward the Brownian particle such that
plane perpendicular tg; n is a unit vector withdn the

. . the combined density operatéf) can be taken both as an
associated solid angle element. Moreover, - . - L
initial density operator at=0 and as the asymptotic-in den-

1 A A A A sity operator(see Fig. 2 Then using the expressions above
Mi(a.8)= 755 flatz a7/ T la-Z.at 5 we find
1132
~ A 2112 ~
and <¢|A|¢>:(E) fdndqe la=pol*/b faLdAB(n,q,A),
1 Q A A (22
Mz(q,n, )_4 zﬁz af*(qu_l_E f(qu_E) where
(20) ~ iq-(Ry—Ro)/f o1 Q- (Ry—Ry) /i o 1A+ (rg— R)/A
B(n’q'A):e'Q'(Ri R/t gl Q- (Ry—Rq)/h g —iA-(rg—R)
with

x e A%(4P%)\ L (q,n,A)

. A?
=n\/ g2+ —. 21 A —A?/(4p? N
Q a*+ (21 e 1A (1-Ry)l =A%)\ (.7, A)

With these formulas in hand we can address the expression 1
for (| A|¢) once|y) is specified. To do this, we take the — e iAo R AN\ (g AL A)
bath particle wave functiofr’|) to be a Gaussian wave 2

packet centered at, in position andp, in momentum, i _ _
+ _[eflA-(role)/h_eflA-(rofRz)/h]
elPo (r' —1o)/h 2

<f'|¢>=W

— " =rol?(2a%)
)

% e—A2/(4b2)M1(q’A),
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and where we have put

_ Ry+R,
=

(23

The Gaussian functions will keep within aboutb of zero
andqg within aboutb of p,. We now assume that the central
momentump, is much greater in magnitude th?” ItS vart- FIG. 3. A configuration wher@>R=|R;—R,|; the distance
ance,p,>b, and hence>b for all q that make a significant \/ﬁ , , —
contribution; we also assume that the scattering amplitudé= VU~ —(U-Po) is the impact parameter, wheve-r,—R.

varies little over the momentum range Then we can put

which involvesR?— (g- R)?, the square of the component of

M (q,A)~ 1 REF(q,q)] R that is perpendicular tg=qq. In all, we find
1 ) ~ T ) )

Wﬁq e_‘q_polzlbz

R e LU

77_bZ)B‘IZ

M,(q,n,A)~ |f(an,q)|%

47%h?
where

Once these approximations are made, the integral Avef - R

the three terms im3(n,q,A) can be done immediately. The AVO(q)qu(ro—R)f dne'(@=an-Re-R)/A £ (qn, q)|?

integral overA of the first term is not so simple because

still appears inQ. In the exponential we have phase factors 1 - Ao
that vary as ~ 5 lg(ro=Ry) +Tg(ro— Rz)]f dn|f(qn,q)|
Q- (Rz—Ry) A%n-(R,—Ry) 2mih
R e =g Ta(fo= R0 ~T(ro=Ro) IREH(a,0) -
A ~ 27)
(R,—R;)  A%n-(R,—R (
_an (R2—Ry) + n-(Rz=Ry) +oen This is the result we will find most useful when we move
h 8hq to a thermal distribution of bath particles. But we close this

section with an observation that is of interest in its own right.

Consider the special case where the size of the bath particle

wave packet is much larger than the distance between the
(24) pointsR; andR,,

The first correction term is of order

b?|R,— Ry _ (|IR;—R4|/a)
iq (a/b)

Sinceg>Db this term will still be much smaller than unity

even if the distance between the two positions of the BrownThen in thel, functions of Eq.(27) we can replac®; and

ian particle is.sr-.jveral widths of. the wave packet. We assuUMR, phy R. Moreover, since the integral in E(R6) restrictsq
that|R,— R,| is indeed such this quantity is much less thaniy within a distance of abou of p,, in EQ. (27) we can
unity. Then we can replace the phase by its leading ordefep|aceq by p, in the scattering amplitudes and in the phase,

expansion using the assumption already made that they vary little over
- a range ofo; we can also replace tHe, functions by corre-
Q- (R;—Ry) _an (R;—Ry) spondingl", functions. The integral in Eq26) can then be
h h done, and using Eq11) we find

in the exponentials of the first two integrals, and the mtggra-Ap(Rl,Rz): —po(R1,R)T, (ro_ﬁ)
tion overA can be done as well. These are two-dimensional °

integrals over a plane perpendiculargoand so they are of . ) - .
the form Xfdn(1—9'(p°7p°n)'(R17R2)/ﬁ)|f(Pon,po)|2-
fldAe—iA.(ro—E)me—A?/(Abz):(ZWﬁ)zrq(ro_ﬁ)’ The physics here is transparent since
q
ol
where we have used the fact trett=# and introduced Ip (ro=R)=—7—,
7a

exp{—[R?*—(q-R)?]/a?}

(25)  Where{ is the impact parameter of the collisi¢see Fig. 3.
2

Decoherence occurs only if the bath particle does not “miss”

I'4(R)= -
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the Brownian particle, i.e., if the impact parametéris

smaller than the wave packet extensi@s limited by the In:f dr{ry(r|,

uncertainty principlg its maximum effect scales with the “

integrated square of the amplitude of the normalized bathyhere the integration covers the bath volufae We find
particle as it passes over the pair of poifitd(7a?)]; it

vanishes a$R;—R,|—0 because the scattering by the two va [ 9T N

points then becomes identical; and it depends only on the P —fgﬁf dpu(P)| #rp ) ¥rpl, (32
scattering amplitude at momentum magnitpgdebecause the
variation of that scattering amplitude over the range of moyynere
mentum components included in the wave packet has been
neglected. B sz ,

n(p)= (2 m) e~ Apii2m) (33
B. Convex decompositions of the bath density operator

To apply the results derived above to a Brownian particlds @ normalized momentum distribution functiofy:(p)dp
subject to a thermal bath, we need to describe the effect of 1, and the states
the thermal bath in terms of incident, normalized wave pack- 2l
ets. We start with a single bath pa_r'qclg restricted to a nor- y >E)\3,2(E) e‘g(”‘p)z’(“m)lr)
malization volume&(). In thermal equilibrium, at temperature P
ksT= "1, the bath state is specified by the density operator

=\~ Blp=P)I(4m) | ) (34)
bath_)\a — Bp2I(2m)
L O ' (29 are characterized by the length scale
provided(} is much larger than the cube of the thermal de = 2mh?B
Broglie wave length B m
2mh*B [compare with Eq(30)]. One then immediately finds
A= . (30
m

‘/Eeip-(r'—r)/ﬁe—zw\r’—r\z/fz

2
<rl|’/’rp>zﬁ (35

The usual convex decomposition of E9) in terms of
the delocalized energy eigenstates is the obvious one and,
aside from the freedom in choosing orthogonal states fronso the wave packet,) is centered at and has an average
among a degenerate set, it is the only one in terms of ormomentump. Indeed, it is of the Gaussian form used in the
thogonal states. But a host of others can also be found. freceding section with minimal uncertamtleb;:x/kaB
particularly convenient set of convex decompositions for ouranda=#/b. Thus these wave packets have
problem at hand can be obtained by using

— Bp?I(2m) (Apo? _keT
e PP~ (j f - o Blr—p)2/(2m) 2m 2

2am/ 2emi 332" L . .
( T B) (31) while if we calculate the momentum variance associated

with the distribution functionu(p),
which holds as long aé and B are both positive and

(8p,)?= f pZ/(p)dp,

1 B 1 L 1
B E B’ we find
A oa — 2 5
or, in terms of the pseudotemperatuted=8"1 andkgT (6P _ kB_T
=71 2m 2
. That is,
T=T+T.
N - (ApY?  (8p)? kgT
In order to use the decompositi¢al) for p*™" we write om om 2 -
e*E(P*p)z’(zm)ze*E(*’*p)z’("'m)IQe*E“’*p)z’(“m), We see that in the clag82), (33) of convex decompositions
of p”@"a part of the thermal kinetic energy is associated with

and take the identity operator in position representation, the size of the wave packets themselves, while the rest re-
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sides in the motion of the centers of the wave packets. If wéntegral(22) is justified, and that we can use the approxima-
take T—0 then the wave packets are essentially all at resttion of neglecting terms of the order of E@4) above. For
characterized by a size—\, which is the thermal de Bro- the latter we need

glie wavelength. On the other hand, for- T the wave pack- 2 kaB?
ets are much larger than the thermal de Broglie wavelength, |R,—Ry|=——|R,—R4|<1.
and essentially all the thermal kinetic energy is associated fq hq

with the expectation value of the momenta of the wave pack-

ets: we have Now for typical wave packets the average momenfyrand

henceq, will be of the order ofmuv,,= V3mksT, so this
2 1 R 3 . condition becomes
mz_ zﬂ(p)dp__k T
= =5keT,

2m  2m - 12 5
2kBT 877 T |R2_ Rll
and so a typical speed for the wave packets is hva| Ryl = 3 o5 N <1
V= \/ 3keT and sinceT~T this reduces to
wp m .
— |R,—R
. _ T R Rl
C. Scattering of a thermal bath of particles A

Wi.th the p_rt_aliminaries_ of the preceqmg sections we are (5) We choose a coarse-graining tim¢ sufficiently large
now in a position to begin the calculation of the effect of a hat

thermal bath on the coherence of a massive Brownian par-

ticle. We begin with a number of assumptions and choices v At>a (39)
that will be made, and then discuss their applicability and P
relevance in the context of the calculation. quAt>|R2—R1|.

1. Assumptions and choices That is, a typical packet travels a distance much greater than

(1) We neglect initial correlations, taking the initial full its width and much greater than the distance between the two
density operator at=0 to be a direct product of a Brownian decohering sites during the coarse-graining time. Using the

particle density operator and a density operator for the batexpressions fov,,, anda above, andr~T, the first condi-
particles in thermal equilibrium, tion reads

ptotal(t — O) =po® pba’[h_ (36)

> (39
(2) We assume that the density of bath particles is much keT
less thar\ ~3; then the issue of particle degeneracy does not
matter and we may consider the density operator of the totalhe second condition is essentially independeri & long
bath to be just the product of density operators for individualas T~T, and simply demands that a typical bath particle
particles. Thus we can calculate effects “particle by par-wave packet can travel many times the distance between the
ticle.” We choose a volumé&) much larger than any other decohering sites during the coarse-graining time.
volume of interest. It is easy to see that for arfy; andR, of interest we can
(3) We use a convex decomposition @ for a single  meet all these conditions by the choice of a large enaigh
bath particle of the type described above, Witk T such  and we will see below that for a small enough density the
that change in the reduced density operator will be small over
any givenAt. Hence our approximations will generally be
valid in the low density limit.

—
4
—

and therefore 2. Calculation

The convex decompositiofB2) we use for the density
b2<(p?). (37) operator of a bath particle leads us to think almost classically
about the collision of the wave packetg,) with our
This renderd sufficiently small so that the variation in scat- Brownian particle. In a naive classical picture the bath par-
tering amplitudes over the momentum spread of a wavdicles of a givenp that can be considered as coming in to-
packet is negligible for essentially all of the wave packets inward a collision with the Brownian particle in tim&t are
the convex decomposition. those that lie on any of the planes perpendlculaptand

(4) The value ofT should also be small enough that the extending out a distangeAt/m in the direction— p from R
neglect of the variation of the scattering amplitudes in thdrecall Eq.(23); see Fig. 4 Of course, some of these will
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' \ that, by virtue of Eq.(37), u(p) will vary little over the
NN - rangeb where e 19P?* peaks and falls. Hence we can
\\\A \ replacex(p) by 1(q) andR(p) by R(q) and immediately
R, ' A do the integral ovep to yield
R: \\ %At Ap(Ry,Rz)=npy(Ry,Ry) f dgu(q) fR(q)drA%q).
N\ ‘

Since the only dependence is in thE, [see Eq(25], one
FIG. 4. For wave packets with momentyrand centers in the can now do ther integral for each fixedq, putting dr
hatched regioR(p), we take the initial density operator to be the =drtdr!, wherer! refers to the distance in the direction

direct productp,® | ¢, )( |- For some wave packets, suichA&s  —q. Since the integration over is unrestricted in the re-
an actual collision will occur, while for others, such Bsone will gion R(q), we have
not.
1 1_ply—
completely miss the Brownian particle, but none have had a L(q)dr Fo(rm—R)=1
collision with it in the past. For a givep we refer to this
region of space aR(p). for R;=R;, R,, orR [see Eq(25)]. On the other hand, there

Returning to the wave packets, note that those with cen no dependence ar,
tral positionsr close to theR; or R, of interest will initially
be overlapping with regions of space for whigf(R;,R,) is 9
nonvanishing; here any talk of a collision is inappropriate, L(q)dr —mAt,
since at initiation, at=0, the Brownian and bath particles
would immediately be strongly interacting. This is an artifactand so we find
of the assumption(36) of an initially uncorrelated state,
which is clearly unphysical. If the uncorrelated state were Ap(R3,Ry) q -
taken seriously, there would be a rapid “jolt” or shift in the At ano(Rlsz)J- da_u(9)
reduced density operator due to the setup of correlafiths
These effects we neglect here, as they are implicitly ne-
glected in most such calculations; we do note that, for
large enough, the regioi®(p) for p of interest will be suf- ~ R
ficiently large that only a small fraction of the wave packetsFinally, we recall thaf~T and therefore puf.(q)~ «(q),
in the sphere will fall in this problematic class. where

In calculations involving the rest of the wave packets in a2
R(p), we can take the initial density operator also to be the u(q)= (_) e~ Ba%/(2m) (40)
asymptotic-in density operator, and use the scattering theory 2mm
calculation for a bath particle wave packet given above. Con- ) ) S
sideringN bath particles in a volume, the total result for  [Cf- EQ. (33)]. Now if »(q) is the thermal distribution func-
Ap(Ry,Ry) [recall Eqs.(11) and(32)] is then tion for the momentum magnitude of the bath particles and
g=gs, wheresis a unit vector andls the associated element
of solid angle, we have

x J dn(e! (=90 (Ra=Ra)/h— 1) (i, ) |2,

N dr
A(RuRe)=Npo(R1 Ro) | dpi(p) [ G-Curpl Al A
v(q)dqgds

4q (41)

. . . dg=
where we assume that the inclusion of the problematic class ma)dg

of wave packets identified above will not lead to serious _ i )
error. Using the result26) from our scattering calculation @nd hence on a coarse-grained time scale we find @gs.
above, we have and(2) with e=1.

~ I1l. THE TRADITIONAL APPROACH: A REMEDY
AP(Rlsz):nPo(Rlsz)J' dpM(p)J dr

R(p) We showed in the preceding section how the problem of
lg—l2/h2 evaluating a squared Dirac function can be circumvented by
e~la-pl/b . : .
Xf dq AT(q). expressing the thermal state of the bath particles in an over-
(mb?)3/2 complete, nonorthogonal basis of Gaussian wave packets

[see Eq(32)]. However, it is certainly reasonable to explore
If in fact the strong conditior{28) can be assumed then the the possibility of using the standard diagonal representation
integral overg can be evaluated immediately, as was doneof the thermal bath density operator, which facilitates the
following Eg. (28), and then also the integral ovprcan be formal calculation considerably. After all, all the representa-
performed. But this is not necessary. We can simply notdions of p*®" are equally valid and should yield the same
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master equation provided the calculation is done in a correct In thermal equilibrium the density operat@9) of the
way. It is therefore worthwhile to search for a way to dealbath particle can be written as

properly with such an ill-defined object as the “square” of a

6 distribution function.

In this section we show how a proper evaluation of the \3
diagonal momentum basis matrix elements can be imple- phath=—_ 2 e—BpZ/(2m)|“F3><5|
mented. This leads to an alternate derivation of the master 0 pery
equationg1) and(2), and allows us to highlight the origin of (th)g
the problem plaguing earlier workers and to discuss further E ,u(p)|p><p| (46)

implications. However, rather than attempting a mathemati- pelo

cally rigorous formulation, we base our presentation on a

simple physical argument. Our point is that such an argument

can lead to a prescription for correctly evaluating impropemwith the normalized momentum distribution functi¢40) at
products of Diracs functions, although this differs from pre- B=1/(kgT). The [p) are momentum eigenkets normalized
vious naive treatments. with respect to the bath volume,

A. A single collision

Let us consider again the action ofsingle scattering ~ (2mh)3?
event on the Brownian particle in position representation )= 012 P, (47)
po(R1,R5) and in the limit of a large mass. It follows from
the discussion in Sec. Il that after the collision it differs

merely by a factor from the initial Brownian state, and the sum involves those moment&P,, whose associ-
ated wave functions satisfy periodic boundary conditions on
p(R1,R2)=7(R1,R2)po(R1,R2), (42)  the box(Q). The kets(47) form an orthonormal basis,

which is given by

7(Ry,Ry) =trpaufe™ P Re/i S Teib (Re=Ro)lig glip-Ry/f pbath p;ﬂ Ip){p|=Zq, (48
(43)
[see Egs.(5) and (7)]. In Sec. Il only pure stategpPa™"
—|¢>(zp| of the bath particle were considered, but the rea-
soning is immediately generalized to mixed states.
The factor »(R;,R,) may be called the decoherence

function, since it describes the effective loss of coherence in
the Brownian state that arises from disregarding the scattered

bath particle. The normalization P2 implies elP1ih

(rlp)= 2’

whereZ, is the identity operator in the space of wave func-
tions that are periodic if); they must be distinguished from
the standard momentum kets

(49

im  #7(R{,Ry)=1, (44)
[Ry—Ro[—0
which satisfy

which means that the collision does not change the position
distribution of the Brownian point particle,p(R,R)
=po(R,R). On the other hand, possible quantum correla- , ,
tions between increasingly far separated points will vanish, (plp"y=o(p—p")
since a collision may be viewed as a position measurement
of the Brownian particle by the bath which destroys super-
positions of distant locations: and span the full space,

IRy~ Ryl f dplp){p|=Z. (50)

This complete loss of coherence implies that the collision

took place with a probability of 1. It could be realized, in

particular, by taking the incoming bath particle state to be a Since the bath staté16) is diagonal in the momentum
momentum eigenket in a box centered on one of the scatterepresentation, an explicit expression for the decoherence
ing sites. function (43) is readily obtained:
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7(Ry,Ry)— J dpu(p)(ple” P Re/iS gt (Rom Rl g el-Ralf )

= f dpmm[1—<B|T$%|’f>>+eip“RlR2>’ﬁ<5|73eip'<R2Rﬂ’ﬁ%l'ﬁﬂ

(27h)3 / L ,
=J dpu(p)[l— q f dp’(1—'®P) RamRI)(p! | T | p) . (51)
|
In the first line the sum over momenpee P, was replaced . <
by an integral according to the usual prescription 0(p)=f dn|f(pn,p)|
(2wh)? D q the total cross section for scattering at momentounfor-
Q  per, -] mally, this means that one should treat the expression involv-

ing the squared function and scattering amplitude as

In the second line we introduced the operadgri(1—S,) Q
and used the unitarity of,, _p " o)l2_s _p 0 0)l2
° [3p=p)F(p'n.P)[* = 5oy AP PIf (PN

i(T,—ThH=-T!1,, (54

as in Sec. Il and ih2,3]. The last line follows after inserting B. The master equation
a complete set of staté50) and noting the relatio47).

The expression in square brackets in &) should be A master equation can now be derived in the same spirit

well defined and finite. However, it involves two arbitrarily &S @P0ve. In the low density limit for the bath particles, the
large quantities, the “quantization volume?, which stems decohering effect of each collision can be treated indepen-

from the normalization of the bath particle, and the square(ﬂjemly a”‘?' the overall decoherence in a short time intekWaI
amplitude of the7, operator with respect tdmpropej mo- is determined only by the mean number and type of single

mentum kets. The simple matrix element is given by theCOIIiSionS'

For bath particles with momentupthe mean number of

expression15):
P 19 collisions is given byj(p)o(p)At, wherej(p)=n|p|/m is
s(p—p") the flux, and we replace @/ by n, the number density of
(p'|Z5lp) = Wf(p’,p), (520  bath particles. Hence, the average change in the Brownian
mhp state duringAt reads
involving the scattering amplitude and &@function which (R, R.)—p (R;,R,) Dl -
ensures the conservation of energy during an elastic colli- At =-n dp,u(p)a dn
sion. The squared modulus of E&2) is not well defined in
the sense of distributions, but depends on the specific limit- X(l_ei(p—pﬁ)~(Rl—R2)/h)
ing process from which the Diraé function originates. Yet
one would naturally expect that an appropriate replacement x|f(pn,p)?po(R1.Ry),

has the form
and noting Eq(41) we have on a coarse-grained time scale
p'|Zolp)|2— 8(p—p")a(p)|f(p’,p)|? (539 which is much larger than the typical interval between colli-
sions
with g(p) a function involving the quantization volume.
We note that Eq(51) displays the correct limiting behav-
ior (44) since the expression in parentheses vanishdg;as
—R,. On the other hand, for large separations of the points,
the phase in Eq(51) oscillates rapidly and it will not con- with F given by Eq.(2), again withe=1.
tribute to the integral in the limifR; —R,|—o. Therefore
the limit (45) allows one to specify the unknown function C. Interpretation
g(p) in Eg. (53). One obtains

J
EP(RLRZ):_F(Rl_Rz)P(Rlle)v (59

It is clear that the derivation of the decoherence function
(43) does not hold rigorously even for volume-normalized

g(p)= Q 1 , (47) momentum states, since their amplitude is uniform in
(27h)2 o(p)p? space and they cannot be considered as asymptotic-in or
asymptotic-out states. Nonetheless, the fact that one obtains
with the “correct” master equation by using the diagonal momen-
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tum representatiot¥6) indicates that it can be reasonable, atcalculation, we obtain a master equation for the reduced den-
least in a formal sense, to extend the applicability of @8) sity operator from a weak-coupling approximation that is
to volume-normalized momentum eigenstates. very similar to the analyses of quantum optics. Again the

Then the appearance of the total cross section in the amssumption of a low density of bath particles will allow us to
propriate replacement rul&4) has a clear physical interpre- calculate the effect of the bath particles one particle at a time,
tation. The squared matrix element of tfg operator with  so we begin with our Brownian particle and a single bath
respect to two orthogonal proper states may be viewed as thgarticle restricted to a box of normalization volung.
probability for a transition between the states due to a colli\While we will take the limit{)—c in the course of the
sion. The appropriate normalization of the probability necescalculation, we can do it in such a way that products of Dirac
sary in the limit of improper states is then effected by thedelta functions never appear.

appearance of the total cross sectigip) in Eq. (54), which In the absence of any interaction between the particles the
is absent in the usual naive treatments of the squarfedic-  Hamiltonian reads
tion.

This point of view is confirmed by the fact that the rule _ P?p?

(54), which was derived from a simple physical argument Ho=om ™ 2m’
(45), implies a conservation condition. Integrating E§4)
we have wherem and M are the bath and Brownian particle masses

andp andP are their momentum operators. The normalized

(2mh)? o ) ) , (', p)I? eigenstates oH, are direct product$P)|p), where|p) is
Q f dp’[{p’| Zolp)| _’J’ dp"a(p—p’) p2a(p) =1 given by Eq.(47) with Eq. (49), and similarly
(56) _ iP-R/t%

and hence, using Eq(50) and switching to volume- (RIP)= Ja (59
normalized states,

- Ny The values ofp and P are restricted to a discrete setP

(PITT 5|p)—1. (57)  eP,, so that the wave functions respect periodic boundary

) ) ) ) conditions. Our full Hamiltonian is then
Inserting the identity(48) yields
H=H,+V(t—R),
= |2
2 K| Zelp) = 1. (58) wherer andR are, respectively, the bath and Brownian par-

"eP . .. . . .
Peta ticle position operators, and describes the interaction.

This is reminiscent of the situation of a multijunction in me- N the interaction picture the full density operator evolves
soscopic physic8], or of the scattering off a quantum graph according to

[9], where one defines a transition matfi,,=|t,? that
connects a finite number of incoming and outgoing channels.
There thet,,, are the transmission amplitudes between tth
incoming and outgoing states, and current conservation im-

hereU(t)=1+iT(t) and

plies 1 [t
T(t)=—gJ Hi(tHu(t)dt',
0
E Tmn=1 with Tmnzltmn|21
m with
in analogy to Eq(58). H (1) =eMotiv(c—R)e Hol/h, (61)

The fact that the conservation relatig®8) has no mean-

ingful equivalence in the continuum lim{2 —c is closely  Using the unitarity of the time evolutionUT(t)U(t)

connected to the difficulty of evaluating the squared scatter=y(t)UT(t)=Z, we find from Eq.(60) and the definition of
ing amplitude in the momentum representation. It suggests(t) that

that the diagonal representation pf" can be used in a

rigorous formulation of the master equation only if the tran- otal otal 1 + otal
sition from a discrete to a continuous set of bath states is P (O=p(0)=Si[TO+TH(1),p(0)]
delayed until after the square of the scattering matrix element

is evaluated. A calculation along this line, albeit in a pertur- +T(1)p0)TH(1)
bative framework, is presented in the following section.

1
— S THOT(1)p”(0)
2 |
IV. WEAK-COUPLING CALCULATION
We now consider an approach that is totally different from . } total ) TT (1) T (1),
the derivation in Sec. Il. Instead of performing a scattering 2P '
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This equation is exact. The first term on the right side de- (27h)8 _ ~
scribes a unitary modification to the dynamics of the density ~ Ap= o > (2Apr1qrpoprgr
operator due to the interaction with the bath particles; we P".a"P".q" e Pg
neglect it here since it will not lead to decoherence. For the Cmt % o=t .
other terms we make the standard weak-coupling approxima- AprgpAprgrPo=polprgrApg) Y (A", 07),
tions[10]: we replaceT(t) b .
ions[10]: we replaceT(t) by with

1 (At

T0=——f H,(t")dt’, At [At
hlo Y(q' q")_ f trbatl‘{')’q (' )Pbath T//(t”)}dt dt”.

assume an initially uncorrelated density opera,ﬁrﬁ?a'(O)

=po® p"N[cf. Eq.(36)], and at timeAt trace over the bath Here we no longer distinguish between the Sdimger and

to find the change in the reduced density operator for théhe interaction picture of the reduced density operator since

Brownian particle as they yield the same evolution in the infinite mass limit. The
response functio'(q’,q") involves the correlator

1 1
Ap = trbathl Topopbath-r;_ ETgTopopbath_ Epopbath-rg-ro . o Yo (t’ )pbath,y;”(tn)}

(62)
. . . . - Yy’ q”lv(q )|2 2 N
To constructT, we begin with a Fourier expansion of the pelq

interaction potential, writing

ex4i(t’ ") (lp+a'l>~p H
27h)3 h 2m '
V(e-R)=" 2, V(@et T (63
R R where
choosing the prefactor for later convenience. Then, forming ~ bath™
Eq. (61) by inserting resolutions of unit{48) in terms of the Np=(plp o)
energy eigenstates between the free evolution terms and the
potential, we find is the probability associated with stdf@. At this point we

include the fact thal particles exist in volumé&) by multi-

(2 plying the one-particle probability byN. Moreover, for a
H(t)= large volume() we can replace the summation over the bath
momenta by an integral,
p(ut |P q|2 PZ)
exp - ———— N
|p+l*~p? Pt

X + e —F— . (64

pEEQ |p ) (p| xp( 2m ) 64) wheren is the bath particle density and(p) the thermal

distribution function(40). This yields
Although this approach leads easily to considering the more
general problem of a finite mass Brownian particle, we defer trpand vqr (') p"2My T,,(t")}
that to a later communication. Here we take the infinite mass

limit for the Brownian particle by taking —« in Eq. (64), _ TN
and we can then write =g UV(A@) | nu(p)
H " 12 2
(277/’1)3 ~ i(t'=t") (lp+q'[*—p
Hi(t) = > Apgvg(t), XeH om ) |9P
P,qe Pq
=0y Gy (1" —1t' y 65
where aar QG ( ) (65
—_— with
APq:||:)_q> <P|
and Gq<t"—t'>=n|V<q)|2f 1(p)
— lp+4|*—p? i(t'—t") (Ip+q*~p?
Yq() q)E |p+Q><pIexp( — X ex ) dp (66)
a ety 2m h 2m P
Using these in the expressig62) for Ap, we find for all g. Then we have

012105-12



COLLISIONAL DECOHERENCE REEXAMINED

(2mh)® Q o et e o
A = — 2A ’ A " _A 1" A ’
P= 02 52 P’,P’%e\l‘g (2herapolterg™ Aprglherapo
~ PoApugBg) o AD), (67)
where

At (At
|q(m)zf0 fo Gy(t"—t")dt'dt".

Now that the Kronecke® appearing in Eq(65) has been
summed we can pass to the continuum lifdit-c and
switch from the box-normalized stat€¢s9) to the standard
momentum kets for the Brownian particle,

iP-R/%
J2mh)?

This is done by the replacements

(RIP)=

T\Pq_> | P— q><P| EAPq

(27h)3
and
27h)3
( ) > _>f dP. (69)
Q  peT,
We obtain
Ap _ ’ 1 T T
237 = | dP'dP dq(ZAF,,quAP,,q—AP,,qu,qpO

~ P prgAprg) Ig(AD).

Similarly, the Fourier transform of E¢63) yields in the limit

(68),
V(q):f (27h)3
=(q|V[0)

as the momentum matrix element of the interaction.
By means of the Fourier expansion

V(r)efiqw/h

Gq(t)= f (]|—“’6q((l))e—iwt : (69)

2

we can write

wl2

H 2
Iq(At)=%J dwGy() —S'n(wmlz)} ,

where

PHYSICAL REVIEW A68, 012105 (2003

o :8 1/2
|V(Q)|2(27T—m)

Bmﬁz q2 2
xXexp — 2—qz w— W

as we show in Appendix B. It follows that for time intervals

— 2mTnmh
Gy(w)=

, (70

At> Bt (71

we can seGy(w)~Gy(0), andl 4(At)~G4(0)At for essen-
tially all g of importance in Eq(67); a coarse-graining time
long enough that Eq.71) is satisfied is sufficient to guaran-
tee that Fermi’s golden rule holds and energy conservation is
satisfied for the scattering bath particles. We then obtain a
master equation for the reduced density operator of the
Brownian particle,

dp

n =473 f dP'dP"dQ(2A prgpAprg— A g Aprgp

—pA A1) Gg(0).

Although not explicitly in Lindblad form this equation yields
a completely positive evolution ¢f and can be put in Lind-

blad form, sinceG4(0)>0.

To see the physics of this result and to compare it with
earlier work we go into the coordinate representation
p(R1,Ry;t)=(R4y|p(t)|R,), where we find

(R1,R2:t) = —F(R1—R2)p(R1,Ry1),

EP

with

F(R)zsw%f dg(1—e 'RMG(0). (72)

While this in practice might be a useful expression for evalu-
ating F(R) directly, to compare with earlier work it is easiest

to return first to Eq.(66) and formally determinegq(O).
Inserting in Eq.(72) leads to

F(R)=16w4h2nf dqf dpu(p)|V(9)|?

|p+qF—pj

_aiq-RI%
X[1l—e ]5( om

and with the introduction of a new variablg =p+q to
replaceq,

F(R)=16w“ﬁ2nf f dp’dpu(p)|V(p’' —p)|?

(p’)z—pz)

_ ai(p—p')-Ri%
X[1l—e ]5( om

The p’ integration can be done in polar coordinat@s,
=p’n, i.e.,dp’=(p’)2dp’dn. Then, since
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(p')2-p? p +p m other collisional decoherence processes. We plan to turn to
e 5( om (p'—p)|= 55(P' —p), them in future communications.

Different as the three approaches may be, they all suggest

we have that previous results in the literature predict decoherence

rates that are quantitatively too large. This conclusion is not

42 . — . ) only of theoretical interest. A recent experimgd{ on the
F(R)=167"% nmf fdn dpu(p)p|V(pn—p)| decoherence of fullerene matter waves by collisions with
X background gas atoms was sensitive to the presence or ab-
X[1—e!(P=Pm)-R/A7, sence of the factor of 2 that has been the focus of this
article. And, indeed, the observed decoherence rates are in
which, with the aid of Eq(41), yields full agreement with the equation derived in this article and

exclude the previous results.

F(R)=4w3h2an J pr(p)dp dndsV(pn—ps)|?
ACKNOWLEDGMENTS
X[1— ¢l (psmen) RiA, J.S. acknowledges support from the Natural Sciences and
) ) . Engineering Research Council of Canada, and thanks the
Finally, we use the fact that the first order Born approxima-ynjyersity of Vienna for its hospitality during his stay. K.H.

tion for the scattering amplitude is given bg] has been supported by the DFG Emmy Noether program.
fa(p’,p)=—(2m)*MmAV(p' —p) (73 APPENDIX A
to find In this appendix we confirm the resul{d7) and (18),
p o dids SompIets et of momentum eigensiates 1o it e matrx
F(R):”J Jav(p)dp 4 [fa(pn,ps)|* gloemmpeit appearing in(R) as ’

X[l_ei(pé—pﬁ)-R/ﬁ]’ ' .
<qz|T$e""R”‘Tolq1>=f dq’ (gl 7€ R*|q")(q' | 7ol ay)
in agreement with Eq(2) for e=1, if the full scattering
amplitude is replaced by its first Born approximation. .,
P P ’ PP =J dg'e'™ ®aal Tgla’){(a'| Tol ).
V. CONCLUSIONS
In this article we presented two detailed derivations of the;—rk:gnngtsi:,]nggzze _e)(;F,);e;ZI,Q E]?]) ;ci gz: niegr;x&c(aga’riznt)s Svroe
quantum master equation for a massive Brownian particle 2 ! 2 e
subject to collisions with particles from a thermalized envi-
ronment, and a third argument for the master equation based dg,dq
on physical motivations. They represent rather different strat4 , = 172
egies of dealing with the principal problem that arises in the 2mhQ;
formulation of collisional decoherence: The momentum (A1)
eigenstates that are the most natural for describing the den-
sity operator of the thermal bath do not constitute proper dqg,dg,dq’ 0 Rifiex oyt
states for the application of scattering theory. 12(R)= W”(Ql,%)e f*(q',02)

By representing the thermal bath with an appropriate ™R W%
overcomplete basis, we obtained in Sec. Il the full master Xf(q',q1)8(q" — 1) 6(d2—dy),
equation in a calculation that is mathematically and physi-
cally convincing, but cumbersome. The perturbative treatand s08(g,—0,) appears in both these expressions. They
ment in Sec. IV permitted the avoidance of improper stategire simplified if we make a change of variables fram,@,)

u(dy,d2)[f(a2,91)+f*(d1,92)16(d,—ay),

up to a point where they could be handled in an unambiguto (q,s), whereq,=q+ <2 andq,=q—s/2. The Jacobian of
ous way. Yet this calculation hides some of the physics inthis transformation is unity, sdq,dq,=dqds, and

volved and does not in itself suggest an immediate generali-

zation to higher orders in the perturbation parameter. More 2 2
straightforward, but a bit speculative, is the use of the re- &(g,—Qq,)=46 \/q2+ Z+s-q— \/q2+ Z—s-q).
placement rule put forward in Sec. Ill. It yields the master

equation immediately, but lacks the mathematical foundation . . .

one would wish for an equation describing a process as funWe do t[‘&"“tegfa' first, and we single out the component of
damental as decoherence by collisions. The strategies devé&lalongq by writing

oped here lead to natural generalizations, both to the more .

general problem of a Brownian particle of finite mass and to s=vq+A,
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whereA is a two-dimensional vector lying in the plane per-

pendicular toq. Thends=dvrdA, and

d(d,—dy)=8(g(v))

for fixed A, where

5 A2+ 12 5 A%+ 42
g(v)=\/q°+ 4 +qv—\/q°+ 4 —qv,

which as a function o¥ vanishes av=0. Thus

s(v) P+ AZA

|dg/dy|v=0_ q

o(g(v))=

v),
and for any functiorlJ(q;,q,) we have

dg,dg,U(q1,02) 8(0,—dy)

S s
=dqudAU<q—§,q+§ é(g(v))
—dqaalulq- 2 g+ 2 A2
where we have put
B 5 Az_ Al Al
Q=\a+=0- 57|95 =U1=0

[cf. Eq. (21)]. Using this in the first of EQ9Al) we imme-
diately find Eq.(17); using it in the second of Eq$Al) we
find Eq. (18):

L(R) J dgdg’ [ dA ( A +A
e — _u —_’ —
2 ann2)eqQ 9 2097 2

iq’~R/h.|:* ' éf ’ _é S’ —
xe 9.9+ /fl9".9-5]4(d" Q)

_J dqdﬁJ’ dAQ A A
“) aam)a U929

o3
Q.q+§ f Q,q—5 ,

el Q R/t

X f*

where to get from the first to the second equality we have put
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Gq(w)EJ dt &G (t)

o +al?2=p2
=2wﬁn|V<q>|2f M(p)é(w—ﬁw dp
2m
=wﬁ|V(q)|2nf v(p)dp dad(s,(a)), (B1)
where
_ 2pqa+g? .
Su(@)=—— ——ho.

To get from the second to the third equality of EB1) we
have put

lp+al*—p* 2p-q+q’

2m 2m

_ 2pga+q’
~ 2m

where «=cos6, and 6 is the angle betweep andq, and

used Eq(41), writing ds=dad¢, whereg is the azimuthal
angle aroundj. The functions,(«) has a single root

2mho—q?
~ 2pg

Qg

which, for there to be a contribution to the integral in Eq.

(B1), must satisfy— 1< a,<1. Sincep andq are both posi-
tive this implies

|2mA w—g?|
P=Peu= T 2q
Finally, noting that
mé(a— a,)
o(s, =,
(su(@)) 0

we obtain the expression

_ h — ®
G =" V@ [ “Pap

cut

dg’=(q")?dq’dn, wheredn is an element of solid angle, |, thermal equilibrium

and definedQ as in Eq.(21).

APPENDIX B

Here we confirm the resul70). From the inverse trans-

form of Eq.(69) we have, using Eq66),

B 3/2 ,
= - = Bpl(2m)H2
v(p) 477( 277m) e ps,

this integral immediately yields Eq70).
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